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Abstract Two related problems are dealt with in this article, concerning some
popular inequality indices proposed by Gini, Pietra–Ricci and Theil: (1) the calcu-
lation of the index when only a frequency distribution is available, thus needing some
kind of approximation; and (2) a reasonable decomposition of the index calculated
for a mixture, with components related to ‘within’ and ‘between’ inequalities, and
possibly to the separate contributions of each group to the overall inequality. Beside
the proposals arising from the specific structure of each inequality index, a general
approach for identifying the within component is utilized, which is based on the fix-
ation of a given number of fictitious individuals (called aggregate units), common
to every group. Regarding the Gini index, a general expression is obtained for the
approximation problem, while the within inequality is more easily managed by the
recourse to aggregate units. The decomposition of the Pietra–Ricci index displays
three components, clearly ascribable to within inequality, to a mixture effect and to a
mean effect. Regarding the Theil index, some simple and very accurate approximation
formulae are obtained. An application of all the indices and their decompositions has
been made for the 2004 income distribution for Italy (Bank of Italy Survey).
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176 B. V. Frosini

1 A short outline of income inequality measures and group decompositions

The motivation for this article stems from recent renewed interest in the proposal of
specialized measures of income (or wealth) inequality, and in their decomposition
according to groups of individuals (or households). Amongst the latest methodologi-
cal proposals, at least Zenga’s new inequality index based on the ratios between lower
and upper arithmetic means, and its group decomposition obtained by Radaelli, are
worth mentioning (Zenga 2007; Radaelli 2008), amongst the most meaningful appli-
cations and discussions of group decomposition, at least the research by Quintano
et al. (2009) on the evolution of income inequality in Italy deserves careful attention
for the achieved results and insightful suggestions. Another motivation is related to
a decomposition of Pietra–Ricci index, obtained by the author, starting from a pro-
posal by Frosini (2005), aimed at providing a new interpretation for this index, as
well as approximation formulae for the common situation of using a frequency, or a
frequency–quantity, distribution over k classes.

Actually, approximation problems and group decompositions reveal an important
overlapping: in fact, the k classes of a frequency distribution can be viewed (formally)
as k groups; an index approximation obtained by the distribution of partial means
can be assimilated to a special case of between inequality; and the improvement to
this first approximation, taking into account of the dispersion of values within each
class, is tantamount to add a measure for within inequality. Anyway, both problems, of
approximation and decomposition, will be distinctly treated for three indices, perhaps
the best known and generally applied amongst the many available: Gini, Pietra–Ricci
and Theil indices.

The study of group decomposition of inequality measures has followed two main
approaches. A first approach has tried to identify those inequality indices I whose func-
tional form (defined with respect to individual incomes) can be split—when applied
to a set S of individuals, constituted by k groups S j ( j = 1, . . ., k)—as

I = IB + IW (1)

where IB and IW maintain the same functional form as I, IB being interpreted as a
function of the inequality between groups (applied to the distribution of partial means,
not necessarily arithmetic), and IW being some kind of average of the inequality within
groups (see Theil 1967; Bourguignon 1979; Cowell 1980; Shorrocks 1980). The indi-
ces thus obtained pertain to a very restricted set; Theil’s index will be examined in the
sequel.

It is easily acknowledged that the above additive decomposition cannot be a prop-
erty of normalized indices, such as those of Gini and Pietra–Ricci (Zenga 1987, p. 336;
Frosini 1989, p. 350). A second approach can thus be specialized in one of the fol-
lowing four sub-approaches: (a) to compute an index IB with the above meaning,
leaving IW as a residual; (b) to compute IW with the above meaning, leaving IB as a
residual; (c) to jointly compute IB and IW, however without imposing any functional
form, nor a mathematical expression in closed form; and (d) to give up the above
meanings, established both for IB and IW, and to suggest an interpretation for a group
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decomposition derived by a clever rewriting of I as the sum of two or more terms,
with appropriate meanings.

The (a) approach was advocated by Bhattacharya and Mahalanobis (1967, p. 150;
Zagier 1983, p. 104) for the Gini ratio, although strongly opposed by Dagum (2001,
pp. 31–32). The (b) approach was propounded by Frosini (1985, 1989), within a gen-
eral proposal for the computation of any inequality measure based on a fixed number
of units, the so-called aggregate units (or AUs), to be defined shortly. The (c) approach
has found to be a very neat proposal by means of the Shapley decomposition, a gen-
eral procedure which allows to additively disentangle the contributions of one or more
classification factors (e.g. stratification by geographic districts, age, sex, ethnicity,
etc.) to total inequality; the basic reference concerning the Shapley decomposition is
Shorrocks (1999) (see also Deutsch and Silber 2007, 2008). Amongst the contributions
to the (d) approach, applied to the decomposition of the Gini index, at least those of
Silber (1989), Yitzhaki and Lerman (1991), Dagum (1997a,b, 2001) and Okamoto
(2009), are worth mentioning. By a recourse to a new linear operator, called the G-
matrix, Silber displays a three-term decomposition, where the interaction term (besides
the ‘within’ and ‘between’ terms) ‘is a measure of the intensity of the permutations
which occur when instead of ranking all the individual shares by decreasing income
shares, one ranks them, firstly by decreasing value of the average income of the popula-
tion subgroup to which they belong, and secondly, within each subgroup, by decreasing
individual income share’ (Silber 1989, p. 112). By starting with a simple expression
of the Gini index, based on the covariance between income values and their ranks,
Yitzhaki and Lerman have obtained a three-term decomposition, where the interaction
term ‘reflects the impact of stratification, or of intra-group variability in overall ranks’
(Yitzhaki and Lerman 1991, p. 322). The authors show that the ‘between’ term—
depending on a covariance—could take negative values, although in the presence of
quite heterogeneous groups. The three term decomposition by Dagum, and the two-
term decomposition by Okamoto, will be commented on at the next section, being
more relevant for the topics there presented (and also to avoid repetitions).

