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Abstract In this paper we use nonparametric statistical tools to quantify motion-
picture profit. We quantify the unconditional distribution of profit, the distribution of
profit conditional on stars and sequels, and we also model the conditional expectation
of movie profits using a nonparametric data-driven regression model. The flexibility
of the nonparametric approach accommodates the full range of possible relationships
among the variables without prior specification of a functional form, thereby capturing
nonlinearities and interactions without introducing possible specification bias. We find
that marginal returns to budgets and opening screens vary over the domain of these
variables. We also find that the conditional distribution of movie profit and the expected
level of profit are related to the use of movie stars and sequels.

Keywords Motion-picture profit · Nonparametric regression ·
Hollywood economics

JEL Classification L82 · C14

1 Introduction

The motion-picture industry is routinely criticized for producing films that have ever
bigger budgets, that showcase brand name movie stars, that are released on an increa-
singly large number of cinema screens, and that are often sequels. Competition for the
audience has intensified in the past decade and film budgets have escalated rapidly as
films are increasingly being promoted and advertised nationally. The strategy of the
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movie industry is to use big-budget widely-released star-filled films to generate high
profits. In this paper, we use nonparametric statistical methods to analyze empirically
how motion-picture profits are related to big budgets, wide releases, movie stars, and
other film attributes.

Several empirical studies have examined the role of budgets, screens, stars, and
sequels on box-office revenue.1 De Vany and Walls (2004) provide an analysis of
motion-picture profit focusing on the stable Paretian distribution; in their paper they
estimate the density of profits for a sample of motion pictures with and without stars.
The empirical analysis in this paper extends the earlier work of De Vany and Walls
(2004) on modeling the distribution of motion-picture profit in two ways. First we take
a data-driven nonparametric approach to modeling the distribution of motion-picture
profit. Second, the completely nonparametric approach is applied in a regression fra-
mework permitting the estimation of the marginal effects of budgets, screens, sequels,
and stars on motion-picture profit without imposing any assumptions of distribution
or functional form on the statistical analysis.

There are several reasons to take a nonparametric approach to modeling motion-
picture profit. As shown by De Vany and Walls (1999, 2002, 2004), motion-picture
revenues and profits are characterized by skewness and heavy tails, and standard
statistical models such as the Gaussian and log Gaussian can be rejected.2 Their
approach is to model the unconditional distribution of profit using the skew-stable
model, a model which fits the skewness and tails of the distribution well but which
does not lend itself to quantification of how various explanatory variables affect the
parameters of the distribution or to estimation of the marginal effects of the attributes
of a film and its theatrical release. As an alternative to the parametric stable Paretian
approach, we investigate the use of recently-developed nonparametric statistical tools
to quantify the distribution of movie profit and how various explanatory variables are
related to movie profit. Thus, the analysis in this paper is more general than what
has come before in that it is nonparametric, and in that it explicitly accounts for the
attributes of a movie and its theatrical release in a model that can flexibly accommodate
the skewness and heavy tails of motion-picture profit.3

Using nonparametric methods we quantify the unconditional distribution of profit,
and the distribution of profit conditional on stars and sequels. We also model the
conditional expectation of movie profits using a completely nonparametric data-driven
regression model based on the multivariate product kernel with mixed data types
(continuous and discrete) developed by Li and Racine (2004) and Racine and Li (2004).

1 See, for example, Albert (1998, 1999); De Vany and Walls (1996, 1997, 1999, 2002, 2004); Litman
(1983); Litman and Ahn (1998); Litman and Kohl (1989); Nelson et al. (2001); Prag and Cassavant (1994);
Ravid (1999); Sedgwick and Pokorny (1999); Smith and Smith (1986), and Wallace et al. (1993).
2 As shown in Fig. 1 below, the distribution of motion-picture profit has too much mass in the center of
the distribution, as well as too much mass in the upper tail, to be consistent with a normal distribution. The
nonparametric model does not impose a priori restrictions on the shape of the distribution, though heavy
tails can pose estimation issues; this point is discussed further below.
3 Although the nonparametric model has the flexibility to accommodate skewness and heavy tails in the
conditional distribution of movie profit, the estimator—in particular the fixed bandwidth estimator—may
be affected by the presence of heavy tails that contain few observations that are distant from the sample
mean.
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The nonparametric approach captures the full range of possible relations among the
variables without prior specification of a functional form or making distributional
assumptions. In our empirical application to a sample of nearly two thousand films,
we find increasing marginal returns to budgets and opening screens over the domain
of these variables, a striking result that helps to explain the industry’s move toward
widely released big-budget movies. Our results confirm the ‘curse of the superstar’
result of De Vany and Walls (2004), but we find no such ‘curse’ for sequels.

