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Abstract We propose a new generalization of the concept of cointegration that
allows for the possibility that a set of variables are involved in an unknown non-
linear relationship. Although these variables may be unit-root non-stationary, there
exists a nonlinear combination of them that takes account of such non-stationarity. We
then introduce an estimation technique that allows us to test for the presence of this
generalized cointegration in the absence of knowledge as to the true nonlinear func-
tional form and the full set of regressors. We outline the basic stages of the technique
and discuss how the issue of unit-root non-stationarity and cointegration affects each
stage of the estimation procedure. We then apply this technique to the relationship
between health expenditure and health outcomes, which is an important but contro-
versial issue. A number of studies have found very little or no relationship between
the level of health expenditure and outcomes. In econometric terms, if there is such
a relationship, then there should exist a cointegrating relationship between these two
variables and possibly many others. The problem that arises is that we may be either
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unable to measure these other variables or that we do not know about them, in which
case we may incorrectly find no relationship between health expenditures and out-
comes. We then apply the concept of generalized cointegration; we obtain a highly
significant relationship between health expenditure and health outcomes.

Keywords Generalized cointegration · Non-stationarity · Time-varying
coefficient model · Coefficient driver

JEL Classification C130 · C190 · C220

1 Introduction

Developments in cointegration have dominated time series econometrics for the last
20 years. These developments have been almost exclusively within a linear framework
and, while there have been various extensions into a nonlinear framework, these have
generally been limited to very particular nonlinear functional forms. The reason for
this circumstance is quite straightforward. In light of the standard definition of coin-
tegration, given in Engle and Granger (1987), cointegration would become a trivial
tautology unless we restrict the functional form of the relationship in a very strict way.
Therefore, while it is relatively straightforward to ask if a specific functional form links
two or more variables together to produce a co-integrating combination, it is not gen-
erally possible to ask the more interesting question: ‘Is there an unknown functional
form, with possibly omitted variables, that would link two or more variables together
in a structural relationship so as to yield a stationary error process?’ Clearly, the spirit
of that question is precisely what was being addressed in the above cited Engle and
Granger article, as well as in other earlier works on cointegration. However, there was
no way to make this general question tractable. Therefore, a much more limited linear
framework was adopted.

In this article, we propose a more general definition of cointegration. We also depart
from the standard definition of integration of a variable, which is an inherently linear
concept, to work more generally within a nonlinear framework. The implementation
of our definition of generalized cointegration requires a new way to estimate the
cointegrating parameters. We outline such a procedure and the way to conduct infer-
ence within this framework.

We then apply this technique to the important issue of the effect of additional health
expenditure in promoting better health in the general population, which has been an
important, but controversial issue. In this regard, Fisher et al. (2003); Skinner et al.
(2005); Fisher et al. (2009a), and the U.S. Dartmouth project (Fisher et al. 2009b) all
draw attention to the fact that there is no apparent correlation between health expen-
diture across states of the U.S. and the life expectancy of individuals in those states.
Garber and Skinner (2008) highlight the fact that U.S. health care appears to be much
more expensive than health care in other countries and yet the outcome does not seem
to be obviously better. Baicker and Chandra (2004) demonstrate that high-spending
states in the U.S. seem to experience worse outcomes than low spending states. In
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a related article to this one Baltagi and Moscone (2010) investigate the relationship
between income and health care expenditure.

The application in this article is designed to examine if convincing evidence may
be found for a positive relationship between health expenditure and health outcomes,
in particular, life expectancy. In standard econometric terms, both of these variables
are trended; this implies that there should exist a cointegrating relationship between
expenditure and outcomes. Researchers who have investigated this relationship have
been confronted with two major problems: (1) this relationship is almost certainly non-
linear, as we cannot seriously believe that if health expenditure expanded to infinity
we would produce infinite life expectancy, and, (2) there are certainly many missing
variables that should prevent us from finding cointegration from a conventional per-
spective. These missing variables would include such factors as trends in smoking
and exercise, developments in health technology, and even such influences as devel-
opments in working patterns and lifestyle, among many other factors. Given these
two problems, conventional tests of cointegration between health expenditures and
outcomes are unlikely to tell us anything useful in this context. In this article, we
introduce a new concept of cointegration, which allows for both unknown functional
form and potentially important missing variables. We then illustrate the technique by
testing the notion of generalized cointegration between the aggregate of total health
expenditures undertaken by 19 OECD countries and the average life expectancy in the
entire group of those countries over the period 1979 to 2008.