Frosini’s proposal of AUs was motivated by the well-known fact that the computa-
tion of (practically) any inequality measure on theoretical distributions, or on observed
distributions of several thousands of individuals, gives about the same result—even to
two significant figures—as the same index computed on few dozens of appropriately
spaced values (Frosini 1985, p. 308). Of course, by suppressing the dispersion inside
each class leads to a reduction of total inequality (for a simple example, concerning
the Gini index, see Fei et al. 1979, pp. 403–405). However, in the cases just outlined,
the negative bias is usually quite negligible (see Frosini 1985, for many computations
concerning real and theoretical distributions, and number of classes n = 10, 25, 50).
This fact affords the possibility of making use of a fixed number of AUs, e.g. 50 or
100, when several distributions are jointly examined. If one disposes of the Lorenz
function L for a given population and wants to determine the unitary shares for m
AUs, then the m income shares are simply obtained as

qr = L (r/m) − L ((r − 1)/m) r = 1, . . ., m (2)

If T is the total income, then the corresponding absolute share is xr = qr T .
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An immediate application of AUs is related to the case of a population composed
of k groups (usually with different sizes). In this case, the overall computation of the
AUs gives rise to the following matrix:

x11 x12 . . . x1m

x21 x22 . . . x2m

. . . . . . . . . . . .

xk1 xk2 . . . xkm

(3)

having the k groups (all with m units) on the rows, and the successive shares on the
columns. When the k groups are not—as usual—of the same size, and have indeed
sizes n1, . . ., nk(

∑
n j = n), with total income Tj for group S j , this same reference

can be maintained by providing n j replicas for group j ( j = 1, . . ., k), so scaled as to
yield the total μ j = Tj/n j for each replica concerning the group S j . Take note that
all indices here examined are scale independent, and also independent of the size of
population (or ISP), in the sense that an index I remains unchanged when applied to
a mixture of k identical populations. Note also that the device of replicas is just aimed
at ensuring the same group weights f1, . . ., fk in matrix (3) as those existing in the
reference population.

Once the above matrix is available, a single distribution of values

yr = (x1r + · · · + xkr ) /k (4)

in case of equally sized groups, or of values

yr = 1

n

k∑

j=1

x jr n j (5)

in case of groups with different sizes, provides a distribution suitable for the appre-
ciation of the comprehensive within inequality, thus leaving IB in (1) as a residual.
The distribution of these values—the so-called percentile distribution—or the set of
these values, will be called SP . Some justifications, and several applications of this
procedure, are provided by Frosini in the articles of 1989, 1990a and 2003. The special
applications to Gini, Pietra–Ricci and Theil indices are presented at Sect. 2.

The calculation of an inequality index with respect to the distribution of partial
means (of classes constituting a single frequency distribution) is a special case of
‘between inequality’; however, to avoid confusion, we will use a suffix M , as in G M ,
for an approximation of an inequality index G based on the distribution of h partial
means, and a suffix B, as in G B , for the evaluation of the ‘between inequality’ existing
in case of a mixture constituted of k groups (or distributions).

Most symbols about the distribution of values 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn in the
population, and of values 0 ≤ x j1 ≤ x j2 ≤ · · · ≤ x jn j for the j th group, are usefully
listed as follows:

T = ∑
xi = total of population S (or mixture S); Tj = ∑

r x jr = total of group S j

n = total size of population S; n j = size of group S j
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μ = T/n = general mean; μ j = Tj/n j = mean of group S j

qi = xi/T = share of i th individual in the population
q jr = x jr/Tj = share of r th individual of group S j

f j = n j/n = frequency weight of group S j ; q j = Tj/T = quantity share of group S j .

As the reader has probably surmised, owing to the many quotations of this same
author appearing above, this is only the last investigation about inequality measures,
following many others, which started on studies about formal properties of variabil-
ity, inequality and diversity measures (only slightly touched in this article, and thus
without specific quotations). The previous proposals and results, resumed in this arti-
cle, are concerned with (a) the group decomposition of normalized indices, (b) the
computation of inequality indices through the definition of a fixed number of AU,
and (c) the consequent proposal of deriving the ‘within inequality’ from the distribu-
tion of AUs in the groups; (d) the special application of this procedure to particular
indices (some cases are reported at Sect. 2); and (e) the special and simple character-
ization of Pietra–Ricci index, both for its algebraical and graphical representations (at
Sect. 2.2). The novelty of this article concerns with (1) the comparative examination
of several recent proposals about decomposition, (2) some procedures for accurate
approximations of indices based on frequency–quantity distributions, and mostly (3)
the three-term decomposition of Pietra–Ricci inequality measure; and (4) moreover, an
application of the above procedures is implemented to the 2004 Bank of Italy Survey
on household incomes.

2 Computation and decomposition of Gini, Theil and Pietra–Ricci indices

2.1 The case of Gini index

Amongst the many computation formulae, devised by Gini and other authors, for the
Gini index, we only quote the following ones, as they are functional with respect to
subsequent considerations:

G = �/2μ with � =
n∑

i, j=1

∣
∣xi − x j

∣
∣/n2 (6)

being � the mean absolute difference (with repetition) of the statistical variable, or
random variable, which describes the incomes in the reference population;

G = 2

nT

n∑

i=1

i xi − n + 1

n
= 2

n

n∑

i=1

iqi − n + 1

n
(7)

A relevant graphical correspondence, widely used in the literature, is the double of the
concentration area in the representation of the Lorenz curve in a square of side one.

Actually, the original definition of Gini’s concentration index R (Gini 1914) was
slightly different, being based on the mean absolute difference without repetition; with
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this definition, the index R has the advantage of being exactly normalized between
zero and one, with R = 1 achieved when one individual amongst n gets all the income
T (all other n − 1 values being zero). However, (a) G is practically equivalent to R in
most applications, as G = (n − 1)R/n, and mostly (b) G has the ISP property, while
R maintains some dependence on the size n of population, thus being unsuitable to
manage mixture distributions (Frosini 1987, p. 192).

The computation of (6) and (7) (as well as for other equivalent formulae) is sim-
ple and direct, thus no problem can arise if we dispose of all the original values
xi . However, when applying to official statistics, usually summarizing several hun-
dreds or thousands of individual values in few classes, we can only manage the fre-
quencies (and sometimes the quantities too) pertaining to the given classes. In this
case, we must get the information concerning the accuracy of the approximation, for
a given inequality index, based on the available frequency (or frequency–quantity)
distribution, over h classes. Luckily enough, this information is rather simple and
useful in the case of the Gini index. If the data xi are organized in h groups or clas-
ses, so that x jr ( j = 1, . . ., h; r = 1, . . ., n j ) is the r th ordered value in the class
C j = (a j , b j ], then q jr = x jr/T , and

G j = 2

n j

{ n j∑

r=1

r
q jr

q j
− n j + 1

n j

}

(8)

is the Gini index for the values inside the class C j , after some algebra one obtains

G =
h∑

j=1

q j
(
2Fj − f j

) − 1 +
h∑

j=1

q j f j G j = GM + GC (9)

where Fj is the j th cumulative frequency for the population (Frosini 1987, p. 207;
for different but equivalent expressions for GC see Gastwirth 1972, p. 309; Kakwani
1980, p. 100). The second summation in this formula

GC =
h∑

j=1

q j f j G j (10)

is the required ‘correction’ to the Gini index

GM =
h∑

j=1

q j (2Fj − f j ) − 1 (11)

computed on (q j , f j ) values of the h classes, with the implicit assumption of no dis-
persion—within every class C j —around its mean value μ j (practically, GM is the
Gini index computed on the frequency distribution (μ1, n1; . . .;μh, nh). The above
correction GC is a linear combination of the Gini indices computed on the h classes,
with weights q j f j (not summing to one); actually, when h is as low as ten, these
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weights are rather low, and the increase to GM represented by this term is practically
irrelevant (cf. Frosini 1985, 1989). Anyway, something more can be said, in general, on
the computation of this correction. If the average μ j = μq j/ f j of class C j = (a j , b j ]
is known, then an upper bound for G j (with respect to distributions inside the class
C j with the same mean μ j ) can be written

