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Abstract This article characterizes the nonlinear relation between oil price change
and GDP growth, focusing on the panel data of various industrialized countries. Toward
this end, the article extends a flexible nonlinear inference to the panel data analysis
where the random error components are incorporated into the flexible approach. The
article reports clear evidence of nonlinearity in the panel and confirms earlier claims in
the literature—oil price increases are statistically and economically significant while
oil price decreases are not and previous upheaval in oil prices causes the marginal
effect of any given oil price change to be reduced. Our result suggests that the nonlin-
ear oil–macroeconomy relation is generally observable over different industrialized
countries and it is desirable for one to use the nonlinear function of oil price change
for GDP forecast.

Keywords Oil shock · Nonlinear flexible inference · Panel data ·
Error components model · Economic fluctuation

JEL Classification E32 · C33

1 Introduction

Quite a few studies have reported that changes in the price of oil appear to have a
significant effect on economic activity. Examples include Rasche and Tatom (1977,
1981), Hamilton (1983, 1996, 2003, 2008, 2009a), Burbidge and Harrison (1984),
Gisser and Goodwin (1986), Mork (1989), Dotsey and Reid (1992), Lee et al. (1995),
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Rotemberg and Woodford (1996), Carruth et al. (1998), Davis and Haltiwanger (2001),
Cuñado and de Gracia (2003), Lee and Ni (2002); Leduc and Sill (2004); Hamilton
and Herrera (2004), among others. However, Hooker (1996) argues that since the mid-
1980s, the linear relation between oil prices and economic activity appears to be either
unstable or misspecified. Blanchard and Gali (2008) show that the effects of a given
change in the price of oil have changed substantially over time and conclude that three
hypotheses—(i) more flexible labor market over time, (ii) changes in the way of con-
ducting monetary policy, and (iii) a decline in the share of oil in the economy—seem
to have played an important role in explaining the different effects of oil prices during
the 1970s and during the last decade.

In the recent studies about the oil–macroeconomy relation, particularly two issues
were debated. The first issue is what causes the oil price increases. Hamilton (1996,
2003, 2009a) claims that physical disruptions of supply of oil caused significant impact
of oil price changes on macroeconomy whereas Barsky and Kilian (2002, 2004) and
Kilian (2008a, b, 2009a, b) argue that expectations of future oil supply interruptions
induce shocks to the precautionary demand for oil that reflect fears about future oil
supplies while exogenous oil supply shocks account for only a comparatively small
part of oil price movement and thus the oil price increases were driven by strong global
demand for oil in conjunction with capacity constraints in crude oil production.1 The
second issue is the functional form of the oil–macroeconomy relation. Lee et al. (1995),
Hamilton (1996, 2003, 2009a), Cuñado and de Gracia (2003), Jimenez-Rodriguez and
Sanchez (2005), and Herrera et al. (2010) show that the relation is nonlinear while
Kilian and Vigfusson (2009) find little evidence on the nonlinear relation.

This article focuses on the latter issue. Many authors have concluded that the non-
linearity of the relation between oil prices and economic activity is responsible for
the instability of the empirical relation or misspecification of the functional form.2

Hamilton (2003) applies a flexible approach to nonlinear inference developed by
Hamilton (2001) and tries to isolate an exogenous component of oil price move-
ments by measuring the oil supply curtailed by five separate military conflicts during
the postwar period to address a statistically significant nonlinear relation. Hamilton
(2003) finds that the nonlinear relation of oil prices suggested by the functional form of
the conditional expectation function supports the lines suggested in the literature: oil
price increases are statistically and economically significant while oil price decreases
are not and increases have significantly less predictive content if they simply correct
previous decreases. He also finds that the nonlinear transformation of oil prices based
on the functional form is in fact quite similar to the first-stage least-squares fit from a
regression of oil price changes on these exogenous supply disturbances, and that the
dynamic multipliers from the nonlinear relation are similar to those coming from a
linear relation estimated by instrumental variables. Mork et al. (1994) conclude from

1 Hamilton (2009a) claims that the price run-up of 2007–2008 was caused by strong demand confronting
stagnating world production whereas previous oil price shocks were primarily caused by physical disrup-
tions of supply but the consequences of the 2007–2008 oil price increases for the economy appear to have
been similar to those observed in earlier episodes about the U.S. recessions caused oil price shocks.
2 Examples include Loungani (1986), Davis (1987a, b), Mork (1989), Lee et al. (1995), Hamilton (1996,
2003), Davis and Haltiwanger (2001), Cuñado and de Gracia (2003), Jimenez-Rodriguez and Sanchez
(2005), among others.

123



What is an oil shock? 123

the study of seven OECD countries that the correlation patterns between oil-price
change and real GDP growth are not the same for price increases and decreases, and
asymmetry in the effects of oil price fluctuation is a reasonably robust empirical find-
ing. Cuñado and de Gracia (2003) found from the use of different transformation of
oil price data that similar evidence of nonlinearity is observed for European countries
as well as U.S.A. while there are significant differences among some of the countries.
Jimenez-Rodriguez and Sanchez (2005) carried out multivariate VAR analysis using
both linear and non-linear models for main industrialized countries and found that oil
price increases have an impact on GDP growth of a larger magnitude than that of oil
price declines, supporting a non-linear impact of oil prices on real GDP. Herrera et al.
(2010) found a strong nonlinear response of U.S. industrial production to oil prices.

Kilian and Vigfusson (2009), however, show that the regression models and esti-
mation methods which use measures that censor energy price changes to exclude all
energy price decreases and are typically used in the existing literature, produce incon-
sistent estimates of the true effects of unanticipated energy prices increases and lead
to overestimating the impact of energy price shocks on macroeconomic aggregates.
They find little evidence against the null hypothesis of symmetry in the responses to
energy price shocks. Nevertheless, Hamilton (2009b) notes that it must be differences
in the specification and data set between Hamilton (2003) and Kilian and Vigfusson
(2009), rather than differences in the testing methodology, that accounts for the differ-
ent findings, and provides a number of detail differences that could explain Kilian and
Vigfusson (2009) weaker evidence of nonlinearity such as different data sets, different
measure of oil prices, different price adjustment, the inclusion of contemporaneous
regressors, and number of lags.

