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Abstract Multiple structural change tests by Bai and Perron (Econometrica 66:47–
78, 1998) are applied to the regression by Demetrescu et al. (Econ Theory 24:176–215,
2008) in order to detect breaks in the order of fractional integration. With this instru-
ment we tackle time-varying inflation persistence as an important issue for monetary
policy. We determine not only the location and significance of breaks in persistence,
but also the number of breaks. Only one significant break in U.S. inflation persistence
(measured by the long-memory parameter) is found to have taken place in 1973, while
a second break in 1980 is not significant.

Keywords Fractional integration · Break in persistence · Unknown break point ·
Inflation dynamics

JEL Classification C22 · E31

1 Introduction

Inflation persistence is an important issue for economists and especially for central
bankers. This is because the degree of inflation persistence influences the extent to
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which central banks can control inflation. If inflation persistence is high, a shock to
the price level increases inflation for a long period. In the worst case scenario, inflation
might even follow the path of a random walk, making it impossible for central banks
to bring it under control. In the best case, inflation is integrated of order zero. This
implies that it reverts back to its initial level soon after a shock has occurred.

Not only is the level of inflation important in economic analysis but also the question
of whether and when it has changed. If the occurrence and/or timing of a break are
not accounted for properly, then inflation forecasts and policy decisions might be
misguided. Despite its importance, there is still no agreement on the significance
and dating of past changes in inflation persistence in the U.S. and elsewhere.1 The
diverse findings could be due to the fact that many studies ignore the fractionally
integrated nature of inflation. This may lead to misspecification and incorrect test
results. The early results presented by Geweke and Porter-Hudak (1983) along with
the international evidence of Hassler and Wolters (1995) and Baillie et al. (1996), have
long since established that inflation exhibits long memory. In view of this evidence,
Kumar and Okimoto (2007) argue that tests for a change in inflation persistence using
unit root tests or autoregressive coefficients may lead to incorrect conclusions. Their
study is the first to use long memory techniques to determine a change in inflation
persistence. It applies a visual judgment of rolling window estimates and analyzes two
exogenously split subsamples. We go beyond this approach and attempt not only to
answer the question of whether there has been a change in U.S. inflation persistence
but also to determine the data-driven timing and the number of breaks.

Our paper contributes to the existing literature by proposing and applying a new
procedure for determining the timing and the significance of breaks in the degree of
fractional integration. We are not aware of any other test allowing for multiple breaks
in long memory at unknown points in time. The test builds on a modified version
of the lag-augmented LM (Lagrange Multiplier) test proposed by Demetrescu et al.
(2008) where dummy variables account for potential breaks. The F type test statistic
is computed from a regression of differences under the null hypothesis. Therefore, no
I (d) series, d �= 0, enter the test regression under the null, and the estimators converge
at the conventional

√
T rate, with T denoting the sample size. Consequently, we can

compare the maximum of a sequence of F statistics to critical values by Bai and
Perron (1998, 2003b), see also Andrews (1993) for the case of just one break. The
test is able to detect a break in the long-memory parameter even relatively close to
the boundaries of the sample because it does not rely on a separate estimation of the
long-memory parameter before and after potential breaks. Further, a sequence of tests
makes it possible to estimate the number of breaks.

Since Stock’s (2001) comment on the innovative study of Cogley and Sargent
(2001), his warning not to confuse a change in volatility with a change in per-
sistence has been taken seriously. Fortunately, our test inherits the properties of
the lag-augmented LM test developed by Demetrescu et al. (2008): Using Eicker–
White standard errors renders the test robust to unconditional heteroskedasticity of
a very general nature, see Kew and Harris (2009). In fact, the variance process is

1 For a review on changing inflation persistence in EMU member states see Tillmann (2012) and Meller
and Nautz (2012).
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essentially unrestricted, thus allowing for time-varying volatility except for explosive
and degenerate cases.

We apply our new tests to monthly U.S. inflation rates in the period 1966–2008.
While there is strong evidence for a break in long memory in October 1973, a second
potential break in March 1980 turns out to be insignificant. Prior to making the long-
memory analysis, a significant mean shift found in 1981 has been subtracted from the
data. In addition, we observe a considerable decline in volatility during the eighties.

The rest of the paper is organized as follows. In the section which follows, we will
discuss the model of fractional integration with a break in the order of integration.
Next, in section three, we obtain a new Chow-type test for multiple breaks assuming
the break dates are known a priori. Experimental evidence is collected showing that
the test works extremely well in finite samples even if the order of integration is
misspecified under the null hypothesis of no break. The fourth section is devoted to
the case where the break points are not known. We propose performing the test as
a max-Chow test in line with Andrews (1993) when testing against just one break,
and generalizing this approach for several breaks by adopting tests developed by Bai
and Perron (1998). The finite-sample performance is studied through simulations. In
Sect. 5, we turn to the analysis of monthly U.S. inflation rates, allowing for breaks in
the mean as well as for breaks in the order of integration. Our concluding remarks are
made in the final section, while mathematical proofs are contained in the Appendix.

2 Breaks in long memory

As a starting point, let us recall how long memory is defined and interpreted within a
fractionally integrated framework. Under the null hypothesis of no break the observed
time series {yt } (t = 1, . . . , T ) is integrated of order d,

�d yt = (1 − L)d yt = et ∼ I (0), (1)

where {et } is a stationary and invertible short-memory process integrated of order zero,
I (0), and L denotes the conventional lag operator. We write the Wold representation
of {et } in terms of zero mean white noise innovations {εt }, say et = ∑∞

k=0 γkεt−k .
Then integration of order zero means that

∑∞
k=0 γk is finite and different from zero.

Fractional differences are defined through the usual binomial expansion,

(1 − L)d =
∞∑

i=0

πi,d Li , π0,d = 1, πi,d = i − 1 − d

i
πi−1,d , i ≥ 1.

Similarly, one may expand the inverse filter with coefficients {ψi,d},

yt = (1 − L)−det =
∞∑

i=0

ψi,det−i ,

which provides a well defined stationary process only for d < 0.5. The impulse
response coefficients {ci } of {yt } can be obtained by convolution of ψi,d and γk such
that:
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yt =
∞∑

i=0

ciεt−i .