The remainder of this article is divided into five sections. Section 2 generalizes
the conventional notion of cointegration to include a general class of nonlinear eco-
nomic relationships and a general type of non-stationarity without resorting to variable
differencing. For this purpose, a general time-varying coefficient (TVC) model for
some available data with precise interpretations of its coefficients and with appro-
priate assumptions is utilized in Sect. 3. Section 4 presents the conditions under
which a parameterized TVC model is consistently estimable. An empirical relationship
between the aggregate of health expenditures by 19 OECD countries and the average
life expectancy in the entire group of those countries is given in Sect. 5. Finally, we
draw some conclusions in Sect. 6.

2 Generalized cointegration and the definition of integratedness

Cointegration is defined in terms of integrated variables. A variable is said to be inte-
grated of order, say d, denoted by I (d), if it becomes stationary after being first
differenced d times. The idea underlying the simplest notion of cointegration is that
if there is a structural relationship linking a group of I (d) variables together, then,
there should be a combination of them with the disturbance which is integrated to an
order less than d. This concept is usually expressed within a linear framework in terms
of variables integrated to the same order d which combine to produce a disturbance
integrated to an order d − b, d ≥ b > 0, smaller than d. Note that the order d − b
may not be equal to zero. Thus, cointegration may not always lead to models with
stationary disturbances. There are extensions of the simplest notion of cointegration
where the possibility of having variables with different orders of integration can be
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explored. Because we are dealing with a potentially nonlinear true model, which is
assumed to be unknown, we need a slightly more general definition of non-stationa-
rity and cointegration than is usually used in the literature. Typically, we focus on the
order of integration of a variable; however, in the presence of general nonlinearity,
variables may not be integrated at all. When a variable is integrated of order d = 0,
such a variable may not be stationary but may be (weakly or strongly) non-unit-root
non-stationary, and when d > 0, it can be unit-root non-stationary by virtue of our
assumption. However, it is easy to demonstrate that there are also non-stationary vari-
ables that are not unit-root non-stationary. For example, let

xt = ft (xt−1) + εt (1)

where ∂ ft (xt−1)
∂xt−1

≥ 1 or time dependent so that model (1) implies that xt is non-stationary
but is not necessarily unit-root non-stationary. Equivalently, this relationship can be
expressed as1

xt = γ0t + γ1t xt−1 (2)

where γ0t and γ1t are time dependent with profiles determined by the functional form
of ft . Then, in general, Eq. 1 is nonlinear and the first difference of xt may be expressed
as,

Δxt = xt − xt−1 = γ0t + γ1t xt−1 − γ0t−1 − γ1t−1xt−2

= Δγ0t + γ1t x1t−1 − γ1t−1xt−2 + γ1t xt−2 − γ1t xt−2

= Δγ0t + γ1tΔx1t−1 + Δγ1t xt−2 (3)

which is, in general, neither stationary nor unit-root non-stationary since the last term
in (3) contains the level of xt ; hence, xt is non-unit-root non-stationary and is not inte-
grated. Also, Δxt does not possess a finite unconditional mean if xt and/or γt follow
random walk processes. Thus, each time Eq. 2 is differenced additional terms enter
into it giving a non-parsimonious form unless Eq. 1 is linear or its intercept and slopes
(excluding its error term) are constant, which will not generally be the case. There
are a number of possible definitions of cointegration. According to the conventional
definition, a set of I (1)variables is said to be cointegrated if they follow a linear model
in which (i) the error term is I (0) with mean zero such that it is mean independent
of the included explanatory variables and (ii) the coefficients are free of specification
biases (see Greene 2008, p. 756). This definition of cointegration implies a linear
framework; to make it operational, we must assume that we know all the unit-root
non-stationary elements of the set of variables under consideration. In practice, this is
a situation that rarely, if ever, applies.

We, therefore, propose the following, more general definition that allows for non-
linearity and omitted variables: the variables yt and xt are cointegrated in a general

1 This is true simply because we may think ofγ1t as a function of xt−1. If (1) is linear the coefficient γ1t
would be constant. If (1) is nonlinear, then the coefficient will be time-varying.
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sense if the bias-free component of the coefficient of xt in the relation of yt to xt is
nonzero. (The meaning of bias-free component will be made clear below.) To explain,
consider the following general relationship between y, x and a set of other variables
w, all of which are assumed to be non-stationary, not necessarily of unit-root type.

yt = ft (xt , wt ) (4)

which according to economic theories, is a valid relationship. Then, under our defini-
tion of generalized cointegration y and x are cointegrated if in Eq. 4, xt enters with a
nonzero coefficient, which may not be constant. That is:

∂yt

∂xt
�= 0 (5)

Cointegration should only arise if there is a (possibly nonlinear) structural relation-
ship holding a set of variables together. If there is such a relationship, this implies that
the bias-free effect of x on y will be nonzero. It follows that if

∂yt

∂xt
= 0 (6)

we have a spurious relationship between the two variables. However, if we run a stan-
dard regression between x and y, we may falsely find a significant coefficient, which
is spurious.