2 Nonparametric Kernel regression

The statistical technique used in this paper is based on Fan and Gijbels’s (1992, 1996)
local linear nonparametric regression model. The nonparametric regression model has
been operationalized by data-driven cross-validated bandwidth selection and recent
advances in generalized kernel estimation due to Li and Racine (2004) and Racine and
Li (2004). In the standard nonparametric regression model a dependent variable y is
related to a vector of independent variables x through some unknown and unspecified
function m(·)

yi = m(xi ) + εi (1)

where i indexes observations, m(xi ) is an unknown smooth function with argument
xi = (xc

i , xu
i , xo

i ), where xc
i is a vector of continuous regressors such as budget, xu

i
is a vector of regressors that assume unordered discrete values such as genres, xo

i is a
vector of regressors that assume ordered discrete values such as time effects, and εi is
an additive stochastic disturbance.

Expanding a first-order Taylor series about the regression equation (1) at x j yields

yi ≈ m(x j ) + (xc
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j )β(x j ) + εi (2)

where β(x j ) is the partial derivative of m(x j ) with respect to xc, also called the
marginal effect and similar in interpretation to a regression coefficient in a linear
regression model. There is, however, an important difference between the marginal
effect in the nonparametric model and in a parametric model such as a linear regression:
the marginal effects in the nonparametric regression model are not restricted to be
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regression coefficients are constants.
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where

Kĥ =
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Kh is the product kernel, which is the product of the individual kernels for the conti-
nuous and discrete variables: lc is the standard normal kernel function with window
width hs associated with the sth component of xc; lu is a variation of Aitchison and
Aitken’s (1976) kernel function which equals one if xu

si = xu
s j and λu

s otherwise; and
lo is the Wang and Van Ryzin (1981) kernel function which equals one if xo

si = xo
s j

and (λ0
s )

|xo
si −xo

s j | otherwise.4

Implementing the nonparametric kernel regression involves two choices: the kernel
and the window width (or bandwidth). The difference between the optimal kernel and
most kernels used in practice is small, so the choice of kernel is not problematic.5

But the choice of bandwidths (h, λu, λo) can be a sticky issue with a well-known
tradeoff: A small bandwidth means that there may not be enough data points resulting
in an undersmoothed estimate having low bias and high variance, but choosing a
large bandwidth including many data points may result in an oversmoothed estimate
having high bias and low variance. There are several alternative data-driven selection
methods for the bandwidth. Among the many alternatives, we employ Hurvich et al.
(1998) Expected Kullback Leibler (AICc) criteria. This method chooses smoothing
parameters using an improved version of a criterion based on the Akaike Information
Criteria and has been shown to perform well in small samples.6 In our empirical
application the bandwidths are chosen specifically to minimize

AICc(h, λu, λo) = log(σ̂ 2) + (1 + tr(H)/N )/[1 − (tr(H) + 2)/N ] (5)

where

σ̂ 2 = 1

N

∑
N

(y j − m̂− j (x j ))
2 = 1

N
y′(I − H)′(I − H)y (6)

and m̂− j (x j ) = H y j is the leave-one-out estimator of m(x j ). In the application to film
earnings set out below, we use the fully nonparametric local linear estimator described
above with the bandwidths determined using the AICc criterion.

4 See Pagan and Ullah (1999) for a general introduction and Hall et al. (2004); Li and Ouyang (2005);
Li and Racine (2004, 2006) and Racine and Li (2004) for the technical details of this estimator and its
calculation.
5 See, for example, the discussion in (Pagan and Ullah, 1999, pp. 23–28) and the references therein.
6 Henderson and Kumbhakar (2006) note that one cause for undersmoothing when using the least-squares
cross-validation procedure is the presence of outliers; they also note that AICc was robust to outliers and
performed well in comparison to their own robust cross-validation procedure.
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Table 1 Film earnings,
production budget, and opening
screens