G B
j = b j − μ j

b j − a j
× μ j − a j

μ j
(12)

(Frosini 2005, p. 30; for a different but equivalent expression see Gastwirth 1972,
p. 308). Another approximation is offered by the assumption (requiring only the knowl-
edge of the frequency distribution over the h classes) that the spread of the x jr values
of class C j is uniform within the class—with width A j = b j − a j —namely

x jr = a j + (2r − 1) A j/2n j r = 1, . . . , n j (13)

(Frosini 2009, p. 92). In this case, the Gini index for the class C j can be written as

GU
j = n j + 1

n j
× A j (n j − 1)

6x j n j
(14)

Thus, the correction term GC can be written as

GU = 1

6nT

h∑

j=1

(
n j + 1

) (
n j − 1

)
A j . (15)

For large values of n j , GU can be approximated by

G A = 1

6μ

h∑

j=1

f 2
j A j . (16)

This kind of approximation is usually better than the previous approximation, based
on upper bounds, except for the last class (and sometimes, for the first class as well).
A special approximation problem usually arises for the last class, be it closed, or (more
often) open; it usually happens that the range of incomes in this class is much larger
than the range in the preceding classes, and the uniformity assumption (13) is unten-
able (the frequencies decrease steadily as the income increases). A reasonable and
easy device to manage this problem, and getting an accurate approximation, consists
in assuming an interpolating Pareto distribution, with cumulative distribution function

F (x) = 1 − (τ/x)θ x ≥ τ > 0; θ > 0
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having mean τθ/(θ − 1) when θ > 1. If one disposes of the moment estimator of θ ,
for θ > 1 (when the frequency and the quantity of the last class Ch are available),

θ̂ = X/(X − τ) (17)

with X the mean of the last class and τ its left endpoint, then the Gini index

Gh = 1/(2θ̂ − 1) (18)

for this class can thus be approximated (Frosini 1985, p. 311; 1990b, p. 234). Some
examples of computations of the above approximations will be given at Sect. 3.

Turning to the general decomposition problem, the case for the Gini index appears
rather awkward; the essential difficulty lies in the fact that G is a function of all the
ordered values: a mixture of two (or more) overlapping distributions yields a general
index G (for the mixture) with a complicated structure, which makes it difficult to dis-
entangle the ‘within’ and ‘between’ contributions. Besides the results by Silber, and
Yitzhaki and Lerman, summarized in the previous section, by a clever development
of formula (6) Dagum (1997a,b, 2001) obtains a three-term decomposition

G = Gw + Gb + G t (19)

where Gw = GC above (formula (10)), Gb is a term depending on the respective
displacements of the partial distributions, and G t is amenable to the transvariation
between groups, or partial distributions (Dagum 1997a,b, 2001; Deutsch and Silber
1997; Quintano et al. 2009). If Gw, so defined, could be interpreted as ‘la contributión
a la desigualdad intra (within) grupos’ (Dagum 2001, p. 38), then one could take the
remaining sum Gb +G t as providing an overall contribution to the between inequality
(differences between group means, as well differences in dispersion and skewness).
However, the large contribution usually amenable to transvariation, and—mostly—the
small contribution of Gw to the overall inequality, cast serious doubts on the interpre-
tation of Gw as the within contribution, and—correspondingly—on the interpretation
of (G − Gw) as the between contribution (Quintano et al. 2009, pp. 439–440). As Gw
in formula (19) corresponds to the correction term GC in formula (9) in all cases,
independently of any kind of overlapping between partial distributions, it could be
reasonable to impute a (large? total?) part of G t to within inequality.

Although acknowledging the insightful explanations—made by Dagum in the
quoted articles—about the economic meaning of the various components of the sum
(19), the within inequality Gw = GC appears largely unsatisfactory for several rea-
sons: (a) as previously shown by Frosini (1987), and resumed above, GC is the con-
tribution to the overall G—beside the GM contribution, only dependent on the spread
of the partial means—of the inequality inside k nonoverlapping groups: how can we
accept the same measure for the usual cases of largely overlapping groups, and even
for the case of a mixture S with identical components S j ? For example, in a case of ten
identical groups, each one with Gini index G, with f j = q j = 1/10, Gw = (1/10)G,

whereas a reasonable weighted average of the partial indices would result in IW = G
(cf. the following formula (20)). (b) Gw heavily depends on the number k of groups; as
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k grows—other things being equal—Gw steadily diminishes; the reduction is usually
heavy when passing from k = 2 to k = 3, 4, 5; from k = 10 onwards it reaches small
values, however always decreasing towards zero—with what justification?

Turning to other proposals concerning the additive decomposition (1), let us pay
our attention to the exclusive proposals: (a) define IB by means of the given inequal-
ity measure applied to the distribution of partial means, leaving IW as the residual
IW = I − IB (Bhattacharya and Mahalanobis 1967; Zagier 1983); (b) define IW
by means of the mixture of AUs, as suggested at Sect. 1, leaving IB as the residual
IB = I − IW; with this approach the Gini index applied to the AU distribution turns
out amazingly simple and informative, namely the weighted mean of the partial Gini
indices (Frosini 1989, p. 361):

IW = G (SP ) =
k∑

j=1

q j G j . (20)

Interestingly enough, this simple and reasonable expression for IW turns out to be
the same obtained by Okamoto (2009, p. 155), who derived the following two-term
decomposition of the Gini index, being Fj the distribution function of the j th group,
and F the (mixture) distribution function for the entire population:

G =
k∑

j=1

q j G j +
k∑

j=1

f j
1

n

∫

(Fj (y) − F(y))2dy

As stressed by Okamoto, the second term in this formula is not only a residual, but is
a clear expression of the between-group inequality; moreover, it is null if and only if
all distributions Fj ( j = 1, . . ., k) coincide.

