
Empir Econ (2016) 50:1359–1381
DOI 10.1007/s00181-015-0978-z

Panel bootstrap tests of slope homogeneity

Johan Blomquist1 · Joakim Westerlund2,3

Received: 7 October 2014 / Accepted: 14 April 2015 / Published online: 21 July 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract This paper proposes two bootstrap-based tests that can be used to infer
whether the individual slopes in a panel regression model are homogenous. The first
test is suitable when wanting to infer the null of homogeneity versus the general
alternative, while the second is suitable when wanting to infer the units of the panel
that can be pooled. Both approaches are shown to be asymptotically valid, a property
that is verified in small samples using Monte Carlo simulation.
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1 Introduction

Most common panel regression models, such as the random and fixed-effects models,
assume that the regression slopes are equal across the cross section. In fact, in some
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parts of the literature the equal slope assumption is so common that it is hardly ever
questioned. The main reason for this is twofold (see, e.g., Baltagi et al. 2008). First, it
greatly simplifies the process of estimation and inference. In fact, as a referee to this
journal points out, the main feature of panel data is the ability to selectively pool the
information regarding the assumed common slope, while allowing great heterogeneity
in other parts of the model. Second, if true exploiting the equality of the slopes leads to
large gains in efficiency. The problem is that if the assumption is false, panel techniques
based on models with equal slopes become inconsistent, causing misleading inference
(see, e.g., Hsiao 2003, Chapter 6). It is therefore crucial to test for slope homogeneity
before proceeding with an analysis based on this assumption.

The classical approach to test the equal slope assumption is to employ a simple
F-test (see, e.g., Hsiao and Pesaran 2008; Baltagi et al. 2008; Pesaran and Yamagata
2008). Alternatively, one may use the Hausman test of Pesaran et al. (1996), in which
two estimators are compared, one is constructed under the assumption of homogenous
slopes,while the other is not.A third possibility is to use theSwamy-type test of Pesaran
and Yamagata (2008), which is based on the dispersion of individual slope estimates
from a suitable pooled estimator. Although very popular, these approaches suffer from
at least two important shortcomings.

First, all three tests assume that the regression errors are cross-sectional indepen-
dent, a restriction that is likely to be violated in practice, especially in macroeconomic
and financial applications involving country-level data where strong intraeconomy
linkages can be expected. Recognizing this shortcoming, Phillips and Sul (2003) pro-
pose a Hausman-type test that is appropriate in the special case when the dependence
can be represented by means of a single common factor. The problem is, of course,
that the common factor structure need not be correct, which would then invalidate
the test. Another possibility, which allows for more general forms of cross-sectional
dependence, is to use the seemingly unrelated regression (SUR) approach. The advan-
tage of this approach is that, as long as the cross-sectional dimension, N , is “small”
and the time series dimension, T , is “large,” the cross-sectional dependence can be
allowed to be quite general. The drawback is that unless T >> N , the small-sample
performance of SUR-based tests is often very poor (see Bun 2004).

The second shortcoming relates to the formulation of the hypotheses tested, which,
depending on the problem at hand, may not be very informative. In particular, while
the null hypothesis can certainly be formulated as that all the slopes are equal, the
alternative hypothesis that there are at least some units for which homogeneity fails
is typically too broad for any interesting economic conclusions; it could be that the
slopes of all units are different, but it could also be that there is only a small fraction
of units for which homogeneity fails. Some studies have considered clustering meth-
ods for grouping units such that the slopes are homogeneous within each group, but
heterogenous across groups (see, e.g., Kapetanios 2006; Lin and Ng 2012). Unfortu-
nately, these methods are quite complicated to implement, which is probably also the
reason for why they are almost never used in practice.

In this paper, we develop several procedures to ascertain the homogeneity of a
panel. The point of departure is a quite general data-generating process that allows, for
example, serial correlation of unknown form and complex cross-sectional dependen-
cies such as dynamic common factor models. In fact, except for some mild regulatory
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conditions, there are virtually no restrictions on the forms of serial and cross-sectional
dependence that can be permitted. We do require that the regressors are strictly exoge-
nous, but the approach can be easily extended to allowmore general types of regressors.
Given this generality, corrections aimed at achieving asymptotically pivotal statistics
are not really an option. In this paper, we therefore consider the block bootstrap
as a means to obtain tests that are asymptotically valid. Two block bootstrap-based
test procedures are considered: one is appropriate when testing the above mentioned
hypothesis of slope homogeneity versus at least some heterogeneity, while the other
can be used to sequentially determine the units for which the slopes are equal. Both
procedures are easy to implement and work well even when N and T are similar in
magnitude.

The plan of the rest of the paper is as follows. Section 2 describes the model
and assumptions, which are used in Sect. 3 to study the properties of the two test
procedures considered. Section 4 presents the results of a small Monte Carlo study.
Section 5 concludes.

2 Model and assumptions

Let yi,t be generated as

yi,t = θi + β ′
i xi,t + εi,t , (1)

where θi is regarded as a unit-specific intercept or fixed effect, xi,t is am×1 vector of
regressors, and βi is a conformable vector of unknown slope coefficients. The purpose
of this paper is to infer to which extent βi can be regarded as equal across i .

The assumptions thatwewill beworking under are stated below,where→p and→d

signifies convergence in probability and distribution, respectively, and C ∈ (0,∞)

is a generic constant not depending on N or T . Let Qi,T = T−1(x ′
i Mτ xi ), where

xi = (xi,1, . . . , xi,T )′ and Mτ = IT − τT (τ ′
T τT )−1τ ′

T , IT is the T × T identity
matrix, and τT = (1, . . . , 1)′ is a T × 1 vector of ones. It is also convenient to let
z̃t = (z̃′1,t , . . . , z̃′N ,t )

′, where z̃i,t = (xi,t − μi )εi,t and μi = E(xi,t ). The sigma-field
generated by {εi,n}tn=1 ({xi,n}tn=1) is henceforth going to be denoted Fεi,t (Fxi,t ),

Assumption REGR. Qi,T →p Qi as T → ∞, where Qi is a positive definite matrix.

Assumption ERR.

(i) E(εi,t x j,n) = 0 for all i , t , j , and n;
(ii) E(ε2i,t |Fεi,t−1 ∪ Fxi,t ) = E(ε2i,t ) = σ 2

i ≤ C for all t ;

(iii) � = var(T−1/2 ∑T
t=1 z̃t ) is positive definite;

(iv) {(xi,t , εi,t )}Tt=1 is an α-mixing sequence with mixing coefficient αi (n), which is
such that supi=1,...,N αi (n) ≤ α(n), where α(n) = Cn−a for some a > r/(r−2)
and r > 2;

(v) E(||xi,t ||2r+p) ≤ C and E(|εi,t |2r+p) ≤ C for some p > 0, and all i and t .

Assumptions ERR (i) and (ii) rule out regressors that are non-strictly exogenous
(including lagged dependent variables) and heteroskedasticity across time. As we dis-
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cuss in Remark 1 of Sect. 3, these assumptions are stronger than needed. However,
since the main motivation of the paper is to account for cross-sectional (and serial)
correlation, we have preferred to keep Assumptions ERR (i) and (ii) as they stand
(see, e.g., Kapetanios 2008; Hidalgo 2003, for similar assumptions). These assump-
tions are not needed for the specific tests that we propose, but for the validity of our
residual-based bootstrap, which can be easily modified to accommodate both endoge-
nous regressors and errors that are heteroskedastic across time. The reason for sticking
with the residual-based bootstrap is that it makes for relatively straightforward proofs.
Assumption ERR (iv) allows for heterogeneous forms of serial correlation across the
cross section, but imposes a uniform bound on the mixing coefficients. Many com-
monly encountered stochastic processes can be accommodated under this assumption
(see Davidson 1994, Section 14.4). Note also how Assumption ERR does not impose
any particular cross-correlation structure. In particular, it is not necessary to know
whether the dependence is weak or strong (see Chudik et al. 2011; Pesaran and Tosetti
2010). The dependence also does not have to be static but may be dynamic in nature,
when εi,t is generated by a dynamic common factor model. The moment requirements
in Assumption ERR (v) rule out time trends in the regressors.