Hassler and Kokoszka (2010) provide a necessary and sufficient condition which {γk}
has to obey for the impulse response coefficients {ci } to decay hyperbolically in d.
Under this rather weak condition it holds true for d > 0 that

ci ∼ c id−1 , i.e., lim
i→∞

ci

id−1 = c �= 0, (2)

where the constant c is defined in Hassler and Kokoszka (2010, Proposition 2.1). For
d = 1, past innovations εt−i have a permanent effect on yt , while for 0.5 ≤ d < 1
we observe nonstationarity with transitory shocks,2 ci → 0 as i → ∞. Finally, for
0 < d < 0.5 the impulse response coefficients {ci } die out fast enough to be square-
summable resulting in a stationary process, though still dying out slowly enough that
{ci } is not summable, which characterizes long memory. In view of (2), d is interpreted
as the degree of persistence or the memory parameter measuring how slowly the effect
of past shocks dies out.

As an alternative hypothesis to (1) we model m breaks constituting m + 1 regimes,

yt = (1 − L)−d j et , t = Tj−1 + 1, . . . , Tj j = 1, . . . ,m + 1, (3)

with T0 = 0 and Tm+1 = T . The null hypothesis of no breaks becomes

H0 : d2 − d1 = · · · = dm+1 − dm = 0.

In what follows we prefer the parameterization

d j = d + θ j−1, j = 1, . . . ,m + 1, θ0 = 0, (4)

such that θ j denotes the shift relative to the first period occurring at the j th break. The
null hypothesis of interest may now be recast as

H0 : θ1 = · · · = θm = 0. (5)

If a sudden shift in d is considered as too extreme in practice, there still may be a
“smooth transition”,3

2 Such a feature is sometimes called “mean-reversion” although Phillips and Xiao (1999) argue that this is
a misnomer given the nonstationarity.
3 The model in (6) introduces a nonlinearity in�d yt which is not present under the null in (1). Baillie and
Kapetanios (2007) and Baillie and Kapetanios (2008) found evidence in favour of nonlinearity in addition
to long memory in many economic and financial time series. Contrary to (6), however, they instead assume
a smooth transition autoregression or a similar nonlinear I (0) model for �d yt . An investigation of their
tests under breaks in memory is beyond the scope of the present paper.
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yt =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y0 +
t−1∑

i=0
ψi,d et−i , t = 1, . . . , T1

yT1 +
t−1−T1∑

i=0
ψi,d+θ1 et−i , t = T1 + 1, . . . , T2

...

yTm +
t−1−Tm∑

i=0
ψi,d+θm et−i , t = Tm + 1, . . . , T

, (6)

where ψi,d+θ j are the coefficients from expanding (1 − L)−d−θ j . In (6), only realiza-
tions et after a break contribute to the slowly evolving long memory after Tj .

As in Bai and Perron (1998), we assume that the potential break points are deter-
mined by break fractions λ j , i.e. Tj = [λ j T ], where [·] denotes the integer part. In
fact, treating the break points as unknown parameters, it makes sense to distinguish
true break fractions λ0

j from those estimated from the data, λ̂ j . To reduce the nota-
tional burden we have ignored such a distinction in the exposition so far. As usual
in this literature, we maintain the standard assumption that the true break points all
grow with the sample size, such that each subsample contains an increasing number
of observations.

Assumption 1 For the true break fractions it holds true that

0 = λ0
0 < λ0

1 < · · · < λ0
m < λ0

m+1 = 1.

There exists a considerable body of literature that deals with a break from an I(0)
to an I(1) process (and vice versa), starting with tests pioneered by Kim (2000) and
Busetti and Taylor (2004). Hassler and Scheithauer (2011) showed that those tests
have power against fractional alternatives, too. If we wish to allow for d �= 0 under
the null, however, then d would have to be estimated first in order to apply such tests
to differenced data. It is not clear how the preliminary estimation step would affect
the subsequent test.

Some recent papers have proposed alternative procedures to detect breaks in long
memory at an unknown time. Referencing the least-squares principle, Gil-Alana
(2008) discusses a procedure allowing for breaks in the memory parameter and/or
the mean and a linear time trend, but this technique does not allow to establish signif-
icance. Sibbertsen and Kruse (2009) discuss a CUSUM of squares-based test and find
that the critical values depend on the unknown parameter d. This requires a prelimi-

nary consistent estimation d̂ under H0; such an estimate can be very volatile in smaller
samples resulting in unreliable subsequent inference. Martins and Rodrigues (2012)
propose a related procedure relying on a recursive forward and backward estimation
where critical values depend again on the unknown parameter d. Further, Ray and Tsay
(2002) adopt a Bayesian perspective and apply Markov Chain Monte Carlo methods
to estimate the posterior probability and size of a change in the order of integration.
Finally, Beran and Terrin (1996) suggest using non-overlapping subsamples to com-

pute (approximate) maximum likelihood [ML] estimates of d, d̂1, t = 1, . . . , T1,
and d̂2, t = T1 + 1, . . . , T , where T1 is varied systematically. The test statistic builds
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on the maximum difference |d̂2 − d̂1|. The limiting distribution established by Beran
and Terrin (1999) coincides upon squaring with the one given by Andrews (1993)
as supremum of so-called tied-down Bessel processes. It was derived under the suf-
ficient assumption of

√
T -consistent estimators, see Andrews (1993, Theorem 1).

Consequently, Beran and Terrin (1996) work with a parametric approximation to ML
requiring a fully specified model for the I (0) component {et }, see also Yamaguchi
(2011), likewise working with an approximation to ML. The asymptotic theory does
not seem to hold for semiparametric estimators converging with a slower rate than

√
T .

This is one further motivation for our proposal, since in the regression framework by
Demetrescu et al. (2008)

√
T -consistency is maintained, see also Proposition 2 below.

The major advantage, however, of the regression approach is that it extends naturally
to multiple breaks along the lines of Bai and Perron (1998).

3 Tests with known break points

In some cases, economists have an idea of the timing of a potential break point in
persistence or wish to know the impact of a certain event on persistence. In the context
of this paper, the inauguration of a new central bank governor might be an event that
induces a break in inflation persistence. Alternatively, economists might be interested
in the impact of a new inflation target or a new monetary policy regime on inflation
persistence. Therefore, the case of known break fractions is an interesting starting
point for which we will first derive a test statistic from the Lagrange Multiplier [LM]
principle under simplifying assumptions before then turning to extensions that are
relevant in practice.