This article considers two insights to examine the functional form of the oil–
macroeconomy relationship. First of all, some studies suggest that the nonlinear rela-
tionship between oil-price changes and real GDP growth is present not only within a
cross-section unit (a country) but also over the cross-section units (multi-countries).
To the best of my knowledge, however, there is no systematic investigation of whether
the relation between oil price change and real GDP is nonlinear in terms of panel data
analysis. This article extends Hamilton (2001) methodology to the panel framework
to characterize the nonlinear relation. Specifically, we consider the error components
model of Wallace and Hussain (1969); Baltagi et al. (2002), among others, in the
context of a flexible approach to nonlinear inference of Hamilton (2001).3 The meth-
odology developed in this article is useful for analyzing nonlinear relation between
economic variables in the panel framework because the benefits of nonlinear flexible
inferences claimed in Hamilton (2001) can be strengthened with several advantages
from using panel data.4 This framework may be applied to re-examine the structural
stability of the Phillips Curve as the example of Hamilton (2001) and to investigate

3 The error component model has been considered by Wallace and Hussain (1969), Nerlove (1971),
Maddala (1971), Amemiya (1971), Swamy and Arora (1972), Fuller and Battese (1973), Baltagi (1981),
Baltagi and Griffin (1983), Breusch (1987), Boehmer and Megginson (1990), and Baltagi and Pinnoi (1995),
among others. For further discussion and references see Baltagi (2008).
4 For detail discussion of the benefits from using panel data, see Klevmarken (1989), Hsiao (2003), and
Baltagi (2008).
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the nature of nonlinearity in the monetary policy rule as the example of Kim et al.
(2005). Secondly, our parametric approach does not have to use the censored oil price
changes to investigate asymmetric oil–macroeconomy relation and thus one would
avoid potential problems from using the censored energy price changes as pointed out
in Kilian and Vigfusson (2009).

In our model, the nonlinear functional relation is common across countries and
over time and the regression error is assumed to be composed of three independent
components—one component associated with the cross-sectional units, another with
an aggregate shock, and the third being an idiosyncratic shock. The results support
the claim of a nonlinear relation along the lines suggested in the literature: oil price
increases affect the economy whereas decreases do not and previous upheaval in oil
prices causes a reduction in the marginal effect of any given oil price change. The
alternative specifications of the panel data model with nonlinear flexible inference as
a robustness analysis confirm the asymmetric effect of oil price change on macroec-
onomy.

The plan of the article is as follows: Sect. 2 considers the error components model
of the panel data in the context of a parametric approach to flexible nonlinear infer-
ence. Empirical results for the analysis of oil–macroeconomy relation are presented
in Sect. 3. Concluding remarks are offered in Sect. 4.

2 A parametric approach to nonlinear flexible inference in the panel

2.1 Model

Consider the general nonlinear regression model of the form based on the panel

yit = μi (xi t )+ εi t , i = 1, 2, . . . , N , t = 1, 2, . . . , T, (1)

where, yit is a scalar-dependent variable at time t for country i, x′
i t is a k-dimen-

sional vector of explanatory variables, and εi t is Gaussian with dependence struc-
ture with mean zero and independent of both μi (.) and xiτ for i = 1, . . . , N , and
τ = t, t − 1, . . . , 1. This specification considers the nonlinear relation over the group
as well as within the group and thus allows the functional relation to be different over
cross-country units. Following Hamilton (2001), the conditional mean function in the
panel data, μi (xi t ), is written as

μi (xi t ) = α0 + α′
i1xi t + λi m(gi � xi t ), i = 1, 2, . . . , N , (2)

where m(.) denotes the realization of a scalar-valued Gaussian random field with mean
zero and unit variance, α0, α

′
i1, λi , and gi are population parameters to be estimated,

gi = (gi1, gi2, . . . , gik)
′ and � indicates element-by-element multiplication. λ2

i gov-
erns the overall importance of the nonlinear component, and gi governs the variability
of the nonlinear component with respect to each explanatory variable.

As an approach to combining cross section and time series data, we consider the
use of an error components model where one component of random error εi t is an
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unobserved individual effect which is constant through time, another component is an
unobserved time effect which is the same for all individuals at a given time, and the
third component is an unobserved remainder which differs among individuals both at
a point in time and through time. Thus, we assume that the residual, εi t , is decomposed
into the sum of three components:

εi t = ωi + at + vi t , (3)

where, ωi is an individual specific variable, at a time-specific variable, and vi t is the
remainder. ω′

i s, a′
t s, and v′

i t s are random, have zero means, have variances σ 2
ω, σ

2
a ,

and σ 2
v , and are independent of each other. That is, it is assumed that Eωi = Eat =

Evi t = 0, Eωiω j = 0 for i �= j, Eat as = 0 for t �= s, Evi tv js = σ 2
v for

i = j, t = s, and zero otherwise, Eωi at = Eωivi t = Eatvi t = 0. In addition, xiτ

is independent of ωi , at , and vi t for all i and τ ≤ t, assuming that the regressor xi t

is strictly exogenous and xi t and εi t are independent of the realization of the random
field m(·) in Eq. 2.

For the case of strictly exogenous regressors and no lagged dependent variables, we
assume that conditional on the full sample of observations on the exogenous explana-
tory variables (X = {xi t }i=1,...,N ;t=1,...,T ), the variables ωi , at and vi t are all Normal
with zero means, variancesσ 2

ω, σ
2
a , andσ 2

v , respectively, and are mutually independent.
That is, for ε = (ε

′
1, . . . , ε

′
N )

′ and εi = (εi1, . . . , εiT )
′, we assume that

ε|X ∼ N
(

0, σ 2
ω(IN ⊗ JT )+ σ 2

a (JN ⊗ IT )+ σ 2
v IN T

)

where JT and JN denote (T × T ) and (N × N ) matrices of ones, respectively. In
our application below we include lagged values of yit along with lagged values of oil
prices, with the latter taken to be strictly exogenous. In this case the conditioning set X
corresponds to the full sample of observations on oil prices and the pre-sample obser-
vations on yit , that is, X = {{oit }i=1,...,N ;t=−3,−2,...,T , {yit }i=1,...,N ;t=−3,−2,−1,0

}
for

the above conditional distribution.
For simplicity, we further assume that the slopes in the linear component in Eq. 2 are

homogenous among different individuals, andλi and gi are not specific to cross-section
units. In general, allowing nonlinear parameters to be country-specific (heterogenous
nonlinear components), may be useful for considering the panel heterogeneity issue
in the application of our method to various economic application. In our application to
the industrialized countries for oil–macroeconomy relation, however, such heteroge-
neity across the panel may be less likely and the homogenous assumption for nonlinear
parameters over different countries would make one focus on common oil–macroec-
onomy relation across countries.