3 The bootstrap test procedures

Let us denote by q the number of units that cannot be pooled; that is, q is the number of
units for which βi �= β, where β is the common value of βi . The purpose of this paper
is to make inference regarding q. Let us therefore denote by 0 = q1 < · · · < qK < N
a set of K user-defined numbers, representing the number non-poolable units to be
considered in the testing. Let H0(qk) denote the null hypothesis that q = qk , where
k = 1, . . . , K , and let H1(qk+1) denote the alternative hypothesis that q ≥ qk+1.

3.1 A pooled test for testing q = 0 versus q ≥ 1

In this subsection, we consider the relatively simple problem of testing H0(0) versus
H1(1); that is, the null hypothesis of homogeneity (q = 0) is tested versus the alter-
native that there is at least one unit that cannot be pooled (q ≥ 1). The reason for
considering this testing problem separately is that under the null hypothesis the slopes
of all the units are equal, which makes it possible to consider pooled test statistics
in the spirit of much of the previous literature (see, e.g., Hsiao and Pesaran 2008;
Baltagi et al. 2008; Pesaran and Yamagata 2008). The test statistic that we consider is
a bootstrap Swamy-type homogeneity test and is given by

S =
N∑

i=1

T
(
β̂i − β̂WFE

)′ Qi,T

σ̂ 2
i

(
β̂i − β̂WFE

)
,

where β̂i is the least-squares (LS) estimator of βi when applied to cross-sectional unit
i , σ̂ 2

i = T−1 ∑T
t=1 ε̂2i,t , ε̂i,t = yi,t − θ̂i − β̂ ′

i xi,t , and β̂WFE is the weighted fixed-effects
(WFE) estimator, as given by
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β̂WFE =
(

N∑

i=1

x ′
i Mτ xi

σ̂ 2
i

)−1 N∑

i=1

x ′
i Mτ yi

σ̂ 2
i

.

AsHsiao (2003) and Pesaran andYamagata (2008) show, under H0 and the assump-
tion of independently identically distributed (iid) errors, S →d χ2[m(N − 1)] as
T → ∞ with N held fixed. However, under the more general assumptions laid out
above, this is no longer the case. The approach opted for here is therefore based on
the bootstrap.

Algorithm BOOT.

1. Estimate (1) using LS for each cross-sectional unit and organize the residuals, ε̂i,t ,
in a T × N matrix ε̂ = (ε̂1, . . . , ε̂T )′, where ε̂t = (ε̂1,t , . . . , ε̂N ,t )

′.
2. Obtain β̂WFE and θ̂i = yi − β̂WFExi , where yi = T−1 ∑T

t=1 yi,t with a similar
definition of xi .

3. Choose a block length, l. Let Jt = (ε̂t , ε̂t+1, . . . , ε̂t+l−1)
′ be the block of l con-

secutive estimated errors starting at date t , and let I1, I2, . . . be a sequence of iid
random variables with a discrete uniform distribution on {1, . . . , (T − l+1)}. The
T × N matrix of pseudo errors, ε∗, is such that the first l rows are determined by
JI1 , the next l rows are given by JI2 , and so on. The procedure is stopped when T
rows have been generated.

4. Simulate pseudo-data under H0 as y∗
i,t = θ̂i + β̂ ′

WFExi,t + ε∗
i,t .

5. Compute the bootstrap test statistic, S∗, where S∗ is calculated exactly as S, but
with (yi , xi ) replaced by (y∗

i , xi ).
6. Repeat steps 3–5 B times.
7. Select the bootstrap critical value as the (1−α)-quantile of the ordered S∗ statistics.

Remark 1 The above algorithm is an example of a residual-based bootstrap and is sim-
ilar to the algorithms used inBun (2004),Kapetanios (2008),Hidalgo (2003), andZhou
and Shao (2013), to mention a few. Alternatively, we may follow, for example, Freed-
man (1981) and Fitzenberger (1997) and block bootstrap (yi,t , x ′

i,t ). Hence, instead
of resampling ε̂t in step 3 in Algorithm BOOT, we resample (y′

t , x
′
t )

′, a N × (1 + m)

matrix. The bootstrap test statistic is S based on (y∗
i , x∗

i ), the bootstrapped version
of (yi , xi ). The main advantage of this resampling scheme is that it does not require
homoskedasticity and strictly exogenous regressors.1

Remark 2 Algorithm BOOT requires a choice of block length, l. A common approach
is to set l as a deterministic function of T . Alternatively, one may follow, for example,
Gonçalves and White (2005) and Gonçalves (2011) and set l according to the data-
dependent rule of Andrews (1991) or Newey andWest (1994), originally proposed for
the purpose of bandwidth selection in long-run variance estimation (see Fitzenberger
1997, Section 3.4, for a discussion). In Sect. 4, we use Monte Carlo simulation to
evaluate the effect of various rules for selecting l.

1 As pointed out by MacKinnon (2007), the advantage of bootstrapping (yi,t , x
′
i,t ) rather than residuals

often comes at the cost of poor small-sample performance, a finding that is supported by our preliminary
Monte Carlo results.

123



1364 J. Blomquist, J. Westerlund

The asymptotic validity of the bootstrap procedure requires the following assump-
tion on the block length.

Assumption BL. l → ∞ and l = o(
√
T ) as T → ∞.

Theorem 1 Suppose that Assumptions REGR and ERR hold and that T → ∞ with
N held fixed. Under H0(0),

S →d

kN∑

j=1

λ jU
2
j ,

where λ j ∈ [0,∞) and U j ∼ N (0, 1) independently across j . Under H1(1),

S → ∞.

The corresponding result for S∗ is given in Theorem 2.

Theorem 2 Suppose that Assumptions REGR, ERR, and BL hold and that T → ∞
with N held fixed. Under H0(0) and H1(1),

S∗ →d∗
kN∑

j=1

λ jU
2
j in probability,

where →d∗ convergence in distribution conditional on the realization of the sample.

Remark 3 Together Theorems 1 and 2 establish the asymptotic validity of the proposed
bootstrap test procedure. There are two requirements. First, S and S∗ must converge to
the same asymptotic null distribution. Second, under H1(1), while S∗ should converge
to the same asymptotic distribution as under H0(0), S should diverge.

Remark 4 The asymptotic results in Theorems 1 and 2 are based on letting T → ∞,
while keeping N fixed. There are several reasons for considering such a large-T and
fixed-N asymptotic framework. First, if T is fixed, then the above resampling scheme
will not be asymptotically valid. Also, N plays no role in the proofs of Theorems 1
and 2. As there is no resampling in the cross-sectional dimension, there is no reason
to expect the performance of the bootstrap test to become more (or less) accurate
when N increases.2 Second, it is difficult to obtain distributional results for N → ∞
without imposing additional conditions on the cross-sectional dependence structure.3

Third, from a practical viewpoint, a test for slope equality may be of greatest interest in
applications in which N is relatively small. In such cases, the condition that N → ∞
may be difficult to justify. There are, of course, applications in which it is more
appropriate to rely on large-N asymptotics, but then other test statistics are likely to

2 An alternative bootstrap approach based on cross-sectional resampling has been suggested by Kapetanios
(2008). Unlike the bootstrap approach used here, the cross-sectional resampling scheme provides asymp-
totically valid bootstrap procedures when N → ∞ but T remains fixed, but this is based on cross-sectional
independence.
3 See Gonçalves (2011) for a set of assumptions that can be used in the case of arbitrary cross-sectional
dependence and N asymptotics.
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be more effective (see Pesaran and Yamagata 2008, for a discussion). However, in
such large-N panels T is typically too small for estimation of individual slopes, and
therefore, the analysis must be made conditional on the slopes being equal.