3.1 Under iid assumptions

Working with finite samples of size T the theoretical difference operator from (1) has
to be adjusted. Given a finite past starting value with the first observation y1, the infinite
expansion is truncated in practice. We call the truncated differences �d

t,y instead of
�d yt , and denote them by xt for brevity,

xt = �d
t,y =

t−1∑

j=0

π j,d yt− j , t = 1, . . . , T . (7)

This amounts to assuming that past values of {yt } are zero for t ≤ 0. Such processes
are also classified as “type II” contrasting the more conventional “type I” processes;
see e.g., Robinson (2005) for a discussion. To derive an LM test we will further assume
absence of short memory.

Assumption 2 Let {et } = {εt }, t ∈ Z, from (3) be an iid series with mean 0 and
variance σ 2. The starting values are set equal to zero, yt = 0 for t ≤ 0.
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The case of U.S. inflation 659

To set up the score function in the Appendix we have to assume a Gaussian pseudo-
log-likelihood function, although Gaussianity is not required for the limiting distrib-
ution below.

Proposition 1 Under (3) with (4), (5), and Assumption 2, the LM statistic becomes—
with true break points—Tj = [λ0

j T ]

L M = 6

σ 4 π2

m∑

j=1

(
Tj+1∑

t=Tj +1
xt x∗

t−1

)2

Tj+1 − Tj
, (8)

where

x∗
t−1 =

t−1∑

i=1

i−1xt−i (9)

with {xt } from (7).

Proof See Appendix. ��
Note that L M with {xt } from (7) is computed under the null of no break, i.e. (5) and

(4), which means that the differencing parameters are equal to d in all subsamples. The
summation in L M starts with the second sample after T1, but the information of the first
sample is contained in {x∗

t−1}. Along the lines of Breitung and Hassler (2002, Theorem
1), L M can be approximated by an F− statistic testing for ψ1 = · · · = ψm = 0 in
the following regression estimated by ordinary least squares [OLS],

xt =
m∑

j=1

ψ̂ j x∗
t−1 Dt (λ

0
j )+ ε̂t , t = 2, . . . , T, (10)

with the step dummy variables ( j = 1, . . . ,m)

Dt (λ
0
j ) =

{
1, t = [λ0

j T ] + 1, . . . , [λ0
j+1T ]

0, else
. (11)

For the usual F statistic it is straightforward to obtain (with SS R = ∑T
t=2 ε̂

2
t )

T − m

m SS R

m∑

j=1

(
Tj+1∑

t=Tj +1
xt x∗

t−1

)2

Tj+1∑

t=Tj +1

(
x∗

t−1

)2

= L M

m
+ op(1),

since (Tj+1 − Tj )
−1

Tj+1∑

t=Tj +1

(
x∗

t−1

)2 converges to σ 2π2/6 under Assumption 1.
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Breitung and Hassler (2002) consider testing for the parameter value d (assuming
a priori that there is no break) within

xt = φ̂x∗
t−1 + ε̂t , t = 2, . . . , T . (12)

We now merge regressions (10) and (12) (and will argue in Sect. 3.3 that this robustifies
against a misspecification of d):

xt = φ̂x∗
t−1 +

m∑

j=1

ψ̂ j x∗
t−1 Dt (λ

0
j )+ ε̂t , t = 2, . . . , T . (13)

A break in fractional integration is indicated by means of the usual F statistic
F(λ0

1, . . . , λ
0
m) from (13) testing for the null

H0 : ψ1 = · · · = ψm = 0. (14)

The following result can be established, where “
d−→” stands for the convergence in

distribution.

Proposition 2 Under the assumptions of Proposition 1 and Assumption 1 it follows
for the estimators from (13) that

√
T

(
φ̂, ψ̂1, . . . ψ̂m

)′ d−→ Nm+1 (0, �)

as T → ∞, where � has full rank and is given in the Appendix. Hence,

m F(λ0
1, . . . , λ

0
m)

d−→ χ2(m),

where χ2(m) denotes a chi-squared distribution with m degrees of freedom.

Proof See Appendix. ��
Remark 1 In practice, the variables entering (13) will have a mean different from zero
that has to be accounted for. Deterministic components have to be extracted prior to
the regression, see e.g. Robinson (1994), such that {xt } can be considered as a zero
mean variable.

3.2 Extensions

Assumption 2 is too restrictive for practical purposes and can be relaxed considerably.
We indicate generalizations without going into technical details and omit formal proof,
as our test statistic is related to statistics handled in the papers referenced below. A
valid set of conditions replacing Assumption 2 is now adopted from Hassler et al.
(2009).
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The case of U.S. inflation 661

Assumption 3 Let {et } from (3) be a stable autoregressive process of order p,

et =
p∑

i=0

ai et−i + εt ,

driven by a strictly stationary and ergodic martingale difference series {εt } with vari-
ance σ 2 satisfying an eight-order cumulant condition.

Let us briefly comment on generalizations going beyond the previous section
(Assumption 2).

First, Assumption 3 relaxes the assumption of independence and instead assumes
lack of correlation, maintaining that the innovations form a martingale difference
series. In case of conditional homoskedasticity, E(ε2

t |εt−1, εt−2, . . .) = σ 2, the asymp-
totic results of the previous section will not change, see, for example, Robinson (1991).
In case of conditional heteroskedasticty, however, it is necessary to employ Eicker–
White standard errors as advocated by Demetrescu et al. (2008). With such robustified
standard errors the limiting distribution remains unchanged. More generally, this even
holds true for unconditional heteroskedasticty of very general form, E(ε2

t ) = σ 2
t ,

where the variance process allows for smooth shifts as well as sudden breaks, see Kew
and Harris (2009).

Second, upon fractional differencing one often observes additional short memory
correlation in {et }. To account for autocorrelation, we follow Demetrescu et al. (2008)
and augment the test regression with lagged endogenous variables,

xt = φ̂x∗
t−1 +

m∑

j=1

ψ̂ j x∗
t−1 Dt (λ

0
j )+

p∑

i=1

âi xt−i + ε̂t . (15)

In fact, Demetrescu et al. (2008) allow for more general processes {et } than in Assump-
tion 3. Their assumptions accommodate many short-memory AR (∞) processes that
can be approximated with growing p. Since the regressors in (15) are not orthogo-
nal, Demetrescu et al. (2008) advise against data-driven lag-length selection, as the
model selection step affects subsequent inference about ψ j even asymptotically, see,
for example, Leeb and Pötscher (2005). Instead, they advocate choosing the lag length
p in (15) by deterministically following the rule of thumb

p =
[
4(T/100)1/4

]
, (16)

which was originally proposed by Schwert (1989). Although it lacks optimality prop-
erties it is widely used in applied econometrics. Demetrescu et al. (2011) collected
further experimental support for its usefulness in practice in that it balances the trade-
off between power and control of size under H0.

