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Abstract Previous literature on statistical properties of interbank networks has
reported various power-laws, particularly for the degree distribution (i.e., the distrib-
ution of credit links between institutions). In this paper, we revisit data for the Italian
interbank network based on overnight loans recorded on the e-MID trading platform
during the period 1999–2010 using both daily and quarterly aggregates. In contrast
to previous reports, we find no evidence in favor of a power-law characterizing the
degree distribution. Rather, the data are best described by negative Binomial distri-
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butions. For quarterly data, Weibull, Gamma, and Exponential distributions tend to
provide comparable fits. We find similar results when investigating the distribution of
the number of transactions, even though in this case, the tails of the quarterly variables
are much fatter. The absence of power-law behavior casts doubts on previous claims
that these interbank data fall into the category of scale-free networks.

Keywords Interbank market · Network models · Financial network · Systemic risk ·
Power-law

JEL Classification G21 · G01 · E42

1 Introduction and existing literature

Since the onset of the global financial crisis (GFC) in 2007/2008, the analysis of
network structures formed by interbank liabilities has received increasing attention.
Considering an ensemble of financial institutions, individual banks are connected to
each other through some of their activities (usually credit flows) and the bilateral
exposures can be mapped into a credit network. Such a perspective is useful in order
to study the knock-on effects on other banks due to disruptions of the system caused
by the failure of individual nodes (e.g., insolvency of one bank). A relatively new
strand of literature has started to construct financial networks based on empirical data
available at supervisory authorities or hypothetical network structures to investigate
the contagious effects of failures of single banks.1

A basic finding of network theory is that the topology of a network is important
for its stability, with the interbank network obviously being no exception.2 In this
regard, the understanding of the structure and functioning of complex networks has
advanced significantly in recent years. In particular, uncovering the working of eco-
nomic networks is extremely useful, as it sheds light on the structure of interactions
among economic agents (cf. Schweitzer et al. 2009). Examples include the world trade
network (Fagiolo et al. 2010), job information networks (Ioannides and Loury 2004),
and bank-firm networks (De Masi and Gallegati 2012).

In this paper,we focus on one of themost prominent network characteristics, namely
the degree distribution, where the degree is the number of (incoming/outgoing) con-
nections per node. Even though the degree distribution does not provide sufficient
information for all facets of the structure of the network (Alderson and Li 2007), it is
often considered as one of the defining characteristics of different network types. For
example, networks with random link formation (Erdös and Renyi 1959, or ER random
networks) display Poisson degree distributions, i.e., most nodes have degrees within
a relatively narrow range. In contrast, many real-world networks have been reported
to display fat-tailed degree distributions: most nodes have a very small degree, but the
tail contains nodes with substantially larger degrees (cf. Clauset et al. 2009). This fea-
ture is shared by the important class known as scale-free (SF) networks, in which the

1 See e.g., Upper and Worms (2004), Nier et al. (2007) and Gai et al. (2011).
2 See Haldane and May (2011) and Albert et al. (2000).
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fraction of nodes with degree k is proportional to k−α , where α is the so-called scaling
parameter. The term scale-free indicates that there is no typical scale of the degrees,
i.e., the mean may not be representative. These networks received considerable atten-
tion in the literature due to a number of interesting properties (cf. Caldarelli 2007).
One reason for the ‘popularity’ of power-laws in the natural sciences is that they are
often the signatures of relatively simple and robust generating mechanisms that might
apply to a variety of phenomena. An important feature of such scale-free networks is
that they can be described as robust-yet-fragile,3 indicating that random disturbances
are easily absorbed (robust) whereas targeted attacks on the most central nodes may
lead to a breakdown of the entire network (fragile). Quite interestingly, many interbank
networks have been reported to resemble scale-free networks with power-law expo-
nents lying in a relatively narrow range around 2.3 (cf. Boss et al. 2004; Soramäki
et al. 2007; De Masi et al. 2006; Cont et al. 2013), even though most papers lack
a thorough statistical analysis of the issue,4 with Bech and Atalay (2010) being a
notable exception. If these findings were robust, the known generating mechanisms
for scale-free networks would be strong candidates as mechanisms for the formation
of interbank links. Furthermore, the well-known reactions of scale-free networks to
disturbances would be of immediate concern for macro-prudential regulation. Thus,
taking into account the relevance of such topological features, and the documented
over-emphasis on power-law behavior, a more rigorous statistical analysis of the dis-
tributional properties of interbank network data should be worthwhile. It needs to be
emphasized, though, that there is no strict link between the finding of a power-law
degree distribution and the fragility of a (banking) network: First, mechanisms like
preferential attachment could be also at work for broad degree distributions that are
not exactly of a power-law type. Second, for different definitions of ’fragility’ (number
of contagious defaults or total loss of bank capital), the complex interaction between
network topology, the structure of shocks as well as the balance sheet structure could
lead to different rankings of various network classes in terms of their resilience (cf.
Roukny et al. 2013).

The distribution of network degrees is just one example amongmany phenomena in
the natural sciences aswell as from the socioeconomic sphere that have been claimed to
follow a scaling law (power-law or Pareto law). Other well-known examples include:
Zipf’s law for the city size distribution (Gabaix 1999), the distribution of firm sizes
(Axtell 2001), the size distribution of innovations (Silverberg and Verspagen 2007),
the distribution of output growth rates (Castaldi and Dosi 2009; Fagiolo et al. 2008),
or the distribution of large asset returns (Mandelbrot 1963; Krämer and Runde 1996;
Lux 2000). While these examples appear to be supported by empirical evidence and
meanwhile count as stylized facts, a variety of other findings of power-laws seemmore
questionable. It appears from a number of recent reviews of power-law methodology

3 See Albert et al. (2000).
4 This is not to say these papers do not yield very useful phenomenological information about the pertinent
network structures. The point here is rather that there seems to exist a convention in the network literature
to produce a power-law graph without a deeper statistical analysis of this issue and also often in spite of a
relatively small sample of observations that additionally impedes such a strong inference on the underlying
distribution.
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and power-law findings (cf. Avnir et al. 1998; Stumpf and Porter 2012) that there
had been an over-emphasis on scaling laws and often too optimistic interpretation of
statistical findings in the natural sciences. For instance, in a meta-study of power-laws
reported in publications in the main physics outlet Physical Review between 1990 and
1996, Avnir et al. (1998) found that most claims of power-laws (aka scaling or fractal
behavior) had a very modest statistical footing. As they say ‘. . . the scaling range of
experimentally declared fractality is extremely limited, centered around 1.3 orders of
magnitude.’ In terms of statistics jargon, this means that the more typical declaration
of a power-law in these publications is based on a partially linear slope in a relatively
small intermediate range of the empirical cumulative distribution of some observable.

The power-law exponent (like the ones reported for the degree distribution) is typ-
ically obtained by a linear regression in a log–log plot of the cumulative distribution.
Obviously, this approach suffers from a number of shortcomings: (i) even if the hypo-
thetical data-generating process is a Pareto distribution, this log–log fit would not be
an efficient way to extract the parameter of the underlying distribution. It is actually a
method that is definitely inferior to maximum likelihood (which is easy to implement),
and results are hard to interpret as, due to the dependency of observations in the log–
log plot of the cumulative distribution, the statistical properties of this estimator are
not straightforward, (ii) the implicit censoring of the data that is exerted by selecting
a scaling range makes it easy to deceive oneself. Many distributions might actually
have some intermediate range in their ‘shoulders’ where their cdf looks appropriately
linear. But their remaining support (small and large realizations) might display a com-
pletely different behavior. Since power-laws in the natural sciences are thought to
be interesting if they extent over several orders of magnitude, it is unclear what the
interpretation of such an intermediate power-law approximation would be.

Statistical extreme value theory (EVT) provides yet another perspective on power-
law behavior. The basic result of this branch of statistics is a complete characterization
of the limiting distributions of extremes (maximum or minimum) of time series of
iid observations (where results for the iid case have been generalized for dependent
processes under relatively mild conditions, cf. Leadbetter 1983; Reiss and Thomas
2007, for details). According to EVT, the appropriately scaled minimum or maximum
of a series of observations converges in distribution to one of only three functional
forms: the Fréchét, Gumbel, or inverted Weibull distribution. Since extremes are by
definition very rare, it is often evenmore relevant that the tail of a distribution converges
in distribution in a similar way to one of three adjoint functional forms. For example,
the outer part approaches either a power-law decay, an exponential decay, or a decay
toward a fixed endpoint for the three types of extremal behavior, respectively. Power-
law behavior is, therefore, a very general form of limiting behavior for the large
realizations of a stochastic process. EVT has originally been developed for continuous
distribution functions. Since degree distributions are discrete (degrees being integer
numbers), it is worthwhile to note that corresponding limit laws for discrete variables
are available as well, cf. Anderson (1970). In our context, this might imply that very
large realizations of the degree distribution could still decay like a power-law even
if the bulk of the distribution does not appear to follow such a distribution (and the
implications for the fragility of the system might be similar as for ‘true’ scale-free
networks). It is important to emphasize that both the limiting behavior of extremes and
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tails are stable under aggregation. Hence, data at different levels of (time-) aggregation
should obey the same extreme value and tail behavior.