Remark 5 In contrast to, for example, Bun (2004), we make no attempt to obtain
an asymptotically pivotal test statistics. Nevertheless, it should be noted that there is
evidence that bootstrapping of (asymptotically) pivotal test statistics leads to asymp-
totic refinements (see, e.g., Davidson and MacKinnon 1999). Therefore, if such a test
statistic could be obtained, it may be preferable to the approach taken here.

3.2 A sequential test procedure for determining q

The test considered in the previous section is appropriate if onewishes to infer whether
there is any evidence against poolability at all. The problem is that in many cases one
would like to go further than just concluding that q > 0 in case of a rejection, and in
this section, we therefore consider a sequential test that can be used to pinpoint q. In
so doing, we will assume that qk = k − 1, where k = 1, . . . , K and K = N − 1, such
that the number of units to be tested decreases by one at each iteration; later on we
discuss how to proceed when q1, . . . , qK are set differently.

To test whether a particular unit i has the same slope coefficient vector as a certain
benchmark unit b, we may use the following Wald test statistic:

Wi = T
(
β̂i − β̂b

)′(
σ̂ 2
i Q

−1
i,T + σ̂ 2

b Q
−1
b,T

)−1(
β̂i − β̂b

)
.

The idea is to apply this test statistic in a sequential fashion to determine the set of units
with coefficient vector βb = β. The problem is that in doing so we are likely to end
up with spurious rejections due to the multitude of tests; that is, we face the problem
of controlling the overall significance level of the approach. To this end, we follow
Smeekes (2015), who considers a bootstrap sequential unit root test to determine the
stationary units in a panel.

Let W(1),W(2), . . . ,W(N−1) denote the N − 1 order statistics of W1, . . . ,Wb−1,

Wb+1, . . . ,WN defined as W(1) ≥ · · · ≥ W(N−1). Denote by q̂ the estimated number
of units that cannot be pooled with the benchmark. The sequential procedure is carried
out as follows.

Algorithm SEQ.

1. Set k = 0.
2. Test H0(k) against H1(k + 1) using W(k+1) as a test statistic. Reject H0(k) if

W(k+1) > cα(W(k+1)), where cα(W(k+1)) is the appropriate critical value at sig-
nificance level α.

3. If H0(k) is not rejected, set q̂ = k, whereas if H0(k) is rejected, set k = k + 1 and
go back to step 2.

4. Preform steps 2 and 3 until H0(k) cannot be rejected anymore, and set q̂ = k. If
all null hypotheses up to H0(N − 1) are rejected, set q̂ = N .

We now focus on how to obtain appropriate critical values, cα(W(k+1)). Let Dk =
{i : Wi ≥ W(k)} denote the set of units for which Wi is larger than the kth-order
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statistic. The complement of Dk is henceforth denoted Dc
k . Let us also denote by

a(1:F) the largest element of the set {ai : i ∈ F}. The following bootstrap algorithm
will be used to obtain cα(W(k+1)).

Algorithm SEQBOOT.

1. For each unit, estimate (1) by LS and organize the residuals in a T × N matrix ε̂.
2. Choose a block length, l, and obtain the matrix of bootstrap errors, ε∗, as described

in step 3 of Algorithm BOOT.
3. Simulate pseudo-data under H0(k) as y∗

i,t = θ̂i + β̂ ′
bxi,t + ε∗

i,t .
4. Obtain W ∗

i by applying Wi to (y∗
i,t , xi,t ) for all i ∈ Dc

k and obtain the bootstrap
test statistic as W ∗

(k+1) = W ∗
(1:Dc

k )
.

5. Repeat steps 2–4 B times.
6. Select the bootstrap critical value c∗

α(k + 1) as the (1− α)-quantile of the ordered
W ∗

(k+1) statistics.

Remark 6 Note that the sequential procedure will not only estimate the number of
poolable units, q̂ , but will also identify those units. The set of units that are poolable
(non-poolable) equals Dc

q̂ (Dq̂ ).

In this study, the benchmark is a single unit. This is not necessary. In fact, as pointed
out by Kapetanios (2003), β̂b may be based on a pooled estimator. The problem with
such an approach is that the pooled estimator may not make sense under the alternative
of different slopes. Suppose, for example, that there are two groups of units, whose
slopes are equal within each group but heterogeneous across groups. In this case,
the pooled estimate will likely lie between the true coefficients, and therefore, the
sequential procedure is likely to find evidence against poolability for all units.4 The
use of a benchmark unit overcomes this problem.

The question is how to choose the benchmark unit. In some applications, there is
a natural candidate, as when evaluating policy for a particular unit or when there is
a “dominant” unit (see Pesaran and Chudik 2013). In other applications, the choice
of benchmark may be less obvious. However, in many cases the researcher will have
some a priori information as to the units that are most likely to be poolable, and in
such circumstances, the benchmark unit may be picked at random from that set.

Denote by Z = {i : βi = βb, i �= b} the set of units for which the null hypothesis
βi = βb is true. In addition, let Gh denote the asymptotic distribution (as T → ∞) of
Wh for h ∈ Z . Lemma 1 establishes the asymptotic distributions of the relevant test
statistics when testing H0(k) against H1(k + 1).

Lemma 1 Suppose H0(k) is tested against H1(k + 1) using Algorithms SEQ and
SEQBOOT. Under Assumptions REGR and ERR, as T → ∞ with N held fixed

W(k+1) → ∞ if k + 1 ≤ q,

W(k+1) →d G(1:Z) if k + 1 > q,

4 Kapetanios (2003) assumes the existence of a consistent pooled estimator of some common parameter
β, regardless of whether or not the units are poolable. Typically, this requires that a random coefficient
assumption is satisfied, or alternatively, that the fraction of non-poolable units tends to zero as N → ∞.
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W ∗
i →d∗ Gi for any q and all i ∈ Dc

k ,

W ∗
(k+1) →d∗ G(

1:Dc
k

) for any k and q.

Lemma 1 states the asymptotic validity of the bootstrap approach. Here, G(1:Z)

represents the asymptotic distribution ofW(1:Z). Under Assumptions REGR and ERR,
G(1:Z) is unknown and an analytical approach to the sequential test is not feasible.
Fortunately, the desired distribution can be obtained via bootstrapping.

Theorem 3 Under the conditions of Lemma 1,

lim
T→∞ P(q̂ = k) = 0 if k + 1 ≤ q,

lim
T→∞ P(q̂ = k) = 1 − α if k = q,

lim
T→∞ P(q̂ = k) ≤ α if k − 1 ≥ q.

Remark 7 The first part of Theorem 3 shows that asymptotically the probability of
underrejection is zero; that is, the probability of finding the set of poolable units tends
to one as T → ∞. Also, as is evident from the third part, since the family-wise
error rate (FWE) is at most α, the procedure is able to control the overall significance
level.