Under these assumptions, the general specification, (1) and (2), with random-effect
and k-explanatory variables and the conditional mean function of Eq. 2 in the panel
can be rewritten

yit = α0 + α′
1xi t + λm(g � xi t )+ εi t , (4)

εi t = ωi + at + vi t , (5)
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μ(xi t ) = α0 + α′
1xi t + λm(g � xi t ), i = 1, 2, . . . , N , t = 1, . . . , T . (6)

Hamilton (2001) chooses a generalized version of the so-called spherical covariance
function and this function can be applied to the panel as

Hk(his, j t ) =
{

Gk−1(his, j t , 1)/Gk−1(0, 1) i f his, j t ≤ 1
0 i f his, j t > 1,

(7)

Gk(his, j t , r) =
r∫

his, j t

(r2 − z2)k/2dz, (8)

his, j t = (1/2){[g � (xis − x j t )]′[g � (xis − x j t )]}1/2,

i, j = 1, . . . , N , t, s = 1, . . . , T (9)

where Hk(his, j t ) denotes the {is, j t} entry in the N T × N T covariance function
matrix Hk .

2.2 Inference about the conditional expectation function

If each component in εi t (Eq. 5) is random and normally distributed and if the regres-
sor x′

i t is strictly exogenous, then the specification of Eqs. 4, 5 and 6 implies a GLS
regression model of the form

y|X ∼ N (Xβ,�), (10)

where

y = (y′
1, . . . , y′

N )
′, yi = (yi1, . . . , yiT )

′,

X =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 x′
11

1 x′
12

. .

1 x′
1T

. .

1 x′
N T

⎤
⎥⎥⎥⎥⎥⎥⎦
,

� = C0 + σ 2
ω(IN ⊗ JT )+ σ 2

a (JN ⊗ IT )+ σ 2
v IN T , (11)

C0 = [λ2 Hk(his, j t )]i, j=1,...,N , & t,s=1,...,T , (12)

β = (α0,α
′
1)

′, the (1+k)-dimensional vector, JT and JN are the T ×T and the N × N
ones matrixes, respectively, IN T is the N T × N T identity matrix, the function Hk(.) is
as specified in Eqs. 4 and 5, and his, j t is given in Eq. 9. Note that σ 2 = σ 2

ω+σ 2
a +σ 2

v .
The log likelihood function is

ln f (y;β, σ 2
ω, σ

2
a , σ

2
v , λ, g)

= − N T

2
ln 2π − 1

2
ln |�| − 1

2
(y − Xβ)′�−1(y − Xβ). (13)
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The maximum likelihood estimators of β, σ 2
ω, σ

2
a , σ

2
v , λ, and g are obtained by

maximizing the log likelihood function (13) with respect to those parameters. How-
ever, even if the ε = y− Xβ, were observable, it is very difficult to solve explicitly this
maximization problem. Hamilton (2001) shows that one useful way to deal with this
problem is to use reparameterization to obtain the concentrated likelihood function. For
each pair of observation is and j t, calculate x̃i t = g�xi t and his, j t (g) = (1/2)[(̃xis −
x̃ j t )

′(̃xis − x̃ j t )]1/2. Let H(g) denotes the (N T × N T ) matrix whose (is, j t) ele-
ment is Hk(his, j t (g)). Let Ynt = (y′

nt , x′
nt , y′

nt−1, x′
nt−1, . . . , y′

n1, x′
n1)

′, ynt =
(y1t , y2t , . . . , ynt )

′ and xnt = (x′
1t , x′

2t , . . . , x′
nt )

′, denote information observed
through date t forn number of individuals. Define ζ ≡ λ/σv to be the ratio of the
standard deviation of the nonlinear component λm(x) to that of the residual v and let
φω = σω

σv
, φa = σa

σv
ψ = (α0,α

′, σ 2
v )

′, θ = (g′, ζ, φω, φa)
′ and

W(X; θ) ≡ ζ 2H(g)+ φ2
ω(IN ⊗ JT )+ φ2

a(JN ⊗ IT )+ IN T . (14)

Now the log likelihood can be written from (13)

ln f (y;ψ, θ)
= − N T

2
ln 2π − N T

2
ln σ 2

v − 1

2
ln |W(X; θ)|

− 1

2σ 2
v

(y − Xβ)′W(X; θ)−1(y − Xβ). (15)

For given θ , the value of ψ that maximizes (15) can be calculated analytically as

β̃(θ) = [X′W(X;θ)−1X]−1[X′W(X;θ)−1y], (16)

σ̃ 2
v = (y − Xβ)′W(X; θ)−1(y − Xβ)/N T . (17)

Now, these allow us to concentrate the log likelihood (15) as

Lc(θ; y, X) =
N∑

i=1

T∑
t=1

ln f (yit |xi t ,YNt−1; ψ̃(θ), θ)

= − N T

2
ln 2π − N T

2
ln σ̃ 2

v (θ)− 1

2
ln |W(X; θ)| − (N T/2). (18)

Numerically maximizing (18) gives the MLE θ̂ , which from (16) and (17) gives ψ̂ .