To make this definition of cointegration operational, we need an estimation tech-
nique that (i) will yield bias-free estimates of coefficients, (ii) accounts for the fact
that the true functional form is unknown, and (iii) accounts for the fact that there may
be omitted variables and measurement errors. We turn to such a technique in the next
section.

3 The interpretations of model coefficients and appropriate assumptions

Conventional econometrics is to a large extent the study of individual causes of biased
coefficient estimates: ‘non-sufficient sets’ of omitted variables, measurement errors,
incorrect functional forms, etc. These problems are usually dealt with one at a time
in a textbook context, but, of course, practical work is plagued by all these problems
at once. In what follows, we outline (i) the basic problem of interpreting coefficients
when these problems are present and (ii) our proposed procedure for dealing with
these problems simultaneously. In particular, we are concerned with the case in which
the dependent variable of an economic relationship is non-stationary (not necessarily
of unit-root type) and at least two sets of its determinants are also non-stationary of
any type and where there is a (possibly) nonlinear relationship between these variables
which produce a parameterized version of a combination of them with non-constant
coefficients. That is, we outline a general nonlinear form of cointegration. We restrict
ourselves here to the case of two sets of non-stationary variables simply because this
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situation allows for all the cases we believe are of interest. These two sets of vari-
ables could be equally thought of as two individual (unit-root or other) non-stationary
variables. We also allow for measurement error and omitted variables that may be
either stationary or one or both of the two sets of (unit-root or other) non-stationary
independent variables.

Denote the dependent variable by y∗
t ; it is related to a hypothesized set of K −1 of its

determinants, denoted by x∗
1t , . . . , x∗

K−1,t , where K -1 may be only a subset of the com-
plete set of determinates of y∗

t , in which case the relation of y∗
t to x∗

1t , . . . , x∗
K−1,t may

be subject to omitted-variable biases. Any specific functional form may be incorrect
and may lead to specification errors. In addition to these problems, the available data
on y∗

t , x∗
1t , . . . , x∗

K−1,t may not be perfect measures of the underlying true variables,
causing an errors in variables problem.

Suppose that T measurements on y∗
t , x∗

1t , . . . , x∗
K−1,t are made and these mea-

surements are actually the sums of “true” values and measurement errors: yt =
y∗

t + v0t , x jt = x∗
j t + v j t , j = 1, . . . , K − 1, t = 1, . . . , T , where the variables

yt , x1t , . . . , xK t without an asterisk are the observable variables, the variables with an
asterisk are the unobservable “true” values, and the v’s are measurement errors. Given
the possibility that the true functional form we are estimating may be unknown and
that there may be some important variables missing from x1t , . . . , xK−1,t , we need a
model that will capture all these potential problems.

It is useful at this point to clarify what we believe to be the main objective of econo-
metric estimation. In our view, the objective is to obtain consistent estimates of the
bias-free effect on a correctly measured dependent variable of changing one of its cor-
rectly measured determinants, holding all of its other correctly measured determinants
constant. That is, we aim to find an estimate of the bias-free component of the coeffi-
cient of any x∗

j t in a general nonlinear regression of y∗
t on x∗

1t , . . . , x∗
K−1,t . This view,

of course, is the interpretation that is usually placed on the coefficients of a standard
econometric model. The interpretation depends crucially on the assumption that the
conventional model has bias-free coefficients, which is not the case in the presence
of model misspecification. Note that the term “bias-free” here means without both
omitted-variable and measurement-error bias components.

We begin by specifying a model, which provides a complete explanation of the
dependent variable y.

yt = γ0t + γ1t x1t + · · · + γK−1,t xK−1,t (t = 1 , . . . , T ) (7)

which we call “the time-varying coefficient (TVC) model”.2 The explanatory variables
of this model are called the included regressors. As this model provides a complete
explanation of y, all the misspecifications in the model, as well as the true coefficients,
must be captured by the TVCs. Note that if the true functional form is nonlinear the

2 It is worth noting that in a recent article Granger (2008) suggested that he believed that the next major
development in econometrics would be time-varying parameter models, and he quoted a theorem which
he attributed to White from unpublished work in 2006 which demonstrated that a time-varying parameter
model might represent any unknown functional form. This theorem was first established by Swamy and
Mehta (1975). Even the models Granger considered were not new. They were considered previously in
Swamy et al. (2003). Thus, we refer to this theorem as the Swamy Theorem.
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TVCs may be thought of as being the true nonlinear structure and so they are able
to capture any possible function. These coefficients will also capture the effects of
measurement error and omitted variables.