While asymptotically irrelevant, the finite sample performance of the sequential test
depends on the number of hypotheses tested and the true number of poolable units.
In particular, for the overall procedure to have satisfactory power when the number of
non-poolable units is large, it is necessary that the power at each step of the procedure
be close to one. If this is not the case, and if the number of tests is large, the probability
of correctly labeling all non-poolable units is likely to be quite low. Consequently, the
sequential procedure is mainly suited for panels where N is relatively small. In Sect. 4,
we elaborate on this issue.

As a partial solution to the problem of low power, we may follow the suggestion of
Smeekes (2015) and apply the sequential procedure to another set of pre-specified null
hypotheses. More specifically, instead of testing each unit against the benchmark, we
may skip some units. That is, instead of considering qk = k−1 for k = 1, . . . , N −1,
we may consider another set of numbers q1, . . . , qK , where qk is not necessarily equal
to k − 1. In this case, in the first iteration of Algorithm SEQ, H0(q1) is tested against
H1(q2). If H0(q1) is rejected, in the second iteration H0(q2) is tested against H1(q3),
and so on. By taking qk+1 − qk > 1, we reduce the number of tests conducted, which
is likely to lead to an increase in the overall power of the testing procedure. There is,
however, one major drawback of this approach. Since not every unit is tested against
the benchmark, unless q ∈ {qk : k = 1, . . . , K }, q̂ = qk cannot be interpreted as the
number of non-poolable units, nor can Dc

q̂ be interpreted as the set of poolable units.
Instead, the finding that q̂ = qk should be interpreted as that q ∈ [qk−1, qk+1]. The
effect of skipping units is illustrated in the next section.
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4 Monte Carlo simulations

In this section, we investigate the small-sample properties of the above tests using
Monte Carlo simulations. We begin by considering S∗. In this case, we focus on the
performance of the test across different specifications of the dependence structure
of the errors and across different block-length selection rules. We then proceed to
evaluate the sequential bootstrap approach. Here, we will focus on the ability of the
test to correctly identify the set of poolable units and to control the FWE.

4.1 Simulation design

The following data-generating process will be used to analyze the performance of S∗:

yi,t = θi + βi xi,t + εi,t ,

xi,t = λx fx,t + vi,t ,

fx,t = ρx fx,t−1 + ex,t ,

vi,t = ρxvi,t−1 + ui,t ,

where θi ∼ N (1, 1), λx = √
0.5, ρx = 0.5, ex,t ∼ N (0, 1 − ρ2

x ), and ui,t ∼
N (0, (1 − ρ2

x )(1 − λ2x )). Three specifications for εi,t are considered.

E1. εi,t ∼ N (0, 1).
E2. εt = (ε1,t , . . . , εN ,t )

′ is generated according to the following spatial first-order
autoregressive model:

εt = 0.5WN εt + et ,

where et ∼ N (0, IN ). The spatial weight matrix WN is constructed as a first-
order continuity matrix in which each unit, except for the first and last, has one
left and one right neighbor (see Anselin et al. 2008). To make the simulation
results invariant to the variance of the error terms, εi,t is scaled by the square root
of the i th diagonal element of the covariance matrix of εt .

E3. εi,t is generated according to the following dynamic common factor model:

εi,t = λε fε,t + ηi,t ,

fε,t = ρε fε,t−1 + eε,t ,

where λε = √
0.5, ηi,t ∼ N (0, 1− λ2ε), and eε,t ∼ N (0, 1− ρ2

ε ). When ρε = 0,
εi,t is serially independent, whereas when ρε �= 0, then this is no longer the case.5

Under the null, β1 = · · · = βN = 1, while under the alternative, βi = 1 for
i = 1, . . . , N/2� and βi ∼ N (1, 0.04) for i = N/2�, . . . , N , with x� denoting

5 We also considered a moving average model for fε,t . The results were, however, very similar to the ones
based the autoregressive model considered here and are therefore omitted.
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the integer part of x . All tests are conducted at a 5 % nominal level, and we take
N ∈ {5, 25, 50} and T ∈ {25, 50, 100}.

In case of the sequential testing procedure, we consider N ∈ {10, 20}. If N = 10,
then q ∈ {0, 1, 3, 6}, whereas if N = 20, then q ∈ {0, 1, 3, 6, 12}. In both cases, the
benchmark unit is taken to be b = N . The errors are generated as in E3 with ρε = 0.3.
For all i ∈ Z , βi = βb = 1, and for i /∈ Z , βi ∼ U (0, 0.5). The significance level
is taken to be 5%.6 To evaluate the ability of the sequential procedure to control the
overall significance level, we calculate the empirical FWE as the proportion of tests
with at least one false rejection. As a measure of power, we report the proportion of
tests in which the estimated set of poolable units,Dc

ĵ
, equals the true set,Z , henceforth

referred to as “CP.”We also consider skipping units. In this case, we have to decide on
a sequence of numbers q1, . . . , qK to be tested. In this section, qk+1 = qk + δ, where
δ ∈ {3, 6}.

In a final set of experiments, we compare our sequential bootstrap test with two
alternative methods frequently encountered in the literature on multiple testing, the
Bonferroni and Holm procedures.7 Denote by p̂i the p value ofWi . In the Bonferroni
procedure, Hi : βi = βb is rejected if p̂i ≤ α/(N − 1). The Holm procedure consists
of the following steps.

Holm algorithm.

1. Set k = 1.
2. Let p̂(1) ≤ · · · ≤ p̂(N−1) denote the ordered p values and H(1), . . . , H(N−1) the

associated null hypotheses. If p̂(k) ≥ α/(N −k), accept H(k), H(k+1), . . . , H(N−1)
and stop. If p̂(k) < α/(N − k), proceed to step 3.

3. Reject H(k), set k = k + 1, and go to step 2.

Compared with the Bonferroni procedure, the Holm criterion for rejecting H(k)

becomes increasingly less strict at larger p values. The Holm procedure is therefore
expected to be more powerful.

All results are based on 1,000 replications and 499 bootstrap draws. The first 50
time series observations are discarded to reduce the initial value effect.

4.2 Block-length selection rules

An important consideration in practice is the block length, l. In this section,we consider
three rules for selecting l.

In the first rule, l = 2T 1/3�, which amounts to block lengths of 6, 7, and 9 for
sample sizes of 25, 50, and 100, respectively. These block lengths are within the
range usually encountered in the literature. Although simple, setting l as a function
of T means ignoring the covariance structure of the data (see Hall et al. 1995). A
data-driven rule is therefore often preferable.

6 The power results are not size corrected because such a correction is generally not available in practice.
Hence, a test is useful for applied work only if it respects roughly the nominal significance level.
7 For a detailed discussion of these procedures, we refer to Lehmann and Romano (2005, Chapter 9).
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The second rule amounts to setting l according to the Newey and West (1994)
automatic procedure for bandwidth selection. This approach not only accounts for the
serial correlation of the data, but is also relatively easy to implement and has good
small-sample properties (see Gonçalves and White 2005; Gonçalves 2011).

TheNewey andWest (1994) approach is designed for variance estimation; however,
it is more appealing to consider a block-length selection rule designed for distribution
estimation. The proposals of Hall et al. (1995) and Lahiri et al. (2007) are examples
of nonparametric resampling methods that can be used for this purpose. In particular,
while Hall et al. (1995) propose a rule based on subsampling, the rule of Lahiri et al.
(2007) is based on the jackknife-after-bootstrap (JAB)method of Lahiri (2002). In this
paper, we will employ the latter method because it is computationally more efficient
and has been found to perform relatively well in simulations (see Lahiri et al. 2007).

4.3 Monte Carlo results

The results of theMonte Carlo simulations are reported in Tables 1, 2, 3, and 4. Table 1
reports the results for S and S∗, whereas Tables 2, 3, and 4 report the results for the
sequential procedure.