2.2 The case of Pietra–Ricci index

The definition of the Pietra–Ricci index (Pietra 1915; Ricci 1916) is very simple, and
immediately operational:

P = 1

2T

n∑

i=1

|xi − μ| = 1

2

n∑

i=1

|qi − 1/n| (21)

P = 1

T

∑

xi >μ

(xi − μ) = 1

T

∑

xi <μ

(μ − xi ) (22)

It is well known that this index satisfies the weak principle of transfers (WTP), and
not the strong principle of transfers (SPT) as well (Marshall and Olkin 1979, p. 13;
Castagnoli and Muliere 1990, pp. 174–175), because it does not change when non-
egalitarian transfers take place only before the mean or after the mean. However, this
fact should not be over-emphasized, because what is really decisive is an expected and
reasonable behaviour of the index when applied to regular cases of real or theoretical
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Fig. 1 Histograms for the distribution of frequencies and quantities, from data in Table 1 (Italy)

income distributions (e.g. Frosini 1989). Moreover, unlike the other main formulae
for the measurement of income (or wealth) inequality, which lack any immediate eco-
nomic meaning, the Pietra–Ricci index is clearly recognized as the share of the total
T that should be redistributed by the people possessing more than the mean towards
the people possessing less than the mean, in order to achieve perfect equality. Besides,
also the graphical meaning of the index P is more direct than the one relating to Gini’s
index: in fact, it is half the area between the two relevant distributions, of frequencies
and quantities (Frosini 2005, pp. 33–36); an example is given in Fig. 1.

As to the operational application of P to frequency–quantity distributions, it is
even simpler than the one exposed for the Gini index. In fact, the following equivalent
formulae, which are based only on the frequencies and quantities of h classes (or
non-overlapping groups),

PH = 1

2T

h∑

j=1

|μ j − μ|n j = 1

2

h∑

j=1

|q j − f j | (23)

PH =
∑

q j > f j

(q j − f j ) =
∑

f j >q j

( f j − q j ) (24)

give a very precise approximation of the population value, at least when (as usual)
h ≥ 10, with properly spaced classes. It is easily checked that a difference between
the exact values (21)–(22) and the approximate values (23)–(24) is related only with
the class containing the general mean μ (whereas there is coincidence when μ is equal
to a class endpoint (Frosini 2005, pp. 32–35). An upper bound for the correction to
be applied to formulae of PH is provided by Frosini (2005, p. 35); however, making
use of the assumption of uniform dispersion within the class containing μ, it is quite
easy and immediate to achieve a very good approximation (as exemplified at Sect. 3).
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Anyway, it must be admitted that PH itself provides a sufficiently good approximation,
when h ≥ 10. Needless to say, the computation of P is wholly devoid of the problems
which heavily affect most other inequality measures, concerning the approximations
depending on the spread of incomes in the last class Ch .

Also the decomposition problem appears rather simple for the Pietra–Ricci index.
Let us start with the simple case of two (non-degenerate) groups (k = 2), with respec-
tive means μ1 and μ2, and general mean μ. Necessarily μ1 < μ < μ2, thus we are
allowed to write, with respect to group values x jr ( j = 1, 2; r = 1, . . ., n j ):

T P =
∑

xi >μ

(xi − μ) =
∑

x1r >μ

(x1r − μ) +
∑

x2r >μ

(x2r − μ)

T P =
∑

x1r >μ

(x1r − μ1) +
∑

x1r >μ

(μ1 − μ) +
∑

x2r >μ

(x2r − μ2) +
∑

x2r >μ

(μ2 − μ)

=
∑

x1r >μ1

(x1r − μ1) −
∑

μ1<x1r ≤μ

(x1r − μ1) + #(x1r > μ)(μ1 − μ)

+
∑

x2r >μ2

(x2r − μ2) +
∑

μ<x2r ≤μ2

(x2r − μ2) + #(x2r > μ)(μ2 − μ)

giving rise to (letting Pj the corresponding index for group S j , and q j = Tj/T ):

P = q1 P1 + q2 P2 − 1

T

{
∑

μ1<x1r ≤μ

(x1r − μ1) +
∑

μ<x2r ≤μ2

(μ2 − x2r )

}

+

+ 1

T
{# (x1r > μ) (μ1 − μ) + # (x2r > μ) (μ2 − μ)} . (25)

Some interesting features of this decomposition (anyway, a special case of the general
formula (26) that will follow), are already worth mentioning. The first two terms of
(25) give the contribution to P of the average group index, with weights given by the
respective income shares; this sum is clearly interpretable as the ‘within inequality’:

PW = q1 P1 + q2 P2.

With this interpretation, the residual P − PW is amenable to all other kinds of differ-
ences between groups; thus we could define the ‘between inequality’ by PB = P−PW.

In general, with k groups, the corresponding decomposition of TP, of the same kind
of formula (25), turns out as follows:

T P =
k∑

j=1

∑

x jr >μ

(x jr − μ) =
k∑

j=1

⎧
⎨

⎩

∑

x jr >μ

(x jr − μ j ) +
∑

x jr >μ

(μ j − μ)

⎫
⎬

⎭

T P =
∑

μ j <μ

⎧
⎨

⎩

∑

x jr >μ j

(x jr − μ j ) −
∑

μ j <x jr ≤μ

(x jr − μ j ) +
∑

x jr >μ

(μ j − μ)

⎫
⎬

⎭
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+
∑

μ j =μ

∑

x jr >μ

(x jr − μ)

+
∑

μ j >μ

⎧
⎨

⎩

∑

x jr >μ j

(x jr − μ j ) +
∑

μ<x jr ≤μ j

(x jr − μ j ) +
∑

x jr >μ

(μ j − μ)

⎫
⎬

⎭
.

(26)

Before presenting another, more interesting decomposition expression, let us make
some observations on formula (26). If all groups have the same mean μ (possibly
with identical or different dispersion or skewness), then TP equals the second row of
(26), and

P = PW =
k∑

j=1

q j Pj

quite a reasonable result. On the other hand, having started with the operational for-
mula for P given by the left hand side in (22), something unsatisfactory appears from
the reading of the k rows (row j for group S j ) in the analytical development of formula
(26). In fact, for μ j < μ, the contribution of group S j to the total TP is

Tj Pj −
∑

μ j <x jr ≤μ

(
x jr − μ j

) +
∑

x jr >μ

(
μ j − μ

);

the first sum is positive and the second negative, thus—in any case—Tj Pj is lessened,
even to zero. This is algebraically reasonable, as some groups could make no contri-
bution to values greater than the general mean μ; however, all reference to the group
inequalities Pj has been lost, if one only looks at the group contributions in every row of
(26). It is possible to maintain such a reference—and the corresponding information—
if we start with the very definition of P , given by formula (21). Following the same kind
of development which has led to formula (26), we can obtain the equivalent formula:

2T P =
k∑

j=1

n j∑

r=1

|x jr − μ| =
k∑

j=1

⎧
⎨

⎩

∑

x jr >μ

(x jr − μ) +
∑

x jr <μ

(μ − x jr )

⎫
⎬

⎭

=
k∑

j=1

⎧
⎨

⎩

∑

x jr >μ

(x jr − μ j ) +
∑

x jr >μ

(μ j − μ) +
∑

x jr <μ

(μ − μ j ) +
∑

x jr <μ

(μ j − x jr )

⎫
⎬

⎭

=
∑

μ j <μ

⎧
⎨

⎩
2Tj Pj − 2

∑

μ j <x jr ≤μ

(x jr − μ j ) +[
#(x jr < μ) − #(x jr > μ)