Equation 7 is called the observation equation, and its coefficients are called the state
variables if it is embedded in a state-space model. We now apply a formal decompo-
sition of these TVCs which illustrate the various components they contain.

Notation and Assumptions Let mt denote the total number of the determinants of y∗
t .

The exact value of mt is usually unknown at any time. We assume that mt is larger than
K −1 (that is, the number of determinants is greater than the determinants for which we
have observations) and possibly varies over time. This assumption means that there are
determinants of y∗

t that are excluded from Eq. 7. Let x∗
gt , g = K , . . . , mt , denote these

excluded determinants. Let α∗
0t denote the intercept and let both α∗

j t , j = 1, . . . , K −1,
and α∗

gt , g = K , . . . , mt , denote the other coefficients of the regression of y∗
t on all

of its determinants. The true functional form of this regression determines the time
profiles of α∗’s, each of which is a function of both the sets of variables x∗

j t ’s and
x∗

gt ’s. These time profiles are unknown, since the true functional form is unknown. For
g = K , . . . , mt , let x∗

gt = λ∗
0gt + λ∗

1gt x
∗
1t + · · · + λ∗

K−1,gt x
∗
K−1,t . The true functional

forms of these regressions determine the time profiles of λ∗’s. Each of these λ∗’s is a
function of the x∗

j t . Let a set, denoted by S1, consists of those x jt , j = 1, . . . , K − 1,
that take the value zero with zero probability and let another set, denoted by S2, consists
of those x jt ’s that take the value zero with positive probability.

Theorem 1 The intercept of (7) satisfies the equation,

γ0t = α∗
0t +

mt∑

g=K

α∗
gtλ

∗
0gt + v0t +

∑

j∈S2

⎛

⎝α∗
j t +

mt∑

g=K

α∗
gtλ

∗
jgt

⎞

⎠v j t (8)

and the coefficients of (7) other than the intercept satisfy the equations,

γ j t = α∗
j t +

mt∑

g=K

α∗
gtλ

∗
jgt −

⎛

⎝α∗
j t +

mt∑

g=K

α∗
gtλ

∗
jgt

⎞

⎠
(

v j t

x j t

)
if x j t ∈ S1

and

= α∗
j t +

mt∑

g=K

α∗
gtλ

∗
jgt if x∗

j t ∈ S2 (9)

where the λ∗
0gt are a ‘sufficient set’ of excluded variables in the sense that they in

conjunction with the x∗
j t are at least sufficient to determine y∗

t .

Proof See Swamy and Tavlas (2001, 2007). ��
Thus, we interpret the TVC’s of (7) in terms of the underlying correct coefficients, a

‘sufficient set’ of excluded variables, the observed explanatory variables and measure-
ment errors in both dependent and explanatory variables. By assuming that the α∗’s
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and λ∗’s are possibly time varying, we do not a priori rule out the possibility that the
relationship of y∗

t with all of its determinants and the regressions of the determinants
of y∗

t excluded from (7) on the determinants of y∗
t included in (7) are nonlinear.

In terms of non-stationarity and nonconstancy, we can consider three cases, assum-
ing that x∗

j t , j = 1, . . . , K − 1, and λ∗
0gt , g = K , . . . , mt , are the two sets of the

determinants of y∗
t .

1. Both the function
∑mt

g=K α∗
gtλ

∗
0gt of a ‘sufficient set’ of excluded variables and

the function v0t − ∑
j∈S2

(
α∗

j t + ∑mt
g=K α∗

gtλ
∗
jgt

)
vjt of measurement errors are

white-noise processes with means zero, and the true intercept α∗
0t is constant for

all t , both the components α∗
j t and

∑mt
g=K α∗

gtλ
∗
jgt of the coefficient of x∗

j t are
constant and the measurement error v j t = 0 for all j and t, in which case the
non-stationarity will be confined to the mean of yt , as in the standard regression
models.

2. If x∗
j t , j = 1, . . . , K − 1 are non-stationary but the other non-stationary variables

are λ∗
0gt , g = K , . . . , mt , a sufficient set of excluded variables, then even if the α∗

j t
are constant for all j and t, the γ j t will be nonconstant if their other components
are nonconstant.

3. Both the sets of variables x∗
j t ’s and λ∗

0gt ’s may be non-stationary, in which case
again the γ j t will be nonconstant if any or all of their components in (8) and (9)
are nonconstant.

