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Abstract In this paper, we carried out an empirical productive analysis on agricultural
Italian farms. In this research area, we propose a new approach of stochastic frontier
analysis adopting a generalized additive model framework also compared with Sto-
chastic semi-Nonparametric Envelopment of Z variables Data. By using the Italian
National Institute of Agricultural Economics micro-data, we were able to map out the
overall level of efficiency thereby focusing also on the evaluation of the differences
observed due to presence of contextual variables. We obtained overall measures for
the citrus sector that suggests an evaluation framework that can uphold policies to
encourage and support farms.

Keywords Stochastic frontier · Generalized additive model · StoNEZD ·
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1 Introduction

During the 1990s, policies introducing sustainability and efficiency principles in agri-
culture and natural resources were reconsidered. The need to support market orienta-
tion and to adapt it to the emerging demands of society in order to improve the quality
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of production and limit the impact of agricultural production on the environment has
been the main driver for the EU Common Agricultural Policy (CAP), one of the old-
est policies in the European Union. The initial objectives of the CAP (to increase
productivity, ensure a fair standard of living for the agricultural community, stabilize
markets, secure availability of supplies and provide consumers with food at reasonable
prices) have remained unchanged over the years, even though the importance given
to the different objectives has changed drastically. In response to this legal and policy
framework demand,measuring firms’ contributions to sustainability and efficiency has
attracted increasing attention in recent years and many different practical approaches
have been suggested (e.g. Tyteca 1998). Furthermore, in different field of research,
as highlighted for example by D’Amico and Fernandez (2012), there is an increasing
need to provide key policy evidence in a context in which optimization is critical both
for social and financial purposes.

One of the most promising techniques in agricultural economics—linking sustain-
ability and efficiency—is the Sustainable Value (SV) approach as introduced by Figge
and Hahn (2005) which has stimulated, in recent years, a lively theoretical debate
(Kuosmanen and Kuosmanen 2009a; Van Passel et al. 2009; Kuosmanen and Kuos-
manen 2009b; Figge and Hahn 2009); in this paper, we refer to the Kuosmanen and
Kuosmanen (2009b)’s version, also called the Generalized Sustainable Value (GSV).
GSV is a systematic economic approach to measure the Sustainable Value creation of
firms1, and it measures the overall efficient use of a set of economic, environmental
and social resources. A firm is said to create Sustainable Value whenever it uses its
resources more efficiently than another firm would have. In principle, reallocating
resources from firms that create negative Sustainable Value to ones that create positive
one can increase the overall economic welfare while keeping all capital stock in the
economy at a constant level. Thus, firms creating Sustainable Value would be able
to compensate for any rebound effects that might occur. GSV methodology measures
the use of environmental resources in a new way, as reported in ADVANCE (2008):
“Rather than looking at how costly, painful or burdensome the use of an environmental
resource is, it compares the value that can be created, at constant input, by different
economic actors”. From this point of view, companies create value whenever they use
a certain resource more efficiently than others. In this context, the GSV approach may
be considered the first value-based approach to the measurement and management
of sustainability, and it appears appropriate for the agricultural sector where produc-
tive, ecological and social aspects are very closely related. The economic difference
and statistical analogies between GSV analysis and production efficiency estimation
methods are described in Kuosmanen and Kuosmanen (2009b) where it highlighted
the possibility to use empirical frontier econometric methods for the quantification
of the firms’ economic sustainability. Hereinafter, given the correspondence, from a
mathematical point of view, between GSV and technical efficiency definitions, in our
paper, we refer it as technical efficiency.

Over the last decades, several studies have been carried out on the farms production
efficiency. One of the first attempts to apply the efficiency theory and the practical

1 In this paper, we refer to a farm (specifically “firm” in the introduction) even if the methodology remains
valid for any public or private economic unit.
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Semi-nonparametric frontier efficiency models 643

application on the agricultural economy was made by Coelli (1995) recommending to
use the stochastic frontier method because measurement error, missing variables and
weather play a significant role in this field.

In this context, even within models containing the random error part, it remains
unsolved the correct choice of the production function; Hjalmarsson et al. (1996)
suggest that a conventional Cobb-Douglas production function, in some situations, is
not ever adequate. Moreover, forcing the production function to belong to a parametric
family of functions (Translog,Cobb-Douglas) canbe too restrictive, even inappropriate
(Giannakas et al. 2003).

The purpose of this paper is both methodological and applied since a new approach
of Stochastic Frontier Analysis (SFA) by using a Generalized additive model (GAM)
framework is proposed with the aim of overcoming previous cited weakness about the
specification of the functional form and it is compared with an empirical application
of the Stochastic semi-Nonparametric Envelopment of Z variables Data (StoNEZD)
(Johnson and Kuosmanen 2011), respectively. Thanks to the Italian National Institute
of Agricultural Economics (INEA)’s micro-data, we were able to map out the level
of efficiency of citrus sector for the whole territory. Citrus production is one of the
most important Italian agricultural sector and it is the most studied sector in the field
of production efficiency.