]
(μ − μ j )

⎫
⎬

⎭

+
∑

μ j =μ

2Tj Pj
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+
∑

μ j >μ

⎧
⎨

⎩
2Tj Pj + 2

∑

μ<x jr ≤μ j

(x jr − μ j )

+ [
#(x jr > μ) − #(x jr < μ)

]
(μ j − μ)

⎫
⎬

⎭

and also

P =
k∑

j=1

q j Pj +
∑

μ j <μ

⎧
⎨

⎩
− 1

T

∑

μ j <x jr ≤μ

(x jr − μ j )

+ 1

2T

[
#(x jr < μ) − #(x jr > μ)

]
(μ − μ j )

⎫
⎬

⎭

+
∑

μ j >μ

⎧
⎨

⎩

1

T

∑

μ<x jr ≤μ j

(x jr − μ j ) + 1

2T

[
#(x jr > μ) − #(x jr < μ)

]
(μ j − μ)

⎫
⎬

⎭

(27)

Reconsidering the contribution to the inequality in the mixture S of group S j , such
contribution is equal to

D j = q j Pj − 1

T

∑

μ j <x jr ≤μ

(x jr − μ j ) + 1

2T

[
#(x jr < μ) − #(x jr > μ)

]
(μ − μ j )

(28)

if μ j < μ;

D j = q j Pj if μ j = μ (29)

D j = q j Pj + 1

T

∑

μ<x jr ≤μ j

(x jr − μ j ) + 1

2T

[
#(x jr > μ) − #(x jr < μ)

]
(μ j − μ)

(30)

if μ j > μ.
Notice that the median terms in (28) and (30) are negative, while the third terms

can be >=< 0. In conclusion, the decomposition of the Pietra–Ricci index P results
as follows:

P = PW + PBt + PBm (31)
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where

PW =
k∑

j=1

q j Pj (32)

is the within inequality;

PBt = 1

T

⎧
⎨

⎩

∑

μ j >μ

∑

μ<x jr ≤μ j

(x jr − μ j ) −
∑

μ j <μ

∑

μ j <x jr ≤μ

(x jr − μ j )

⎫
⎬

⎭
(33)

is the mixture effect, that always lessens the overall inequality;

PBm = 1

T

k∑

j=1

[
#(x jr > μ) − #(x jr < μ)

]
(μ j − μ) (34)

is the mean effect. The sum

PB = PBt + PBm (35)

is the between inequality. A numerical application of these formulae will be presented
at Sect. 3.

The within inequality P(SP ), computed on the AUs, shows some reduction with
respect to the average PW in formula (32). For simplicity, let us assume k groups
with same size n j = n. Calling yr the values of the percentile distribution (formulae
(4)–(5)), the computation of P for this distribution gives rise to the following devel-
opment (taking into account that the total of the AUs is TA = my = T/k):

2TP/k =
m∑

r=1

|yr − y| =
m∑

r=1

∣
∣
∣
∣
∣
∣

1

k

k∑

j=1

x jr − 1

km

k∑

j=1

m∑

r=1

x jr

∣
∣
∣
∣
∣
∣
= 1

k

m∑

r=1

∣
∣
∣
∣
∣
∣

k∑

j=1

(x jr − μ j )

∣
∣
∣
∣
∣
∣

(36)

We know that

2T P =
k∑

j=1

m∑

r=1

|x jr − μ| (37)

and observe that some compensation may arise from negative and positive deviations
in formula (36); if this happens, then (36) is smaller than (37) even when all the group
means are equal (μ j = μ); anyway, the absolute deviations |x jr −μ j | from the group
means are generally expected to produce a smaller total than the absolute deviations
|x jr − μ| from the general mean. A numerical comparison of P(SP ) and PW will be
made at Sect. 3.
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2.3 The case of Theil index

Also the definition of the Theil index is very simple, and immediately usable when all
individual incomes are available (Theil 1967, pp. 91–98):

Th =
n∑

i=1

xi

T
log

(
n

xi

T

)
=

n∑

i=1

qi log(nqi ) = log n +
n∑

i=1

qi log qi (38)

where the logarithms are usually to the base e (as we shall make in the computations
at Sect. 3). The range of values of Th is [0, log n], thus it is not normalized between
0 and 1, like—at least approximately—most other inequality measures; however, this
weakness is counterbalanced by an easy and exact decomposition property. Also, the
approximation problems can be usefully managed on the basis of this decomposition
(Theil 1967, p. 95):

Th(S) =
k∑

j=1

q j log

(

n
q j

n j

)

+
k∑

j=1

q j

n j∑

r=1

q jr

q j
log

(

n j
q jr

q j

)

(39)

where the first term is the between inequality

ThB =
k∑

j=1

q j log

(

n
q j

n j

)

=
k∑

j=1

q j log

(
μ j

μ

)

(40)

and the second term is the within inequality

ThW =
k∑

j=1

q j

n j∑

r=1

q jr

q j
log

(

n j
q jr

q j

)

=
k∑

j=1

q j Th(S j ) (41)

where

Th
(
S j

) =
n j∑

r=1

q jr

q j
log

(

n j
q jr

q j

)

=
n j∑

r=1

x jr

Tj
log

(

n j
x jr

Tj

)

, (42)

thus, the within inequality is simply the weighted average of the group inequalities.
Although formula (39) displays all the group inequalities, if these are not really

informative, then the computation of the between and within inequalities only requires
the knowledge of the total and of the between inequality.

When we dispose of a frequency–quantity distribution (n1, T1; . . .; nh, Th) or
( f1, q1; . . .; fh, qh), when h ≥ 10 the first term ThB in (39)—now called ThM as
the reference is a single frequency distribution—usually gives a good approximation
of Th; anyway, the dispersion of incomes within each class is not accounted for. To do
so, some devices are available for a reasonable approximation of each Th j (= Theil
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inequality within the class C j ). An upper bound for Th j is (with the same symbols in
formula (12), and following and analogous procedure)

ThB
j = (b j − μ j )a j

(b j − a j )μ j
log

a j

μ j
+ (μ j − a j )b j

(b j − a j )μ j
log

b j

μ j
(43)

(Theil 1967, p. 132). A more accurate approximation—perhaps excepting the last
class Ch—is usually obtained by the assumption of a uniform spread of income values
inside the class endpoints—see formula (13). In brief, A j = b j −a j and p jr = s jr/s j ,
with

s jr = a j + (2r − 1) A j/2n j (44)

s j =
n j∑

r=1

s jr = n j
(
a j + b j

)
/2 (45)

the Theil index for the class C j can be approximated by

ThA
j =

n j∑

r=1

p jr log(n j p jr ) = log n j +
n j∑

r=1

p jr log p jr (46)

= log n j +
n j∑

r=1

s jr

s j
log

s jr

s j

= 1

s j

n j∑

r=1

s jr log s jr − log

(
a j + b j

2

)

(47)

If the sum in (47) is multiplied by the scanning interval A j/n j between successive
values s jr (r = 1, . . ., n j ), then it is recognized as the histogram approximating a
known integral between the limits a j and b j :

n j∑

r=1

s jr log s jr × A j/n j ≈v j =
b j∫

a j

x log xdx = b2
j (log b j − 1/2)/2

−a2
j (log a j − 1/2)/2.