Theorem 2 For j = 1, . . . , K − 1, the component α∗
j t of γ j t in (9) is bias-free and

unique.

Proof It can be seen from Eq. 9 that the component α∗
j t of γ j t is free of omitted-

variables bias (= ∑mt
g=K α∗

gtλ
∗
jgt ), measurement-error bias (=−(

α∗
j t+

∑mt
g=K α∗

gtλ
∗
jgt

)

× (
vjt/x jt

)
), and of functional-form bias, since we allow the α∗s and λ∗s to have the

correct time profiles. These biases are not unique being dependent on what determi-
nants of y∗

t are excluded from (7) and on the vjt . Only α∗
j t is unique being the coefficient

of x∗
j t in the correctly specified relation of y∗

t to all of its determinants. Alternatively
stated, the component α∗

j t is bias-free and unique because it represents a property of
the real world that remains invariant against mere changes in the language we use to
describe it (see Basmann 1988, p. 73; Pratt and Schlaifer 1984, p. 13; Zellner 1979,
1988). ��

This is true irrespective of the type of non-stationarity of the variables under con-
sideration as the ‘sufficient set’ of omitted variables can fully reflect the omitted
non-stationary variables. An issue that we have not addressed, however, is how to cor-
rectly identify the bias-free component and omitted-variable and measurement-error
biases in the case of non-stationarity. We turn to this issue in the next section.
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4 Identification and consistent estimation of TVC model

4.1 Identification

As noted above, generalized cointegration takes place if the bias-free component of
the coefficient linking two variables is non-zero. In order to test whether this situation
applies, we are interested in the bias-free components α∗’s, not in the omitted-variable
and measurement-error biases. To obtain accurate estimates of the α∗

j t using the obser-
vations in (7), we need to first decompose each γ j t with j > 0 into its components in
(9). Our method of identifying these components and performing the decomposition
is based on the following assumptions.

Assumption 1 (Auxiliary information) Each coefficient of (7) is linearly related to
certain drivers plus a random error,

γ j t = π j0z0t +
p−1∑

d=1

π jd zdt + ε j t ( j = 0, 1, . . . , K − 1) , (10)

where z0t ≡ 1, the πs are fixed parameters, the zdt are what are called the coefficient
drivers, and different coefficients of (7) can be functions of different sets of coefficient
drivers.

Here, the issue of identification is important. If both γ j t and α∗
j t are constant,

then clearly they are not identifiable. Regardless of whether α∗
j t is constant, if γ j t

is nonconstant (due to its nonconstant omitted-variables and measurement-error bias
components) we need to include a set of coefficient drivers to identify its components.

Assumption 2 For j = 0, 1, . . . , K − 1, the set of p coefficient drivers z0t , z1t , . . . ,

z p−1,t in (10) divides into three disjoint subsets A1 j , A2 j , and A3 j so that for
j = 0,

∑
d∈A1 j

π jd zdt ,
∑

d∈A2 j
π jd zdt , and (

∑
d∈A3 j

π jd zdt +ε j t +∑
j ′∈S2

(
∑

d∈A3 j ′
π j ′d zdt + ε j ′t )) have the same sign, magnitude, and same pattern of time varia-

tion as α∗
0t ,

∑mt
g=K α∗

gtλ
∗
0gt , and v0t − ∑

j ′∈S2

(
α∗

j ′t + ∑mt
g=K α∗

gtλ
∗
j ′gt

)
v j ′t , respec-

tively; for j ∈ S1,
∑

d∈A1 j
π jd zdt ,

∑
d∈A2 j

π jd zdt , and
∑

d∈A3 j
π jd zdt + ε j t have

the same sign, magnitude, and same pattern of time variation as α∗
j t ,

∑mt
g=K α∗

gtλ
∗
jgt ,

and −
(
α∗

j t + ∑mt
g=K α∗

gtλ
∗
jgt

) (
v j t
x j t

)
, respectively, and for j ∈ S2,

∑
d∈A1 j

π jd zdt

and
∑

d∈A2 j
π jd zdt have the same sign, magnitude, and same pattern of time variation

as α∗
j t and

∑mt
g=K α∗

gtλ
∗
jgt , respectively, over the relevant estimation and forecasting

periods.