In this paper, we consider interbank networks based on the Italian e-MID (electronic
market for interbank deposits) data for overnight loans during the period 1999–2010.
Our main focus is to fit a set of different candidate distributions to the degrees for
different time horizons. Using daily data over the period 1999–2002, De Masi et al.
(2006) reported power-laws for the distribution of in- and out-degrees, with tail para-
meters 2.7 and 2.15, respectively. Finger et al. (2013) have shown recently that the
networks’ properties depend on the aggregation period.5 We will, therefore, not con-
fine our analysis to daily data (the basic frequency of our dataset), but also look at the
distribution of in- and out-degrees for networks constructed on the base of aggregated
data over longer horizons. Quite surprisingly in view of the previous literature, we find
hardly any support in favor of previously reported power-laws: at the daily level, the
degrees are usually fit best by negative Binomial distributions, while the power-law
may provide the best fit for the tail data. However, we typically find very large power-
law exponents (with values as large as 7), i.e., levels where the power-law is virtually
indistinguishable from exponential decay. At the quarterly level, Weibull, Gamma,
and Exponential distributions tend to provide comparable fits for the complete degree
distribution, while the tails again tend to display exponential decay. We find compa-
rable results when investigating the distribution of the number of transactions, even
though in this case, the tails of the quarterly variables are somewhat fatter. However,
the Log-normal distribution typically outperforms the power-law. Overall, these find-
ings indicate that the power-law is typically a poor description of the data, implying
that scale-free networks are not an appropriate model for the structure of the Italian
interbank network. Moreover, the networks contain a substantial level of asymmetry,
related to the low correlation between in- and out-degrees. Additionally, we find that
the two variables do not follow identical distributions in general.

The remainder of this paper is structured as follows: Sect. 2 gives a short introduction
into (interbank) networks, Sect. 3 briefly introduces the Italian e-MID trading system
and gives an overview of the dataset we have access to, Sect. 4 describes our findings,
and Sect. 5 concludes and discusses the relevance of these findings for future research.

2 Networks

A network consists of a set of N nodes that are connected by M edges (links). Taking
each bank as a node and the interbank positions between them as links, the interbank
network can be represented as a square matrix of dimension N × N (data matrix,
denoted D). An element di j of this matrix represents a gross interbank claim, the total
value of credit extended by bank i to bank j within a certain period. The size of di j can
thus be seen as a measure of link intensity. Row (column) i shows bank i’s interbank
claims (liabilities) toward all other banks. The diagonal elements dii are zero, since a

5 Since we cannot easily observe the state of a hypothesized network of interbank links at a given point
in time, some data aggregation is necessary. Usually, for time-aggregated data, a link is assumed to exist
between two banks, if there has been a trade at any time during the aggregation period.
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bank will not trade with itself.6 Off-diagonal elements are positive in the presence of
a link and zero otherwise.

Interbank data usually give rise to directed, sparse, and valued networks.7 However,
much of the extant network research ignores the last aspect by focusing on binary
adjacency matrices only. An adjacency matrix A contains elements ai j equal to 1,
if there is a directed link from bank i to j and 0 otherwise. Since the network is
directed, both A and D are asymmetric in general. In this paper, we also take into
account valued information by using both the raw data matrix as well as a matrix
containing the number of trades between banks, denoted as T. In some cases, it is
also useful to work with the undirected version of the adjacency matrices, Au , where
aui j = max(ai j , a ji ).

As usual, some data aggregation is necessary to represent the system as a network.
In the following, we define interbank networks by aggregating over daily as well as
quarterly lending activity.

3 The Italian interbank market (e-MID)

The Italian electronicmarket for interbank deposits (e-MID) is a screen-based platform
for trading of unsecuredmoney-market deposits in Euros, US-Dollars, Pound Sterling,
and Zloty operating in Milan through e-MID SpA.8 The market is fully centralized
and very liquid; in 2006, e-MID accounted for 17% of total turnover in the unsecured
money market in the Euro area, see European Central Bank (2007). Average daily
trading volumes were 24.2bn Euro in 2006, 22.4bn Euro in 2007 and only 14bn Euro
in 2008. We should mention that researchers from the European Central Bank have
repeatedly stated that the e-MID data are representative for the interbank overnight
activity, cf. Beaupain and Durré (2012).

Detailed descriptions of the market and the corresponding network properties can
be found in Finger et al. (2013).9 In this paper, we used all registered trades in Euro in
the period from January 1999 to December 2010. For each trade, we know the banks’
ID numbers (not the names), their relative position (aggressor and quoter), and the
maturity and the transaction type (buy or sell). The majority of trades is conducted
overnight, and due to the global financial crisis (GFC), markets for longer maturities
essentially dried up. We will focus on all overnight trades conducted on the platform,
leaving a total number of 1,317,679 trades. If not stated otherwise, the reported results
are based on trades conducted between Italian banks only, reducing the total number
of trades to 1,215,759.

6 This is of course only true when taking banks as consolidated entities.
7 Directed means that di, j �= d j,i in general. Sparse means that at any point in time, the number of links
is only a small fraction of the N (N − 1) possible links. Valued means that interbank claims are reported in
monetary values as opposed to 1 or 0 for the presence or absence of a claim, respectively.
8 The vast majority of trades (roughly 95%) is conducted in Euro.
9 See also the e-MID website http://www.e-mid.it/.
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4 Results

In this section, we present empirical results on the dynamics and distribution of the
number of links (degrees) and the number of transactions (ntrans) of individual insti-
tutions. The degree of a node gives the total number of links that a bank has with all
other banks and can thus be seen as a measure for the importance of individual nodes.
Undirected networks imply symmetric adjacency matrices. In this case, bank i’s total
degree ki is simply the number of relationships bank i has with other banks, i.e.,

ktotali =
∑

j �=i

aui j . (1)

For directed networks,we differentiate between incoming links (bank i borrowsmoney
from other banks) and outgoing links (i lends money to other banks), and define the
in- and out-degree of i (kini and kouti ) as

kini =
∑

j �=i

a ji

kouti =
∑

j �=i

ai j , (2)

respectively. Note that our networks contain only banks with at least one (directed)
link. In this way, the total degree of a sample bank is always at least equal to one,
while it may be the case that either the in- or out-degree equals zero for a particular
bank. Since we ignore zero values in the distribution fitting approach, this affects the
number of observations for the different variables.

For daily data, a linkai j simply equals 1 if there has been a credit extended frombank
i to j on that specific day. In the rare case of multiple loans granted between identical
counterparties in the same direction, the link count also remains equal to 1. However,
when counting the number of transactions (see below), multiple loans are summed up
to give the statistics of transactions between counterparties during a certain period of
time. Moving from daily to longer horizons, links remain dichotomous quantities, i.e.,
ai j = 1 means that at least once (but may be multiple times) a loan has been granted
by bank i to bank j . The number of transactions, however, count the overall number
of such loans over a month, quarter, etc.

For the number of transactions, we use similar definitions based on the T matrix,
with each element ti, j giving the number of trades with credit extended from bank i
to bank j . To be precise, we calculate the number of in-/out-transactions as the sum
over all loans received or granted by bank i over a certain time horizon:

nini =
∑

j �=i

t j i

nouti =
∑

j �=i

ti j . (3)
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Fig. 1 Mean andmedian degree over time. Left In- and out-degree. Right Total degree. TopAbsolute levels.
Bottom standardized values (divided by the number of active banks per quarter)

Additionally, we analyze the total number of transactions, for simplicity defined as
the sum of in- and out-transactions

ntotali = nini + nouti . (4)

4.1 Dynamics of the degrees and number of transactions

Before investigating the distribution of the variables under study, we provide a brief
overview of their dynamics over time, restricting ourselves to quarterly data here.
Figure 1 shows the in-/out-degrees (left) from the directed networks and the total
degrees from the undirected networks (right). The upper left panel shows themean and
median in-degree and out-degrees over time.10 Clearly, themean values are decreasing
over time, and so does the median in-degree which is mostly very close to the mean
value. For both series, we find a significant structural break after quarter 10. In contrast,
the median out-degree fluctuated around an average value of roughly 17 over most
of the sample period, but with a significant structural break after quarter 39 due to
the GFC. These values are considerably smaller than the values for the in-degree,

10 Note that the mean in- and out-degree are identical by definition.
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Fig. 2 Left Scatter plot of in- versus out-degree. Correlation .0899. Right Correlation between individual
banks’ in- and out-degree over time. Italian banks only

pointing toward a substantial level of skewness in the out-degree distribution. Thus,
the distributions of in- andout-degrees are likely to benot identical. The lower left panel
shows the relativemean andmedian degree over time, i.e., the values in the upper panel
standardized by the number of nodes active in each quarter. We see that the negative
trend in the upper panel is mostly driven by the negative trend in the number of active
banks. Thus, the standardization appears to make the in-degrees of different quarters
comparable. This is less so for the median out-degree, which is far more volatile over
the sample period.11 For the sake of completeness, the corresponding values for the
degrees from the undirected networks are shown on the right-hand side. Both for the
absolute and relative values, the mean and median values are very similar, except for
the beginning of the sample period. This is driven by the high level of asymmetry in
the out-degree distribution for the first half of the sample, which appears to decrease
later on.