The remainder of the paper is structured as follows: first, we present an overview on
the different methodologies considered in efficiency analysis, providing a brief intro-
duction to the proposed GAM-SFA approach and the key concepts of existing StoNED
models, secondly, description of data, model specifications and the application to the
citrus sector are illustrated, while conclusions are reported in the last section.

2 Estimating efficiency

Productive efficiency methods can be classified on the basis of whether an average-
practice or best-practice technology is estimated. The best-practice technologies can
be further classified as non-stochastic and stochastic technologies, depending on the
presence of a stochastic noise term. Furthermore, the methods can be further classified
as being parametric and nonparametric in their orientation.

Parametric methods assume a specific functional form of the production function,
which is usually linear in its parameters. Nonparametric methods do not assume a
particular functional form, but estimate the benchmark technology based on aminimal
set of axioms.

2.1 An overview

The determination of a technical efficiency measure is based on the knowledge of the
so-called production function; it makes possible the relation of the production process
of individual units to the efficient border of the production possibilities. The measure
of the distance of each unit from the border is the most immediate way to assess its
efficiency (Farrell 1957).
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However, the production function as the efficient frontier is not generally known,
but it has only a set of information on each production unit. It is therefore essential to
develop techniques to estimate the production frontier.

In econometric literature, specification and estimation of production frontier func-
tions are usually carried out by two different approaches:

– Stochastic Frontier Analysis (SFA) (Aigner et al. 1977; Meeusen and van den
Broeck 1977)—Deterministic Frontier Analysis (DFA) (Aigner and Chu 1968);

– Data Envelopment Analysis (DEA) (Farrell 1957; Charnes et al. 1978)—Free
Disposal Hull (FDH) (Deprins et al. 1984; Grosskopf 1996).

The two approaches listed above are classified in the literature, as parametric (DFA,
SFA) and nonparametric (DEA, FDH) methods, respectively. In a parametric analy-
sis, it is essential to specify a priori an explicit functional form of the boundary of
the production set, while the nonparametric analysis is characterized by the ability to
determine the relative efficiency of such units through linear programming, without
specifying any functional form for the production function. In otherwords, unlike para-
metric techniques, the DEA-FDH approach allows for the determination of the relative
efficiency of decision-making units in the absence of a similar detailed description of
the production process. If the latter seems to make this approach particularly flexible
and generalizable, the main drawback of DEA (or FDH) is its deterministic nature.
When using this procedure, it is not possible to recognize whether the difference in
efficiency, namely the distance between observed and maximum possible output, is
due to technical inefficiency or effects of disturbance of an accidental type (Greene
2008). Therefore, it is not possible to determine whether, for example, inefficiency is
due to an adverse condition of the contextual variables and therefore independent of
the actions of the entrepreneur (i.e. a season of no rain will not help farm managers
get good results) or it can be expressed as the determinant of other factors (such as the
quality of personnel management within the enterprise). At the same time, a model
with the parametric frontier production deterministic type of DFA, which allows for
an explicit production function solely on the basis of inputs used, would explain only
in part the inefficiency of the firm, as several inefficiency factors and measurement
errors would be equally incorporated in the same error term.

The parametric model with stochastic production frontier (SFA) in addition to pro-
viding, aswell in the classicalDFA, useful information on the productive asset, exceeds
the limits associatedwith the abovemodel, resulting in an entire analysis of the sources
of inefficiency that are not directly attributable to the production function or distur-
bances of an accidental type, and therefore are not directly attributable to corporate
policy. The most important drawback associated with the SFA approach is the lack of
flexibility associated with the specification of the production function. To overcome
this problem, we consider a nonparametric specification, not yet considered in SFA
models, to relax the choice of particular production frontier based on a Generalize
Additive Model (GAM) framework. Finally, since over the last decade, many authors
have tried to remove differences between the two competitors DEA-SFA by relax-
ing some assumptions or proposing semi-parametric or semi-nonparametric methods
(Du et al. 2013), we will consider in our analysis the Stochastic semi-Nonparametric
Envelopment of Data (StoNED) (Kuosmanen and Kortelainen 2012).
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Semi-nonparametric frontier efficiency models 645

Due to the absence of the “best” approach for the analysis of efficiency and with the
aim of introducing new insights for analysis and research, this study will be conducted
by comparing different models based on stochastic (GAM-SFA, standard SFA), non-
parametric (DEA) frontiers and the StoNED procedure. We conclude this section with
a brief introduction to the proposed GAM-SFA approach and also provide the key
concepts of StoNED framework.