Third, the starting value condition in Assumption 2 is not crucial. Note that, the
sequence of regressors {x∗

t−1} is only asymptotically stationary. Without zero starting
values, the stationary, non-observable counterpart is x∗∗

t−1 = ∑∞
j=1 j−1�d yt− j with

yt being from (3) under H0. The difference between x∗∗
t−1 and x∗

t−1 becomes negligible
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662 U. Hassler, B. Meller

with growing sample size, as already stressed by Demetrescu et al. (2008) and more
recently by Hassler et al. (2009).

3.3 Misspecification of d

When testing for (5), Propositions 1 and 2 assume the true d to be known a pri-
ori, which will rarely be the case in practice. Often, practitioners will estimate the
unknown differencing parameter before testing for a break, which will result in frac-
tional misspecification when computing the differences. Therefore, we now consider
the model

�d+δ yt = et , t = 1, . . . , T, (17)

where δ �= 0 is the degree of misspecification. Consequently, the differences {xt }
from (7) building on �d are not I (0) but rather I (δ), and hence serially correlated
and therefore correlated with {x∗

t−1}. Hence, it is easy to show for ψ̂ j from (10) that
ψ̂ j � 0, and that the L M statistic diverges as T increases. To compensate for this
effect we proposed combining regression (10) with the original proposal of Breitung
and Hassler (2002). The latter test building on (12) is consistent, and a violation of
the specified order of integration (δ �= 0) will be captured by φ̂ → E(xt x∗

t−1). This
motivates the regression (13) instead of (10). Admittedly, under the more realistic
null model (17) instead of (1) the asymptotic distribution of the estimators from (13)
is not obvious. Although local power results (for δ = c/

√
T ) are available from

Tanaka (1999, Theorem 3.1) or Demetrescu et al. (2008, Proposition 3), it is not clear
how they generalize for a fixed δ. Still, we have the conjecture in Remark 2 that the
approximation in Proposition 2 is valid a guideline under δ �= 0, too.

Remark 2 Let us assume the null model (17) with δ �= 0, while the test regres-
sion is computed with {xt } from (7) relying on �d . We then expect that estimates
φ̂ significantly different from 0 in (13) or (15) will account for (at least moderate)
misspecification δ �= 0, such that χ2(m) provides a valuable approximation for the
multiple of the F statistic under the null of no break in fractional integration.

To back Remark 2, we report results from a computer exercise for the case m = 1,
which corresponds to a classical Chow test applied to the regression (13) or the lag-
augmented version (15). We simulate time series with T = 500 observations and
test for a break assuming as break fraction λ1 = 0.5. The data is simulated with
standard normal iid innovations et = εt entering (17) with d = 0 and no break,
such that the observables are integrated of order δ. The parameter δ measures the
degree of misspecification. All experiments rely on 1,000 replications. We computed
the size (at nominal 1, 5, and 10 % level) of the F test F(0.5) from Proposition 2, i.e.,
from regression (13) without lags. Figure 1 shows experimental sizes for the range of
−0.4 ≤ δ ≤ 0.4 and δ = ±1. They tend to be below the nominal ones except for
δ = 1 where we observe size distortions which would be unacceptable in practice. The
size properties distinctly improve when working with the lag-augmented regression.
This is not surprising since the lags capture some of the serial correlation of {xt }
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The case of U.S. inflation 663

Fig. 1 Rejection rates from (13) plotted against δ from (17)

Fig. 2 Rejection rates from (15) plotted against δ from (17)

stemming from misspecification. Figure 2 displays the rejection rates of F(0.5) from
(15) when compared with quantiles from χ2(1). Even for a misspecification as strong
as δ = 1 the size distortion is negligible. Hence, Fig. 2 soundly supports our conjecture
in Remark 2 that a (moderate) misspecification due to the estimation of d in practice
will leave the test valid.

4 Tests with unknown break points

Let us now turn to the interesting situation of where the timing of potential breaks in
long memory is not known a priori. First, we adopt the tools by Bai and Perron (1998)
to determine the number of breaks and to test for their significance. We then investigate
their finite sample behavior in our context through Monte Carlo experimentation.
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664 U. Hassler, B. Meller

4.1 Implementation

We stick to the regression Eq. (15), only that the break fractions are now not known
but varied over the sample. To underline this difference, we write

xt = φ̂x∗
t−1 +

m∑

j=1

ψ̂ j x∗
t−1 Dt (λ j )+

p∑

i=1

âi xt−i + ε̂t , (18)

where the step dummies Dt (λ j ) are defined as in (11) but with λ j and hence Tj =
[λ j T ] varying. Under Assumption 3 all variables are (asymptotically) stationary, and
the stage is set to perform a multiple change analysis along the lines of Bai and Perron
(1998).

On top of the model and Assumption 1 concerning the true break fractions, we now
assume that in the empirical aplication each sample segment has a minimal length
determined by a trimming parameter ε > 0 :

Tj − Tj−1

T
≥ ε, j = 1, . . . ,m + 1.

The limiting distributions depend on the trimming, and Bai and Perron (1998) provide
critical values for ε = 0.05. Bai and Perron (2003a), however, recommend the usage
of ε = 0.15 in order to have better size properties in finite samples. For the rest of
the paper we will work with ε = 0.15 relying on corresponding critical values from
response surface regressions by Bai and Perron (2003b).4 F statistics F(λ1, . . . , λm)

testing for ψ1 = · · · = ψm = 0 from (18) are computed for all possible break points
subject to

�ε = {(λ1, . . . , λm) : |λ j − λ j−1| ≥ ε, j = 1, . . . ,m + 1}, λ0 = 0, λm+1 = 1.

The maximum across all F statistics is called supF(m),

supF(m) = max
�ε

(F(λ1, . . . , λm)) .

It can easily be determined by a grid search for moderate sample sizes and small m.
For large values of m, Bai and Perron (2003a) recommend the principle of dynamic
programming. Critical values are available up to m = 9. For m = 1, this corresponds
to a max-Chow test in line with Andrews (1993). The candidates for breaks are the
arguments maximizing supF(m) (or, as an equivalent, minimizing the sum of squared
residuals from (18)):

(̂λ1, . . . , λ̂m) = arg max
�ε

(F(λ1, . . . , λm)) .

