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Abstract Assessing regional growth and convergence across Europe is a matter of
primary relevance. Empirical models that do not account for structural heterogeneities
and spatial effects may face serious misspecification problems. In this work, a mixture
regression approach is applied to the β-convergence model, in order to produce an
endogenous selection of regional growth patterns. A priori choices, such as North–
South or centre-periphery divisions, are avoided. In addition to this, we deal with
the spatial dependence existing in the data, applying a local filter to the data. The
results indicate that spatial effects matter, and either absolute, conditional, or club
convergence, if extended to the whole sample, might be restrictive assumptions.
Excluding a small number of regions that behave as outliers, only a few regions show an
appreciable rate of convergence. The majority of data show slow convergence, or no
convergence at all. Furthermore, a dualistic phenomenon seems to be present inside
some States, reinforcing the “diverging-convergence” paradox.
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1 Introduction

Assessing regional convergence across Europe, in terms of per capita income or prod-
uct, is a relevant matter, not only to verify what the growth theories predict, but also to
evaluate the effectiveness of the Cohesion Policies. The expectations of New Entrants,
indeed, require feasible answers from the policy makers. After the recent enlargement,
economic disparities increased dramatically. The Union’s ten richest regions each have
a GDP equal to 189% of the EU-25 average, while for the ten poorest regions this
indicator is equal only to 36%. In the New Member States, 90% of the total population
live in regions with a per capita level of income below 75% of the Community aver-
age, which is the admissibility threshold to receive the Objective 1 Structural Funds
(Commission of the European Communities 2005).

In the last few years, there has been much debate on European integration, regional
growth and convergence, and on Cohesion Policies (for a review see Funck and Pizzati
2003). On the one hand, the EC stresses the gains of integration and the positive role
of regional policies, which sustain the economic growth of the regions lagging behind
(European Commission 2001, 2004). On the other hand, some scepticism has been
voiced (Boldrin and Canova 2001) and, consequently, some questions have been raised.
Will EU citizens see their welfare equalised to Community averages? Or will their
standard of living fall, subjected to growing inequalities? Will cohesion policies have
a positive impact on growth and convergence? Or will these policies be ineffective,
serving mainly as instruments of redistribution?

In this work we examine the regional convergence process across Europe, focusing
on some relevant issues linked to the empirical analysis. In particular, we show that
misspecification sources need to be carefully taken into account. The remainder of the
paper is structured as follows: Sect. 2 reviews the literature on the European regional
convergence and poses the problem of heterogeneity and spatial effects. Section 3
highlights the existence of spatial dependence among EU regions and, at the same
time, presents the data. Section 4 introduces the proposed methodology. Section 5
shows the results and, finally, Sect. 6 gives the conclusions.

2 The empirics of regional convergence

Convergence hypotheses across countries or regions have been subjected to several the-
oretical interpretations. Following the taxonomy originally proposed by Galor (1996),
three different definitions can be identified: (a) unconditional or absolute conver-
gence, meaning that per capita incomes converge to a common level in the long-run,
if structural homogeneities exist across the economies and their initial conditions do
not matter;1 (b) conditional convergence, meaning that per capita incomes converge to
different levels in the long-run, if structural heterogeneities exist across the economies
and their initial conditions do not matter; (c) club convergence, meaning that per capita

1 This hypothesis seems to be the one that the EC is interested in, as Quah (1996b, p. 1048, note 4) already
pointed out.
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incomes converge to different levels in the long-run, if structural heterogeneities exist
across the economies and their initial conditions do matter.

Much of the empirical analysis aimed at testing the validity of these hypotheses has
been based on the measure of β-convergence, derived from the neoclassical growth
model of Solow–Cass–Koopmans (see Barro and Sala-i-Martin 2004). As is well
known, the measure refers to the tendency for poor economies to grow faster than rich
ones, i.e. to “catch up”, and is related to ranking dynamics in the sample distribution
(Sala-i-Martin 1996a). Other measures are often used, which look at the reduction of
distributional dispersion over time, such as sigma-convergence2 (Barro and Sala-i–
Martin 1992), or the evolution of the entire distribution, such as the transition matrix
approach3 (Quah 1993a, 1996a). These concepts, however, are less suited to the ques-
tions assessed in this work and to the methodology adopted, hence we prefer to focus
on β-convergence.