2.2 GAM-SFA specification

Parametric stochastic frontier models, introduced byAigner et al. (1977) andMeeusen
and van den Broeck (1977), specify output in terms of a response function and a com-
posite error term. The composite error term consists of a two-sided error representing
random effects and a one-sided term representing technical inefficiency. Since their
introduction, several related papers have been published in the relevant literature; see
Greene (2008) and Kumbhakar and Lovell (2000) for overviews of developments in
this area.

The stochastic frontier model can be written, in general terms, as:

yi = f (xi ;β) + vi − ui , i = 1, . . . , n, (1)

where Yi ∈ R+ is the single output of unit i , X i ∈ R
p
+ is the vector of inputs, f (·)

defines a production (frontier) relationship between inputs X and the single output
Y , vi is a symmetric two-sided error representing random effects and ui > 0 is one-
sided error term which represents technical inefficiency. If we recall that GSV may be
defined as the residual between the observed output and the corresponding production
frontier, it is evident that stochastic frontier model approach conforms to generalized
SV formulation (Kuosmanen and Kuosmanen 2009b).

In applications, the two-sided error term is usually2 assumed to be normally distrib-
uted: v ∼ N (0, σ 2

v ).We assume u is distributed half-normally on the non-negative part
of the real number line: u ∼ N+(0, σ 2

u ). In following common practice, we assume
that v and u are each identically independently distributed (iid). In spite of the ease
this model presents in terms of computation and interpretation of the results, there is
an important drawback: a lack of flexibility. Indeed, in some situations, forcing f (·)
to belong to a parametric family of functions (Translog, Cobb-Douglas) can be too
restrictive, even inappropriate, and this may lead to a serious modelling bias and there-
fore misleading conclusions about the link between X and Y (Giannakas et al. 2003).

To overcome drawbacks due to the specification of a particular production function,
we propose a Generalized Additive Model (GAM) framework for the estimation of
stochastic production frontier models.

A GAM fits a response variable Y using a sum of smooth functions of the explana-
tory variables, X j for j = 1, . . . , p. In a regression context with Normal response,
the model is:

2 Various distributions can be assumed for the one-sided error term; e.g. half-normal, truncated normal,
gamma, exponential, etc.
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μ = E(Y |X = x) = α +
p∑

j=1

f j (X j ), (2)

where the f j (·)′s are smooth functions (Hastie and Tibshirani 1990) standardized
so that E[ f j (X j )] = 0. GAMs can provide useful approximations to the regression
surface, but relaxing the linear (polynomial) structure of the additive effects.

This additional flexibility alleviates the need to impose a perfect linear relationship
between each explanatory variable and the response, yet it explains the variability
of the response using an additive function of the inputs as in the corresponding SFA
model.Generalized additivemodels aremore flexible, and the advantage is that the best
transformations are determined simultaneously. One useful feature of additive models
is that nonparametric estimators of the unknown functions f j have one-dimensional
convergence rates (Stone 1986), which makes themmuch more accurate than estimat-
ing the p-dimensional function, and are able to avoid the “curse of dimensionality”.

In a cross-sectional setting, relatively few papers have dealt with differences from
conventional production frontiers. Model (1) becomes:

yi = ψ(xi ) + vi − ui , i = 1, . . . , n, (3)

where the unknown functionψ(·) ismodelled viaGAMs (2) to relax the linear assump-
tion between inputs and output (represented on log scale), but ensuring the additivity
of the input factors.

For the estimation of the stochastic frontier model (3), we consider the following
two step procedure as proposed by Fan et al. (1996):

– estimating the conditional expectation E(Y |X = x) (i.e. the “mean” frontier),
– estimating error term parameters (σv, σu) by Fan et al. (1996) method,

where in the first step, we introduce a GAM specification for the estimation of
E(Y |X = x). In this sense, we call our proposal a GAM-SFA model, defining in
this way a class of models capable of applying any class of nonparametric estimator
of the inputs to the Fan et al. (1996) approach. This kind of models maintains, on the
scale given by the smooth terms f j ’s, the same hypothesis of the corresponding clas-
sical SFA model (Aigner et al. 1977) in terms of additivity of the inputs, separability
assumptions and independence between u and v conditionally on X .

More specifically, we consider a penalized regression splines approach as reported
in Wood (2003) where proper penalties are introduced to guarantee the smoothness of
the fitted production frontier. In particular, the f ′

j s smooth functions are represented
using thin plate regression splines with smoothing parameters selected by Generalized
Cross Validation (GCV) criterion: n ∗ D/(n − DoF)2, where D is the deviance, n
the number of data and DoF the effective degrees of freedom of the model. One key
advantage of the approach is that it avoids the knot placement problems of conventional
regression spline modelling (see Wood 2006 for further details).