‘m’ indicates millions. Data
source is AC Nielson EDI

Mean Median Std Dev

Profit −3.35 m −3.82 m 12 m

Box-office revenue 17.2 m 7.1 m 26.9 m

Production budget 11.9 m 9.3 m 10.3 m

Opening screens 844 858 761

Number % of sample

Movies with stars 326 16.39

Sequel movies 169 8.50

3 Empirical analysis

3.1 Data description and nonparametric density plots

The data set consists of observations on 1,989 films exhibited in North America begin-
ning in 1985 and continuing through 1996. The data were extracted from the AC
Nielson EDI historical database and include cumulative box-office revenue as well as
the attributes of a film and its theatrical release. From the EDI database, we selected all
films for which data on the variables of interest were available and this resulted in the
final sample size of 1,989 films. The EDI data are compiled from the North American
distributor-reported box-office figures and are widely regarded as the standard indus-
try source for published information on motion picture theatrical revenues. Table 1
provides summary statistics on the data.7 Because these are the same data used in a
number of other published articles, the empirical results will be directly comparable
to those results reported by researchers using different statistical methods. We seek to
determine the usefulness of nonparametric regression in analyzing the motion-picture
industry, and for this purpose using the same data as prior studies allows us to squarely
confront the results obtained in them.

Figure 1 plots the nonparametric kernel density estimate for motion-picture profit
against a histogram and an overlaid fitted Gaussian density for the purpose of com-
parison. Profit clearly does not follow a Gaussian distribution and standard statistical
tests reject the null hypothesis that profit is normally distributed.8

Figure 2 plots nonparametric kernel density estimates for the profits of movies that
feature ‘star’ talent and those that do not; the figure also plots the upper and lower
two-standard-error bounds on the density function estimate.9 The figure shows that the

7 A thorough description of the data source, very detailed descriptive statistics and cross-tabulations, and
a regression analysis of the EDI data are contained in De Vany and Walls (1999).
8 For example, the Kolmogorov–Smirnov test, Shapiro–Francia test, Shapiro–Wilk test, and skewness-
kurtosis test all result in marginal significance levels of zero.
9 An actor or director appearing on Premier’s annual listing of the hundred most powerful people in
Hollywood or on James Ulmer’s list of A and A+ actors was considered to be a star in the empirical
analysis; this is the same definition of ‘star’ used in De Vany and Walls (1999). Many thanks to Cassey Lee
for compiling the list of stars.
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Fig. 1 Unconditional density of motion-picture profit

distribution of profits differ substantially across movies depending on the presence of
star talent. The peak of the star profit density occurs at a profit of about −3.8 million,
though the peak is much lower than for the non-star density. The peak of the non-star
profit density occurs at a profit of −3.3 million, but it has much heavier tails than
the density function for star movies.10 We can formally reject that equality of profit
distributions for star and non-star movies and this is consistent with the visual test that
the two-standard-error bounds are not overlapping.11

Figure 3 plots the nonparametric kernel density estimates for the profits of movies
that are sequels (or prequels) and for movies that are non-sequels. It is evident from
panel A of Fig. 3 that the distributions for sequels and non-sequels are similar, though
the sequel density lies to the right of the density for non-sequels. The mean profit
for sequels in the sample was about −0.8 million, while the mean profit for non-
sequel movies was about −3.5 million. The highest probability on the sequel density
function occurred at a profit of −2.3 million and the highest probability on the non-
sequel density function occurred at a profit of −3.7 million. In panel B of the figure
we have plotted the density functions with the addition of upper and lower two-
standard-error bounds. In a small neighborhood around the peak of the distributions
the regions within two standard errors of each density are overlapping, but over most

10 Note that the peak of the estimated nonparametric density functions differs from the sample mean profit
due to the influence of skew and heavy tails in the calculation of the mean: For star movies, the sample
mean profit is about −2 million, while for non-star movies the sample mean profit is about −3.4 million.
De Vany and Walls (2004) find the same result in the fitted stable Paretian model. Readers unfamiliar with
the industry may find the unprofitability of movies a surprise: On average, about 80% of all movies made
are unprofitable (Vogel 1998).
11 We tested for equality of distributions using the Li et al. (2006) test with 500 bootstrap resamples.
The computed test statistic for the equality-of-distributions test was 59.7315 and the upper 1% value of
the distribution of the test statistic was 1.6105; the computed marginal significance level was zero. The
Komogorov–Smirnov test for equality of distributions yields a marginal significance level of zero.
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Fig. 2 Stars and the density of motion-picture profit

of the domain of profit the distributions are non-overlapping. The visual conclusion
that the distributions of profit for sequel and non-sequel movies differ is supported by
a formal statistical test for equality of distributions.12