4 The critical values are available from an unpublished appendix to Bai and Perron (2003b) posted on the
homepage of Pierre Perron.
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In many cases, we do not want to specify a specific number (m) of potential breaks
a priori. We would prefer to determine m from the data. To this end, Bai and Perron
(1998) suggest a so-called double maximum test which we do not investigate here.
Instead, we adopt their third proposal to test for the null hypothesis of � breaks versus
the alternative of �+1 changes building on a test statistic supF(�+1|�). To determine
the number of breaks, Bai and Perron (2003a) advocate a sequence of tests, 0 vs. 1,
1 vs. 2, and so on; if supF(�+ 1|�) is not significant for � ≥ m, then the number of
breaks is determined as m = �. Obviously, supF(1|0) = supF(1). In general, the
statistic supF(�+ 1|�) is computed in the following way: determine the break points
assuming � breaks, (̂λ1, . . . , λ̂�). For each of the � + 1 segments, determine the F
statistic testing for m = 1 break at unknown time in segment j , say supFj (1). If the
overall maximal value, max j=1,...,�+1 supFj (1) is sufficiently large, then the null of �
breaks is rejected in favor of �+ 1 breaks. The critical values are again available from
Bai and Perron (1998, 2003b).

4.2 Monte Carlo evidence

For this section, we simulated time series with T = 500 observations, based on stan-
dard normal iid innovations {εt }. The true data generating process is from (6). We
computed the size (at nominal 1, 5, and 10 % level) and power. All the rejection fre-
quencies rely on 1,000 replications. In (6) we choose d = 0 without loss of generality
and vary |θ | within the experiments between 0 and 1.

In a preliminary analysis we investigate the effect of a misspecified order of integra-
tion when testing for an unknown break point, analogously to the experiment leading
to Fig. 2 in Sect. 3.3. For this purpose we evaluated with m = 1 the maximum supF(1)
from (18) with with p = 5 lags under (17). The resulting empirical sizes resemble the
ones in Figure 2 and are presented in Fig. 3. Hence, the issue of a misspecified order
of integration does not seem to be of major concern, which is of course good news for
applied purposes.

For all further simulations the true order of integration is not assumed to be known
but estimated, which parallels the situation in real life. We use the so-called exact
local Whittle [ELW] estimator proposed by Shimotsu and Phillips (2005). With the
estimated d̂ , the differences {xt } are constructed. F statistics are from regression (18)
with p = 5 (according to (16)).

4.2.1 Case of one break

First, we focus on the situation where the data-generating process [DGP] has m = 1
change. Table 1 shows the empirical size and power of the supF(1) test, the mean
of the estimated break fractions, their standard deviation and their root mean squared
error for different values of θ1 = θ in (3). Figure 4 visualizes the power and the size
of the test for |θ1| = |θ | ≤ 0.4 and |θ | = 1. The unknown break data is in the middle
of the sample, λ0

1 = 0.5.
The simulation results in Table 1 correspond to expectations. The larger the dif-

ference in the order of integration before and after the break, the easier the break is
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Fig. 3 Rejection rates from (18) plotted against δ from (17)

Table 1 Rejection of the null hypothesis of supF(1) for different values of θ

θ 1 % CV (%) 5 % CV (%) 10 % CV (%) λ̂1 σ(λ̂1) RMSE(λ̂1)

−1 100.0 100.0 100.0 0.50 0.02 0.02

−0.4 97.0 99.4 99.7 0.49 0.07 0.07

−0.3 73.9 91.0 95.4 0.48 0.10 0.10

−0.2 29.0 53.5 67.2 0.48 0.15 0.15

−0.1 5.1 16.0 25.9 0.49 0.21 0.21

−0 0.6 4.5 8.7 0.49 0.24 0.24

−0.1 4.9 14.5 22.8 0.51 0.21 0.21

−0.2 25.5 48.4 60.9 0.51 0.15 0.16

−0.3 66.8 87.3 93.8 0.51 0.10 0.10

−0.4 94.6 98.6 99.3 0.51 0.06 0.06

−1 100.0 100.0 100.0 0.50 0.02 0.02

Notes The table shows, for different values of θ , how often the null hypothesis was rejected in the Monte
Carlo study using the 1, 5, and 10 % critical values. The table also reports the mean of the estimated break
fraction, its standard deviation and its root mean squared error. Simulation is conducted under the basic
set-up: T = 500, λ0

1 = 0.5, {εt } white noise

detected and correctly allocated. In other words, the larger θ is in absolute terms, the
higher the rejection rate and the smaller the RMSE(λ̂1). Overall, the performance of
our test in a finite sample is satisfactory. The size of the test is good: close to 1, 5, 10 %
at the corresponding significance levels. The power is extremely high if the difference
in the long-memory parameter before and after the break is greater than 0.3 in absolute
terms. Even if the difference is only ±0.2, the power is still high. Figure 4 depicts the
symmetry of the rejection rates with respect to θ around zero.

Next, we investigate the performance of the supF(1) test in the light of a number of
variations in the simulation set-up. In the left-hand graph of Fig. 5, the 5 %-rejection
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Fig. 4 supF(1) plotted against θ , m = 1

Fig. 5 supF(1): different break fractions and MA(1), nominal level of 5 %

rates are plotted against θ for different values of the true unknown break fraction:
λ0

1 ∈ {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}. It is remarkable how well breaks are detected
where there are only 150 observations before or after the break if θ > 0.2, that is for
λ0

1 = 0.2 and λ0
1 = 1 − 0.2. Where θ ≤ 0.2, and λ0

1 = 0.2 or λ0
1 = 1 − 0.2, the power

is low. For all other cases, the power is high and the RMSE(λ̂1) (not reported here)
are comparable to those reported in Table 1.5

The right-hand graph in Fig. 5 contains the 5 %-rejection rates plotted against θ for
three different moving average parameters. To allow for the short memory of the time
series {et } in ( 3), we consider an MA(1) process,

et = εt + b εt−1.

5 Tables containing corresponding information as reported in Table 1 are available for all variations to the
simulation set-up reported in this subsection.
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Fig. 6 supF(1): different sample sizes, nominal level of 5 %

The MA(1) coefficient b takes on the values 0.00 (white noise), 0.50 and 0.75. Due to
the lagged variables included in regression (18), the size and power of the supF(1)
are hardly affected, see Fig. 5.

Figure 6 shows the power of the test for different sample sizes, T ∈ {250, 500, 1000,
2000}. Unsurprisingly, the power decreases as the sample size decreases. For T = 250,
the test is only of limited use but if T is greater, the test has good and even excellent
power properties.