Here, we are assuming that for each j, the drivers in the sets A1 j , A2 j , and A3 j

separate the direct effect α∗
j t from the specification biases in the model. Here, again,

we can draw out some important implications for the assignment of coefficient drivers
to the sets A1 j , A2 j , and A3 j . It is appropriate to assign the constant z0t to A1 j for all
j > 0. If the component α∗

j t is constant while γ j t is non-stationary (or nonconstant),
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then z0t should be the only variable in A1 j . In this case, we know that all non-stationary
(or nonconstant) drivers should be in the set A2 j . Of course, it is possible that α∗

j t itself
is non-stationary (or nonconstant), due to the unknown nonlinear functional form, in
which case we have a difficult problem of splitting out just the correct amount of non-
stationarity (or nonconstancy) between the sets A1 j and A2 j . However, the assumption
that α∗

j t is constant is not a very strong one if y∗
t is nonlinearly related to all of its

determinants.

Assumption 3 The K -vector εt = (ε0t , ε1t , . . . , εK−1,t )
′ of errors in (10) follows the

stochastic equation,

εt = Φεt−1 + ut , (11)

where Φ is a K × K (not necessarily diagonal) matrix whose eigenvalues are less
than 1 in absolute value, the K - vector ut = (u0t , u1t , . . . , uK−1,t )

′ is distributed with
E(ut |z1t , . . . , z p−1,t ) = 0 and

E
(

ut u
′
t ′
∣∣ z1t , . . . , z p−1,t

) =
{

σ 2
u Δu if t=t ′

0 if t �=t ′ , (12)

where Δu may not be diagonal.

This assumption considerably generalizes (10). If we assumed that the errors in
(10) were serially independent, this would imply a very simple dynamic structure. By
making the assumption that the errors in fact have a serial correlation structure we are
allowing a much richer dynamic structure, although we are imposing some common
factors in this structure to keep the model tractable.

In terms of non-stationarity, by assuming that all the eigenvalues are less than 1 in
absolute terms we are ruling out the possibility that non-stationarity in γ j t is generated
by the error process εt . This, then, isolates the non-stationarity as coming from the
coefficient drivers.

Assumption 4 The regressor x jt of (7) is conditionally independent of its coefficient
γ j t given the coefficient drivers in (10) for all j and t .

A vector formulation of model (7) is

yt = x ′
tγt , (13)

where xt = (x0t ≡ 1, x1t , . . . , xK−1,t )
′ and γt = (γ0t , γ1t , . . . , γK−1,t )

′. A matrix
formulation of (10) is

γt = �zt + εt , (14)

where � = [
π jd

]
0≤ j≤K−1,0≤d≤p−1 is a K × p matrix having π jd as its ( j + 1,

d + 1)-th element and zt = (1, z1t , . . . , z p−1,t )
′. Substituting (14) into (13) gives

yt = (z′
t ⊗ x ′

t )π
Long + x ′

tεt , (15)
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where ⊗ denotes a Kronecker product, and πLong is a Kp-vector, denoting a column
stack of �. The observations in (7) can be displayed in a matrix form as

y = Xzπ
Long + Dxε, (16)

where y = (y1, . . . , yT )′ is a T -vector, Xz = (z1⊗x1, . . . , zT ⊗xT )′ is T ×K p, Dx =
diag1≤t≤T (x ′

t ) is T × K T , and ε = (ε′
1, . . . , ε

′
T )′ is a TK-vector.

Theorem 3 Under Assumptions 1–4, E(y|Xz) = Xzπ
Long and V ar(y|Xz) =

Dxσ
2
u �ε D′

x where σ 2
u �ε is the covariance matrix of ε.

Proof See Swamy et al. (2007, p. 3386). ��
Under Assumptions 1 and 3, the variance of γ j t is finite for all j and t . The Cheby-

chev inequality shows that if γ j t has a small variance, then its distribution is tightly
concentrated about its mean implied by Assumptions 1 and 3 (see Lehmann 1999,
p. 52). Assumptions 2 and 4 provide a prime consideration guiding the selection of
coefficient drivers, especially in the presence of non-stationarity. The magnitude of
ε j t gets reduced as the number of correct coefficient drivers in (10) increases. The
larger this number, the smaller the magnitude of ε j t and the smaller the variance of γ j t .
Including many correct coefficient drivers in (10) may imply that the errors of Eq. 10
are white-noise variables or the matrix Φ in Eq. 11 is null. If Assumption 3 is replaced
by the assumption that εt follows a random walk for all t, then the unconditional
variance of γ j t is not finite.