3.2 Nonparametric regression estimates and hypothesis testing results

Before proceeding to estimate the nonparametric model, we test for a known parame-
tric model using the Hsiao et al. (2007) consistent model specification test for mixed
categorical and continuous data. Specifically we test the null hypothesis that the para-
metric model is correctly specified against the alternative that it is not. We used the
following specification for the parametric model:

Profiti = β0 + β1Film Budgeti + β2Screensi

+β3Sequeli + β4Stari + Λ[Genre, Rating, Year]′i + εi (7)

where i indexes individual movies, Star and Sequel are dummy variables equal to
unity when a movie contains a star or is a sequel, respectively, and zero otherwise, Λ

is a vector of coefficients conformable to the sets of explanatory variables indicating
particular genres, ratings, and years of release, and εi is a random disturbance. The

12 We tested for equality of distributions using the Li et al. (2006) test with 500 bootstrap resamples. We
can reject the null hypothesis of equality of sequel and non-sequel profit distributions: The computed test
statistic was 3.6850 and the upper 1% critical value of the distribution of the test statistic was 1.3173; the
marginal significance level was 3.752 × 10−6. The Kolmogorov–Smirnov test for equality of distributions
yields a marginal significance level of zero.

123



454 W. D. Walls

Panel

Panel

A:

B:

Fig. 3 Sequels and the density of motion-picture profit

computed marginal significance level for the specification test was 0.00204, rejecting
the null hypothesis of correct parametric specification at all conventionally used signi-
ficance levels.13

13 The Hsiao–Li–Racine test was performed with 500 bootstrap resamples. The computed test statistic was
1.53577 and the upper 1% critical value was 0.159249.
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Table 2 Summary of estimated model fit

Metric Model

Nonparametric Least-squares

R2 0.825 0.209

MAE 3.038 6.203

RMSE 5.285 10.766

Sign 87.280 76.018

Both models are estimated on the full sample of 1989 observations. The within-sample predicted values are
compared to the actual values to quantify model fit. R2 is the squared correlation between actual and fitted
values, MAE mean absolute error in millions, RMSE root mean squared error in millions, Sign percentage
with the correct sign

Given the formal rejection of the parametric model, we proceed to estimate the
nonparametric model using the same set of explanatory variables set out above.14 The
local linear nonparametric model was estimated using the product kernel with constant
Nadaraya (1965); Watson (1964) bandwidths selected by the AICc method outlined
above.15 We calculated several goodness-of-fit measures to compare the nonparametric
model to the parametric model; these metrics are summarized in Table 2. The R2 of
the kernel regression—calculated as the squared correlation between the fitted and
actual values—is 0.825, compared to a value of 0.209 for the linear model. The mean
absolute error from the linear model (6.203) was about twice as large as from the
nonparametric model (3.038 million). The mean absolute percentage error for the
linear model (4.056%) was also about double value for the nonparametric model
(2.079%). The various goodness-of-fit metrics support the evidence from the Hsiao–
Li–Racine specification test that the nonparametric model is preferred to the linear
model.16

The estimation output consists not of a single parameter and associated standard
errors but of an estimate of the dependent variable and the marginal effects for each
data point. For this reason, the output of a fully nonparametric estimation can be
difficult to interpret. Graphical display of the output is instructive. In Fig. 4 we plot
the marginal effects for the production budget and their associated 95% confidence
bands. The average marginal effect is −0.283, indicating that on average an increase

14 The statistical tools used to perform the nonparametric analysis in this paper are available for most
computing platforms, and they are free. The interested reader is referred to the R computing environment
Ihaka and Gentleman (1996) and specifically to the nonparametric kernel smoothing package developed by
Hayfield and Racine (2006).
15 We recomputed the bandwidth selection algorithm ten times, using different starting values each time,
to ensure that we obtained bandwidths that are a global optimum. After obtaining the optimal bandwidths
by the AICc method we computed the standard errors for the fitted values m(·) and the gradients β(·) using
500 bootstrap resamples.
16 It should be mentioned that the fixed bandwidth estimator used here is perhaps not the best choice for
data with heavy tails where it would be possible for the tails to be sparesely populated; a variable bandwidth
may be preferable in the presence of heavy tails. In the current application, we have nearly 2,000 motion
pictures resulting in sufficient observations in the tails for estimation.