Table 1 provides the empirical size and power of S (the asymptotic test based
on iid innovations) in the absence of serial correlation. Looking first at results for
E1, we see that S tends to over-reject when N ≥ T , which is in line with earlier
findings in the literature (see, e.g., Pesaran and Yamagata 2008). By contrast, S∗ tends
to perform quite well for all combinations of N and T . Regarding the block-length
selection rules, we see that the three rules considered lead to very similar performance.
The deterministic rule is slightly oversized; however, the distortions go away as T
increases. When it comes to the behavior under the alternative hypothesis, all tests
seem to have satisfactory power properties, with power rising in both N and T .

While oversized in the presence of serial correlation, cross-sectional dependence
alone (ρε = 0) makes S undersized. The bootstrap tests, on the other hand, tend to
perform well in all cases considered with good size accuracy and power. As expected,
the tests based on the data-driven block-length selection rules generally perform best,
especially when T is small. Looking next at the results for the case when ρε �= 0, we
see that the size of S is increasing in ρε. The bootstrap tests, on the other hand, continue
to perform quite well when ρε = 0.3, although there is a slight tendency to reject too
often when T is relatively small. The distortions are made worse by increasing ρε to
0.6, in which case the largest distortions are obtained by using the JAB rule. In other
words, the use of a data-driven block length does not automatically lead to better size
accuracy. Specifically, although the block lengths selected by the data-driven rules are
increasing inρε, they do not increase sufficiently,which in turn leads to size distortions.
However, while this means that the best performance is sometimes obtained by using
the deterministic rule, the difference is not very large with the data-driven rules leading
to acceptable performance in most cases considered.

To summarize the results so far, we find that S displays substantial size distortions
in the presence of cross-sectional and/or serial dependence. The bootstrap tests, on
the other hand, generally show small size distortions and maintain satisfactory power
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Table 1 Size and power of S and S∗

Error case T/N S S∗(Det) S∗(NW) S∗(JAB)

5 25 50 5 25 50 5 25 50 5 25 50

Size

E1 25 7.3 11.9 11.8 7.7 7.3 5.2 6.3 7.0 4.3 5.9 6.5 4.9

50 6.0 9.6 7.8 6.1 8.1 4.5 6.0 7.6 3.8 5.3 7.3 4.3

100 6.3 5.9 5.3 6.4 5.0 4.7 6.0 5.0 4.1 6.3 5.1 4.1

E2 25 1.4 3.0 6.6 6.3 6.2 6.9 5.9 5.7 6.2 5.5 5.6 6.2

50 0.7 1.6 2.4 4.5 5.8 4.4 4.1 5.2 3.9 4.5 5.6 3.9

100 0.8 1.5 2.4 4.9 7.1 4.1 5.4 6.5 4.3 5.1 7.2 4.2

E3, ρε = 0 25 1.9 1.4 1.4 4.9 5.5 6.7 4.5 5.2 5.2 4.9 5.0 5.2

50 1.4 1.4 0.3 5.9 6.3 4.6 5.3 6.1 4.2 5.6 5.9 4.2

100 1.5 0.2 0.1 4.7 5.5 5.0 4.5 5.0 4.9 5.0 5.0 4.7

E3, ρε = 0.3 25 4.4 3.4 3.4 7.8 7.7 5.5 6.5 6.7 5.4 7.6 7.4 5.5

50 2.5 3.0 1.6 5.6 6.9 5.9 5.4 7.0 6.1 5.6 7.1 6.9

100 2.7 0.9 0.9 5.5 5.4 6.0 5.3 5.3 6.5 5.4 6.2 7.3

E3, ρε = 0.6 25 6.8 9.5 8.5 8.4 9.4 7.6 8.7 8.6 7.4 8.6 10.1 8.3

50 4.0 5.8 7.1 6.2 8.1 8.0 6.0 9.0 8.0 6.4 10.5 10.5

100 5.2 4.0 4.1 6.2 7.1 7.5 6.7 7.5 7.4 6.9 10.0 10.8

Power

E1 25 20.6 53.3 70.8 20.9 42.3 54.5 19.6 40.4 53.4 19.0 40.5 53.0

50 34.7 75.6 93.6 33.5 72.2 90.6 33.7 71.5 90.4 32.3 70.6 89.8

100 55.8 96.4 100 55.4 95.6 100 55.3 96.0 100 54.9 95.9 100

E2 25 10.2 40.2 59.9 26.6 55.3 64.3 25.1 53.3 62.9 25.3 53.8 62.4

50 27.4 70.7 91.4 47.0 84.4 94.5 46.6 84.6 94.2 46.1 84.9 94.1

100 49.5 96.2 99.9 70.6 98.3 100 70.5 98.3 99.9 70.7 98.5 100

E3, ρε = 0 25 14.8 28.8 38.5 24.9 50.7 63.6 23.2 48.2 61.6 22.8 48.9 62.2

50 27.9 62.9 80.9 38.6 82.3 95.4 38.5 83.0 95.2 38.4 83.0 94.8

100 52.7 92.9 99.7 64.5 98.8 100 64.5 98.6 100 65.0 98.7 100

E3, ρε = 0.3 25 16.9 35.5 50.1 24.9 48.1 65.0 24.8 48.2 63.1 23.9 48.5 65.0

50 30.1 70.0 87.7 38.2 82.0 94.4 37.9 81.7 94.5 38.4 82.3 94.6

100 54.4 94.2 99.8 61.9 98.1 100 61.6 98.1 100 63.0 98.3 100

E3, ρε = 0.6 25 20.9 46.3 66.5 24.8 50.2 67.3 24.4 49.4 67.7 24.9 50.9 68.8

50 34.2 77.0 92.6 36.9 80.1 93.7 36.9 80.5 93.7 37.7 82.1 94.3

100 56.6 95.2 99.9 59.3 96.1 100 59.0 96.8 100 60.0 97.2 100

The critical values for S are based on the χ2[m(N −1)] distribution. “S∗(Det),” “S∗(NW),” and “S∗(JAB)”
refer to S∗ when combined with the block-length selection rules of 2T 1/3�, Newey and West (1994) and
Lahiri et al. (2007), respectively

in small samples. In particular, the bootstrap tests are robustness to the specification
of the cross-sectional dependence and also perform reasonably well in the presence
of error serial correlation. Since the bootstrap tests are also very simple to implement,
they should be well suited for applied work.
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Table 2 FWE and CP of the sequential test

T/q N = 10 N = 20

0 1 3 6 0 1 3 6 12

FWE

25 6.6 6.5 5.2 5.2 4.3 6.9 6.5 6.8 4.6

50 6.7 5.0 5.0 4.2 5.9 6.0 5.3 4.5 3.9

100 4.4 5.8 6.2 5.8 6.7 6.1 5.1 6.7 5.5

CP

25 93.4 44.5 20.9 14.7 95.7 37.0 15.1 7.9 3.8

50 93.3 77.1 60.2 51.0 94.1 72.6 56.7 39.1 32.7

100 95.6 92.7 92.7 89.4 93.3 91.3 87.8 80.3 80.1

q denotes the true number of non-poolable units. FWE is the empirical family-wise error rate, and CP
measures the ability to correctly identify the set of poolable units

Table 3 FWE and CP of the
sequential test when skipping
units

δ refers to the number of units
being skipped. See Table 3 for an
explanation of the rest