What does the evidence on the differences between the in- and out-degree distri-
butions imply? Given that many studies on interbank markets work with undirected
networks, these studies entail the implicit assumption of a high correlation between
in- and out-degrees of individual banks. The left panel of Fig. 2 shows a scatter plot of
in-degree against out-degree for Italian banks, showing a small correlation of .0899 for
all observations. For single quarters, we find that the correlation between these mea-
sures may be very small, at times even negative. Thus, banks with a high in-degree
do not necessarily have a high out-degree and vice versa. The directed version of the
network, thus, contains a considerable amount of information. The right panel of Fig. 2
indeed shows a relatively monotonic decline of the correlation over time. This implies
that banks have become more ‘specialized,’ i.e., in any quarter, they appear to enter
the market predominantly as lenders or borrowers.

For the number of transactions, Fig. 3 shows the dynamics of the mean and median
in-/out-ntrans (left) and the total ntrans (right). The upper left panel shows that the

11 Interestingly, after standardizing the degrees, we find structural breaks in all three time series close to
quarter 39, i.e., around the GFC.
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Fig. 3 Mean and median number of transactions over time. Left Directed network. Right Undirected
network. Top absolute levels. Bottom standardized values (divided by the number of active banks per
quarter)

average number of transactions per bank is close to 200 during most quarters, but sig-
nificantly decreases during and after the GFC. For both variables, the median values
are substantially smaller than the mean, which hints toward a high level of skew-
ness. Again, substantial differences in the median values indicate that the in- and out-
variables are unlikely to follow identical distributions. The bottom left panel shows
the standardized mean and median values. Quite interestingly, the somewhat nega-
tive trend of the variables vanishes, except for the GFC period. The same observation
applies to the total number of transactions on the right panels. The results concern-
ing the correlation between in- and out-transactions are comparable to those for the
degrees (not reported).

4.2 The degree distributions

Due to the change in the size of the Italian interbank network, and the detection of
two candidates for significant structural breaks during our sample period, we split
the dataset into three periods: Period 1 covers quarters 1–10, period 2 covers quar-
ters 11–39, and period 3 covers the remaining quarters 40–48.12 Assuming that the

12 Note that the first subsample roughly coincides with the dataset used by De Masi et al. (2006).
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Fig. 4 Quarterly data, degree. Histograms for in-degree (left), out-degree (center), and total degree (right)
for Period 1, 2, and 3

realizations of single days (quarters) are iid draws (or weakly dependent ones) from
the same underlying data-generating process, allows us to pool the data of the three
subperiods into larger samples for the in-, out-, and total degrees (ntrans) of active
banks, respectively. We use both daily and quarterly aggregates, i.e., construct vari-
ables that count the number of unique counterparties (degree) and total number of
transactions (ntrans) for each bank within each day and quarter, respectively.13 For
the daily (quarterly) data, this amounts to a total of 96,892 (1780), 188,582 (3,369),
and 41,775 (843) pooled observations for the three periods, respectively. For the sake
of completeness, we also show the results when pooling all observations for the three
time periods (1–3) for each degree measure. We should stress that pooling observa-
tions from several periods is crucially necessary in order to obtain reliable parameter
estimates, in particular for daily data. We will elaborate on this issue in more detail in
the next section.

As a first step, we compare the in- and out-degree distributions and check whether
they could be realizations from the same underlying distribution. Figure 4 shows
the histograms of the in-, out-, and total degrees for the different time periods using

13 In Appendix 4, we present a similar analysis for the distribution of transaction volumes of individual
institutions.
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quarterly data. We see that the histograms look very different when comparing in-
and out-degrees for each sample period. We should note that a substantial fraction of
observations equals zero, both for in- and out-degrees. While the in-degree histograms
appear to have a certain hump-shape, the out-degrees lookmore like a slowly decaying
function with monotonic decline of probability from left to right. Furthermore, the
L-shaped form of the out-degree distributions appears to be more stable over time,
even though the scale on the x-axis changes substantially. Individual Kolmogorov–
Smirnov (KS) tests provide further evidence against the equality of in- and out-degree
distributions for all sample periods. The KS test allows to check whether two variables
follow the sameprobability distribution, and alsowhether anyvariable follows a certain
specific distribution. In our case, the KS test statistic is calculated as

KSn = sup
x

|F1,n(x) − F2,n(x)|, (5)

where supx denotes the supremum of all possible values, while F1,n(·) and F2,n(·)
are the empirical distribution functions of the sample of in-degrees and out-degrees,
respectively. At all sensible significance levels, we have to reject the null hypothesis
of the equality of both distributions. Similar observations can be made when pooling
all observations across the three subperiods, see Fig. 5.

Figure 6 shows the complementary cumulative distribution functions (ccdf) for
the quarterly degree measures for all sample periods on a log–log scale, the typical
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Fig. 7 Daily data, degree. Complementary cumulative distribution functions (ccdf) for degrees: in-degree
(left), out-degree (center), and total degree (right) for all time periods on a log–log scale

way to represent data when suspecting power-law decay. Note that for a power-law,
these ccdfs would be straight lines, which upon inspection seems unlikely to provide
a good approximation to any of our subsamples, even for the tail regions. Again the
distributions of in- and out-degrees look quite different in general, even though the
shapes of the tail regions appear to be more homogeneous than what one might have
expected after inspection of the raw data in Figs. 4 and 5. Similar arguments hold
for the distribution of total degrees, which has a somewhat similar shape as the in-
degree distribution. For this reason, we will mostly restrict ourselves to comment on
the results for the in- and out-degrees, respectively. We also show the ccdfs for the
daily observations in Fig. 7. Again, it is hard to detect a linear decay for most samples,
at least not over several orders of magnitude.

4.2.1 Distribution fitting approach

Our basic approach is to fit a number of candidate distributions in order to investigate
which distribution describes the data ‘best’ in a statistical sense. We should note
that, similar to the approach in Stumpf and Ingram (2005), we use both discrete and
continuous candidate distributions, implying that for the latter, we treat the degrees
as continuous variables. The candidate distributions, always fitted using maximum
likelihood (ML), are:

– the Exponential distribution, with parameter λ > 0 (rate),
– the Gamma distribution, with parameters k > 0 (shape) and θ > 0 (scale),
– the Geometric distribution, with probability parameter p ∈ [0, 1],
– the Log-normal distribution, with parameters μ (scale) and σ > 0 (shape),
– the negative Binomial distribution, with parameters r > 0 (number of failures) and

p ∈ [0, 1] (success probability),
– the Poisson distribution, with parameter λ > 0,
– the discrete power-law or Pareto distribution, with parameters xm > 0 (scale) and

α > 0 (shape),
– the Weibull or stretched exponential distribution, with parameters λ > 0 (scale)
and k > 0 (shape).
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We should note that a large part of the literature focuses on fitting the power-
law only, in particular when the ccdfs have an apparently linear shape. Given that
this is not the case here, we test a number of alternative distributions to find the
distributions that fit the data best. Nevertheless, even though the power-law might not
be a good description of the complete distribution, it could still provide a good fit of
the (upper) tail region. Therefore, we conducted two sets of estimations of the above
distributions for each sample: first, we fitted the complete distribution using all entries
of our samples. Here, we should stress that several of the distributions have strictly
positive support, while the others also allow for the occurrence of zero links. For the
sake of consistency, we will therefore only use nonzero values for the degree and
ntrans variables in the following.14 This means, for some distribution functions, we
are using truncated variables in general (both for the complete and tail observations)
and need to adjust the ML estimators for these distributions accordingly, cf. Appendix
1. In a second step, we explicitly fitted three of the eight candidate distributions,
namely the Exponential, the Log-normal, and the power-law, to a certain upper tail
region for each period and variable (the other candidates would obviously make little
sense as tail distributions). There are different possibilities to identify the ‘optimal’
tail region. Here, we employ the approach of Clauset et al. (2009), which has been
demonstrated to yield reliable estimates of both power-law parameters for certain
distributions converging to Paretian tail behavior. The basic idea of this approach is
to find the optimal tail parameter for all possible cutoff points using ML, where the
optimal xm is the one corresponding to the lowest KS statistic. Details can be found
in Appendix 2.15 The tail region is then defined by the scale parameter xm , and the all
candidate tail distributions are fitted to all observations where x ≥ xm . Note that this
approach gives an obvious advantage to the fit of the power-law in the ‘tail’ region.
Quite surprisingly, however, in many cases, the power-law is not the best description
of the data tailored in this way as we will see below.