123



456 W. D. Walls

Fig. 4 Marginal effect of production budget on profit. Note: Estimate marginal effects plotted with 95%
confidence bands

in production budget of one dollar leads to a loss of about twenty-eight cents. But
in the nonparametric regression model the marginal effect need not be constant. The
actual pattern of marginal effects in the figure makes clear that the response of profit
to changes in production budget does differ substantially as the production budget
increases, with the marginal profitability increasing substantially over a 40–80 million
dollar range of production budgets; this result still holds when one accounts for the
sometimes wide confidence bands. It would be a serious mistake to estimate the impact
of production budget on film profitability using a statistical model that constrained the
impact to be constant across budget levels.

In Fig. 5 we plot the marginal effects and associated 95% confidence bands for ope-
ning screens on film profitability. The average marginal effect is calculated to be 5468.
But the plot of the marginal effects over differing levels of the explanatory variable
shows that the marginal effect is not constant, even accounting for the sometimes
wide confidence bands. The impact of opening screens on film profitability increases
rapidly for openings in the range of 1,500–2,200 screens, and then decreases for larger
openings. Again, it would be a mistake to quantify the impact of opening screens on
profitability using a model that constrained the impact to be constant over all levels of
opening screens. The average marginal effect is not a very informative quantity.

We perform a number of hypothesis tests within the nonparametric framework that
correspond to the standard exclusion restrictions one would routinely test in the context
of a linear regression model, equivalent to testing the null hypothesis that a regression
coefficient (or a group of coefficients) equals zero in a linear regression model. In
the context of the nonparametric regression model, if the conditional mean E(Y |X)
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Fig. 5 Marginal effect of opening screens on profit. Note: Estimate marginal effects plotted with 95%
confidence bands

is independent of a variable or group of variables x( j), then the partial derivative of
the conditional mean with respect to these variables will be zero. Because the partial
derivatives in the nonparametric model can vary over the domain of the variable,
the standard statistical tests used in parametric models cannot be applied. The null
hypothesis to be tested is specifically

H0 : ∂ E(Y |X)

∂x( j)
= 0 ∀ x ∈ X (8)

where the partial derivative must equal zero over the entire domain of every explanatory
variable; the alternative hypothesis is that the equality does not hold. Racine (1997)
provides a treatment of this approach to hypothesis testing including details of the
bootstrapping procedure required to generate the test statistic and its distribution under
the null hypothesis.

The statistical tests for the hypotheses that the marginal effects of certain variables
or groups of variables are equal to zero—corresponding to the standard t- and F-tests
reported in regression output—are summarized in Table 3. We first test the null hypo-
thesis that the budget is orthogonal to the conditional mean, and for this test we obtain
a marginal significance level of 0.021. Second, we test the null hypothesis that the
conditional mean is orthogonal to the opening screens, and the marginal significance
level is 0.028. Third, we test the null hypothesis that the conditional mean is ortho-
gonal to the presence of star talent, and we obtained a marginal significance level of
zero. Next, we test the null hypothesis that the conditional mean is orthogonal to the
film being a sequel (or prequel), and find that the marginal significance level is 0.024.
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Table 3 Summary of
hypothesis testing results

Summary of statistical tests for
the null hypothesis that the
variable (or group) is orthogonal
to the conditional mean of film
earnings

Variable p value

Production budget 0.021

Opening screens 0.028

Star 0

Sequel 0.024

Ratings (group) 0.005

Genre (group) 6.87 × 10−10

Finally, we tested the null hypothesis that the groups of variables representing genres
and ratings were orthogonal to the conditional mean and the marginal significance
levels for these statistical tests were 6.87 × 10−10 and 0.005, respectively.