2.3 Bayesian analysis

In this subsection, we extend Hamilton (2001) Bayesian analysis to the error com-
ponents model of the panel data considered above. Let ψ = (β ′, σ−2

v )′, and
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θ = (g′, ζ, φω, φa)
′. We adopt a standard prior for the linear components as in

Hamilton (2001, 2003).5 The prior distribution of σ−2
v is �(v, ξ) :

p(σ−2
v ) = ξν

�(ν)
σ−2(ν−1)
v exp[−ξσ−2

v ], (19)

where ν= 0.25 and ξ = (νs2
y/2), s2

y = 1
N T

∑N
i=1

∑T
t=1(yit − y)2, y = 1

N T

∑N
i=1∑T

t=1 yit . The prior distribution of β conditional on σ−2
v is Gaussian:

p(β|σ−2
v ) = 1

(2πσ 2
v )
(k+1)/2

|M|−1/2 × exp

[( −1

2σ 2
v

)
(β − m)M−1(β − m)

]
, (20)

where we set the first element of m to the sample mean of yit and all other components
to zero, m = (ȳ, 0, . . . , 0)′ and we take M = N T (X′X)−1, so that the prior has the
weight of a single observation on (yit , x′

i t ). The prior distribution of each element of
θ is a lognormal distribution:

p(θ) =
k+3∏
i=1

1√
2πτiθi

exp

[
−[ln(θi )− ϑi ]2

2τ 2
i

]
. (21)

Note that the prior for θi is taken to be independent of that for β, σ−2
v and θ j , j �=

i. We use τi = 1 for i = 1, . . . , k + 3, and allow ϑ j to depend on the standard

deviation of variable j, ϑ j = − ln
(√

ks2
j

)
with s2

j = 1
N T

N∑
i=1

T∑
t=1
(x jit − x j )

2 and

ϑω = − ln

(√
s2
ω

s2
y

)
, ϑa = − ln

(√
s2
a

s2
y

)
, where s2

ω = N−1 ∑N
i=1

(
yi. − y

)2
, s2

a =
T −1 ∑T

t=1

(
y.t − y

)2
, yi. = T −1 ∑T

t=1 yit , y.t = N−1 ∑N
i=1 yit .ϑk+1 = 0.

Our interest is to infer the posterior expected value of some function l(θ),

E[l(θ)|Y N T ] =
∫

l(θ) f (θ |Y N T )dθ , (22)

where f (θ |Y N T ) = f (θ, y|X)/ ∫
f (θ , y|X)dθ . Following Geweke (1989) and

Hamilton (2001), we evaluate (22) by using importance-sampling algorithm. We con-
sider an arbitrary importance sampling distribution I (θ) and generate an artificial i.i.d.
sample θ (1), θ (2), . . . , θ (D) drawn from the I (θ), and calculate

Ê[l(θ)|Y N T ] = l(θ)∗ =
∑D

j=1 l(θ ( j))w(θ ( j),YN T )∑D
j=1w(θ

( j),YN T )
, (23)

5 As in Hamilton (2001, 2003) for time-series analysis, the method here requires nondiffuse priors in order
for the posterior distribution to be well-defined. For further details about the prior distribution, see Hamilton
(2001).
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w(θ ( j),YN T ) = f (θ ( j), y|X)
I (θ ( j))

. (24)

Following Hamilton (2001), we have an algorithm based on a truncated mixture den-
sity. With probability 0.5, we generate θ from a multivariate Student t distribution with
ϕ = 2 degrees of freedom, centered at the MLE with precision matrix given by (−1/2)
times the matrix of second derivatives of the log likelihood function. With probability
0.5, the elements of ln(θ) are drawn independently from N (ϑi , 4) distributions, so
that the logs have the same mean but twice the standard deviation of the prior. The
truncation can be achieved by throwing out any draw for which some θi < 0. Thus,
we have

I (θ) ∝ (0.5)
�[(k + 3 + ϕ)/2]
�(ϕ/2)(ϕπ)(k+3)/2

|�̂|−1/2

×[1 + ϕ−1(θ − θ̂)′�̂
−1
(θ − θ̂)]−1(k+3+ϕ)/2

+(0.5)
k+3∏
j=1

1√
2π(2τ j )θ j

exp

[−[ln(θ j )− ϑ j ]2

2(2τ j )2

]
, (25)

f or θ j ≥ 0, j = 1, 2, . . . , k + 3,

where the constant of proportionality reflects the truncation, θ̂ is the MLE, �̂ is twice
its asymptotic variance, ϕ = 2, τ j = 1, ϑ j = 0, for j = k + 1, k + 2, k + 3 and ϑ j is

given by in the part of the prior distribution ϑ j = − ln(
√

ks2
j ) for j = 1, . . . , k.

2.4 Testing for nonlinearity

We consider Hamilton (2001) LM test in the error components model of the panel data.
In what follows, we briefly describe the test procedure. Following Hamilton (2001)
we fix g from the scale of the data, for example, by setting gi equal to the mean of
the prior distribution in (21). Let σ 2 = (σ 2

ω, σ
2
a , σ

2
v )

′ and suppose these variances are
observable. Let HN T be a known (N T × N T ) positive semidefinite matrix and let

�N T = λ2HN T + σ 2
ωQω + σ 2

a Qa + σ 2
v IN T , (26)

where Qω = (IN ⊗ JT ),Qa = JN ⊗ IT . Consider the likelihood function under the
assumption that y|X, σ 2 ∼ N (Xβ,�N T ) :

ln f (y|X, σ 2; ζ ) = − N T

2
ln 2π − 1

2
ln |�N T | − 1

2
tr(�N T

−1εε′), (27)

for ε = y − Xβ and ζ = (λ2,β ′)′. Then, we have a score:

∂ ln f (y|X, σ 2; ζ )
∂λ2 |λ2=0 = −(1/2)tr(Q−1

N T HN T )+ (1/2)tr(Q−1
N T HN T Q−1

N T εε
′],
(28)
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where QN T = σ 2
ωQω + σ 2

a Qa + σ 2
v IN T . The information matrix is:

− E

{
∂2 ln f (y|X, σ 2; ζ )

∂ζ∂ζ ′ |ζ=ζ 0

}
=

[
(1/2)tr [(Q−1

N T HN T )
2] 0

0 σ−2X′X

]
. (29)

Then, the Lagrange multiplier test of the null hypothesis that λ = 0 conditional on
σ 2 is given by:

ℵN T = [(ε′Q−1
N T HN T Q−1

N T ε)− tr(Q−1
N T HN T )]√

tr [(Q−1
N T HN T )2]

. (30)