Next, we present a number of rejection frequencies of supF(2) testing against
two breaks where the true DGP only has one change. The results from Fig. 7 can be
compared with supF(1) from Fig. 4. In particular, at the 10 % level we observe that
supF(2) is mildly conservative under the null hypothesis. Consequently, it displays
less power than supF(1), which is not surprising since supF(1) specifies the number
of (potential) breaks correctly. Further, we present results for sequential testing under
one break in Fig. 8. The left-hand graph contains rejection frequencies for F(1|0),
which coincide of course with F(1) from Fig. 4. The right-hand graph in Fig. 8 shows
the empirical sizes of supF(2|1) at conventional levels. Given one break, supF(2|1)
tends to be mildly conservative; only in case of θ = 1, are the experimental sizes
above the nominal ones.

We briefly summarize the findings for m = 1. The power of the supF(1) test
depends especially on the difference in the order of integration before and after the
break. If the difference is larger than 0.3, the power is very good. Furthermore,
the power is almost unaffected by variations in the true break fraction or the value
of the moving average coefficient in the case of MA(1) short memory. The power of
the test is good for samples with at least 500 observations. Its size properties are quite
satisfactory throughout all the simulation set-ups in that the power does not come at
the price of a too liberal test.

Testing against two breaks we observe that supF(2) and supF(2|1) are both mildly
conservative in that the experimental size tends to be smaller than the nominal one.
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Fig. 7 supF(2) plotted against θ , m = 1

Fig. 8 supF(1|0) and supF(2|1) plotted against θ , m = 1

4.2.2 Case of two breaks

The only difference to the previous experiments is that the DGP in this section has two
breaks (m = 2). The true break fractions are λ0

1 = 1/3 and λ0
2 = 2/3. We consider

the following scheme of breaks

d1 = 0, d2 = θ, d3 = 0,

which means in the notation of (4): θ1 = θ and θ2 = 0.
The size and power results of supF(1) are given in the left-hand graph of Fig. 9.

Clearly, the power curve is not as steep as in Fig. 4 because in the present DGP the
second change returns to the original level.
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Fig. 9 supF(1|0) and supF(2|1) plotted against θ , m = 2

Fig. 10 supF(2) plotted against θ , m = 2

The size and power of supF(2|1) and supF(2) are depicted in Figures 9 (right-hand
graph) and 10, respectively. While the size is very similar, we observe that supF(2)
outperforms supF(2|1) in terms of power.

5 U.S. inflation

We use the monthly U.S. consumer price index (CPI) collected by the Organization
for Economic Cooperation and Development. The sample runs from January 1966
until June 2008, yielding 509 observations. Inflation is computed as the annualized
monthly change in CPI: pt = 1, 200(log(C P It )− log(C P It−1)).
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5.1 Preliminary analysis

It has been argued that long memory may be spurious and caused by breaks in the
mean or by regime shifts. In particular, Lobato and Savin (1998) raised the question of
whether the long memory in inflation is due to deterministic shifts. See also Sibbertsen
(2004) for a corresponding survey paper. In order to avoid any confusion between mean
shifts and long memory, we allow for a shift in the overall mean while seasonally
demeaning at the same time. The demeaned inflation rate becomes

yt =
{

pt − μ̂1(τ0)− seast , t = 1, . . . , [τ0 T ]
pt − μ̂2(τ0)− seast , t = [τ0 T ] + 1, . . . , T

where τ0 is the unknown, potential break fraction, μ̂1(τ0) (μ̂2(τ0)) is the estimated
mean before (after) the break point and seast is the effect of seasonality.6 In order to
find τ0, we adopt an approach developed by Hsu (2005) who modified the local Whittle
[LW] estimator for d, discussed by Robinson (1995). In the same way we modify the
more refined exact local Whittle [ELW] estimator by Shimotsu and Phillips (2005). In
a grid search over τ ∈ [0.15, 0.85], d is estimated while accounting for a mean shift
and seasonality at the same time. The modified criterion function is

R(d; τ) = log(G(d; τ))− 2d

B

B∑

i=1

log(λi )

with

G(d; τ) = 1

B

B∑

i=1

I�d y(λi ; τ), (19)

where λi are harmonic frequencies λi = 2π i/T , i = 1, . . . , B, and the bandwidth B
is usually chosen according to

B = T α, 0.5 < α < 0.8.

Further, I�d y(λi ; τ) denotes the periodogram evaluated from �d yt for a given mean
shift fraction τ . Denote the conditional ELW estimator obtained for given τ in a
first minimization as d̂(τ ), while a second optimization step is necessary to find the
change-point estimator τ̂ :

τ̂ = arg min
τ ∈ [0.15,0.85] R(d̂(τ ); τ).

6 Seasonality is accounted for by twelve monthly dummies (dumseas ), the break in mean is accounted for
by a mean dummy (dumμ) taking on the value one before and the value 0 after [τ0 T ]. The variable yt is
the residual of the regression of pt on dumμ and dumseas .
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Table 2 Estimation of the order of integration

B T 0.60 = 42 T 0.65 = 57 T 0.70 = 78 T 0.75 = 107

d̂ (̂τ ) 0.44 0.34 0.35 0.29

CI [0.31, 0.57] [0.23, 0.45] [0.25, 0.44] [0.21, 0.37]

τ̂ T 1981/8 1981/10 1981/10 1982/7

H R 2.07 2.65 2.61 3.07

Notes d̂ (̂τ ) is the modified ELW estimate of d of the seasonally adjusted inflation which is demeaned
accounting for one mean shift. The bandwidth is denoted by B. The 90 % confidence interval of the estimation
of d is given in parentheses. Furthermore, the date of the mean shift and the H R statistic is given. The
statistics correspond to the most appropriate choice of B are highlighted

The modified ELW estimator for the memory parameter d is d̂ (̂τ ). Since the estimator
τ̂ converges to the true normalized change point τ0 (see Lavielle and Ludeña 2000),
Hsu (2005) argues that the limiting distribution is not affected. From Shimotsu and
Phillips (2005) we conclude

2
√

B (d̂ (̂τ )− d)
d→ N (0, 1), (20)

which allows to compute approximate confidence intervals.
Next, we wish to test whether the mean shift is significant, H0 : μ1 = μ2, using a

test statistic proposed by Hidalgo and Robinson (1996):

H R = T d−0.5 μ̂1(τ0)− μ̂2(τ0)√
�

∼ N (0, 1),

where � depends on G(d; τ). To obtain a feasible version of the test statistic, the
unknown parameters are replaced by the estimators τ̂ and d̂ (̂τ ).