3.3 Discussion of results

Films featuring movie stars have profit distributions that differ substantially from those
of movies without stars. Not only is the location of the distribution higher, but it has a
fundamentally different shape as shown in Fig. 2; these results from nonparametrically
estimated distributions confirm the earlier findings of De Vany and Walls (2004) who
fit a skew-stable model to profits for movies with and without stars. In addition to
modeling the density function of profit only conditioning on star presence, we also
model the conditional expectation of profit using the nonparametric regression model.
We find that the use of stars is systematically related to the level of profit and that
the average impact of including a star is a $6.5 million increase in profit. Our finding
is similar to the result from the stable Paretian model of De Vany and Walls (2004)
that stars increase expected movie profits by about $7.7 million. The results of the
nonparametric model confirm the ‘curse of the superstar’ result that the expected
profit is positive even though star movies actually earn negative profit.

It is common in the movie business that a single film will lead to a series of films such
as the Star Wars, Batman, Police Academy, and Die Hard films. We find that profits
for sequels are higher than profits for non-sequels, and that the density functions of
profit for these groups—as set out graphically in Fig. 3—are statistically different.
We also find that sequels are systematically related to the expected profit even when
accounting for the attributes of a film and its theatrical release. We estimate that on
average sequels earn $0.88 million more in profit than non-sequel films. Of course, a
sequel is no guarantee of success, and this is seen graphically in the way that the shape
of the profit distribution is nearly the same for sequel and non-sequel movies. There
is no evidence of a ‘curse’ for sequels, since the expected increase in movie profits
and the mean increase in movie profits are both positive for sequel movies compared
to non-sequels.

Big and growing budgets are a feature of the Hollywood movie industry. In recent
years, fewer films are made while average budgets are rising. The results of our non-
parametric regression analysis indicate that this may be a way of capturing the increa-
sing marginal returns of budget. The marginal return to an additional dollar of budget,
plotted above in Fig. 4, increases substantially over a budget range beginning at 40
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million and continuing through about 70 million. The industry’s increasing focus on
making fewer movies with larger budgets is consistent with our results, though one
would be puzzled if using the results from a least-squares-regression analysis to inter-
pret the industry’s actions. A least-squares analysis would estimate that the marginal
profit returned to an additional dollar spend on the budget is −0.64 and that it is
constant across budget levels; this would lead one to conclude that the industry is
operating in a region where there are negative returns to budget.

Another feature of the motion-picture industry is the move in recent years toward
wider openings of films in contrast to platform releases. Again, the results of the
nonparametric regression analysis reveal why this move may be a way in which the
film industry is able to capture increasing marginal returns to opening screens. In Fig. 5
we plot the marginal return to an additional opening screen. The marginal return to
screens is not constant as the level of opening screens varies; instead it rises until
about 2,200 screens after which it falls. If there are rising marginal returns to opening
a film on more screens—due, for example, to the dynamics of movie demand—then
it is sensible that the industry has moved toward wider distribution of feature films.
Again, if one were to use a least-squares model to estimate returns to opening screens,
the estimate would be that an additional screens increases profits by 4,625 across all
levels of opening screens.

Finally, we should acknowledge that the nonparametric model and the estimation
method applied in this paper is intended to be an incremental step in enhancing our
understanding of the film industry. The features of the movie industry that challenge
standard statistical models can also pose problems for nonparametric models, espe-
cially the characteristic that a handful of extremely successful films can drive industry
profitability. The sample of nearly 2,000 motion pictures used in this research has
ensured that there are a large number of high-grossing films; however, the empirical
methods used here might be less useful with few a small data set because there would
be few observations in the tail. Thus, while the results of the present nonparametric
analysis help us to understand more about the economics of the film industry, this
should be seen as an incremental step in modeling motion-picture profit.

4 Conclusion

Big budgets, wide openings, stars, and sequels are palpable features of the motion-
picture industry. This paper has investigated empirically how these features are related
to film profitability using recently-developed nonparametric statistical tools. The non-
parametric methods used in this research account for the extreme uncertainty of the
movie industry—including heavy tails, skewness, and infinite variance—that has been
documented in other recent research. Our approach generalizes other work on motion
picture profit by making no assumptions of functional form or distribution as well as
modeling expected film profitability in a completely nonparametric regression model
that accounts for the attributes of a film and its theatrical release.

The results of our nonparametric analysis confirm the ‘curse of the superstar’ result
found in earlier research, namely that the expected profitability of including a star
in a film is positive while the mean profitability is negative. We find no such result
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for sequels, where expected profitability and mean profitability are both positive. Our
results indicate that there are strongly increasing marginal returns to both budget and
opening screens over the domain of these variables, a result that is consistent with the
industry’s move toward films with bigger budgets and wider releases.
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