Following Wallace and Hussain (1969) and Amemiya (1971) for the best qua-
dratic unbiased estimators of the variance components, we turn to estimates of
εi t , say ε̂i t which are observed residuals obtained by least squares. Amemiya
(1971) points out that the estimate of variance components based on the ordinary
least squares are less efficient and provides following process: ε is obtained by
first estimating β by β̂ = (X′GX)−1X′Gy, G = IN T − (1/T )Qω − (1/N )Qa +
(1/N T )JN T , JN T is the N T × N T matrix consisting only of ones, and α0 by α̂0 =
(1/N T )e′

N T (y − Xβ̂) and then predicting ε by y − α̂0eN T − Xβ̂ = y − (J N T /

N T )y−(1/N T )JN T X(X′GX)−1X′Gy − X(X′GX)−1X′Gy. Then, the analysis of
variance estimates are

σ̂ 2
v = 1

(N − 1)(T − 1)

N∑
i=1

T∑
t=1

(
ε̂i t − 1

T
ε̂i. − 1

N
ε̂.t + 1

N T
ε̂...

)2

= 1

(N − 1)(T − 1)
ε̂

′Gε̂, (31)

σ̂ 2
ω = 1

T (N − 1)

N∑
i=1

(
1

T
ε̂i. − 1

N T
ε̂...

)2

− 1

T
σ̂ 2
v

= 1

T (N − 1)(T − 1)
ε̂

′
[

T − 1

T
Qω − T − 1

N T
JN T − G

]
ε̂, (32)

σ̂ 2
a = 1

N (T − 1)

T∑
t=1

(
1

N
ε̂.t − 1

N T
ε̂...

)2

− 1

N
σ̂ 2
v

= 1

N (N − 1)(T − 1)
ε̂

′
[

N − 1

N
Qa − N − 1

N T
JN T − G

]
ε̂, (33)

where ε̂i. =
T∑

t=1
ε̂i t , ε̂.t =

N∑
i=1

ε̂i t , ε̂.. =
N∑

i=1

T∑
t=1

ε̂i t . The Lagrange multiplier test of

(30) with the estimate of variance components (31), (32) and (33) is given
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ℵ̂N T = [(ε̂′ Q̂
−1
N T HN T Q̂

−1
N T ε̂)− tr( Q̂

−1
N T HN T )]√

tr [( Q̂
−1
N T HN T )2]

, (34)

where ε̂ = y − α̂0eN T − Xβ̂, α̂0 = (1/N T )e′
N T (y − Xβ̂), β̂ = (X′GX)−1X′Gy,

and Q̂N T = σ̂ 2
ωQω + σ̂ 2

a Qa + σ̂ 2
v IN T .

3 Empirical results

3.1 Data

The countries included in this study are Australia, Canada, Germany, Netherlands,
U.K., and U.S.A.6 The series used for real output, yit is the quarterly growth rate of
real GDP and we use the world produce price index for crude oil for all countries in
dollars and convert it into each country’s currency by means of the market exchange
rate. The sample used is from 1960:I to 2003:IV. All these data have been downloaded
from the International Financial Statistics (IFS) in IMF except U.S.A. The data for
U.S. real GDP are from the Bureau of Economic Analysis (BEA) and the produce
price index for crude oil for U.S.A. are from the Bureau of Labor Statistics. A total of
T × N = 1026 observations is available.

3.2 Linear error components model

When λ = 0, the model of Eqs. 4, 5, and 6 is a two-way error component model as
follows:

yit = α0 + α′
1xi t + εi t , (35)

εi t = ωi + at + vi t , i = 1, 2, . . . , N , t = 1, . . . , T . (36)

Following Amemiya (1971), we consider the interactive MLE for Eqs. 35 and 36 and
the estimation results are as follows:

6 We initially considered 10 countries (G7 + Australia, Netherlands, Sweden) and excluded four countries,
French, Italy, Japan and Sweden. The reason was that as the result of the estimation of the linear model for
individual country, these countries have shown quite different dynamics over lagged GDP growth and lagged
oil price change, implying that the slopes in the linear component in Eq. 2.2 are not homogenous among
different individuals and thus indicating that these countries are far away from homogenous assumption.
Japan, in particular, exhibits significantly different dynamics over lagged GDP growth during the sample.
An anonymous referee notes that this empirical section may have potential issues arising due to the limited
country numbers. This issue would be serious if we estimated the unrestricted model (1–2) with small
samples. However, it is unlikely that the estimation of the restricted model (4–6) representing a behavioral
equation with the same parameters over time and across countries raises the issue.
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yit = 2.531
(0.282)

− 0.044
(0.032)

yit−1 + 0.068
(0.031)

yit−2 + 0.123
(0.031)

yit−3 + 0.068
(0.031)

yit−4

+0.011
(0.014)

oit−1 − 0.005
(0.015)

oit−2 − 0.023
(0.014)

oit−3 − 0.039
(0.014)

oit−4 (37)

σ̂ 2
ω = 0.035, σ̂ 2

a = 2.750, σ̂ 2
v = 21.39.

The coefficient on oit−4 is statistically significant at the 1% level. Even though the
results seem to support the linear relationship between oil price change and real GDP
growth, the test statistic of the null hypothesis of linearity has a value of 30.93, which
for a χ2(1) variable implies overwhelming rejection of the null hypothesis that the
relation is linear in the panel. There seems little question that the relation between oil
prices and GDP is nonlinear.

To investigate the performance of the test statistics (34), instead of deriving the
asymptotic approximation in Eq. 34, we try to approximate the exact small-sample
distribution of ℵ̂N T by Monte Carlo methods. Given the data generating process of the
linear error components model, we calculated the test statistic ℵ̂N T for 1,000 simula-
tions and did not find any case where ℵ̂N T is greater than that of our original data. The
highest ℵ̂N T among 1,000 simulations was 4.46 (χ2(1) form of the test = 19.89) while
the ℵ̂N T of the original data was 5.56 (χ2(1) form of the test = 30.93), implying that the
original data for the relation between oil price and GDP growth is far from the linear
relation. Furthermore, at the nominal 5% level of significance, the rejection rate of the
linearity null hypothesis was 1.6%, implying that overall performance of the developed
test statistic (34) has good small-sample property. The Appendix provides detail Monte
Carlo methods for the small-sample distribution of the LM test statistic of Eq. 34.