After obtaining the “mean” frontier E ̂(Y |X = x), the estimation of the production
functionψ(·)will be achieved by shifting the estimation of the conditional expectation
in an amount equal to the average estimate of the expected value of the term of
inefficiency (Fan et al. 1996).
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Having obtained the pseudo maximum-likelihood estimates of the parameter σv

and σu , the next step is to estimate the technical efficiency of each unit. Jondrow et
al. (1982) provided a solution to the problem that involves deriving the conditional
distribution of the component u respect to the compound error ε = v − u.

In this paper, we will consider the estimation of model (3) with unknown ψ(·)
modelled using a penalized regression splines with penalty (Wood 2003, 2006) as
a GAM.3 This class of models includes the linear model as a special case, where
f j (x j ) = β j x j (Aigner et al. 1977) but it is clearly more general, because the f j ’s
can be very arbitrary nonlinear functions. In addition, it is still possible to further
customize the specification of the production frontier considering a generalization of
Eq. (2) in such a way:

f (x1, x2, . . . , xp, z) = α +
p∑

i=1

f j (x j ) +
p∑

i=1

∑

k<p

fk j (xk, x j ) + βz + · · · , (4)

by introducing effects due to interactions among covariates or linear terms. Some pos-
sible estimations of model (4) have already been proposed in the literature including
algorithms for backfitting, and more recently, Sperlich et al. (2002) used marginal
integration for estimating additive models with interactions and the relative testing
procedure. However, it should also be considered that introducing higher-order inter-
actions would lead some interpretation and curse of dimensionality drawbacks.

2.3 Stochastic semi-Nonparametric Envelopment of Data

Stochastic semi-Nonparametric Envelopment of Data (StoNED, Kuosmanen and
Kortelainen 2012) is an estimation method that, like other nonparametric methods,
does not require any prior functional form assumption about f (·) but it assumes
monotonicity and concavity of the production function.

The StoNED method differs from DEA and Corrected Concave Nonparametric
Least Squares (C2NLS) in that it decomposes the deviations of yi from f (xi ) into
two sources: the inefficiency term ui and the stochastic noise term vi , which is similar
to SFA, trying to combine the deterministic part of DEA with the stochastic part of
SFA.

Themain advantage of StoNEDover the nonparametricDEA is the better robustness
to outliers, data errors and other stochastic noise in the data.While in a DEA approach,
the benchmark technology is spanned by a relatively small number of efficient farms,
in StoNED all observations influence the benchmark and also coefficients βi can
be “interpreted as the subgradient vector ∇ f (xi ), and thus it represents the vector of
marginal products of inputs at point xi” (Kuosmanen andKortelainen 2012). As for the
GAM-SFA specification, there is not an ad hoc assumptions regarding the functional
form of the benchmark technology.

3 For the model estimation we used the R Environment (R: A language and environment for statistical
computing 2012) exploiting the functionality of the mgcv (2012) package.
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Estimation of the StoNED model is conducted in two stages. In the first stage, the
conditional expected value of ln(y) is estimated by CNLS (Convex Nonparametric
Least Squares) regression [here in equivalent finite-dimensional quadratic program-
ming expressed by a multiplicative model4 as suggested by Kuosmanen and Korte-
lainen (2012)]:

min
α,β,φ

⎧
⎨

⎩

n∑

i=1

(ln yi − ln φ̂i )
2

∣∣∣∣∣∣

φ̂i = αi + β
′
i xi ,∀i = 1, . . . , n

αi + β
′
i xi ≤ αh + β

′
hxi ,∀h, i = 1, . . . , n

βi ≥ 0,∀i = 1, . . . , n

⎫
⎬

⎭ . (5)

Given the CNLS composite residuals5 (ln yi − ln φ̂i ) from Eq. (5), we subsequently
filter out the noise. This requires some distributional assumptions, e.g. the standard
SFA assumptions v ∼ N (0, σ 2

v ) and u ∼ N+(0, σ 2
u ). Parameters (σu ,σv) can be esti-

mated by the method of moments or by maximum pseudo-likelihood techniques and
the conditional expectation of u is then computed using the Jondrow et al. (1982)’s
formula.

Recently, Johnson andKuosmanen (2011) introduced Stochastic semi-Nonparame-
tric Envelopment of Z variables Data (StoNEZD)model with the purpose of including
contextual variables. The conventional approach tests the significance of the contextual
variable by using a two-stage method where the efficiency estimates are regressed on
the contextual variable, representing the operational conditions, using, for example, a
censored Tobit regression.

The main problem, highlighted also by Wang and Schmidt (2002), is that “the sec-
ond stage estimator is biased and inconsistent when the inputs are correlated with the
contextual variables”, since the two-stage approaches ignore the correlations between
inputs and contextual variables (see also Simar and Wilson 2007).