δ T/q N = 10 N = 20

0 1 3 6 0 1 3 6 12

FWE

3 25 6.3 – 12.9 12.1 6.4 – 15.6 16.6 15.1

50 6.4 – 10.6 10.4 5.8 – 10.5 11.0 12.4

100 4.5 – 7.9 6.6 5.7 – 7.3 9.3 7.7

6 25 5.7 – – 17.5 6.0 – – 22.9 26.4

50 6.2 – – 9.6 4.9 – – 17.4 16.7

100 4.9 – – 2.0 5.7 – – 9.9 8.5

CP

3 25 93.7 – 44.5 39.5 93.6 – 32.9 21.4 16.2

50 93.6 – 76.9 75.0 94.2 – 71.3 60.9 59.3

100 95.5 – 91.4 93.0 94.3 – 91.5 88.3 89.5

6 25 94.3 – – 53.1 94.0 – – 29.9 24.1

50 93.8 – – 83.8 95.1 – – 69.2 68.3

100 95.1 – – 98.0 94.3 – – 89.8 90.8

We now turn our attention to the results for the sequential testing procedure. Here
we focus on the results based on the Newey and West (1994) rule, which are shown
in Tables 2, 3, and 4. Looking first at FWE in Table 2, it is evident that the sequential
test is able to control the overall significance level very well in small samples. This is
true for all values of q. We also see that the ability to identify the true set of poolable
units (as measured by CP) depends greatly on q when T is small. However, when T
increases, CP approaches 95%, as predicted by our theoretical results.

Table 3 provides the results of the sequential test when skipping units. The first thing
to note is that, when T is small, CP is much higher in Table 3 than in Table 2. This
result suggests that, by skipping units, we may increase the ability of the sequential
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Table 4 FWE and CP of the bootstrap, Bonferroni and Holm procedures

Procedure T/q N = 10 N = 20

0 1 3 6 0 1 3 6 12

FWE

Bootstrap 25 5.7 7.3 6.2 4.4 5.3 5.9 5.1 4.7 4.5

50 6.2 6.0 6.0 5.9 6.1 5.2 6.2 4.7 4.7

100 4.4 5.4 6.2 6.0 6.5 6.3 5.3 6.2 5.4

Bonferroni 25 5.1 6.2 5.2 2.0 4.5 5.7 4.3 3.8 3.0

50 5.0 5.0 3.1 1.7 4.4 4.6 4.8 2.8 3.1

100 3.0 4.2 3.3 1.8 5.3 4.9 3.6 4.3 2.3

Holm 25 5.1 6.4 6.0 3.7 4.5 5.7 4.6 4.4 3.8

50 5.0 5.4 4.0 4.6 4.4 4.8 5.0 3.5 4.2

100 3.0 4.4 4.6 5.0 5.3 5.3 4.2 5.5 4.0

CP

Bootstrap 25 94.3 35.9 14.4 8.4 94.7 27.8 8.9 3.1 1.7

50 93.8 70.5 50.9 40.4 93.9 65.1 40.8 25.3 17.2

100 95.6 90.4 84.0 84.4 93.5 88.3 82.1 71.6 67.7

Bonferroni 25 94.9 34.4 12.0 5.9 95.5 26.4 8.7 2.3 0.6

50 95.0 70.0 47.5 31.3 95.6 63.8 37.5 20.7 10.1

100 97.0 91.1 83.2 80.9 94.7 89.0 80.5 67.7 57.5

Holm 25 94.9 34.2 12.4 8.3 95.5 26.4 9.2 2.5 1.4

50 95.0 69.6 49.7 39.0 95.6 63.6 38.8 23.0 15.1

100 97.0 90.9 83.6 83.4 94.7 88.6 80.4 69.6 66.3

See Table 3 for an explanation

test to correctly identify the true set of poolable units. On the other hand, Table 3
reveals that the increase in power comes at the expense of higher FWE, at least among
the smaller values of T . This trade-off between size and power also becomes evident
when comparing the results for δ = 3, 6.

Table 4 compares the bootstrap sequential test with the Bonferroni andHolm proce-
dures. In this case, the errors are generated as in E1. Looking first at FWE, as expected,
we see that all procedures are quite successful in controlling the overall significance
level. We also see that the ability to identify the true set of poolable units, as measured
by CP, differs, sometimes considerably, between the procedures. For example, looking
at the results for the case when q = 12 and T = 50, we see that the bootstrap CP is
almost twice that of the Bonferroni approach. In general, the bootstrap and Holm pro-
cedures are able to identifymore non-poolable units than can the Bonferroni approach,
and this advantage becomes more important as q increases, which is in accordance
with our expectations. We also see that the bootstrap approach outperforms the Holm
procedure in terms of CP (when q > 0) in all but three cases.

In conclusion, the bootstrap sequential test can control FWE in small samples. On
the other hand, the ability to find the true set of poolable units depends largely on
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the sample size and the true number of poolable units. When the number of poolable
units is small, and T is small, the sequential procedure will inevitably end up rejecting
too few non-poolable units. We show, however, that this problem can be somewhat
alleviated by skipping units. Finally, the simulation results indicate that even in the
iid case, in which standard multiple testing procedures apply, the bootstrap approach
offers improvements in the ability to identify non-poolable units.

5 Conclusions

In this paper, we address the issue of testing for slope homogeneity in panel data
models with non-spherical errors. Previous slope homogeneity tests require modeling
and estimation of the error dependence structure in order to be practical. This may be
problematic in the presence of complicated dependencies of possible unknown form.
Therefore, in this paper we propose a bootstrap test that can be implemented with no
specification or estimation of the dependence structure. Yet, the test can accommodate
both cross-sectional and serial dependence in the error process. The results of a Monte
Carlo study indicate that the bootstrap test has small size distortions and satisfactory
power in small samples.

Appendix: Proofs

This appendix is concerned with the proofs of Lemma 1 and Theorems 1–3. The
convergence is in probability, but we generally do not add this explicitly in order to
simplify the notation. The sequence {aT } is at most of order T κ in probability, denoted
aT = Op(T κ), if T−κaT converges in distribution. The sequence is of order smaller
than T κ in probability, denoted by aT = op(T λ), if T−κaT →p 0. The bootstrap
stochastic order symbols, denoted Op∗(·) and op∗(·), are defined in an analogous
manner.

We begin by defining the following quantities which will be used throughout this
Appendix:

ξi,T = 1√
T

T∑

t=1

zi,t = 1√
T

T∑

t=1

(xi,t − xi )εi,t ,

ξ̃i,T = 1√
T

T∑

t=1

z̃i,t = 1√
T

T∑

t=1

(xi,t − μi )εi,t ,

ξ∗
i,T = 1√

T

T∑

t=1

z∗i,t = 1√
T

T∑

t=1

(xi,t − xi )ε
∗
i,t ,

ξ̃∗
i,T = 1√

T

T∑

t=1

z̃∗i,t = 1√
T

T∑

t=1

(xi,t − μi )ε̃
∗
i,t ,
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where ε̃∗
i,t = y∗

i,t − θi − x ′
i,tβi . Also, let zt and z̃t be the mN × 1 stacked vectors

zt = (z′1,t , . . . , z′N ,t )
′ and z̃t = (z̃′1,t , . . . , z̃′N ,t )

′, with similar definitions of z∗t and z̃∗t .

Lemma 2 Under Assumption ERR, as T → ∞,

�−1/2 1√
T

T∑

t=1

zt →d N (0, ImN ).

Proof of Lemma 2 Clearly

1√
T

T∑

t=1

zi,t = 1√
T

T∑

t=1

(xi,t − xi )εi,t

= 1√
T

T∑

t=1

(xi,t − μi )εi,t − (xi − μi )
1√
T

T∑

t=1

εi,t

= 1√
T
z̃i,t − (xi − μi )

1√
T

T∑

t=1

εi,t .