3.3 Nonlinear flexible model with random effect error components

Bayesian posterior estimates and their standard errors for the flexible nonlinear alter-
native with error components as in the model of Eqs. 4, 5, and 6 are as follows:

yit = 2.114
(0.530)

− 0.056
(0.033)

yit−1 + 0.050
(0.028)

yit−2 + 0.109
(0.033)

yit−3 + 0.056
(0.030)

yit−4

+0.010
(0.014)

oit−1 − 0.003
(0.015)

oit−2 − 0.020
(0.015)

oit−3 − 0.038
(0.015)

oit−4

+4.567
(0.118)

[0.336
(0.054)

m(0.08
(0.10)

oit−1, 0.07
(0.08)

oit−2, 0.07
(0.08)

oit−3, 0.07
(0.07)

oit−4)+ ω̃i + ãt + ṽi t ]
(38)

σ̂ 2
ω = 0.982, σ̂ 2

a = 0.476, σ̂ 2
v = 20.86,

where ω̃i ∼ N (0, 1), ãt ∼ N (0, 1), ṽi t ∼ N (0, 1), and m(.) denotes an unobserved
realization from a Gaussian random field with mean zero, unit variance and correlations
given by Eqs. 7–9.7 The innovation ωi , at , and vi t in (5) are written as σv = 4.567
times ω̃i , σv times ãt and σv times ṽi t , respectively. The parameter λ in (4) is written

7 The Bayesian analysis is based on 100,000 draws from the importance sampling density described in
Sect. 2.3.
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Fig. 1 Effect of oil prices on GDP growth one quarter later. Solid line plots the posterior expectation of
the function α0 + α′xi t + δ′zi t + λm(xi t ) evaluated at xi t = (xit−1, ōi t−2, ōi t−3, ōi t−4)

′ and zi t =
(ȳi t−1, ȳi t−2, ȳi t−3, ȳi t−4)

′ as a function of xit−1 where z̄i t− j = T −1 ∑T
t=1 zit− j and where the expec-

tation is with respect to the posterior distribution of α0, α, δ, λ, and m(xi t ) conditional on observation of
{yit , xi t , zi t } , f or t = 1, . . . , T ; i = 1, . . . , N , with this posterior distribution estimated by Monte Carlo
importance sampling with 100,000 simulations. Dashed lines give 95% probability regions

as σv times the parameter ζ , whose estimate is 0.336. Each of the four lags of oil price
changes exert an overall negative effect on output growth as indicated by the linear
coefficients, though only the coefficient on oit−4 is statistically significant. Although
one would accept a hypothesis of linearity for any one of the lags of oil prices taken
individually (as reflected by the insignificant t-statistics on the individual coefficients
gi ), collectively the nonlinear component makes a highly significant contribution (as
evidenced by the t-statistic for ζ = 0 or the LM tests).

To take a look at what the nonlinear function μ(.) looks like and compare the non-
linear function of Hamilton (2003) with that of the panel data, I performed an exercise
similar to Hamilton (2003) and fixed the values of oit−2, oit−3, and oit−4 equal to
their sample means and examined the consequences of changing oit−1 alone, that is,
I set x∗ = (xi1, ō, ō, ō) and evaluated the Bayesian posterior expectation of the opti-
mal inference of the value of the unobserved function μ(x∗). Figures 1, 2, 3, and 4
indicate flexible inference on the effect of oil price change in previous specific quarter
on current GDP growth along with 95% probability region. For example, Fig. 1 plots
the inference on the effect of oil price change in the previous quarter on current GDP
growth. The negative figures in the horizontal axis indicate the percentage decrease in
the oil price while the positive ones mean the percentage increase in the oil price and the
figure in the vertical axis shows GDP growth. The region of dashed lines indicates the
degree of confidence about the inference based on the Bayesian posterior estimates.8

8 The anonymous referee suggests that we plot the deviation of GDP growth from its mean, so that an oil
price change of zero would have a zero effect on average GDP growth. However, we use similar format of
the figures with Hamilton (2003) to directly compare flexible inference in the panel data with that of U.S.
time-series data.
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Fig. 2 Effect of oil prices on GDP growth two quarters later. Solid line plots the posterior expectation
of the function α0 + α′xi t + δ′zi t + λm(xi t ) evaluated at xi t = (ōi t−1, xit−2, ōi t−3, ōi t−4)

′ and zi t =
(ȳi t−1, ȳi t−2, ȳi t−3, ȳi t−4)

′ as a function of xit−2
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Fig. 3 Effect of oil prices on GDP growth three quarters later. Solid line plots the posterior expecta-
tion of the function α0 + α′xi t + δ′zi t + λm(xi t ) evaluated at xi t = (ōi t−1, ōi t−2, xit−3, ōi t−4)

′ and
zi t = (ȳi t−1, ȳi t−2, ȳi t−3, ȳi t−4)

′ as a function of xit−3

Figure 1 shows the result as a function of xi1 along with 95% probability regions.
The implied function is nonlinear, suggesting that if oil prices either increase or
decrease after three quarters of stability, slightly slower GDP growth is predicted
than if oil prices had remained stable, though decreases are a little worse news than
increases. Nevertheless, the confidence band of the Fig. 1 indicates that the change in
GDP growth does not appear to be statistically significant.

Figures 2 and 3 answer the analogous question, fixing oit−1, oit−3, and oit−4 at
their sample means and varying the value of oit−2 in Fig. 2 and fixing oit−1, oit−2, and
oit−4 at their sample means and varying the value of oit−3 in Fig. 3. Both Figs. 2 and 3
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Fig. 4 Effect of oil prices on GDP growth four quarters later. Solid line plots the posterior expecta-
tion of the function α0 + α′xi t + δ′zi t + λm(xi t ) evaluated at xi t = (ōi t−1, ōi t−2, ōi t−3, xit−4)

′ and
zi t = (ȳi t−1, ȳi t−2, ȳi t−3, ȳi t−4)

′ as a function of xit−4

show different impression from that of Fig. 1 though the implied function is nonlinear.
Both figures indicate the opposite situation to the Fig. 1 where oil price increases are
worse news than decreases. However, in Figs. 2 and 3, the confidence interval is quite
broad, implying that such an inference might not be warranted statistically.