Johnson and Kuosmanen (2011) showed that contextual variable z can be directly
incorporated in the objective function here in a linear form, developing the CNLS
formulation as in Eq. (6):

min
α,β,δ,φ

⎧
⎨

⎩

n∑

i=1

(ln yi − ln φ̂i − z′iδ)2
∣∣∣∣∣∣

φ̂i = αi + β
′
i xi ,∀i = 1, . . . , n

αi + β
′
i xi ≤ αh + β

′
hxi ,∀h, i = 1, . . . , n

βi ≥ 0,∀i = 1, . . . , n

⎫
⎬

⎭ ,

(6)

where δ represents the average effect of contextual variables zi on performances and
z′iδ − ui can be seen as the overall efficiency of farm i , where the term z′iδ represents
technical inefficiency that is explained by the contextual variables, and the component
ui represents the proportion of inefficiency that remains unexplained.

4 “The input-output data must be kept in the original units in order to use the Afriat inequalities for
imposing concavity. Although the objective function involves logarithms of model variables” (Kuosmanen
and Kortelainen 2012).
5 Note that log-transformation concerns Step 1 and makes no difference in the estimation of Step 2.
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3 Data, models and application to citrus sector

The ADVANCE Guide to Sustainable Value Calculations (ADVANCE 2008) sug-
gests calculating efficiency (i.e. GSV) in different steps: preparing for the assessment
(choosing farms, benchmarks and defining resources to be included and output), col-
lecting and harmonizing data and, the last one, calculating the scores. This section is
therefore divided into three sections, one for each step mentioned above.

3.1 Data source

TheCouncil RegulationNo. 79/65/EEC of the 15 June, 1965 set up a network to collect
accounting data on the incomes and business operations of agricultural holdings in
the European Economic Community. The Farm Accountancy Data Network (FADN)
is an annual survey carried out by the Member States of the European Union, and it
represents an instrument to evaluate the incomeof agricultural holdings and the impacts
of the Common Agricultural Policy. Based on national surveys, FADN is the only
source of micro-economic data that is harmonized (in other words, the bookkeeping
principles are the same in all countries).

In Italy, the FADN survey is carried out every year by the National Institute of
Agricultural Economics (INEA), that is the liaison agency between the EU and Mem-
ber States. The European Commission provides guidelines to define the instructions
and recommendations to outline FADN’s selection plan. It must ensure the represen-
tativeness of the returning holdings as a whole, and it defines the number of farms
to be selected by region, type of farming (OTE) and classes of economic size, and it
also specifies the rules applied for selecting the holdings. The Italian FADN sample is
selected using the stratified random sampling technique and only includes commercial
farms or those with an economic size of more than 4 Economic Size Units (ESU).6

The simple random sample allows for the extension, in terms of inference, of the
results to the universe of farms as a whole that is formed by the subset of the EU
universe; in this work, we used the Italian FADN survey database concerning the year
2007.

According to the EU FADN methodology, territorial location, economic size and
type of farming were used as stratification variables: territorial location corresponds to
Italian administrative regions; economic size is expressed in terms of ESU, calculated
on the basis of the farm’s StandardGrossMargin and divided in several classes, ranging
from 4 to 8 ESU to more than 250 ESU; type of farming corresponds to the General
OTE.7

6 EEC Regulation No. 1859/82 establishes the minimum threshold of economic size for inclusion in the
FADN field of observation. The economic size of a farm is defined by the total standard gross margin
expressed in ESU, where 1 ESU corresponds to 1, 200 Euro.
7 Farms, in the European agricultural policy, are classified on the basis of type of farming (OTE). OTE
provides information on the degree of specialization and production and it is determined on the basis of the
percentage of the economic dimension (in terms of the standard gross margin) of one or more productive
activities on the economic dimension of the total. The Community typological scheme provides 58 different
combinations of production which are grouped into three successive levels of detail: General OTE, Main
OTE and Particular OTE.
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The different conditions in irrigation, energy consumption, work organization and
profitability led us to focus our analysis on the citrus sector (Particular OTE 3220).
We chose this sector for several reasons: citrus production is one of the leading Italian
agricultural sector and it is the most studied sector in the field of production efficiency,
given its strong spatial characteristics and economic importance in the territories (e.g.
Cisilino and Madau 2007; Madau 2010). Furthermore, the citrus industry is heavily
subsidized by European policies and therefore it was interesting to see, with respect to
other sectors not included in this paper, whether these policies distort the estimation
of efficiency. Finally, it was chosen because of the specialization in specific regions.
The sample covers 229 production units all located in Southern Italy.