By Corollary 3.48 in White (2001), (xi − μi ) = T−1 ∑T
t=1(xi,t − μi ) = op(1), and

by further use of his Theorem 5.20, T−1/2 ∑T
t=1 εi,t = Op(1). It follows that

1√
T

T∑

t=1

zi,t = 1√
T

T∑

t=1

z̃i,t + op(1).

The required result now follows by applying to T−1/2 ∑T
t=1 z̃t a central limit theorem

for mixing processes (see, e.g., White 2001, Theorem 5.20). ��
Lemma 2* Under Assumptions ERR and BL, as T → ∞,

�−1/2 1√
T

T∑

t=1

z∗t →d∗ N (0, ImN ) in probability.

Proof of Lemma 2* We have ε∗
i,t = ε̃∗

i,t − (θ̂i − θi ) − x ′
i,t (β̂i − βi ). Similarly, ε̂i,t =

εi,t − (θ̂i − θi ) − x ′
i,t (β̂i − βi ). Using these relationships, we can write

1√
T

T∑

t=1

z∗i,t = 1√
T

T∑

t=1

(xi,t − xi )ε
∗
i,t = 1√

T

T∑

t=1

[(xi,t − xi )ε̃
∗
i,t − (xi,t − xi )εi,t ],

where we have used that fact that
∑T

t=1(xi,t − xi )ε̂i,t = 0 by the first-order conditions
for β̂i . By adding and subtracting appropriately, we have
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1√
T

T∑

t=1

z∗i,t = 1√
T

T∑

t=1

[(xi,t − μi )ε̃
∗
i,t − (xi,t − μi )εi,t ]

− 1√
T

T∑

t=1

(xi − μi )ε̃
∗
i,t − 1√

T

T∑

t=1

(xi − μi )εi,t

= 1√
T

T∑

t=1

[(xi,t − μi )ε̃
∗
i,t − (xi,t − μi )εi,t ] + op(1),

where the last equality follows from using (xi − μi ) = op(1) (see White 2001,
Corollary 3.48), T−1/2 ∑T

t=1 ε̃∗
i,t = Op∗(1) (see Fitzenberger 1997, Theorem 3.1),

and T−1/2 ∑T
t=1 εi,t = Op(1) (see White 2001, Theorem 5.20). The required result

now follows from the same argument as in Fitzenberger 1997, giving

�−1/2 1√
T

T∑

t=1

(z̃∗t − z̃t ) →d∗ N (0, ImN ) in probability

as T → ∞. ��

Proof of Theorem 1 We begin by proving the asymptotic distribution under H0, in
which case

β̂i − β̂WFE = 1√
T
Q−1

i,T ξi,T − 1√
T

(
N∑

i=1

σ̂−2
i Qi,T

)−1 N∑

i=1

σ̂−2
i ξi,T .

This implies

S =
N∑

i=1

ξ ′
i,T Q

−1
i,T ξi,T

σ̂ 2
i

−
(

N∑

i=1

σ̂−2
i ξi,T

)′ ( N∑

i=1

σ̂−2
i Qi,T

)−1 (
N∑

i=1

σ̂−2
i ξi,T

)

, (2)

or, in stacked form,

S = ξ ′
T

(
�̂T QT

)−1
ξT − (

D�̂−1
T ξT

)′(
D�̂−1

T QT D
′)−1(

D�̂−1
T ξT

)
, (3)

where ξT = (
ξ ′
1,T , . . . , ξ ′

N ,T

)′, D = τ ′
N ⊗ Ik , QT = diag(Q1,T , . . . , QN ,T ), and �̂T

is a diagonal Nm × Nm matrix whose diagonal is given by (σ̂ 2
1 , . . . , σ̂ 2

N )′ ⊗ τk .
By the properties of the LS residuals and Corollary 3.48 in White (2001), we

have that σ̂ 2
i − σ 2

i = op(1), where σ 2
i = E

(
ε2i,t

)
. Note also that, by Lemma 2 and

Assumption REGR, ξT →d ξ as T → ∞, where ξ ∼ N (0, �), and QT −Q = op(1),
where Q = diag(Q1, . . . , QN ). It follows that
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S →d Z ′
1Z1 − (

D�
−1/2
0 Q1/2Z1

)′[
D�

−1/2
0 Q1/2(D�

−1/2
0 Q1/2)′]−1(

D�
−1/2
0 Q1/2Z1

)

=d Z ′
1

(
IkN − H ′(HH ′)−1

H
)
Z1 = Z ′

1AZ1, (4)

where =d signifies equality in distribution, Z1 = �
−1/2
0 Q−1/2ξ , Z1 ∼ N (0, B)

with B = �
−1/2
0 Q−1/2��

−1/2
0 Q−1/2, �0 is �̂T with σ̂ 2

i replaced by σ 2
i , H =

D�
−1/2
0 Q1/2 and A = IkN − H ′(HH ′)−1H . Since A is symmetric,

Z ′
1AZ1 =d

kN∑

j=1

λ jU
2
j ,

where λ1, . . . , λmN are the eigenvalues of B1/2AB1/2 (see Mathai and Provost 1992).
Noting that A and B are (non-stochastic) positive semidefinite matrices, we have that
λ j ≥ 0 for all j . This establish the required result under H0.

To show consistency, we consider an alternative hypothesis of the form H1 : βi =
β + δi , where δi are m × 1 vectors of fixed constants such that ‖δi‖ ≤ C < ∞ for all
i and δi �= δh for some pair i �= h. Under this alternative,

√
T (β̂i − β̂WFE) = √

T δi + Q−1
i,T ξi,T − √

T

(
N∑

i=1

Qi,T

σ̂ 2
i

)−1 N∑

i=1

Qi,T δi

σ̂ 2
i

−√
T

(
N∑

i=1

Qi,T

σ̂ 2
i

)−1 N∑

i=1

ξi,T

σ̂ 2
i

= √
T δi + Q−1

i,T ξi,T − √
T cT − √

T

(
N∑

i=1

Qi,T

σ̂ 2
i

)−1 N∑

i=1

Qi,T δi

σ̂ 2
i

,

with an obvious definition of cT . The last term on the right is Op(1), suggesting that

√
T (β̂i − β̂WFE) = √

T (δi − cT ) + Op(1).

Since δi �= δh for some i �= h, it must hold that δi − cT �= 0 for at least one i . Since
Qi/σ

2
i is positive definite, this means that T (β̂i − β̂WFE)′Qi,T (β̂i − β̂WFE)/σ̂ 2

i → ∞
as T → ∞, and so the proof is complete. ��
Proof of Theorem 2 Define �̂∗

T as the diagonal matrix whose diagonal is given by
(σ̂ ∗2

1 , . . . , σ̂ ∗2
N )′ ⊗ τk , and assume for the moment that there exists a diagonal matrix

�∗
0 satisfying �̂∗

T − �∗
0 = op∗(1). Under H0,

β̂∗
i − β̂∗

WFE = 1√
T
Q−1

i,T ξ∗
i,T − 1√

T

(
N∑

i=1

(σ̂ ∗2
i )−1Qi,T

)−1 N∑

i=1

(σ̂ ∗2
i )−1ξ∗

i,T ,
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where σ̂ ∗2
i is the usual LS estimate of the variance from the bootstrap procedure. This

result, together with the same arguments used in the proof of Theorem 1, implies that

S∗ →d∗ Z∗′
1 (IkN − H∗′(H∗H∗′)−1H∗)Z∗

1 =d∗ Z∗′
1 A∗Z∗

1 in probability, (5)

where H∗ = D(�̂∗
T )−1/2Q1/2 and Z∗

1 ∼ N (0, B∗) with B∗ = (�̂∗
T )−1/2Q−1/2

�(�̂∗
T )−1/2Q−1/2.Hence, as in the proof of Theorem1, ifwe can show that �̂∗

T −�0 =
op∗(1), then

Z∗′
1 A∗Z∗

1 =d∗
kN∑

j=1

λ jU
2
j in probability, (6)

and the second result of the theorem follows. We now verify that �̂∗
T − �0 = op∗(1).