Empirical β-convergence models usually take the form of a cross-country/region
growth regression

gi = a − bxi + ui , i = 1, . . . , n, (1)

where gi = [ln(yi,T ) − ln(yi,0)]/T is the average growth rate of the economy i’s
per capita income between time 0 and T, a is a constant, b = (1 − e−βT )/T is a
convergence coefficient, xi = ln(yi,0) is the log of the economy i’s initial level of
per capita income, and ui ∼ N (0, σ 2) is an error term with the usual properties (see
Durlauf et al. 2005). A positive value of the parameter β is supportive of convergence,
and provides the rate at which the economy approaches the steady-state.4

Early empirical studies (Barro and Sala-i-Martin 1991; Sala-i-Martin 1996b) esti-
mated Eq. (1) without control variables, based on two strong homogeneity assump-
tions. First, the constant term was considered inclusive of technological progress (γi ),
the steady-state value of effective per capita output (ỹ∗

i ), and initial efficiency (Ai,0),
namely

(i) a = ai = γi + (1 − e−βi T )/T · ln(Ai,0 · ỹ∗
i ), ∀i.

Second, the convergence coefficient was considered constant across the economies,
that is

(ii) b = bi = (1 − e−βi T )/T, ∀i.

Equation (1) estimated with assumptions (i) and (ii) can be seen as a test for type
(a) convergence, a positive β̂ implying that poor regions unconditionally grow faster

2 As random shocks may produce criss-crossing or overshooting effects, β-convergence is a necessary but
not sufficient condition for sigma-convergence (see Barro and Sala-i-Martin 2004).
3 Some researchers prefer this approach, since it provides a more complete set of information.
β-convergence, in fact, suffers from the so-called “Galton’s fallacy”, hence it may be consistent with a
stationary distribution over time (Quah 1993b; Hart 1995).
4 Estimates are usually obtained calculating b̂ by ordinary least squares (OLS), and re-parameterizing
β̂ = − ln(1 − b̂T )/T . Estimation may also be done with non linear least squares (NLS). However, the use
of one technique rather than another does not lead to appreciable statistical discrepancies (on this point, see
Abreu et al. 2005a).
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than rich ones, at the same rate, towards a unique steady-state independently from the
initial conditions. Barro and Sala-i-Martin (1991, p. 154), analysing a sample of 73
Western European regions over the period 1950–1985, found an “empirical regularity
that the rate of β convergence is roughly 2% a year in a variety of circumstances [. . .]
the half-life of this convergence process is 35 years”.5 In the last edition of their book,
they concluded that “absoluteβ convergence is the norm for these regional economies”
(Barro and Sala-i-Martin 2004, p. 496).

Tests of absolute β-convergence are plausible when the object of study is within-
country convergence. In that case, regional economies share common steady-states,
being affected by similar saving rates, preferences, governmental policies, property
rights, infrastructures, and so on. In the case of between-country convergence, however,
type (a) convergence appears quite unrealistic, since regions belonging to different
countries may not show a common steady-state. As Solow (1999, p. 640) argued,
“there is nothing in growth theory to require that the steady-state configuration be
given once and for all [. . .] the steady-state will shift from time to time [and, we say,
from space to space] whenever there are major technological revolutions, demographic
changes, or variations in the willingness to save and invest”.

If the determinants of steady-state are not constant across regions, it follows that
ai �= a,∀i , leading assumption i) to fail.6 Mankiw et al. (1992) solved the problem
by relaxing assumption (i) in two ways. First, in the presence of heterogeneity, ỹ∗

i can
be included among a set of control variables added to Eq. (1). Second, if Ai,0 reflects
not only the initial technology, but also resource endowment, climate, institution, and
other region-specific factors affecting growth, it may be constituted by a common and
a random component, ln(Ai,0) = ln(A0)+ ei , where A0 is the common factor and ei

is the specific effect. The error term is now equal to ui = (1 − e−βT )/T · ei + εi , ỹ∗
i

being independent of the error term. Assumption (i) is hence replaced by

(iii) a = ai = γi + (1 − e−βi T )/T · ln(A0), ∀i.

Equation (1), with the assumptions (ii) and (iii), and the inclusion of control vari-
ables, implies homogeneity in the convergence parameter, the initial efficiency, and
the technological progress. Steady-states determinants, on the contrary, are allowed to
be heterogeneous. Estimation can be considered a test for type (b) convergence, with
a positive β̂ meaning that poor regions grow conditionally faster than rich ones, at the
same rate, towards different steady-states.

Armstrong (1995), testing for absolute and conditional convergence, either within
or between-country, on a sample of 85 EU regions over the period 1950–1990, found
significant discrepancies between the two hypotheses. The rate of between-country
absolute convergence was about 1% per annum, much slower than the 2% found by
previous studies. In fact, a rate of 2% was only found during the post-War period, for

5 The so-called half-life condition is given by e−βT = 1/2 ⇒ T = ln(2)/β. If the speed of convergence
is equal to 2% per year, it follows that T ∼= 0.69/0.02 ∼= 35, hence the economy fills half the gap in about
35 years.
6 Steady-state variables might be comprised in the error term, ui = (1 − e−βi T )/T · ln(ỹ∗

i )+ εi , where
εi is a random component. However, if those variables were related to initial income levels, and they had
an impact on growth, ỹ∗

i would be an omitted variable and the coefficient b̂ would be biased (Bernard and
Durlauf 1996).
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within-country conditional convergence.7 On the other hand, the years following the
oil crisis saw a decrease of annual convergence rates ranging from 0.8 to 1%.