In these goodness-of-fits (GOF) experiments, we first estimate the parameters for
each candidate distribution, both for the complete dataset and the upper tail region,
respectively, using ML. Using these parameters, we calculate the KS test statistic for
each candidate distribution and take the one with the lowest value as the ‘best’ fit of
the respective data.16 As a last step, we evaluate the GOF of this candidate distribution
based on the KS test statistic. Given that the critical values of the KS distribution are
only valid for known distributions (i.e., without estimating parameters), we have to

14 This is important, since we cannot replicate the large number of zero values that we observe in the
empirical data based on these distributions. Ignoring zeros reduces the number of quarterly observations to
1,742, 3,271, and 788 for the in-variables, and 1450, 2733, and 663 for the out-variables, respectively. For
the daily data, this leaves 70,584, 133,280, and 28,093 for the in-variables, and 39,619, 83,723, and 17,961
for the out-variables, respectively. The number of observations for the total degree and ntrans variables
remains unaffected, since only active banks are in the sample.
15 There exist a number of alternative approaches in statistical extreme value theory for determining the
optimal tail size. The approaches byDanielsson et al. (2001) andDrees andKaufmann (1998) yielded results
very similar to those reported in the text. We also checked certain fixed thresholds for identifying the tail
region. The results remain qualitatively the same as long as the chosen upper quantile is reasonably large.
16 In principle, we could also use likelihood-based criteria, e.g., AIC or BIC. However, Clauset et al. (2009)
provide some evidence that the KS statistic is preferable as it is more robust to statistical fluctuations.
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perform individual Monte Carlo exercises.17 In these exercises, we randomly sample
many degree sequences from the best fitting distributions with their estimated para-
meter values and then calculate the KS test statistic of these synthetic datasets. The
reported p values count the relative fraction of observations larger than the observed
ones, such that low p values (say 5%) indicate that the pertinent distribution can be
rejected. We should stress that we carry out this analysis only for the best fitting dis-
tribution, since the remaining ones have already been found to be inferior under the
KS criterion. Details on the Monte Carlo design can be found in Appendix 3.

In the following, we will use this approach to investigate the distribution of degrees
and number of transactions for both daily and quarterly aggregates. Already at this
point, we should stress that the GOF tests mostly indicate that the distributions
have to be rejected at traditional levels of significance for the complete samples,
while the fits to the tail tend to perform better. This finding is, however, strongly
driven by the significantly smaller number of observations for the tail data, which
yields relatively large and more volatile KS statistics compared to the complete
distributions.

4.2.2 Daily data

We start our analysis with the daily degree data for which earlier studies have reported
power-laws (De Masi et al. 2006). Before turning to the results, we need to stress
several complicating issues arising from network data in general, and our data in
particular. For example, Stumpf and Porter (2012) note that ‘[a]s a rule of thumb, a
candidate power-law should exhibit an approximately linear relationship on a log–log
plot over at least two orders of magnitude in both the x and y axes. This criterion rules
out many datasets, including just about all biological networks.’ In this sense, finite
and possibly very small network sizes make it hard to provide evidence for scale-free
networks (Avnir et al. 1998; Clauset et al. 2009).

For our data, Fig. 8 shows the maximum in- and out-degrees for the individual days
over time. We see that the criterion of Stumpf and Porter (2012) is typically violated.
Thus, it should be hard to find evidence in favor of the power-law hypothesis for the
complete distributions. Additionally, the number of observations in the ‘tail’ of the data
for a single day becomes very small leading to large fluctuations of estimates across
days and large error bands of single estimates. These issues highlight the importance
of applying rigorous statistical methods to identify the best fitting distributions, i.e.,
simply identifying a linear slope of the ccdf on a log–log scale might easily be mis-
leading. Similar remarks also apply for the daily ntrans variables (see below), while
quarterly data are typically slightly less problematic.

To highlight our previous comments, Figs. 9 and 10 show the distribution of the
estimated daily power-law parameters for the complete and tail observations, respec-
tively, for all sample days. For the complete daily samples, the results are very stable
over time and across types of degrees, cf. Fig. 9. In fact, we will see that this stability
tends to carry over to the complete distributions of the aggregated data as well. In

17 See Clauset et al. (2009) and Stumpf et al. (2005) for similar approaches.
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total degree, respectively

contrast, there is a substantial level of heterogeneity for the power-law exponent of the
tail observations for the individual days, cf. Fig. 10. Thus, we cannot confirm previ-
ously reported findings of ‘interesting’ tail parameters between 2 and 3 for any of the
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degree variables.18 While numerous observations lie within this range, for many days,
we find substantially larger values, at times as large as 7.19 Apparently, the daily tail
data are too noisy to identify a ‘typical’ tail parameter, cf. Fig. 11.20 The mismatch
between the narrow range of values obtained for the complete dataset of single days
and the broad range of estimates for their tail might also indicate that the former are
mainly determined by the more central part of the distribution.

Since data for single days are too scarce to allow reliable parameter estimation, pool-
ing observations over longer horizons might be advisable to obtain better estimates.
This, of course, requires the assumption of daily data being drawn independently from
the same underlying distribution, or only with weak dependence on adjacent obser-

18 De Masi et al. (2006) report power-law exponents between 2 and 3 for total degree, in-degree, and
out-degree for daily data of our period 1 of the e-MID overnight record. Soramäki et al. (2007) also report
values in this range for daily interbank payments within the U.S. Fedwire system. Boss et al. (2004) fit two
power-laws to the more central and the extremal region of the in-degree distribution of monthly Austrian
interbank liabilities with the extremal region exhibiting slopes of 1.73 for in-degrees and 2.01 for out-degree.
This visual illustration could, however, be as well interpreted as indicating an overall exponential shape.
Bech and Atalay (2010) study daily federal fund credits in the U.S. Their study constitutes a rare example
of a comparative fit of a number of candidate distributions. While the overall shape of the distribution does
not quite show a straight linear shape in a log–log plot, they report that the power-law gave the best fit
among the candidates for out-degrees while the negative Binomial did best fit the in-degree distribution.
19 We have set 7 as the upper bound of the power-law parameter in our numerical ML implementation. For
larger values, the evaluation of the zeta function appearing in the discrete Pareto law, cf. Appendix 2, is not
accurate enough to obtain reliable estimates. The fact that the estimated values hit the upper bound quite
frequently indicates that the estimated values may become even larger when increasing the upper bound.
20 We also generated synthetic power-law distributed random draws and estimated their scaling parameters
based on the algorithm for the selection of the tail region detailed above (not reported). For the small sample
sizes of the typical daily data, the tail parameter of these synthetic data is highly volatile as well, even though
the very large values observed for the actual data are very rare. As usual, however, increasing the number
of observations (say more than 500), typically yields estimates very close to the true parameters.
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Table 1 Daily data, degree. KS statistic for the candidate distributions (complete data)

In Out Total

Period 1–3 1 2 3 1–3 1 2 3 1–3 1 2 3

Exponential .0465 .0627 .0448 .0498 .0789 .0911 .0777 .0447 .0488 .0764 .0374 .0406

Gamma .0627 .0670 .0661 .0870 .0515 .0511 .0536 .0559 .0562 .0637 .0512 .0592

Geometric .0132 .0250 .0129 .0299 .0608 .0759 .0595 .0224 .0214 .0510 .0127 .0289

Log-normal .0814 .0748 .0816 .1001 .0725 .0722 .0736 .0746 .0631 .0605 .0641 .0701

Neg. bin. .0063 .0177 .0082 .0224 .0114 .0160 .0138 .0105 .0153 .0208 .0115 .0103

Poisson .2313 .2409 .2347 .1715 .3500 .3774 .3476 .2678 .2973 .3318 .2892 .2087

Power-law .2099 .2151 .2107 .1985 .2077 .2024 .2079 .2140 .2366 .2219 .2427 .2373