3.2 Selection of input/output variables

Following criteria used in earlier studies (e.g. Hani et al. 2003; Reig-Martinez et al.
2011), concerning the analysis of sustainable production in agriculture, we built an
analysis framework, as reported in Table 1, covering economic-financial and social-
environmental sustainability aspects, trying to build a bridge between the economic
aspect of the GSV and the field of production efficiency.

The response/output variable here used for efficiencymodels is the gross production
(PL). Although it would have been preferable to choose a measure of physical output
in order to avoid the influence of agricultural prices, it was not possible due to the lack
of data; however, this critical issue is partially mitigated in the analysis in that we had
considered a homogeneous production sector. We considered variables LAB (labour
measured in terms of total number of hours worked per year), CAP_L (land farm
capital) and CAP_O (operating farm capital) as inputs, as usually done in the analysis

Table 1 Variables involved in the estimation by dimension of sustainability

Dimension Subdimension Indicator/variable Role in the
analysis

Abbreviation

Economic Gross
production

Gross production Output PL

Capital Land farm capital Input CAP_L

Operating farm capital Input CAP_O

Social Employment Agricultural employment Input LAB

Index of utilization of family
labour

Contextual IUF

Generational
change

Risk of abandoning familiar
agricultural activity

Contextual RISK

Farms elevation Contextual ELEV

Environmental Energy Energy and Water
consumption

Input E_W

Soil Fertilizers and pesticides Input PEST

Organic production Contextual ORGANIC
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of the production function.Moreover, we included as inputs two variables that, from an
economic point of view, characterize environmental sustainability: Energy and water
consumption (E_W) and Fertilizers and pesticides consumption (PEST).

We have divided the analysis into two steps: first, we used a conventional speci-
fication of efficiency models specifying the output PL in terms of inputs X (LAB,
CAP_L, CAP_O, E_W, PEST) for the GAM-SFA, classical SFA, DEA and StoNED
models; in the second stage, we considered the economic, environmental and social
indicators (i.e. contextual variables) as z-variables by using StoNEZD model.

Many authors have proposed taking into account the effects of some contextual
variables on efficiency with the aim of restricting the influence of multiple and hetero-
geneous dimensions. Agricultural production, in particular, as well as the individual
farms productivity, can be strongly influenced by a multitude of random factors such
as climatic and local factors related to the specific characteristics of the region or
technical specifications. Since spatial external factors (natural or artificial) are often
difficult to identify and to evaluate separately, the contextual variable selection was
based on the literature cited above and on the availability and reliability of statistical
data.

Contextual dimensions can be captured both by variables related to social sus-
tainability as index of utilization of family labour (IUF)8 and risk of abandoning
agricultural activity (RISK) both by the organic certification (ORGANIC)9 and the
physical farm’s characteristics like elevation (ALTITUDE).10 In particular, IUF and
ORGANIC may be considered as endogenous variables, but only in the long term,
since, in the agricultural sector, the production structure and culture techniques are
usually difficult to change and suffer from a high degree of inertia.

The RISK composite indicator was created following the Reig-Martinez et al.
(2011) approach using the De Muro et al. (2010) method called MPI. In particular,
we chose as elementary indicators (i) the capability of continuing agricultural activity
by the farmer’s age, (ii) the profitability of the farm (in terms of ROI) and (iii) the
presence of familiar co-working. The De Muro et al. (2010) composite indicator sets
100 as the mean indicator; values greater than 100, therefore, indicate that there is a
high risk of the farm dropping out, while values less than 100 indicate a farm that is
profitable and has a good chance of surviving. Table 2 lists the correlations11 among
contextual variables and explanatory variables (i.e. inputs).

The variable of seasonal workers was not included in the analysis, although it is
present in the Italian FADN database; this variable is highly underestimated due to
the large amount of undeclared workers. Other very interesting dimensions used in

8 Index of utilization of family labour (IUF) is the ratio between the hours worked by family members and
the total working hours that they would have worked had they been full time employees (i.e. 2,200h per
employee).
9 As dummy contextual variables.
10 For the Italian demographic characteristics, we have considered this variable as a variable that explains
a social context, for the increasing abandonment of the hills or mountainous land, but we are aware that it
may capture other economic effects.
11 ***= P value <0.001, **= 0.001 ≤ P value <0.05, *= 0.05 ≤ P value <0.10.
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Table 2 Correlation among
contextual variables and input
variables

Input variable RISK IUF ALTITUDE ORGANIC

LAB 0.30046*** 0.42520*** −0.14064** 0.19912**

CAP_L 0.03239 0.28925*** −0.05586 0.23965**

CAP_O 0.19843** 0.28629** −0.11568* 0.11915*

E_W 0.01591 0.03137 −0.06796 −0.05712

PEST 0.16265** −0.15362** −0.23289** −0.09225

Table 3 Kendall’s τ between
efficiency measures

DEA StoNED GAM-SFA SFA

DEA 1 0.878 0.655 0.650

StoNED 1 0.852 0.864

GAM-SFA 1 0.968

SFA 1

some empirical papers, such as variables concerning waste and residue or working
conditions, are not included because of the lack of data.