Figure 4 describes the effect of oit−4 alone and shows more dramatic relation, sug-
gesting that decreases in oil prices four quarters earlier have almost no consequences
for current GDP growth, whereas oil price increases significantly reduce expected GDP
growth. Furthermore, the confidence interval shows a statistically significant relation.
This figure indicates an asymmetric specification as in Mork (1989) and Hamilton
(1996, 2003). Even though there is not simply a mechanical relation between oil
prices and output, we view the demand-side effect of oil price shock as an explana-
tion of nonlinear oil–macroeconomy relation. As outlined in Hamilton (2003), when
oil prices and availability are uncertain, people feel uncertain about the future and
tend to postpone their spending on cars, housing, appliances, and investment goods,
resulting in allocative disturbances. In this mechanism, an oil price increase results in
the postponement of purchases of energy-sensitive big-ticket items that produce the
downturn, whereas it seems not to be reasonable to assume that an oil price decrease
would produce an economic boom that mirrors the recession induced by an oil price
increase.

I calculated how oit−3 is affected by different values of oit−4 to examine the interac-
tive effects. Figure 5 compares the three functions μ̂(ō, ō, xi3, 0), μ̂(ō, ō, xi3, 5), μ̂(ō,
ō, xi3,−5), plotted as a function of xi3. The dotted line represents the relation between
various xi3 and oit−4 = 0, which is essentially the same as the mean value plotted
in Fig. 3. The solid line represents the relation to show how the effect of an xi3% oil
price change three quarters ago would be different if oil prices had also increased 5%
the quarter before that. The one point to make is that the solid line is uniformly lower
than the dotted line. This implies that regardless of the value of oit−3, one forecasts
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Fig. 5 Effect of oil prices on GDP growth three quarters later different possible values of ot−4. Three
lines plot the posterior expectation of the function α0 + α′xi t + δ′zi t + λm(xi t ) evaluated at xi t =
(ōi t−1, ōi t−2, xit−3, xit−4)

′ and zi t = (ȳi t−1, ȳi t−2, ȳi t−3, ȳi t−4)
′ as a function of xit−3. For the Solid

line, xit−4 = 5, for the dashed line, xit−4 = −5, and for the dotted line, xit−4 = 0

definitely lower GDP growth when an oil price increase four quarters earlier than
when an unchanged oil price four quarters earlier. Furthermore, one can notice that
the slope of the dotted line is steeper than that of the solid line, implying that the
additional information content of any change in quarter t − 3 is reduced by an oil
price increase four quarters earlier. This result appears to be relevant to two views in
existing literature. The first view claimed by Lee et al. (1995) and Hamilton (2003)
is that oil price changes are less useful for forecasting GDP if they follow a period of
earlier uncertain price changes. The second one claimed by Hamilton (1996, 2003)
is that if oil price does not exceed the previous 3-year peak, no oil shock is said to
have occurred. Given the similar result in the panel data with Hamilton (2003), it is
considered such two views as driving the result.

The dashed line plots the predicted GDP growth for quarter t when oit−3 = xi3
and oit−4 = −5. The almost same shape of the dotted line and the dashed line indi-
cates that if oil prices decreased four quarters earlier, this has little consequences for
forecasting GDP if it was followed by no change in oil price in quarter t − 3. In other
words, one should downweight another oil price change in period t − 3 following a
5% decrease in period t −4. The overall conclusion of Fig. 5 supports the view of Lee
et al. (1995) and Hamilton (1996, 2003) that previous upheaval in oil prices tends to
reduce the marginal effect of any given oil price change.

In sum, our results of the panel data analysis confirm the findings of Hamilton
(2003, 2009b); Cuñado and de Gracia (2003), and Jimenez-Rodriguez and Sanchez
(2005). The relation between oil price change and GDP growth is nonlinear and oil
price increases are statistically and economically significant while oil price decreases
are not, and increases that come after a long period of stable prices have a bigger effect
than those that simply correct previous decreases for industrialized countries as well
as U.S.A.
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3.4 Alternative specifications

To examine whether the results of previous section rely on the specification of flexible
nonlinear error component model we consider other two alternative specifications.
The first alternative is a flexible nonlinear model with fixed effects instead of random
error components and this specification is as follows:

yit = αi + α′
1xi t + λm(g � xi t )+ εi t , (39)

εi t = at + vi t , (40)

μ(xi t ) = αi + α′
1xi t + λm(g � xi t ), i = 1, 2, . . . , N , t = 1, . . . , T, (41)

where αi denotes the individual specific effect and it is assumed that αi is a fixed
parameter to be estimated, at ∼ i.i.d.N (0, σ 2

a ) and vi t ∼ i.i.d.N (0, σ 2
v ). Inference

in this case is conditional on the particular N individuals. The other alternative is a
flexible nonlinear model without the individual specific effect and we have a following
specification:

yit = α0 + α′
1xi t + λm(g � xi t )+ εi t , (42)

εi t = at + vi t , (43)

μ(xi t ) = α0 + α′
1xi t + λm(g � xi t ), i = 1, 2, . . . , N , t = 1, . . . , T . (44)

Inference in this case is for the case of pooling across countries but not for the case of
pooling over time.