Weibull .0591 .0630 .0646 .0872 .0547 .0552 .0574 .0555 .0522 .0575 .0481 .0581

Minimum values in bold indicate the best fitting distribution.
Asterisks would indicate non-rejection of this distribution at the 5% significance level, where the critical
values were obtained from a Monte Carlo exercise as described in the main text. There is, however, no such
case in this table

Table 2 Power-law parameters and standard errors, degree

In Out Total

Period 1–3 1 2 3 1–3 1 2 3 1–3 1 2 3

Daily

Complete 1.61 1.61 1.60 1.67 1.50 1.48 1.50 1.54 1.52 1.51 1.51 1.57

(.001) (.003) (.002) (.005) (.002) (.003) (.002) (.005) (.001) (.002) (.001) (.003)

Tail 7.00 7.00 7.00 7.00 5.93 4.43 7.00 5.53 6.03 4.70 7.00 7.00

(.175) (.300) (.160) (.260) (.110) (.078) (.170) (.161) (.100) (.071) (.146) (.393)

Quarterly

Complete 1.28 1.26 1.28 1.33 1.29 1.28 1.29 1.33 1.24 1.23 1.24 1.27

(.004) (.006) (.005) (.001) (.004) (.008) (.006) (.001) (.003) (.006) (.004) (.009)

Tail 5.13 7.00 7.00 4.63 7.00 6.90 7.00 4.82 5.20 6.90 7.00 5.01

(.134) (.460) (.325) (.233) (.482) (.532) (.412) (.306) (.145) (.421) (.330) (.261)

Values obtained via numerical maximization of the log-likelihood for discrete data
Standard errors (in parentheses) approximated as (α − 1)/

√
T , with T being the number of observations

Top daily data, bottom quarterly data

vations. While it is not straightforward to check this assumption for complete daily
ensembles (as opposed to a time series of univariate daily data), we have made some
attempt at checking for statistical breaks for averages of degree statistics and have cut
our complete sample into subsamples accordingly. Note also that any analysis of a
network structure would be more or less futile, if we could not assume some stationar-
ity of the structural characteristics of the network. Fricke and Lux (2014) demonstrate
that the e-MID network is indeed structurally stable along many dimensions.

We report our estimation results for the pooled daily data in Tables 1, 2, and 3. Our
main finding is that the negative Binomial distribution provides the best fits (in bold)
for all daily degree measures and for all samples (i.e., the complete samples and the
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Table 3 Daily data, degree. KS statistic for the candidate distributions (tail)

In Out Total

Period 1–3 1 2 3 1–3 1 2 3 1–3 1 2 3

Exponential .0357* .0354* .0355* .0954 .0642 .0580 .0353* .0388* .0685 .0637 .0300* .0457

Log-normal .0664 .0639 .0762 .1036 .0479 .0479 .0541 .0771 .0484 .0455 .0521 .0927

Power-law .0372 .0376 .0400 .0203* .0129* .0305* .0392 .0455 .0114* .0192* .0352 .0382*

Minimum values in bold indicate the best fitting distribution
Asterisks indicate non-rejection of this distribution at the 5% significance level, where the critical values
were obtained from a Monte Carlo exercise as described in the main text

three subsamples identified via tests for structural breaks), cf. Table 1. The results from
the GOF experiments indicate, however, that the best fitting candidate distributions
have to be rejected. Therefore, even the winner among the candidate distributions
appears to be an unlikely description of the data.We should also stress that the fit of the
power-law is usually rather poor, competing with the Poisson distribution for the worst
description of the data. Similar to the findings for the individual days, the estimated tail
parameters are between 1.5 and 1.6, cf. Table 2 (top, complete). Figure 7 together with
the relatively poor KS statistics for estimated power-laws suggests that estimates in
the scaling range 1–2 are obtained as very inaccurate straight lines fitted to a strongly
curved distributional shape. Moving to the tail observations, we find that Exponential
and power-law distributions tend to provide the best fit for all variables, cf. Table 3.
Thus, it appears that the power-law is a better description of the tail observations -
a usual finding for many datasets. In contrast to the complete distributions, the GOF
experiments suggest that the estimated distributions are mostly not rejected for the
tail observations.21 Upon closer inspection, however, we see the KS statistics of the
Exponential and the power-law are typically close to each other, in particular when
the tail exponents are very large, cf. Table 2 (top, complete). Even though the power-
law appears to provide the best fit for some of the tail data, the very large parameter
values (larger than 4, often close to 7) are in a range where the power-law becomes
almost undistinguishable from exponential decay. Often such high values would be
obtained spuriously from distributions with an exponential decline as semi-parametric
estimators of the tail index would not be able to ‘identify’ the limit of α → ∞. The
huge difference in estimated power-law parameters for the complete sample compared
to the tail also indicates that the empirical distribution shows pronounced curvature
(actually confirming the visual inspection of absence of a linear slope over the complete
support and very fast decline at the end in Fig. 7).On the other hand, it is also interesting
to remark that the estimated coefficients are relatively uniform for both the complete
sample and the tail, respectively, across periods and for all themeasures of degree. This
speaks of relatively uniform shapes of the distributions, at least in view of this simple
statistic. Summing up, the power-law distribution appears to be a poor description of
the data, both for the complete distribution and the tail observations (where it more or

21 This result is driven by the higher noise level in the tail data due to a smaller number of observations
compared to the complete distributions.

123



1482 D. Fricke, T. Lux

Table 4 Quarterly data, degree. KS statistic for the candidate distributions (complete)

In Out Total

Period 1–3 1 2 3 1–3 1 2 3 1–3 1 2 3

Exponential .1474 .1544 .1661 .1520 .0797 .0932 .0710 .0925 .1740 .1675 .1887 .2171

Gamma .0573 .0543 .0723 .0942 .0595 .0514 .0738 .0961 .0414 .0284* .0673 .0943

Geometric .1533 .1586 .1723 .1619 .0778 .0918 .0728 .1009 .1771 .1696 .1920 .2223

Log-normal .1141 .0972 .1274 .1377 .1063 .0984 .1164 .1226 .0972 .0760 .1185 .1453

Neg. Bin. .0601 .0580 .0729 .1025 .0708 .0615 .0836 .1081 .0395 .0318 .0627 .0881

Poisson .3117 .3462 .2753 .2561 .4367 .4707 .4116 .4183 .3601 .4115 .3183 .2489

Power-law .3828 .4023 .3849 .3522 .2727 .2728 .2842 .2608 .4376 .4546 .4387 .4291

Weibull .0380 .0342* .0456 .0689 .0624 .0609 .0736 .0912 .0246 .0361 .0325 .0495*

Minimum values in bold indicate the best fitting distribution
Asterisks indicate non-rejection of this distribution at the 5% significance level, where the critical values
were obtained from a Monte Carlo exercise as described in the main text

Table 5 Quarterly data, degree. KS statistic for the candidate distributions (tail)

In Out Total

Period 1–3 1 2 3 1–3 1 2 3 1–3 1 2 3

Exponential .0248* .0466 .0325* .0628* .0395* .0394 .0352* .0459* .0331* .0315* .0437* .0530*

Log-normal .0379 .0441* .0431 .0766 .0526 .0533 .0663 .0756 .0451 .0494 .0769 .0794

Power-law .0651 .0748 .0471 .0949 .0502 .0384* .0559 .0918 .0515 .0405 .0602 .0778

Minimum values in bold indicate the best fitting distribution
Asterisks indicate non-rejection of this distribution at the 5% significance level, where the critical values
were obtained from a Monte Carlo exercise as described in the main text

less coincides with an Exponential for the high estimates of the tail index). We also
need to stress that the identified power-law exponents, both for individual days and
pooled observations, are far off from those reported in an earlier study. It is not clear
how these estimates were obtained.

4.2.3 Quarterly data

The results for the quarterly data are shown in Tables 4 and 5.Weibull distributions typ-
ically provide the best fits for the in- and total degrees, while Exponential and Gamma
distributions yield comparable fits as the Weibull for the out-degrees. Similar to the
complete distributions for the daily data, the optimal fits are typically rejected at the
5% significance level, except for three cases. Again, the best fits appear to be unlikely
descriptions of the observed data. The power-law exponents for the complete sample
are again quite small, typically between 1.25 and 1.3, cf. Table 2 (bottom, complete).
Turning to the tail observations, we find that Exponential distributions provide the best
fits in all but two cases (in-degree in period 1, out-degree in period 1). Similar to the
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daily observations, for the best fits of the tail data, the pertinent distributions cannot
be rejected as the ‘true’ data-generating process at the 95% significance level. The
poor fit of the power-law again comes along with relatively large tail exponents, cf.
Table 2 (bottom, tail). In summary, similar to the daily data, we do not find convincing
evidence in favor of a power-law distribution.