Type (a) and (b) convergence tests, however, have been criticized under many
respects. From a general cross-country perspective, parameters such as heterogeneity,
outliers, and measurement errors have been highlighted (Temple 1998, 2000). Looking
at the European regional experience, some researchers (Martin 1998; Petrakos et al.
2005) sustained that the convergence process does not follow a homogeneous pattern
of growth.8 In this case, testing for types (a) or (b) convergence would be misleading,
if the “true” convergence process saw the regions converging at different rates towards
different income levels.

The existence of structural heterogeneities may be compatible, for instance, with the
presence of multiple regimes in cross-country growth behaviour identified by Durlauf
and Johnson (1995), or with the convergence clubs—the “twin-peaks”—in world
income distribution detected by Quah (1997). On the one hand, country-specific con-
straints on the adoption of technologies may affect the efficiency of regional economies
and produce structural heterogeneities, as verified world-wide by Durlauf et al. (2001).
In this case, assumption (iii) does not hold, because

(iv) a �= ai = γi + (1 − e−βi T )/T · ln(A0), ∀i .

On the other hand, growth models similar to the one developed by Azariadis and
Drazen (1990) assume that spillovers due to physical or human capital accumulation
cause threshold effects, which produce shifts in the aggregate production function,
leading to multiple, locally stable, steady-state equilibria—i.e. to different convergence
“clubs” (see Durlauf and Quah 1999). A threshold value in the income level, ȳ, implies
βi = β1, if yi,0 ≺ ȳ, andβi = β2 otherwise. Hence, assumption ii) needs to be replaced
by

(v) b �= bi = (1 − e−βi T )/T, ∀i .

If initially poor regions converge towards a lower income level,9 then estimates of
Eq. (1) with assumptions (iv) and (v) can be seen as tests of type (c) convergence.
A positive β̂ indicates that poor regions grow faster than rich ones, at different rates,
towards different steady-states depending on their initial conditions.

The existence of club convergence across Europe has been recognized by sev-
eral authors. Early studies imposed exogenous assumptions on the number of clubs,
to emphasize geographical and distributional factors, such as North–South, centre–
periphery, or rich–poor divisions. Neven and Gouyette (1995) split a sample of 142
EU regions, over the period 1980–1989, into a Northern and a Southern club. They
found a very low rate of 0.53% absolute convergence for the whole sample, and no
statistically significant convergence inside either of the two clubs. Only when country-
specific effects are controlled for, the rate of convergence takes on significant values,
comprised between 1.1 and 1.8%.

7 Country-specific dummies are used to control for heterogeneity in steady-states. The common practice
of employing dummy variables is due to lack of data at a regional level.
8 Convergence between States—towards the outside—but not within—towards the inside—has been
defined as the “diverging-convergence” phenomenon.
9 Falling into a “poverty trap”.
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One should, however, consider more fully endogenous criteria to detect the presence
of clubs, rather than making exogenous choices which arbitrarily assign structural
heterogeneities to different clubs. Canova (2004), for instance, adopted a predictive
density approach to find convergence clubs in a sample of 144 EU regions, over the
period 1980–1992. Avoiding a priori assumptions, he identified four homogeneous
clubs, with different convergence rates and steady-states values highlighting North–
South or poor–rich dimensions, the initial conditions influencing the probability of
belonging to a club.

Furthermore, many authors have argued that, due to geographical spillovers, the
distribution of regional per capita income across Europe tends to be influenced by
physical location (Quah 1996c; López-Bazo et al. 1999; Le Gallo and Ertur 2003).
Ertur et al. (2006) treated spatial problems in the context of club convergence. In a
sample of 138 EU regions, over the period 1980–1995, they found that per capita
income levels were highly spatially correlated. In particular, an exploratory spatial
analysis (ESDA) revealed a division between Northern-rich regions and Southern-poor
ones. Assuming the existence of heterogeneity across two different spatial regimes,
and taking the spatial autocorrelation into account, they found no convergence in the
Northern club, and an annual convergence rate of 2.9% in the Southern one.

The procedure followed by Ertur et al. (2006) is based on an exogenous assumption
that structural parameters are heterogeneous across regions, due to their geographi-
cal locations. To our knowledge, a procedure that merges together an endogenous
identification of convergence paths and spatial dynamics is not yet available either in
the theoretical or the empirical literature. Working in this direction, we implement a
strategy that leads to an endogenous selection of convergence regimes once spatial
dependence effects have been taken into account. It can be considered a first step for
future research.