Since nonparametric models, like GAM-SFA and StoNED-StoNEZD, do not allow
for testing of the significance of each variable, for the selection of output/inputs and
contextual variables we have used two sets of criteria. More specifically, we have
considered both economic indications contained in scientific papers (Hani et al. 2003;
Reig-Martinez et al. 2011) and both OECD’s recommendations that in recent years
(e.g. OECD 2001) tried to identify the main determinants of agricultural competitive-
ness.

Some determinants to be considered for differences in performancewere: farm size,
factor intensity indicators, farm specialization, consumer demand, natural environment
or the presence of a specialized agri-food industry (see Latruffe 2010), as determinants
of differences in performance. At the same time, the variable selection was carried
out by using the estimation of the corresponding parametric SFA model, even if it
represents only a descriptive criterion.

3.3 Application to the citrus sector

Following the scheme proposed in Table 1 and in Eqs. (3) and (5), we estimated
production efficiency in the citrus sector without taking into account the contextual
variables. The close relationship between the StoNED model and models based on
stochastic frontiers is obtained from theKendall rank correlation coefficient,12 reported
in Table 3, between efficiency measures. The GAM-SFA specification seems to show
the presence of a higher average level of efficiency, as outlined by the corresponding
lower average opportunity cost reported in Table 6. This result may be explained
by the linearity hypothesis associated to the classical SFA specification and by the
monotonicity and concavity for the StoNED.

12 All correlations are 0.05 significant.
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Table 4 StoNED versus StoNEZD’s efficiency score

StoNED StoNEZD StoNEZD StoNEZD StoNEZD
z =RISK z =IUF z =ALTITUDE z =ORGANIC

σu 0.43849 0.40599 0.46676 0.37714 0.45083

σv 0.30435 0.31237 0.48054 0.32914 0.29720

δ − 0.01831 0.00034 −0.00043 −0.02158

In the second part of our analysis, we evaluated separately (one by one) the deter-
minants of efficiencies, using the StoNEZDmodel and following the schema proposed
in Table 1. As previously described, we analysed four potential contextual variables:
risk of abandoning familiar agricultural activity (RISK), index of utilization of family
labour (IUF), organic certification (ORGANIC) and farm’s elevation (ALTITUDE);
we estimated one StoNEZD model separately for each contextual variable.

Table 4 reports the σ̂v and σ̂u estimates for the different StoNEZD models and the
effect associated with the corresponding contextual variable represented by δ.

We found, in terms of σ̂v and σ̂u , consistent results among the different specifi-
cations (i.e. different contextual variables) of the StoNEZD, and, on the other side,
different signs of the δ coefficients: positive δ, such as for risk of abandoning famil-
iar agricultural activity (RISK) or the utilization of family labour (IUF), means that
high levels of the corresponding z variable lead farms, under equal conditions, to
obtain lower efficiencies with respect to the basic model. At the same time, using
organic production efficiency methods (ORGANIC), to which corresponds a negative
δ, increases (on average) the efficiency of farms. On the other hand, altitude does not
seem to provide meaningful indications.

One of the StoNEZD drawbacks is the lack of a proper diagnostic about the correct
specification of the model, especially with respect to the contextual variable z that is
introduced linearly to check for the presence of an “average” effect. To overcome these
issues, especially to evaluate the linearity hypothesis, we propose a similar criterion
originally proposed byDaraio and Simar (2007) for nonparametricmethods, not just to
obtain evidence of the z influence (favourable or unfavourable),13 but rather to have a
qualitative diagnostic for the linear specification of z intoEq. (6). FollowingDaraio and
Simar (2007), we examine a graphical representation that makes it possible to verify
whether the impact of z is uniformly linear over the whole domain or whether there
are discontinuity points and non-linearity; in such cases, a simple linear specification
would not correct the z effect on the dependent variable properly.

Specifying the ratio between different efficiency estimations (ϑ) by the following
equation:

Qz = ϑn(x, y|z)
ϑn(x, y)

(7)

we can subsequently plot Qz versus z, to check for the linearity assumption.

13 This would not make sense since δ is estimated.
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Fig. 1 Qz versus z, contextual variable z = Risk

Since the variable RISK seems to show, among the z variables, the main contribu-
tion to explain the inefficiency not captured by StoNED, we evaluated the linearity
assumption about RISK following the criterion given above and the result is given in
Fig. 1: points are almost located within the confidence interval of a linear regressive
model showing an evidence about linearity assumption.