4.2.4 Robustness and discussion

A reason for not finding evidence for power-law distributions may be the fact that we
focus on the subnetwork formed by Italian banks only. Stumpf et al. (2005) have shown
that (randomly chosen) subnetworks of scale-free networks are in fact not scale-free.
Therefore, we also checked the distributions including foreign banks as well, similar
to the existing papers using the e-MID data. We found that the results (including the
tail parameters) remain qualitatively unaffected (not reported). These findings indicate
again that the networks including all banks are unlikely to be scale-free, and that our
previous findings for Italian banks alone are not biased due to random sampling from a
larger scale-free network (indeed, it seems very unlikely that the Italian banks should
constitute a random set from the overall sample of all banks). Then, it comes as no
surprise that the subnetworks formed by Italian banks only are also not scale-free.
In fact, it is remarkable that there appears to be no significant qualitative effect of
incorporating foreign banks or not.

In Finger et al. (2013) it has been shown that the quarterly e-MID networks aremore
complete representations of the underlying ‘latent’ network structure, whereas daily
networks might be seen as random activations of parts of the more complex, hidden
structure. Under this perspective, the lack of coincidence of the fitted distributions for
different levels of time aggregation might not be too surprising.

Summing up, our results indicate that the power-law hypothesis needs to be tested
more thoroughly for other networks in general and the interbank network in particular,
with the power-law being one of many candidate distributions. The findings are in line
with other studies casting doubts on certain claims of power-law and scaling behavior
in a broad range of empirical studies (cf. Avnir et al. 1998).

4.3 The distribution of the number of transactions

Note that the quarterly degree of a given bank is not the simple sum of its daily degrees,
since a link that has been activated many times over a quarter is counted only as one
link on the quarterly level of network activity. If we consider the number of links
in the daily data as (possibly power-law distributed) random variables, the number
of transactions over a longer time horizon is, in fact, what we obtain from simple
aggregation of the daily degrees observed for any bank i . Assuming that the degrees
of all banks are drawn from the same distribution, we obtain in this way a sample of
sums of random variables following the same underlying distribution. Note that we
would expect a power-law at the daily level to survive in the aggregation process for
an iid random process of link formation as well as for various extensions allowing for
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Fig. 12 Quarterly data, ntrans. Complementary cumulative distribution functions (ccdf) for the number
of transactions: in-trans (top), out-trans (center), and total trans (bottom) for all time periods on a log–log
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Fig. 13 Daily data, ntrans. Complementary cumulative distribution functions (ccdf) for the number of
transactions in-trans (top), out-trans (center), and total trans (bottom) for all time periods on a log–log scale

‘weak’ dependency.22 The extremal behavior of the distribution of degrees should,
therefore, be preserved in the distribution of the number of transactions over longer
horizons. We turn to the analysis of this quantity in this subsection.

Note also that the finite size of the networkmight pose a problem due to the effective
imposition of an upper limit on the observable degrees. It might, therefore, be the
case that a scale-free distribution is just hard to verify because of the small number
of observations combined with the relatively narrow range of observed values. In
contrast, the aggregated ntrans variables have the advantage that they have no obvious
upper bound, so testing the power-law hypothesis might be more sensible in this case.

Figures 12 and 13 show the ccdfs of the quarterly and daily ntrans variables. Again,
linear decay over several orders of magnitude is hard to detect visually. However, at
least for the quarterly data, we see that the variables under study span several orders
of magnitude, making the data more useful candidates for our distribution fitting
approach.

22 The stability under aggregation of power-laws characterizing the tails of iid random variables is one of
the basic tenets of the statistical theory of extremes, cf. Reiss and Thomas (2007). In this sense, summing
up daily power-law networks should preserve the tail index for different frequencies.
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Table 6 Power-law parameters and standard errors, ntrans

In Out Total

Period 1–3 1 2 3 1–3 1 2 3 1–3 1 2 3

Quarterly

Complete 1.19 1.19 1.19 1.21 1.21 1.22 1.21 1.23 1.16 1.16 1.16 1.17

(.003) (.005) (.003) (.008) (.003) (.006) (.004) (.009) (.002) (.004) (.003) (.006)

Tail 3.48 2.78 3.54 3.06 3.16 2.99 2.21 2.95 2.77 3.03 2.76 3.68

(.091) (.082) (.116) (.136) (.094) (.143) (.044) (.180) (.040) (.106) (.050) (.200)

Values obtained via numerical maximization of the log-likelihood for discrete data
Standard errors (in parentheses) approximated as (α − 1)/

√
T , with T being the number of observations.

Quarterly data

Table 7 Quarterly data, ntrans. KS statistic for the candidate distributions (complete data)

In Out Total

Period 1–3 1 2 3 1–3 1 2 3 1–3 1 2 3

Exponential .0452 .0516 .0467 .0748 .2334 .2598 .2131 .2716 .0612 .0524 .0761 .0955

Gamma .0153 .0287 .0199 .0388 .0167 .0165 .0185 .0498 .0356 .0485 .0325 .0549

Geometric .0450 .0511 .0465 .0744 .2331 .2595 .2129 .2713 .0614 .0525 .0763 .0960

Log-normal .0801 .0786 .0843 .0953 .0712 .0610 .0725 .1013 .0701 .0508 .0738 .1207

Neg. Bin. .0205 .0280 .0249 .0419 .0205 .0188 .0223 .0586 .0353 .0477 .0321 .0543

Poisson .5744 .5859 .5775 .5527 .6706 .6860 .6710 .6221 .5896 .6164 .5813 .5216

Power-law .3610 .3865 .3658 .3384 .2381 .2397 .2607 .2209 .4497 .4488 .4648 .4236

Weibull .0185 .0244 .0186 .0420 .0383 .0389 .0392 .0668 .0391 .0481 .0386 .0437*

Minimum values in bold indicate the best fitting distribution
Asterisks indicate non-rejection of this distribution at the 5% significance level, where the critical values
were obtained from a Monte Carlo exercise as described in the main text

For daily data, the range of the observed variables remains rather limited, even
though the maximum value is roughly twice the one for the degrees (not reported).
Since for daily realizations of the number of transactions we find virtually identi-
cal results to those of the daily degrees, we abstain from presenting these here, and
immediately turn to quarterly aggregated observations.

We show the results in Tables 7 and 8, finding that negative Binomial, Gamma,
and Weibull distributions appear among the best fits, depending on the concept (in-
, out-, or total transactions) and the period considered. However, their KS statistics
are typically at a comparable level. The results from the GOF experiments show that
the best fitting distributions are nevertheless rejected as data-generating processes
(exception: total ntrans in period 3). Again, the fit of the power-law is very poor in
general, with tail parameters around 1.20, cf. Table 6, andKS statistics that consistently
come in second to last (with the Poisson distribution performing worst). Moving to
the quarterly tail data, we find that in most cases, the Log-normal provides the best
fit (exceptions: out-degree for the complete sample and total degree in period 3). This
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Table 8 Quarterly data, ntrans. KS statistic for the candidate distributions (tail)

In Out Total

Period 1–3 1 2 3 1–3 1 2 3 1–3 1 2 3

Exponential .0684 .0874 .0709 .0687 .0393* .0805 .0532 .0751 .0528 .0616 .0492 .0948

Log-normal .0258* .0202* .0441* .0560* .0408 .0594* .0495 .0700* .0274* .0336* .0362* .0579

Power-law .0476 .0570 .0520 .1219 .0988 .0741 .1024 .0718 .0676 .0604 .0683 .0426*

Minimum values in bold indicate the best fitting distribution
Asterisks indicate non-rejection of this distribution at the 5% significance level, where the critical values
were obtained from a Monte Carlo exercise as described in the main text

is quite surprising, given that the scaling parameters now lie in the ‘typical’ range
for power-laws, here between 2.21 and 3.68. Therefore, even though the power-law
estimates appear more sensible, the power-law distribution is inferior by some margin
in fitting the tail data (with a cut-off determined by the best-fitting Pareto law) to
the Log-normal, and sometimes also to the Exponential. As with the previous cases,
the results from the GOF experiments indicate that the best fitting tail distributions
usually cannot be rejected via KS tests withMonte Carlo distributions.While it is well
known that it is hard to distinguish Log-normal from power-law tails, these findings
raise doubts on the universality of power-law tails and highlight the need for thorough
statistical approaches for testing the power-law hypothesis.

As another robustness check,we investigated the distribution of transaction volumes
(tvol), cf. Appendix 4, again differentiating between in-tvol, out-tvol, and their sum
(total tvol), respectively. While the tails of the tvol variables are typically much fatter
compared to the degree and ntrans variables, the power-law remains a poor description
both for daily and quarterly data.