Thus,

T A
j ≈ ThC

j = 2v j

A j (a j + b j )
− log

(
a j + b j

2

)

. (48)
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Finally, we get the following kinds of approximations for the correction of formula
(40)—now called ThM—applied to the frequency–quantity distribution over h classes:

ThB =
h∑

j=1

ThB
j q j ; ThA =

h∑

j=1

ThA
j q j ; ThC =

h∑

j=1

ThC
j q j . (49)

As already said, these approximations may be unsuitable for the last class Ch . As for
the Gini index, after getting the estimator θ̂ of formula (17), we can apply the general
formula for the Theil index in the case of Pareto distributions (Theil 1967, p. 98):

Th j = 1

θ − 1
− log

θ

θ − 1
(50)

Some numerical comparisons of these approximations will be presented in the next
section.

The general result concerning the aggregate units in case of k groups, with respec-
tive sizes n j and total quantities Tj , turns out as follows. The matrix (3) is composed
of n rows and m columns, as we consider n j replicas of the AUs for group S j . Each
replica has a total = μ j ; thus, having determined unitary shares for m AUs in the j th
group, by means of differences between values of the Lorenz function

u jr = L j (r/m) − L j ((r − 1) /m) r = 1, . . ., m,

the values x jr of (3) are simply obtained as x jr = u jrμ j . Letting x (i)
jr the values of the

i th replica (i = 1, . . ., n j ) for group S j , the total for the r th column in (3) is therefore

yr =
k∑

j=1

n j∑

i=1

u(i)
jr μ j =

k∑

j=1

u jr Tj

(division by n is irrelevant, as we are using an ISP index); the sum of these AUs is

m∑

r=1

yr =
m∑

r=1

k∑

j=1

u jr Tj =
k∑

j=1

Tj

m∑

r=1

u jr = T .

The Theil index applied to the m AUs y1, . . ., ym is therefore:

Th(G P ) =
m∑

r=1

yr

T
log

(
m

yr

T

)
=

m∑

r=1

k∑

j=1

u jr q j log

⎛

⎝m
k∑

j=1

u jr q j

⎞

⎠

=
k∑

j=1

q j

m∑

r=1

u jr log

⎛

⎝m
k∑

j=1

u jr q j

⎞

⎠
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Table 1 Percent frequencies and quantities for 13 income classes, from the 2004 Bank of Italy Survey on
household income and wealth (Banca d’Italia 2006)

Classes in Euros North Center South Italy
C j f j q j f j q j f j q j f j q j

250 −| 8274 2.666 0.485 2.247 0.415 10.061 2.759 5.007 1.035

8274 −| 12000 5.058 1.547 5.760 1.803 13.402 6.025 7.955 2.723

12000 −| 15040 7.642 3.069 7.316 3.029 13.250 7.988 9.416 4.285

15040 −| 19030 10.995 5.546 10.599 5.515 16.287 12.123 12.650 7.178

19030 −| 23230 11.820 7.359 13.767 8.915 12.528 11.568 12.475 8.777

23230 −| 27300 10.665 7.972 10.196 7.886 8.428 9.342 9.828 8.293

27300 −| 32540 11.325 10.024 11.636 10.623 7.555 9.926 10.152 10.142

32540 −| 37240 8.494 8.769 8.468 9.028 5.581 8.562 7.530 8.779

37240 −| 43190 9.126 10.831 8.986 11.038 4.252 7.488 7.493 10.047

43190 −| 48540 6.295 8.518 5.472 7.670 2.771 5.584 4.958 7.585

48540 −| 58030 6.432 10.069 6.221 10.149 2.354 5.488 5.045 8.947

58030 −| 72140 4.810 9.168 4.896 9.591 2.278 6.354 3.996 8.567

72140 −| 1022617 4.673 16.643 4.435 14.341 1.253 6.793 3.497 13.642

The comparison with (41) shows that ThW = Th(G P ) if and only if the rows in (3)
are proportional, namely, if and only if the inequalities within each group are the same
(cf. Frosini 1989, p. 362).

3 An application to the 2004 Bank of Italy Survey on household incomes

Many of the formulae previously exposed will be applied to some data coming from
the 2004 Bank of Italy Survey on household income and wealth (Banca d’Italia 2006;
Radaelli 2008). An essential abstract from these data is presented in Table 1, show-
ing four frequency–quantity distributions (with relative frequencies and quantities),
pertaining to Italy, as well as to the traditional geographical areas North, Center and
South; the respective sample sizes and average incomes for households are: 8,008
units and 29,888 Euros for Italy, 3,638 units and 33,779 Euros for North, 1,736 units
and 32,726 for Center, 2,634 units and 22,642 Euros for South; the respective weights
concerning total income are: qN = 0.51345, qC = 0.23737, qS = 0.24918. These
data are immediately functional for the graphical representation of the two relevant
histograms—for frequencies and quantities—reported in Fig. 1, and for the calculation
of Pietra–Ricci’s index.

Following the same order of Sect. 2, let us start with the computation about the
Gini’s index. Table 2 reports the main results relevant for the computation of the G
index for geographical groups and Italy. Column (2) reports the index GM computed
from formula (11). The following four columns report some kinds of approximations
for the inequalities within the classes: column (3) from formula (12); column (4) from
formula (12) applied to the first twelve classes, and using the Pareto approximation
(18) for the last class; column (5) from the uniform approximation (16); column (6)
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Table 2 Computations for the Gini index, for the three main geographical areas and Italy (from data in
Table 1 and text)

Groups GM G B G B + Pareto G A G A + Pareto G
(1) (2) (3) (4) (5) (6) (7) = (2) + (6)

North 33.89 0.61 0.51 1.24 0.41 34.30

Center 32.45 0.53 0.45 1.18 0.34 32.79

South 34.67 0.53 0.52 0.46 0.37 35.04

Italy 35.10 0.51 0.45 0.45 0.34 35.44

All original values are multiplied by 100

using this same approximation for the first twelve classes, and Pareto approximation
(18) for the last class; and finally, column (7) provides the proposed approximation
for G, obtained by summing GM with the last approximation of the inequality within
classes.

On the basis of these results, the within inequality computed by the average (20),
obtained by means of the AUs approach, is G(SP ) = 34.30 × 0.51345 + 32.79 ×
0.23737 + 35.04 × 0.24918 = 34.13%; the ensuing ‘between inequality’, obtained as
a residual with respect to the overall inequality 35.44%, is 1.31%. Finally, the calcula-
tion of the Gini index for the three group means with formula (11) gives rise to another
computation of the between inequality IB; this kind of between inequality turns out
to be 8.32%.