Under H0,

T − k − 1

T
(σ̂ ∗

i )2 = 1

T
(y∗

i − xi β̂
∗
i )′Mτ (y

∗
i − xi β̂

∗
i ) = 1

T
(Mτ ε

∗
i )

′Mxi (Mτ ε
∗
i )

= 1

T

T∑

t=1

(ε∗
i,t − ε∗

i )
2 + op∗(1) = 1

T

T∑

t=1

(ε∗
i,t )

2 + op∗(1),

whereMxi = IT −xi (x ′
i Mτ xi )−1x ′

i . The second equality follows from straightforward
algebra under the null hypothesis.We can use an argument similar to Lemma 2 to show
that T−1/2x ′

i Mτ ε
∗
i = Op∗(1), and the third equality follows. Finally, by Theorem 3.1

in Fitzenberger (1997), since ε∗
i,t = ε̃∗

i,t + ε̂i,t − εi,t and T−1 ∑T
t=1 ε̂i,t = 0, we have

ε∗
i = T−1 ∑T

t=1(ε̃
∗
i,t − εi,t ) = Op∗(T−1/2), and so the fourth equality follows. It

remains to consider T−1 ∑T
t=1(ε

∗
i,t )

2. By MBB–Lemma A.3 in Fitzenberger (1997),

T−1 ∑T
t=1[(ε̃∗

i,t )
2 − ε2i,t ] = op∗(1). We now show that T−1 ∑T

t=1[(ε∗
i,t )

2 − (ε̃∗
i,t )

2] =
op∗(1). For this purpose, it is convenient to define vi,t = wi,t (w

′
iwi )

−1 ∑T
s=1 w′

i,sεi,s ,
wherewi = (τT , xi ). Also, by the properties of LS residuals, ε̂i,t = εi,t −vi,t . Hence,

1

T

T∑

t=1

(
ε∗
i,t

)2 = 1

T

T∑

t=1

(
ε̃∗
i,t

)2 + 2

T

T∑

t=1

ε̃∗
i,t (ε̂i,t − εi,t ) + 1

T

T∑

t=1

(ε̂i,t − εi,t )
2

= 1

T

T∑

t=1

(
ε̃∗
i,t

)2 − 2

T

T∑

t=1

ε̃∗
i,tvi,t + op(1)

= 1

T

T∑

t=1

(
ε̃∗
i,t

)2 + op∗(1) + op(1).

The second equality follows from the fact that T−1 ∑T
t=1 ε̂2i,t →p σ 2

i . As for the

third equality, by Corollary 3.48 in White (2001), T−1 ∑T
s=1 w′

i,sεi,s = op(1), by

Assumption REGR, (T−1w′
iwi )

−1 converges to a nonzero deterministic matrix, and

by further use of MBB–Lemma A.3 in Fitzenberger (1997), T−1 ∑T
t=1(ε̃

∗
i,twi,t −
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εi,twi,t ) = op∗(1). Finally, by Corollary 3.48 in White (2001), T−1 ∑T
t=1 εi,twi,t =

op(1). This establishes that �̂∗
T −�0 = op∗(1), and so the proof of the first statement

of the theorem is complete.
The second part of the theorem follows from the fact that in the bootstrap the data

are generated under the null of equal slope coefficients. Consequently, the result in (6)
also holds under the alternative hypothesis. ��
Proof of Lemma 1 Consider the following alternative hypothesis H1 : βi = βb + δi ,
where δi is am×1 vector of fixed constants such that ‖δi‖ ≤ C < ∞. By the properties
of the LS estimator, β̂i −βi = Op(T−1/2). It follows that β̂i − β̂b − δi = op(1). Also,
(σ̂ 2

i Q
−1
i,T + σ̂ 2

b Q
−1
b,T )−1 converges to a positive definite matrix by Assumption REGR.

Consequently, provided that i /∈ Z , Wi → ∞ as T → ∞, which in turn implies

W(1), . . . ,W(q) → ∞.

Consider the second result of the lemma. We only need to consider the order sta-
tistics for which i ∈ Z , as W(k+1) → ∞ if k + 1 ≤ q by the first part. Hence,

W(k+1) →p W1:Z .

The second result then follows from application of the continuous mapping theorem
(see, e.g., White 2000, Proposition 2.2).

In order verify the third result, we proceed in two steps. First, we establish the exact
expression of Gi , the limiting distribution of Wi for i ∈ Z . Second, we show that the
bootstrap analog, W ∗

i , converges to the same distribution. Define the m × Nm matrix
Pi = (0, . . . , 0, Im, 0, . . . , 0,−Im, 0, . . . , 0), where Im and−Im are in positions i and
b, respectively. In addition, define β̂ = (β̂1, . . . , β̂N )′. In this notation, since βi = βb

for all i ∈ Z , Wi can be written as

Wi = T (Pi β̂)′
(
Pi �̂T Q

−1
T P ′

i

)−1
(Pi β̂) = Z̃ ′

2

(
Pi �̂T Q

−1
T P ′

i

)−1
Z̃2,

where Z̃2 = √
T Pi β̂ = Pi Q

−1
T ξT . By Lemma 2 and Assumption REGR,

Z̃2 →d N
(
0, Pi Q

−1�Q−1P ′
i

)

as T → ∞, and �̂T Q
−1
T − �∗

0Q
−1 = op(1).

To analyze the bootstrap test, W ∗
i , define β̂∗ = (β̂∗

1 , . . . , β̂∗
N )′. It follows that we

can write W ∗
i as

W ∗
i = T (Pi β̂

∗)′
(
Pi �̂

∗
T Q

−1
T P ′

i

)−1
(Pi β̂

∗).

Note that β̂∗ is estimated using y∗
i,t , which is generated under the hypothesis that

βi = βb for all i . This implies that

W ∗
i = Z̃∗′

2

(
Pi �̂

∗
T Q

−1
T P ′

i

)−1
Z̃∗
2 ,
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where Z̃∗
2 = √

T Pi β̂∗ = Pi Q
−1
T ξ∗

T . By Lemma 2 and Assumption REGR, we have
that

Z̃2 →d N
(
0, Pi Q

−1�Q−1P ′
i

)
in probability.

In addition, from the proof of Theorem 1, �̂∗
T − �0 = op∗(1), which implies that

�̂∗
T Q

−1
T − �0Q−1 = op∗(1). This completes the proof of the third result.

The fourth result follows from the third and the continuousmapping theorem (White
2000, Proposition 2.2). ��
Proof of Theorem 3 The first result follows from the first and last results of Lemma 1.
To show the second result, note that, by the first part of Lemma 1, Wi →p ∞ if
i /∈ Z . Therefore, if k = q, Dc

k equals Z in the limit with probability one. It follows
from second and fourth parts of Lemma 1 that the probability of not rejecting the null,
H0(k), is equal to 1 − α (the confidence level in Algorithm SEQBOOT). Finally, as
for the third result of Theorem 3, note that

N−1∑

k=0

lim
T→∞ P(q̂ = g) =

q∑

k=0

lim
T→∞ P(q̂ = g) +

N−1∑

k=q+1

lim
T→∞ P(q̂ = g) = 1.

From the first two parts of the theorem,
∑q

k=0 limT→∞ P(q̂ = g) = 1 − α. ��
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