5 Conclusions

In this paper, we have revisited the distributional properties of interbank loans for the
Italian interbank network during the years 1999–2010. Using both the degrees and the
number of transactions, we fitted a set of different candidate distributions to these data
for daily and quarterly aggregates, respectively. Given that the daily networks have
previously been suggested to be scale-free (DeMasi et al. 2006), it comes as a surprise
that we find no evidence in favor of the power-law hypothesis: at the daily level the
degrees are usually fit best by negative Binomial distributions, while the tails tend to
decay exponentially, i.e., the fitted power-laws display very large tail parameters. At
the quarterly level, Weibull, Gamma, and Exponential distributions tend to provide
comparable fits for the complete degree distribution, while the tails again tend to
display exponential decay. For the number of transactions, we find comparable results,
even though the tails of the quarterly data appear to be fatter. However, in this case, the
Log-normal distribution usually outperforms the power-law. Moreover, we found that
the networks are characterized by a substantial level of asymmetry, as exemplified by
the low correlation between in- and out-degrees. We also find that the two variables
do not follow identical distributions in general.
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Overall these findings indicate that the power-law is typically a poor description
of the data. This implies that preferential attachment and related data-generating
processes are not supported by the empirical shape of the degree distribution that
appears very far from the implied power-law structure. Note that these findings are
also not in line with a large part of the empirical (interbank) network literature for
other datasets, raising doubts on the universality of scale-free behavior of interbank
networks. Our results indicate that the power-law hypothesis needs to be tested more
thoroughly for other networks in general and the interbank network in particular. The
findings are related to other studies casting doubts on certain claims of power-law and
scaling behavior in a broad range of empirical studies (cf. Avnir et al. 1998; Stumpf
and Porter 2012), and it seems possible that claims of scale-free behavior of interbank
lending activity may not survive under closer statistical scrutiny.

Appendix 1: Truncated distributions and maximum likelihood

The distribution fitting approach described in the main text involves fitting a set of
candidate distributions with possibly differing support. For example, some distribu-
tions have support at zero, while others do not. Similarly, when focusing on the tail
observations, we have to get rid of the probability mass below the cutoff point in
order to accurately calculate the statistics. Therefore, we describe the use of truncated
distributions and ML fitting in this Appendix in more detail.

Normalization

When working with truncated variables, we need to make sure to use the correct pdfs
and cdfs, since the ML estimation and the evaluation of the fit (KS statistic) depend
on them. In order to illustrate this issue, let variable x have the pdf p(x) with support
[0,∞]. As usual, the cdf is defined as

P(a) = P(X ≤ a) =
∫ a

0
p(x)dx . (6)

Now, suppose the data are (left-)truncated at some value xm , i.e., the variable x̃ follows
the same distribution as x , but the pdf has limited support [xm ,∞]withminimumvalue
xm > 0. For our purposes, it is therefore useful to define the quantity

P<(a) = P(X < a) = 1 −
∫ ∞

a
p(x)dx, (7)

or more compactly
P<(a) = P(a) − p(a). (8)

We can properly construct the pdf of x̃ , say p̃, as

p̃(x) =
{

p(x)
1−P<(xm)

, if x ≥ xm
0, else.

(9)
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where the denominator distributes the probability mass of p(x) among the support of
x̃ .

For the calculation of the KS statistics, we also need the adjusted cdf. For the
supported values of x̃ it takes the form

P̃(x) =
∫ x

xm

p(x)

1 − P<(xm)
dx = 1

1 − P<(xm)

∫ x

xm
p(x)dx, (10)

or

P̃(x) = P(x) − P<(xm)

1 − P<(xm)
, (11)

which can be easily evaluated.

Maximum likelihood for truncated variables

Using the previous definitions, we can show that the ML estimator for left-truncated
variables does not coincide with the standard estimator. The standard ML estimator,
i.e., using a sample of n observations of x and denoting by θ the vector of parameters,
can be written as

L(θ |x1, . . . , xn) = p(x1, . . . , xn|θ) =
n∏

i

p(xi |θ), (12)

or in logs

ln(L) =
n∑

i

ln[p(xi |θ)]. (13)

Using the definitions from above, we can show that the ML estimator for left-
truncated variables differs from the one in Eq. (13). Using Eq. (9), we can write the
likelihood as

L =
ñ∏

i

p̃(xi |θ) =
ñ∏

i

p(x |θ)

1 − P<(xm |θ)
, (14)

where x ignores those observations smaller than xm and the total number of observa-
tions is ñ instead of n. Taking logarithms we obtain

ln(L) =
ñ∑

i

ln

[
p(xi |θ)

1 − P<(xm |θ)

]
=

ñ∑

i

ln[p(xi |θ)] −
ñ∑

i

ln[1 − P<(xm |θ)], (15)

which can be written as

ln(L) = −ñ ln[1 − P<(xm |θ)] +
ñ∑

i

ln[p(xi |θ)]. (16)
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The second part of this equation looks familiar, as it corresponds to Eq. (13) for the
ñ observations with values ≥ xm . However, the normalization term on the left does
not vanish (as it depends on the parameter vector) and affects the location of the ML
estimator. Therefore, we need to find the θ that maximizes Eq. (16). The standard ML
estimator would not be efficient.

Appendix 2: Discrete power-laws and parameter estimation

This presentation is mostly based on Clauset et al. (2009).

Discrete power-laws

A power-law distributed variable x obeys the pdf

p(x) ∝ x−α, (17)

whereα > 0 is the tail exponentwith ‘typical’ interesting values in the range between 1
and 3. Inmany cases, however, the power-law only applies for some (upper) tail region,
defined by the minimum value xm . While it is common to approximate discrete power-
laws by the (simpler) continuous version, for our (integer-valued) data, we employ the
more accurate discrete version in the paper.23

In the discrete case, the cdf of the power-law can be written as

P(x) = ζ(α, x)

ζ(α, xm)
, (18)

where

ζ(α, xm) =
∞∑

n=0

(n + xm)−α (19)

is the generalized or Hurwitz zeta function.

Estimation of α and xm

For a given lower bound xm , the ML estimator of α can be found by direct numerical
maximization of the log-likelihood function

L(α) = −n ln[ζ(α, xm)] − α

n∑

i=1

ln[xi ], (20)

23 Clauset et al. (2007) show that this is necessary for datasets from the social sciences, where themaximum
value is usually only a feworders ofmagnitude larger than theminimum, i.e., the tail is heavy but rather short.
In such cases, the estimated exponents can be biased severely when using the continuous approximation.
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where n is the number of observations.24 For simplicity, we approximate the standard
error of the estimated α̂ (for α̂ > 1) using the closed-form solution based on continuous
data.25 Neglecting higher-order terms, this can be calculated as

σ = α̂ − 1√
n

. (21)

However, the equations assume that xm is known in order to obtain an accurate estimate
of α.26 When the data span only a few orders of magnitude, as usual in many social
or complex systems, an underpopulated tail would come along with little statistical
power. Therefore, we employ the numerical method proposed by Clauset et al. (2007)
for selecting the xm that yields the best power-law model for the data. To be precise,
for each xm over some reasonable range, we first estimate the scaling parameter using
Eq. (20) and calculate the corresponding KS statistic between the fitted data and the
theoretical distribution with the estimated parameters. The reported xm and α are those
that minimize the KS statistic, i.e., minimize the distance between the observed and
fitted probability distribution. According to Clauset et al. (2007, 2009), minimizing
the KS statistic is generally superior to other distance measures, e.g., likelihood-based
measures such as AIC or BIC.

Appendix 3: Goodness-of-fit test for the estimated distributions

Since the distribution of the KS statistics is unknown for the comparison between an
empirical subsample and a hypothetical distribution with estimated parameters, we
carry out a Monte Carlo approach. We sample synthetic datasets from the estimated
distribution, compute the distribution of KS statistics, and compare the results to the
observed value for the original dataset. If the KS statistic of the empirical dataset
is beyond the α percent quantile of the Monte Carlo distribution of KS values, we
reject the pertinent distribution at the 1 − α level of significance. In our results, we
indicate significant fits at the 5% confidence level using asterisks. We should stress
that we carry out this (very time-consuming) GOF experiment only for the distribution
with the minimum KS statistic for each sample and variable, respectively. This can
be justified by the fact that, even though other candidate distributions may not be
rejected as well, they are clearly inferior to the optimal distribution in terms of the KS
statistic.