Finally, we can now interpret the econometric results in terms of GSV. The differ-
ence between fitted values (production function or frontier) and observed values of
output for inefficient units may be economically interpreted as a “whole system cost
opportunity” reallocating resources in a relative sense: by reallocating resources, a
higher economic well-being could be achieved without increasing the total resource
use of the economy. The sum of the differences between inefficient farm’s production
and the relative benchmark is a measure of the opportunity cost for the entire produc-
tive system. The estimated opportunity cost for the 229 citrus farms—based on the
formulas given in Table 5—is shown in Table 6; inefficiencies are measured in terms
of distance of PL from the average-practice estimated function (mean) and from the
estimated production frontier (frontier), respectively.

A good modelling practice requires the evaluation of model reliability, possibly
assessing the robustness associated with the modelling process and with the outcome
of the model itself. In other terms, especially in applied analysis, following the idea “It
is better to be vaguely right than exactly wrong” (Carveth 1901), the “last thing to do”
is the study of how the uncertainty in the output has been due to different estimation
models. The results provided by different methods are similar and robust with respect
to the mean opportunity cost in terms of the distance from the average-practice and
from the frontier production function, expect for the GAM-SFA which corresponds a
lower average cost as shown inTable 6. TheGAM-SFAapproach seems to showgreater
flexibility due to its poor assumptions with respect to other frontier specifications and
in addition it can provide proper diagnostics for the model evaluation.
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Table 5 Opportunity cost in terms of average-practice function ˆ̄y (left side) and production frontier ŷ (right
side)

Table 6 Opportunity costs (e) calculated according to different estimation methods (source: INEA 2007)

Measure StoNED GAM-SFA SFA

Total opportunity cost (frontier) (b) 4,415,639 3,092,041 4,395,467

Mean opportunity cost (frontier) (d) 23,740 21,623 25,704

Total opportunity cost (average-practice) (a) 1,193,420 1,710,093 1,378,947

Mean opportunity cost (average-practice) (c) 10,656 15,134 11,991

Moreover, regardless of the methodology, Table 6 points out the presence of a
higher per-unit opportunity cost corroborating the recommendation about the need of
optimizing social and financial resources.

4 Concluding remarks

In this paper, we have estimated efficiency levels in Italian agriculture with the pur-
pose of introducing a new approach of Stochastic Frontier Analysis (SFA) by using a
Generalized additive model (GAM) framework. The analysis, while starting from the
literature on the productive efficiency estimation in the agricultural sector, extended
its focus to include less tested and integrated aspects.

The Figge and Hahn (2005) approach, bridging a gap with classical efficiency
estimation methods, turns out to be very modern in that it takes into account a multi-
tude of aspects concerning production, in particular environmental and social aspects
emphatically underlined in the EU Common Agricultural Policy.
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The aim of this paper was to provide a contribution both to theoretical models in
the field of semi-nonparametric estimation of efficiency and to knowledge related to
territorial measures of efficiency in the agricultural sector.

From a theoretical point of view, we have proposed a model capable to overcome
drawbacks due to the specification of a particular production function showing agreater
flexibility due to its poor assumptions with respect to other frontier specifications; by
this way, we have defined a family of models that permits of applying any class of
nonparametric estimator of the inputs to the Fan et al. (1996) approach, ensuring the
additivity of the inputs, separability assumptions and independence between noise and
efficiency hypothesis.

Even if the StoNED-StoNEZD models provided a good economic interpretation of
the coefficients as vector of marginal products of inputs for each unit, they need more
efficient computational algorithm to solve the CNLS formulation and to be applied to
practical problems on a wide scale; new algorithms have been recently proposed to
solve StoNED computational issues (Lee et al. 2011), but the GAM-SFA model has
still turned out to be easier to calculate.

In addition, since the effect of contextual variables on the model specification has
been one of the issues covered in this paper, we propose a qualitative criterion to test
the linearity hypothesis in the StoNEZD model.

From an applied point of view, this paper led to the outlining of an initial framework
to investigate efficiency extending to production aspects not usually analysed and it
allowed for the specification of the most appropriate measures and indicators for
economic, environmental and social dynamics. The estimation, although based on
different and contrasting assumptions, showed common traits and a good convergence
of results, highlighting for the citrus sector a very consistent opportunity cost; the very
extensive and local detailed INEA database should allow us to extend these estimates
to other areas.

Other aspects to improve and explore further include the need to expand the database
by cross-matching with data on undeclared work, working and social conditions and
more accurate measurements on physical output and price levels in order to review the
logic of information systems at the base of national surveys. Territorially disaggregated
data would allow to include, in the proposed framework, supply chain variables and,
more generally, to test the presence of Marshallian external economies given by the
presence of a group of interdependent farms. Thus, information schema would not
merely perform administrative functions, it would also provide information support
for policies that will be more focused, more coherent and more quickly updated.
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