The fixed coefficient vector πLong in (15) is identified if Xz has full column rank.
A necessary condition for Xz to have full column rank is that T > K p. The error
vector ε is not identified because the necessary condition T > T K for Dx to have
full column rank is false. This result implies that ε is not consistently estimable (see
Lehmann and Casella 1998, p. 57). Swamy and Tinsley (1980, p. 117) call this phe-
nomenon “a form of Uncertainty Principle”. Correct coefficient drivers should be used
in (10) to reduce the unidentifiable portions (the ε j t ) of the coefficients of (7). How-
ever, Dxε being equal to y − Xzπ

Long with identifiable πLong is identifiable, provided
Dx has full row rank. The best linear unbiased predictor (BLUP) of Dxε can be used
to obtain consistent estimators of Φ,Δu , and σ 2

u in (11) and (12), as shown in Chang et
al. (1992) and Chang et al. (2000). Under Assumptions 1–4, the BLUP of Dxε exists
(see Swamy et al. 2007, p. 3387). So we make.

Assumption 5 (i) Xz has full column rank, (ii) Dx has full row rank, and (iii) (assump-
tion 5(iii) is here) T ≥ K p + (the number of unknown distinct elements of Φ,Δu , and
σ 2

u +4) so that the degrees of freedom left unutilized after estimating all the unknown
parameters of model (10) is at least 4.

Assumptions 5(i) and 5(ii) make all the coefficients and Dxε of (16) statistically
meaningful. Equation 10, which establishes a link between the coefficients of (7) and
the coefficients and errors of (15), shows that if the coefficients and Dxε of (16) are sta-
tistically meaningful, then so are the coefficients of (7). In certain situations specified
in Judge et al. (1985, p. 612), the finite moments of the estimators of the coefficients
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of (15) exist up to the degrees of freedom that remain unutilized after the estimation
of these coefficients. Assumption 5(iii) is made to guarantee the existence of at least
finite fourth moments for the estimators of the coefficients of (15) in these situations.3

4.2 Consistent estimation

Under certain conditions, an iteratively rescaled generalized least squares (IRSGLS)
estimator π̂Long of πLong and Φ and σ 2

u Δu , estimated from the IRSGLS residuals
y − Xzπ̂

Long, are consistent and asymptotically normal4 (see Swamy et al. 2010).
Essentially, this procedure simply minimizes the generalized least squares criterion
formed from (16) in an iterative framework.

The model may also be formulated as a standard state-space form, and the Kal-
man filter may be used to provide a predictor ε̂ of ε in (16) and Dx ε̂, in turn, may
be used with a distributional assumption about ε to provide maximum likelihood
estimates of πLong, Φ, and σ 2

u Δu using standard software such as E-VIEWS.5 The
state-space form of (16) consists of the measurement equation which is given by
Eq. 7 and the state equations which are given by (10). Once this model has been
estimated either by the Kalman filter in conjunction with the maximum likelihood
method or by an IRSGLS procedure, the results include estimates of γ j t , ε j t , and
π jd j = 0, 1 . . . , K − 1, d = 0, 1, . . . , p − 1.6

Any simple spread sheet program can then be used to calculate ε j t simply as the
residual of (10), and the bias-free estimate can be calculated simply as

γ u
jt = γ j t −

∑

d∈A2 j

π jd zdt −
∑

j∈A3 j

π jd zdt − ε j t if j > 0 and j ∈ S1

and

= γ j t −
∑

d∈A2 j

π jd zdt if j > 0 and j ∈ S2

which again may be easily calculated in any spreadsheet program.

5 An example: health expenditure and life expectancy

The relationship, if there is one, between health expenditure and outcomes, is an
extremely important one from a policy perspective. For example, if there is a positive

3 Swamy et al. (1996) explain how model (16) might be estimated when Xz has less than full column rank
and Dx �ε D′

x is singular.
4 A computer program is freely available which implements this technique at http://www.le.ac.uk/ec/
sh222/soft.htm.
5 However, the Kalman filter has the disadvantage that it does not provide estimators of Φ and σ 2

u Δu .
6 The IRSGLS procedure has the advantage that it is a distribution-free method, in contrast to the method
of maximum likelihood.
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relationship, then cuts in health expenditure as part of general fiscal consolidation
will lead to falls in health outcomes and, therefore, inevitably to more deaths. Policy
makers need to face this fact squarely at times of cuts if such a relationship exists. This
relationship is, however, far from uncontentious as the articles cited in the Introduction
make clear; there has been a fairly substantial literature debating the issue including
seminal contributions from Jones (2005); Hall and Jones (2007) and Skinner and
Staiger (2009), as well as the contributions cited in the Introduction.