Turning to the Pietra–Ricci index, the necessary computations are easily derived
from Table 1, as the differences |q j − f j | for the h classes provide all the information
required by formula (23). Figure 1 is related to frequency and quantity distributions
for Italy, and gives an example of the graphical representation of PH (the area between
the two histograms, before or after the intersection point). The values of PH , obtained
by summing the positive differences ( f j − q j ), or the positive differences (q j − f j ),
in Table 1, are already good approximations for P; they are reported in column (2)
of Table 3. As PH exactly coincides with P when the mean μ falls just on a class
endpoint, in order to get a better approximation, we should divide the class containing
the mean in two sub-classes; the corresponding frequencies and quantities of these
sub-classes are obtained by linear approximation (a very good approximation, since
we are about the center of the distribution). As an example, consider the case of the
North distribution; the mean μN =33,779 is included in the class 32,540 −| 37,240 of
width 4,700, which must be split into the subclasses 32,540 −| 33,779 (of width 1,239)
and 33,779 −| 37,240 (of width 3,461). The class frequency 309 can be proportion-
ally divided according to the widths of the sub-classes; thus the frequency of the first
sub-class is 309× 1,239/4,700 = 81 (while the other frequency is 309 − 81 = 228).
Assuming that the mean of this sub-class is its central point 33,129, the positive differ-
ence ( f js −q js)—concerning relative frequencies and quantities of this sub-class—is
(81/3,638 − 81× 33,129/122,889,326) = 0.00041; thus the percent estimated increase
of PH is 0.04, and the final approximation of P is 24.17 + 0.04 = 24.21; as expected,
PH itself is a very good approximation of P . The remaining approximations are also
given in Table 3; notice that the second approximation is practically zero, owing to
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Table 3 Computations of the Pietra–Ricci index, for geographical areas and Italy (from data in Table 1
and text)

Groups PH Correction P Contribution to inequality
(1) (2) (3) (4) (5)

North 24.17 0.040 24.21 11.918

Center 23.34 0.001 23.34 5.356

South 25.07 0.023 25.09 7.996

Italy 25.05 0.217 25.27 25.270

All values are multiplied by 100

the fact that the group mean μC = 32,726 is very near to the left endpoint 32,540 of
the class containing μC; on the contrary, the heaviest correction (although of limited
impact) happens for Italy, as the general mean μ = 29,888 is near the center of the
class interval 27,300 −| 32,540.

The components in formulae (28)–(30), corresponding to the three groups, are as
follows (where N = North, C = Center, S = South; these components obviously sum
to the total inequality P = 25.27):

DN = 12.428 − 0.248 − 0.262 = 11.918

DC = 5.540 − 0.068 − 0.116 = 5.356

DS = 6.252 − 0.463 + 2.207 = 7.996.

The components (32)–(34) of this decomposition of total inequality are as follows:

PW = 12.428 + 5.540 + 6.252 = 24.220 is the within inequality;
PBt = −0.248 − 0.068 − 0.463 = −0.779 is the mixture effect;
PBm = −0.262 − 0.116 + 2.207 = 1.829 is the mean effect;

the between inequality is thus P − PW = PBt + PBm = 1.05. Finally, the calcula-
tion of P on the group means (with corresponding group frequencies), as only the
South group has a mean smaller than the general mean μ, is simply equal to (29,888
− 22,642)(1736/T ) = 0.0526, or 5.26%. The computation of the within inequality
P(SP ), effected by the application of P to AUs, results in P(SP ) = 24.089, both for
m (number of AUs) = 50 and = 100 (just a little less than PW = 24.220, as expected).
It is quite obvious that there is no convenience to make the calculation of the within
inequality through the AUs, as the result is practically equivalent to the one provided
by the decomposition (31).

As regards the computations for the Theil index, first of all we have computed the
approximation (40)—called in this case ThM—which uses only the distribution of
partial means; these values, multiplied by 100 (as usual, although the Theil index is
not normalized in the interval [0,1]), are reported in the second column of Table 4. As
observed in Sect. 2.3, there are several types of approximations of the second term in
(39), which has the meaning of ‘within inequality’; the first type, based on the upper
bound (43) for the inequality measure within the class C j ( j = 1, . . ., 13), has been
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Table 4 Computations for the Theil index, for main geographical areas and Italy (from data in Table 1 and
text)

Groups ThM ThB ThB + Pareto ThA and ThC ThA + Pareto Th
(1) (2) (3) (4) (5) (6) (7) = (2) + (6)

North 19.995 10.966 3.069 2.496 2.796 22.791

Center 17.745 7.997 1.672 2.171 1.389 19.134

South 21.203 5.540 2.316 1.554 1.771 22.974

Italy 21.256 8.933 2.501 2.184 2.157 23.413

All original values are multiplied by 100

computed as the weighted mean of these bounds (see formula (49)). These approx-
imations ThB are reported in column (3) of Table 4; it is immediately evident that
these ‘corrections’ are excessively large, owing to the exceptional wideness of the last
class. Column (4) of Table 4 reports an analogous weighted mean, however replacing
the (43) value for the last class with a Pareto estimation (formula (50)): the resulting
approximations of the within inequalities (41) become much more reliable. The other
kinds of approximation, based on the assumption of uniform spread within each class,
yield values substantially comparable with the ones just mentioned: they are reported
in column (5) of Table 4 as ThA (see formulae (46) and (49)). The modification of such
approximation by the recourse to a Pareto estimation (50) concerning the last class,
does not substantially reduce the previous evaluations; actually, this happens only for
the Center area, while for North and South they are even increased.

Although a good approximation of the integral to the histogram —resumed in for-
mula (48)—was expected owing to the large frequencies of the classes, it was a really
welcome result that the first four significant figures (all the figures reported in Table 4)
coincide for the two kinds of approximation, thus rendering the integral approximation
(48) very simple and reliable; that is the reason for the heading ‘ThA and ThC ’ of the
column (5) of Table 4. Finally, column (7) reports the proposed approximation for the
Theil index, as the sum of values in columns (2) and (6).

The ‘within’ inequality (41) turns out to be ThW = 22.791 × 0.51345 + 19.134 ×
0.23737 + 22.974 × 0.24918 = 21.969; thus the between inequality ThB is sim-
ply = 23.413—21.969 = 1.444%. The recourse to AUs (just to complete this appli-
cation) changes these results; with m = 50 AUs, Th(G P ) = 19.293; with m =
100, Th(G P ) = 19.377 (instead of ThW = 21.969). For these choices of m, the
evaluation of between inequality as a residual gives rise to values (23.413–19.293) =
4.120% for m = 50, and to (23.413–19.377) = 4.036% for m = 100.