We repeat the empirical analysis for different values of the bandwidth: B ∈
{T 0.60, T 0.65, T 0.70, T 0.75}. The candidate for the break fraction τ0 lies in the interval
1981/8 to 1982/7, depending on the bandwidth B, see Table 2. For all choices of band-
width, the mean shift is clearly significant according to the H R statistic. The timing
of the mean shifts roughly coincide with the break date found by Hsu (2005) and is
consistent with previous literature. Among others, Meltzer (2006) and Stock (2001)
describe the level of inflation as high in the 1970s and early 1980s and low afterwards.

Table 2 reports the estimates of the order of integration. Needless to say, the appro-
priate choice of B is of crucial importance. If B is chosen too small, the estimate has
a great standard deviation and might be imprecise. By contrast, choosing B too large
results in a bias due to short memory components. Our estimate of d seems to stabilize
for B = T 0.65 and B = T 0.70 while the estimate for B = T 0.75 seems to exhibit
a small downward bias. Therefore, the choice B = T 0.70 maximizes the number of
observations that do not lead to a bias: the results corresponding to this choice of B
are highlighted below. The order of integration of inflation in the whole sample period
is 0.35, with B = T 0.70, implying that inflation is stationary.
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Fig. 11 Monthly U.S. inflation—seasonally demeaned, illustrating mean shift

Fig. 12 Rolling standard deviations for πt (window of 5 years)

We investigate whether there is a second break in the mean. To this end, we pro-
ceeded sequentially, subtracting the first mean-shift from the series and searching for
a second mean-shift.7 The second break is insignificant, even at the 10 % significance
level. For this reason, we only account for one shift in the mean. In Fig. 11, we plot
inflation adjusted for seasonal means and illustrate the mean shift. In order to obtain
our variable of interest, πt , we then additionally adjusted for the mean shift.

Next, we visually investigate whether there has been a change in variance by inspect-
ing the rolling standard deviations of inflation st (π) for πt (5 years window), depicted
in Fig. 12. We observe that the eighties were characterized by a reduction in volatility.

7 As an alternative to the sequential procedure we also allow for two mean shifts simultaneously and obtain
similar break points and p values.

123



674 U. Hassler, B. Meller

Fig. 13 F(λ1) (usual and Eicker–White standard errors) with critical values for a search in the interval
15–85 % of the observations

To account for this variance heterogeneity, we report Eicker–White standard errors in
the next section as advocated by Demetrescu et al. (2008) and Kew and Harris (2009).

5.2 Testing against changes in inflation persistence

We now turn to the estimation of a change in persistence in U.S. inflation rates. As a
first step, we apply the difference filter to the adjusted inflation rates (πt ):

xt = (1 − L)d̂πt ,

where d̂ = 0.35 is the estimated order of integration of the whole sample as reported
in Table 2. Note that the precise value of d used for differencing is not of major
importance since we observed a considerable robustness with respect to misspec-
ification, see Remark 2. Next, we estimate regression (18) with m = 1 using
p = [

4(509/100)1/4
] = 6 lags, and compute a sequence of F statistics, F(λ1),

see Fig. 13. Their maximum values, supF(1), are clearly significant, irrespective of
whether F(λ1) is computed using usual or Eicker–White standard errors. Both versions
of the test detect the break in October 1973.

Similarly, we observe that supF(2) is significant at the 1 % level: the critical value
is 9.36 while supF(2) takes on the values 14.86 and 10.14 with usual standard errors
and with Eicker–White robustified standard errors, respectively. Again, the first break
is found in October 1973, while the second one is located in March 1980. Note, that
supF(1) is larger than supF(2), suggesting that there is only one break.8

To verify whether there is a second change in persistence or not, we apply the
supF(2|1) test. In Fig. 14 we present F1(1) and F2(1) computed for the segments

8 Bai and Perron (1998) also investigate a double maximum test, not considered in this paper. The number
of break points is found by taking the maximum over all supF(m) test statistics, where m = 1, 2, ..., 5. This
maximum value is then compared to critical values in order to determine the significance. This suggests
that in our analysis there is only one break point.
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Fig. 14 F1(1) and F2(1) (OLS and Eicker–White standard errors) with critical values in search for a second
break

before and after October 1973, respectively. The maximum thereof, supF(2|1), found
in June 1980, is below 8.51 and hence not significant at the 10 % level, irrespective of
whether robust Eicker–White standard errors are used or not.

As a robustness check, we test for a change in persistence of inflation without
accounting for mean shifts. The results of these tests are similar and we come to the
same conclusion. There is a break taking place in October 1973 with supF(2|1) =
46.56 and 40.31, for OLS and Eicker–White standard errors, respectively. There is
no evidence for a significant second break: supF1(1) = 0.78 and 1.11 (with the
potential break point being June 1967) and supF2(1) = 6.58 and 4.58 (with the
potential break point being April 1986), for OLS and Eicker–White standard errors,
respectively.

One virtue of our approach is that it can find a change in d even with few—at
least 150—observations before or after the break.9 On this account, we were able to
detect an early break in persistence taking place in 1973. Moreover, we can deduce
the direction of the change in persistence from the sign of ψ̂ . A positive coefficient
indicates an increase in persistence after a break, while a negative coefficient indicates
a decrease, where the dummy variable Dt (λ) is defined as in (11).10 In our estimation,
ψ̂ is positive, leading us to the conclusion that inflation persistence has increased since
1973. Naturally, we would like to know the order of integration before and after the
break. However, the short time period does not allow us to reliably estimate the order
of integration before the break. 11

9 As becomes evident in Fig. 5, the power of the test increases with the difference in the order of integration
before and after the break. Another factor is the total number of observations in the whole sample, see
Fig. 6. If the difference in the order of integration is at least 0.3 and the sample size is 500, the test has a
rejection rate of more than 80 % if there are at least 150 observations left before and after the break.
10 This interpretation is inferred directly from Proposition 3 in Demetrescu et al. (2008) and the derivations
of this paper.
11 The order of integration was estimated to be 0.22 for B = T 0.70 with a 90 % confidence interval
[0.01, 0.43]. However, the estimation depends heavily on single observations.
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The order of integration after 1973/10 can be estimated more reliably. The point
estimate is 0.27 with a 90 % confidence interval of [0.15, 0.39], for B = T 0.70. It
is worth noting that this confidence interval overlaps with the confidence interval of
d estimated over the whole sample. This is not surprising as the rather long second
subsample starting in 1973/10 dominates the estimation results obtained for the whole
sample.