The test statistic of the null hypothesis of linearity for the case of linear fixed-effect
model and for the case of linear pooling model without the country specific effect has a
value of 28.41 and 26.99, respectively, which are similar with the case of linear random
error component model and both values for a χ2(1) variable indicate strong rejection
of the null hypothesis of linearity. Following the reparametrization as in Sect. 2.2, we
have Bayesian posterior estimates and their standard errors for the model (40–41) and
the model (43–44) as follows:

yit = αi − 0.055
(0.033)

yit−1 + 0.050
(0.030)

yit−2 + 0.105
(0.032)

yit−3 + 0.049
(0.033)

yit−4

+0.016
(0.014)

oit−1 − 0.002
(0.014)

oit−2 − 0.023
(0.016)

oit−3 − 0.037
(0.016)

oit−4

+4.826
(0.122)

[0.294
(0.056)

m(0.07
(0.09)

oit−1, 0.07
(0.08)

oit−2, 0.06
(0.07)

oit−3, 0.06
(0.07)

oit−4)+ ãt + ṽi t ]
(45)

σ̂ 2
a = 0.886, σ̂ 2

v = 23.29,
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yit = 2.081
(0.463)

− 0.053
(0.032)

yit−1 + 0.060
(0.030)

yit−2 + 0.107
(0.033)

yit−3 + 0.059
(0.030)

yit−4

+0.010
(0.014)

oit−1 − 0.003
(0.014)

oit−2 − 0.023
(0.014)

oit−3 − 0.036
(0.015)

oit−4

+4.587
(0.111)

[0.336
(0.054)

m(0.09
(0.10)

oit−1, 0.08
(0.10)

oit−2, 0.07
(0.08)

oit−3, 0.07
(0.07)

oit−4)+ ãt + ṽi t ]
(46)

σ̂ 2
a = 0.964, σ̂ 2

v = 21.04,

where αi is a fixed parameter to be estimated for the country specific effect.9 The
values of estimated fixed parameter αi in the nonlinear fixed effect model (45) are
between 1.49 and 2.58 over all sample countries and all estimated fixed parameters
are statistically significant.

Estimated parameter governing the overall importance of the nonlinear component
λ, is written as ζ ·σv and their estimates in both models are statistically significant and
are quite similar to those of the nonlinear random effect model in Eq. 38. Furthermore,
in both models, the coefficient on oit−4 is statistically significant at the 5% level and
the value of the coefficient is close to that of Eq. 38. Figure 6a and b describes the
effect of oit−4 alone on current economic growth based on the nonlinear fixed effect
model (45) and on the nonlinear pooling model (46), respectively. Interestingly, both
figures are quite similar with Fig. 4, suggesting that two alternative specifications sup-
ports similar nonlinear oil–macroeconomy relation which the nonlinear random error
component model of Eq. 38 showed.

Figure 7a and b plots the effect of oil price on GDP growth three quarter later
for different possible values of oit−4 − μ̂(ō, ō, xi3, 0), μ̂(ō, ō, xi3, 5),and μ̂(ō, ō,
xi3,−5)−to examine the view that previous turbulence in oil prices causes the mar-
ginal effect of any given oil price change to be reduced. Both figures are also quite
similar with Fig. 5 in the case of nonlinear random error component model of Eq. 38.
Overall, two alternative specifications supports similar oil–macroeconomy relation as
in the nonlinear random error component model and thus the claim of nonlinear rela-
tion appears to be robust to the nonlinear flexible inference with various specifications
of the panel data model.

4 Concluding remarks

The instability over time in a linear regression of output growth on lagged oil prices
has triggered the investigation of functional relation between oil price and real eco-
nomic activity. Hamilton (2003) shows by employing the methodology of nonlinear
flexible inference of Hamilton (2001) that the true relation is nonlinear in the case of
U.S. economy. Some literature has found evidence of nonlinear effects of oil price
on real economic activity of main industrialized countries from the studies of indi-
vidual country analysis. Kilian and Vigfusson (2009), however, show that the regres-
sion models and estimation methods which use measures that censors energy price

9 The Bayesian analysis is based on 20,000 draws from the importance sampling density described in
Sect. 2.3.
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Fig. 6 a Effect of oil prices on GDP growth four quarters later: With fixed effect. b Effect of oil prices on
GDP growth four quarters later: Without country specific effect

changes, produce inconsistent estimates of the true effects of unanticipated energy
price increases and lead to overestimating the impact of energy price shocks on mac-
roeconomy aggregates.

This article examines the issue of whether the relation between oil price change
and the business cycle is nonlinear along with two insights. First of all, this arti-
cle extends Hamilton (2001) methodology for time-series data to the panel data
framework to investigate whether the relation is nonlinear in terms of panel data
analysis. Specifically, we consider nonlinear flexible inference with random error
components. Secondly, our parametric approach does not have to use the censored
oil price changes and thus avoids potential problems from using the censored energy
prices changes.

Our results show from the study of the panel data for six industrialized countries
that oil price increases are statistically and economically significant while oil price
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Fig. 7 a Effect of oil prices on GDP growth three quarters later different possible values of ot−4: With
fixed effect. b Effect of oil prices on GDP growth three quarters later different possible values of ot−4:
Without country specific effect

decreases are not, and previous upheaval in oil prices causes the marginal effect of
any given oil price change to be reduced and support the claim in the literature. The
alternative specifications of the panel data model with nonlinear flexible inference as
a robustness analysis support similar nonlinear oil–macroeconomy relation. There-
fore, the result of such a panel data analysis suggests that one should use a nonlinear
function of oil price changes if the goal is to forecast GDP growth.
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Appendix: Monte Carlo analysis for approximating the small-sample
distribution of the LM test statistic

In order to approximate the exact small-sample distribution of ℵ̂N T and to examine
how good the test statistic developed in Eq. 34 performs, we undertook a small-scale
Monte Carlo analysis. We consider following linear data-generating process based on
the linear error-components model:

yit = 2.531 − 0.044yit−1 + 0.068yit−2 + 0.123yit−3 + 0.068yit−4

+0.011oit−1 − 0.005oit−2 − 0.023oit−3 − 0.039oit−4 + εi t , (A1)

εi t = ωi + at + vi t ,

where ωi ∼ N (0, 0.035), at ∼ N (0, 2.75), vi t ∼ N (0, 21.39) and the disturbances
are assumed to be mutually and temporally independent normal variables with variance
equal to those estimated in the linear error-component model. Using 1,000 simulations
of the data generated for this system corresponding to 6 countries oil price changes
and GDP growth, we calculated the test statistic ℵ̂N T conditional on the best quadratic
unbiased estimators for each simulation. We did not find any case where ℵ̂N T is greater
than that of the original data, implying that the original data shows strong evidence
on the nonlinear relation between oil price change and GDP growth. Furthermore, at
the nominal 5% level of significance, the rejection rate of the linearity null hypothesis
was 1.6%, implying that the developed test statistic leads to some under-rejection of
the true linearity null hypothesis but overall performance of the test statistic has good
small-sample property in terms of conventional analysis.
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