24 Using a quadratic approximation of the log-likelihood at its maximum, Clauset et al. (2009) also derive

an approximate closed-form solution for the estimate of α 
 1+ n/
(∑n

i=1 ln
[

xi
xm−.5

])
. This can be seen

as an adjusted Hill-estimator, see Hill (1975). While we always report the exact ML estimator, we checked
that the approximation is typically not too bad.
25 Clauset et al. (2009) also derive an (approximate) estimator for the standard error based on discrete data,
which is, however, much harder to evaluate as it involves derivatives of the generalized zeta function.
26 See Clauset et al. (2007, 2009) for an extensive discussion.
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Fig. 14 Quarterly data, tvol. Complementary cumulative distribution functions (ccdf) in-tvol (top), out-tvol
(center), and total tvol (bottom) for all time periods on a log–log scale
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Fig. 15 Daily data, tvol. Complementary cumulative distribution functions (ccdf) in-tvol (top), out-tvol
(center), and total tvol (bottom) for all time periods on a log–log scale

Appendix 4: Distributional properties of transaction volumes

Here, we report the results using another important measure for interbank networks,
namely the transaction volumes (tvol).We use the same distribution fitting approach as
before, differentiating between in-tvol, out-tvol, and their sum (total tvol), respectively.
Figures 14 and 15 show the ccdfs for the quarterly and daily variables on a log–
log scale. We should stress that the minimum trade size on the e-MID market is
50,000 Euros. In order to run our estimation procedure in a reasonable amount of
time, we rescale the tvol variables by a factor of 10−6 such that a transaction size of
50,000 is represented by a value of .05.27 We then round the tvol variable toward the
nearest integer (otherwise the discrete candidate distributions could not be accurately
evaluated), again ignoring zero values. In this way, we restrict our samples to relatively
large transaction volumes with at least 500,000 Euros, represented by positive integer
values. Note that, besides the upward bias of the data and the fact that the data now
span several orders of magnitude, it is again hard to visually detect linear decay over

27 Note that the maximum daily (quarterly) transaction volumes were 3.75bn (113.46bn) Euros for in-tvol,
4.96bn (111.93bn) Euros for out-tvol, and 5.32bn (146.06 bn) Euros for total tvol, respectively. For such
huge numbers, the estimation procedure, in the numerical optimization for the power-law parameters, tends
to take a very long computation time. Therefore, the results in this section should be treated with care, since
the rescaling might affect our statistical analysis.
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Table 9 Daily data, tvol. KS statistic for the candidate distributions (complete)

In Out Total

Period 1–3 1 2 3 1–3 1 2 3 1–3 1 2 3

Exponential .1485 .1868 .1252 .1141 .1926 .1981 .1986 .1294 .1737 .2118 .1578 .1242

Gamma .0765 .0972 .0675 .0821 .0685 .0566 .0690 .0834 .0833 .0876 .0766 .0942

Geometric .1471 .1851 .1241 .1120 .1919 .1975 .1980 .1281 .1729 .2108 .1570 .1226

Log-normal .0274 .0253 .0276 .0340 .0319 .0344 .0310 .0357 .0231 .0248 .0224 .0259

Neg. bin. .0686 .0876 .0604 .0753 .0599 .0489 .0598 .0766 .0751 .0779 .0685 .0880

Poisson .6552 .6878 .6423 .6253 .6780 .6785 .6728 .6618 .6803 .6971 .6715 .6527

Power-law .3587 .3324 .3643 .3836 .3416 .3320 .3490 .3774 .3678 .3406 .3693 .3897

Weibull .0499 .0648 .0442 .0602 .0427 .0355 .0482 .0590 .0536 .0561 .0496 .0698

Minimum values in bold
Significance tests not carried out

Table 10 Power-law parameters and standard errors, tvol. Values obtained via numerical maximization of
the log-likelihood for discrete data

In Out Total

Period 1–3 1 2 3 1–3 1 2 3 1–3 1 2 3

Daily

Complete 1.23 1.24 1.22 1.24 1.21 1.22 1.21 1.22 1.22 1.23 1.21 1.22

(.001) (.001) (.001) (.001) (.001) (.001) (.001) (.002) (.001) (.001) (.001) (.001)

Tail 2.66 2.15 2.72 2.86 3.23 2.63 4.88 3.39 3.33 3.27 3.35 3.38

(.010) (.009) (.013) (.042) (.022) (.023) (.239) (.079) (.019) (.036) (.023) (.069)

Quarterly

Complete 1.13 1.15 1.13 1.16 1.14 1.15 1.14 1.15 1.12 1.12 1.14 1.14

(.002) (.004) (.002) (.006) (.002) (.004) (.003) (.006) (.002) (.003) (.002) (.005)

Tail 2.53 2.31 2.55 2.81 3.37 1.97 3.43 2.11 2.02 2.02 3.36 2.46

(.050) (.074) (.060) (.155) (.346) (.050) (.284) (.077) (.020) (.040) (.315) (.091)

Standard errors (in parentheses) approximated as (α − 1)/
√
T , with T being the number of observations.

Top: daily data, bottom: quarterly data

several orders of magnitude in the ccdfs. We should also stress that we did not perform
the GOF exercise for the tvol variables, since it is too time-consuming in this case.

Daily data

Tables 9, 10, and 11 show the results for the daily data. The complete distributions are
now usually fitted best by Log-normal distributions, whereas the fit of the power-law
is very poor in general. The power-law parameters are again very small, with typical
values around 1.22, cf. Table 10 (top, complete). For the tail observations, the best fit
again is always provided by Log-normal distributions, cf. Table 11. Interestingly, the
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Table 11 Daily data, tvol. KS statistic for the candidate distributions (tail)

In Out Total

Period 1–3 1 2 3 1–3 1 2 3 1–3 1 2 3

Exponential .0752 .1339 .0720 .1270 .0306 .0851 .0442 .0887 .0315 .0547 .0201 .0782

Log-normal .0194 .0235 .0175 .0169 .0141 .0170 .0425 .0245 .0133 .0162 .0170 .0279

Power-law .0516 .0536 .0526 .0226 .0587 .0466 .0627 .0301 .0557 .0455 .0645 .0351

Minimum values in bold
Significance tests not carried out

Table 12 Quarterly data, tvol. KS statistic for the candidate distributions (complete data)

In Out Total

Period 1–3 1 2 3 1–3 1 2 3 1–3 1 2 3

Exponential .1741 .1940 .1722 .1258 .3419 .3656 .3383 .3139 .1520 .1808 .1390 .0887

Gamma .0511 .0713 .0429 .0313 .0342 .0370 .0465 .0449 .0722 .0881 .0631 .0651

Geometric .1741 .1940 .1722 .1258 .3418 .3655 .3383 .3139 .1519 .1808 .1390 .0886

Log-normal .0619 .0486 .0626 .1075 .0610 .0635 .0566 .0969 .0332 .0212 .0316 .0810

Neg. bin. .0491 .0701 .0404 .0314 .0298 .0319 .0417 .0414 .0712 .0867 .0626 .0649

Poisson .7128 .7366 .6989 .6848 .7579 .7574 .7516 .7264 .7139 .7277 .6969 .6907

Power-law .4030 .3888 .4106 .3765 .2730 .2752 .2910 .2930 .4733 .4614 .4545 .4588

Weibull .0202 .0378 .0165 .0462 .0308 .0334 .0260 .0585 .0447 .0529 .0430 .0566

Minimum values in bold
Significance tests not carried out

Table 13 Quarterly data, tvol. KS statistic for the candidate distributions (tail)

In Out Total

Period 1–3 1 2 3 1–3 1 2 3 1–3 1 2 3

Exponential .0855 .1380 .0759 .1476 .0961 .1529 .0567 .1563 .1071 .1434 .0721 .1508

Log-normal .0271 .0542 .0267 .0521 .0674 .0407 .0475 .0459 .0353 .0483 .0695 .0394

Power-law .0642 .0588 .0672 .0703 .0785 .0733 .0813 .0790 .0788 .0778 .0812 .0484

Minimum values in bold
Significance tests not carried out

tail exponents of the daily data are within the typical range of meaningful power-laws,
cf. Table 10 (top, tail), but the power-law is still not the best description of the data.
In the end, for the transaction volumes, we find no evidence in favor of power-laws.

Quarterly data

Tables 12 and 13 show the results for the quarterly data. The complete in-, out-,
and total degree distributions are now fit best byWeibull, negative Binomial, and Log-
normal distributions, respectively. In many cases, these distributions yield comparable
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KS statistics, but the clear advantage of the Log-normal distribution for the daily data
does not carry over to the quarterly level in all cases. Similar to the daily estimates, the
power-law parameters are within the usual range of empirical power-laws. As before,
however, the tails are best described by Log-normal distributions. Therefore, while
the tails of the tvol variables are somewhat fatter compared to the degree and ntrans
variables, the power-law remains a poor description of the data.
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