4 Conclusions

The general problem of decomposition of inequality measures, so much debated in
the literature, has been outlined at paragraph 1, where four approaches have been pre-
sented, with a short insight for each of them, also stressing the most recent achieve-
ments by Silber, Yitzhaki and Lerman, Dagum, Deutsch and Silber, Okamoto, and the
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author’s proposal. Some problems of computation, approximation and decomposition
of Gini, Theil and Pietra–Ricci indices have been dealt with at Sects. 2.1, 2.2 and 2.3.

Amongst these indices, the most investigated in this article has been the less known
and the more neglected one: the Pietra–Ricci index. Although satisfying only the
weak principle of transfers, this index possesses an important and well-known eco-
nomic property, whose graphical counterpart uses only the two basic histograms of
frequencies and quantities. The problem of approximation—when only a frequency
distribution is available—is practically non-existent, while the obtained three-term
decomposition of this index appears operatively simple and highly informative. The
application displayed at paragraph 3, concerning a recent large survey of household
incomes for Italy, confirms the suitability of the Pietra–Ricci index, and—in any case—
a coherent behaviour with respect to the other two indices.

Acknowledgments The author wishes to thank the three anonymous referees for their several, valuable
comments and suggestions, leading to a more thoughtful and extensive coverage of the subject.

References

Banca d’Italia (2006) Household income and wealth in 2004. Supplement to the Statistical Bulletin—
Sample Surveys, Year XVI, n 7

Bhattacharya N, Mahalanobis B (1967) Regional disparities in household consumption in India. J Am Stat
Assoc 62:143–161

Bourguignon F (1979) Decomposable income inequality measures. Econometrica 47:901–920
Castagnoli E, Muliere P (1990) A note on inequality measures and the Pigou-Dalton principle of transfers.

In: Dagum C, Zenga M (eds) Income and wealth distribution, inequality and poverty. Springer, Berlin,
pp 171–182

Cowell FA (1980) On the structure of additive inequality measures. Rev Econ Stud 47:521–531
Dagum C (1997a) Scomposizione ed interpretazione delle misure di disuguaglianza di Gini e di entropia

generalizzata. Statistica 57:295–308
Dagum C (1997b) A new approach to the decomposition of the Gini income inequality ratio. Empir Econ

22:515–531
Dagum C (2001) Desigualdad del rédito y bienestar social, descompositión, distancia direccional y distancia

métrica entre distribuciones. Estud Econ Apl 17:5–52
Deutsch J, Silber J (1997) Gini’s “transvariazione” and the measurement of distance between distributions.

Empir Econ 22:547–554
Deutsch J, Silber J (2007) Decomposing income inequality by population subgroups: a generalization. In:

Bishop J (ed) Inequality and poverty, research on economic inequality, vol 14. Elsevier, Amsterdam,
pp 237–253

Deutsch J, Silber J (2008) On the Shapley value and the decomposition of inequality by population sub-
groups with special emphasis on the Gini index. In: Betti G, Lemmi A (eds) Advances on income
inequality and concentration measures. Routledge, London pp 161–178

Fei JCH, Ranis G, Kuo SWY (1979) Growth with equity. The Taiwan case. Oxford University Press,
New York

Frosini BV (1985) Comparing inequality measures. Statistica 45:299–317
Frosini BV (1987) Lezioni di statistica. Parte prima (Seconda edizione). Vita e Pensiero, Milano
Frosini BV (1989) Aggregate units, within-group inequality, and the decomposition of inequality measures.

Statistica 49:349–369
Frosini BV (1990a) Ordinal decomposition of inequality measures in case of Dagum distributions. In:

Dagum C, Zenga M (eds) Income and wealth distribution, inequality and poverty. Springer, Berlin
Frosini BV (1990b) Lezioni di statistica, Parte prima (Terza Edizione). Vita e Pensiero, Milano
Frosini BV (2003) Decomposition of inequality measures based on aggregate units. Estadistica 55:377–388
Frosini BV (2005) Inequality measures for histograms. Statistica 65:27–40
Frosini BV (2009) Metodi statistici (Seconda edizione). Carocci, Roma

123



Gini, Pietra–Ricci and Theil inequality measures 197

Gastwirth JL (1972) The estimation of the Lorenz curve and Gini index. Rev Econ Stat 54:306–316
Gini C (1914) Sulla misura della concentrazione e della variabilità dei caratteri. Atti Regio Ist Veneto

73(Parte II):1203–1248
Kakwani NC (1980) Income inequality and poverty. Oxford University Press, London
Marshall AW, Olkin I (1979) Inequalities: theory of majorization and its applications. Academic Press,

New York
Okamoto M (2009) Decomposition of Gini and multivariate Gini indices. J Econ Inequal 7:153–177
Pietra G (1915) Delle relazioni tra gli indici di variabilità Nota I. Atti Regio Ist Veneto 74(Parte II):775–792
Quintano C, Castellano R, Regoli A (2009) Evolution and decomposition of income inequality in Italy,

1991–2004. Stat Methods Appl 18:419–443
Radaelli P (2008) A subgroups decomposition of Zenga’s uniformity and inequality indices. Stat Appl

6:117–136
Ricci U (1916) L’indice di variabilità e la curva dei redditi. Giornale degli Econ Riv Stat Serie Terza

53:177–228
Shorrocks AF (1980) The class of additively decomposable inequality measures. Econometrica 48:613–625
Shorrocks AF (1999) Decomposition procedures for distributional analysis: a unified framework based on

the Shapley Value. Mimeo, University of Essex
Silber J (1989) Factor components, population subgroups and the computation of the Gini index of inequal-

ity. Rev Econ Stat 71:107–115
Theil H (1967) Economics and information theory. North Holland, Amsterdam
Yitzhaki S, Lerman RI (1991) Income stratification and income inequality. Rev Income Wealth 37:313–329
Zagier D (1983) Inequalities for the Gini coefficient of composite populations. J Math Econ 12:103–118
Zenga M (1987) Effetti della normalizzazione sul principio della somiglianza e sulla scomponibilità

degli indici di concentrazione. In: Zenga M (ed) La distribuzione personale del reddito: problemi
di formazione, di ripartizione e di misurazione. Vita e Pensiero, Milano

Zenga M (2007) Inequality curve and inequality index based on the ratios between lower and upper arith-
metic means. Stat Appl 6:137–151

123


	Approximation and decomposition of Gini, Pietra--Ricci and Theil inequality measures
	Abstract
	1 A short outline of income inequality measures and group decompositions
	2 Computation and decomposition of Gini, Theil and Pietra--Ricci indices
	2.1 The case of Gini index
	2.2 The case of Pietra--Ricci index
	2.3 The case of Theil index

	3 An application to the 2004 Bank of Italy Survey on household incomes
	4 Conclusions
	Acknowledgments
	References