To sum up, we conclude that inflation persistence increased after 1973 and stayed
constant thereafter. The estimate of d is about 0.27 after the break. By looking at
the confidence intervals, we come to the conclusion that inflation neither has short
memory (d ≤ 0) nor is nonstationary (d ≥ 0.5). In addition to the break in per-
sistence, we have evidence for a break in the mean and a trending behavior of the
variance.

6 Concluding remarks

We proposed new tests against breaks in the order of fractional integration, which are
built on the change-test methodology applied to the lag-augmented LM regression by
Demetrescu et al. (2008). The procedures are sup − F tests, specifically following
Andrews (1993) in the case of one potential break and more generally following Bai
and Perron (1998). In particular, the latter authors allow for a sequence of tests to
determine the unknown number of changes. Monte Carlo simulations indicate that the
power of the tests essentially depends on the size of the changes. Breaks relatively
close to the end or beginning of the sample can be detected with remarkable reliability.
Not knowing the true order of integration and working with estimated values does not
affect the performance of the tests.

Using the new tools, we investigate whether inflation persistence, i.e. the order of
integration of inflation, in the U.S. has changed. In order to forestall spuriously high
orders of integration, we adjust inflation rates by accounting for a shift in the mean
where the break point is determined endogenously. Testing adjusted inflation, we find
an increase in its persistence in October 1973. A second potential break in March 1980
is not significant at the 10 % level. This result does not change if we do not account
for a mean shift.

Many studies measure inflation persistence as the largest autoregressive root
[LARR] or as the sum of autoregressive coefficients [SARC]. Those measures cannot
discriminate between different degrees of long-run persistence, see Kumar and Oki-
moto (2007) and Gadea and Mayoral (2006). Therefore, it is not surprising that most of
these studies do not find evidence for a break in persistence. In contrast, most studies
using the order of integration as a measure of persistence, which in a wider sense also
includes the studies of Cogley and Sargent (2001) and Cogley and Sargent (2005), find
time-varying persistence. The studies find breaks taking place in the early 1970s, the
early 1980s and/or the early 1990s. Employing Eicker–White standard errors, our tests
are robust to the apparent time-varying inflation volatility (see, for example, Stock and
Watson (2007) or Pivetta and Reis (2007) for evidence). We are led to the conclusion
that there is only one change in persistence and this took place in 1973. This break
date coincides with the end of the Bretton Woods system, a sharp increase in oil prices
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and the start of an episode of high inflation.12 Breaks in the eighties, documented in
the literature, might be attributed to mean shifts or the decrease in inflation volatility.
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Appendix

Proof of Proposition 1

Under Gaussianity and Assumption 2 the pseudo-log-likelihood function becomes

L(θ1, . . . , θm; d, σ 2) = −T

2
log(2πσ 2)− 1

2σ 2

T∑

t=1

ε2
t ,

with εt = �d+θ j−1 yt for t = Tj−1 + 1, . . . , Tj using (3) and (4), or εt = �d+θ j yt for
t = Tj + 1, . . . , Tj+1, such that ( j = 1, . . . ,m)

∂εt

∂θ j
=

{
(log(1 − L)) (1 − L)d+θ j yt , t = Tj + 1, . . . , Tj+1

0 else
.

With log(1− L) = −∑∞
j=1 j−1L j we obtain for the score vector evaluated under the

null (where �d yt = εt )

S =
(
∂L
∂θ j

∣
∣
∣
∣
θ j =0

)

j=1,...,m

=
⎛

⎝ 1

σ 2

Tj+1∑

t=Tj +1

εtε
∗∗
t−1

⎞

⎠

j=1,...,m

with ε∗∗
t−1 =

∞∑

j=1

j−1εt− j ,

where {ε∗∗
t−1} is a stationary process with variance

σ 2∗∗ = Var
(
ε∗∗

t−1

) = σ 2
∞∑

j=1

j−2 = σ 2π
2

6
.

To construct the LM statistic we compute the Fisher information as the outer product
of gradients,

I = E
(
S S′) = σ 2∗∗

σ 2 diag (T2 − T1, . . . , Tm+1 − Tm) .

12 The events are not described in order to indicate causality but rather in order to integrate the break date
into its historical background.
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Hence, we obtain

S′I−1S = 1

σ 2∗∗σ 2

m∑

j=1

(
Tj+1∑

t=Tj +1
εtε

∗∗
t−1

)2

Tj+1 − Tj
.

Since the LM statistic is evaluated under H0, we replace εt with �d yt . Given the
starting value assumption in Assumption 2, this coincides with xt defined in (7).
Consequently, ε∗∗

t−1 equals x∗
t−1 from (9 ), and the LM statistic becomes L M from (8)

as required. ��

Proof of Proposition 2

Write the regression equation (13) in obvious matrix notation, y = X β̂ + ε̂, with

y′ = (x2, . . . , xT ),

β̂ ′ = (φ̂, ψ̂1, . . . , ψ̂m),

and X containing (x∗
1 , . . . , x∗

T −1)
′ as the first column, while the other columns contain

zeros and segments of (x∗
Tj
, . . . , x∗

Tj+1−1)
′. Under Assumption 2, we have xt = εt ∼

i id(0, σ 2). The required limiting distributions can be obtained as set out by Robinson
(1991) or Tanaka (1999), see also Hassler and Breitung (2006, Lemma A):

X ′ X
T

p→ σ 2 π
2

6
�0

where
p→ stands for convergence in probability, and

�0 =
(

1 (λ0)′
λ0 diag(λ0

2 − λ0
1, . . . , λ

0
m+1 − λ0

m)

)

, (λ0)′ =(λ0
2−λ0

1, . . . , λ
0
m+1−λ0

m),

and

X ′y√
T

d→ Nm+1

⎛

⎜
⎝

⎛

⎜
⎝

0
...

0

⎞

⎟
⎠ , σ 4π

2

6
�0

⎞

⎟
⎠ .

Consequently,
√

T β̂ follows a limiting normal distribution with � = 6
π2

(
�0

)−1
.

Define the m × (m +1)matrix R with R β̂ = (ψ̂1, . . . , ψ̂m)
′. The F statistic becomes

F(λ0
1, . . . , λ

0
m) = T − m − 1

m

β̂ ′ R′ (R (X ′ X)−1 R′)−1
R β̂

ε̂′ε
,

and its limiting distribution follows the usual way. ��
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