From the perspective of a policy maker, we would argue that the crucial information
which is needed is whether or not there is a link from health expenditure to life expec-
tancy. It would, of course, be desirable to have a complete model of life expectancy,
which included all real world determinants, but realistically such a model will always
be impossible to achieve. Nevertheless, as long as the policy maker has clear evi-
dence that such a link exists, and a good estimate of its empirical magnitude, relevant
decisions can be made. The concept of generalized cointegration, discussed above,
is particularly relevant in this case because there are many variables that affect life
expectancy which could never be introduced into a study of this kind. Such variables
include factors like social habits, including smoking, exercise, and diet, and many
external factors such as wars, unusual diseases, and health technology and migration
habits, among many others. Hence, the conventional definition of cointegration should
always find that cointegration does not exist. Thus, it is not surprising that researchers
have found it difficult to uncover a significant relationship between health expenditure
and life expectancy. Generalised cointegration allows for the existence of these omit-
ted variables and gives robust and consistent results; it is, therefore, an appropriate
technique in this case.

In this section, we use data for average life expectancy and average per capita
real health expenditure for 19 OECD countries from the OECD Health Data 2010
data base.7 We have aggregated these series into total health expenditure for the 19
countries and average life expectancy across the countries. We have gathered data
on average total expenditure on health per capita in constant price US dollars (EXP)
for 19 OECD countries from the OECD health data bank 2010 and data on average
life expectancy (LIFE) over the period 1970 to 2008. Using the idea of generalized
cointegration, outlined above, we will then test for a non-zero bias-free relationship
between these two variables. If a significantly non-zero relationship is detected, we
will have established the presence of generalized cointegration and, hence, we will
have established the existence of a cointegrating relationship linking expenditure and
outcomes. The specific model we estimated is:

Log(LIFE) = γ0t + γ1t Log(EXP) (17)

We have chosen to specify the relationship in logs so that the coefficients may be
interpreted as elasticities; however, very comparable results to those presented below
may be obtained using the raw data. As coefficient drivers we used the lagged values

7 The 19 countries are Australia, Austria, Belgium, Canada, Denmark, Finland, Germany, Iceland, Ireland,
Japan, Netherlands, New Zealand, Norway, Portugal, Spain, Sweden, Switzerland, UK, and the USA. These
countries were selected on the basis that they had almost complete data for the required period.
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Table 1 TVC estimation: the effect of health care expenditure on life expectancy

Variables Equation

Total coefficients (1) Bias-free effects (2)

Constant 0.007 0.12

Log(EXP) 0.134 0.29*** [312.1]

Notes: Figures in brackets are t-ratios. ***, **, and * indicate significance at 1, 5, and 10% level, respec-
tively. The estimates are the time averages of the estimates of the TVCs over the entire sample period; the
bias-free effects are the time averages of the estimates of the coefficients with the effects of the lagged
driver variables removed.

Fig. 1 The total coefficient on Log(EXP) and the bias-free effect

of both the log(EXP) and Log(LIFE) and a deterministic trend. In order to derive the
bias-free effect, we removed both the lagged effects from the total coefficient to obtain
the bias-free result.

Table 1 reports the average value for the intercept and the coefficient of Log(EXP),
both in terms of the total effect and the bias-free effect. Figure 1 plots these two
coefficients against time. The key result is the t-statistic (equal to 312.1) on the bias-
free coefficient, which is highly significant; it is this value which represents our test
for generalized cointegration. The result confirms the existence of a cointegrating
relationship between health expenditure and health outcomes. As shown in Fig. 1, the
bias-free coefficient falls very gradually over time, suggesting that there is an under-
lying nonlinear relationship, but the elasticity of outcomes with respect to expenditure
is falling only very slowly.

The overall conclusion to be drawn here is straightforward. Increased health expen-
diture produces increase in life expectancy with an elasticity of around 0.29 which
although it is falling slowly is quite stable.

6 Conclusions

We have proposed a generalization of the standard definition of cointegration that
allows for the existence of an unknown structural nonlinear relationship between a
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set of non-stationary variables. The idea underlying this definition is as follows. If a
structural relationship exists between two or more variables, the implication of this
is that there will be a non-zero coefficient attached to any of the independent vari-
ables. Therefore, the significance of an unbiased estimate of this coefficient becomes
a simple direct test of generalized cointegration. Furthermore, we can estimate this
coefficient and test its significance without knowing the true functional form of the
relationship and/or the full set of variables that enter into it. This definition can be
made operational by applying the TVC estimation technique, which provides just such
an unbiased estimate of the coefficient. Non-stationarity does not pose any particular
problem for TVC estimation. However, as in other modeling situations the explicit
recognition of non-stationarity does offer advantages, in particular, in the identifica-
tion of the correct set of coefficient drivers to identify bias-free component of the TVC
correctly. Finally, we have applied this technique to the issue of the linkage between
health expenditure and life expectancy. We provided strong evidence for the exis-
tence of a cointegrating vector between these variables and possibly a set of additional
unidentified variables.
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