3 Spatial dependence across European regions

Spatial dependence, if not properly modelled, leads to serious misspecification prob-
lems in linear regressions (Anselin 1988, 2001; Anselin and Bera 1998). In the cross-
sectional growth framework, in which the observations are spatially organized, the
existence of geographical spillovers may violate the assumption that the error terms
from neighbouring regions are independent (Rey and Montouri 1999). The common
practice is to explicitly incorporate in the regression a spatial component, in the form
of a spatial error or a spatial lag (Arbia 2006). Another approach, as we will see later,
is to filter out the spatial dependence.

A simple check of spatial dependence, in its weaker version of spatial autocorrela-
tion, can be performed by means of Moran’s I statistic. As is well known, the statistic
can be expressed as

I = n

q

∑n
i=1

∑n
j=1wi j xi x j

∑n
i=1

∑n
j=1 xi x j

,

where wi j is an element of a binary spatial weight matrix W, xi is a specific variable
for observation i, n is the number of observations, q is a scaling factor equalling the
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sum of all the elements of the matrix. In this paper we use a row-standardized binary
matrix, based on the k-nearest neighbouring regions, the elements of which are

⎧
⎪⎨

⎪⎩

wi j (k) = 0 if i = j

wi j (k) = 1 if di j ≤ di (k)

wi j (k) = 0 if di j > di (k)

where di (k) is a critical cut-off distance, defined for each observation i , ensuring that
every single region of the sample has the same number (k) of neighbours.

Abreu et al. (2005b) has shown that contiguity-based matrices are the most popular
choice in the literature. In the case of the European regions, however, these kind of
matrices leave the islands unconnected to the continent, hence distance-based spec-
ifications have been preferred in applied works (Le Gallo and Ertur 2003; Le Gallo
and Dall’erba 2006). We chose a specification with k = 20, since it cancels out the
spatial autocorrelation in the filtered series.10 Such a specification is also able to link
Cyprus with the Greek regions, which in turn are connected to Italy; Ireland with the
UK, which is connected to continental Europe; Sicily and Sardinia with continental
Italy; Corsica with the continental French regions.11

Data on per capita GDP, expressed in Euros at 1995 prices, are taken from
Cambridge Econometrics, European Regional Database, 2004. We work with two
samples. The larger sample includes 242 NUTS-2 regions from EU-25,12 covering
the period 1991–2002, while the smaller one comprises 190 NUTS-2 regions from
EU-15, covering the period 1980–2002. Figure 1 shows standardized scatter-plots for
the smaller sample based on Moran’s I of (a) the log of per capita GDP, and (b) the
average growth rate of per capita GDP.13 A highly positive spatial correlation of per
capita income levels among the European regions is clearly evident. The majority
of the observations fall into the high–high (HH) or the low–low (LL) quadrant. In
fact, rich (poor) regions are surrounded by rich (poor) regions. Spatial correlation
of growth rates is also positive, albeit in a weaker form. Over the whole period, the
spatial dynamic of the growth rates is unable to offset the spatial concentration of the
economic activity. At the end of the period, the physical location of income levels is
agglomerated as it was at the beginning. Moran’ s I of per capita GDP in 2002 equals
0.6, only 1% point less than its value in 1980.

From the above statistics, we would expect that spatial dependence matters for
the study of β-convergence in Europe. As a preliminary analysis we estimate Eq. (1)
for both samples by standard OLS, and test the existence of spatial autocorrelation
among the regression residuals. We split the EU-15 sample into two sub-periods of
equal length, 1980–1991 and 1991–2002. The breakdown is useful for at least two

10 However, other weight matrices, with k = 10, 15, produced very similar results in the mixture. See the
next section for the filtering procedure.
11 The weight matrix was obtained using the GeoDa software package (Anselin 2005).
12 Inclusive of German Ex-Länder. The list of regions is available upon request.
13 To save space, we do not show here the figures for the larger sample. The results, however, are very
similar.
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Fig. 1 Moran scatterplots (standardized) of a per capita GDP, 1980, b average growth rate of per capita
GDP, 1980–2002. 190 NUTS-2 regions from EU-15. Data Source Cambridge Econometrics, European
Regional Database, 2004

Table 1 Absolute β-convergence

EU-15 EU-25

1980–2002 1980–1991 1991–2002 1991–2002

â 0.076 (0.011) 0.040 (0.016) 0.102 (0.015) 0.093 (0.012)

b̂ 0.006 (0.001) 0.002 (0.002) 0.009 (0.002) 0.008 (0.001)

Half-life 108 years 310 years 69 years 79 years

R2 0.12 0.01 0.15 0.17

Log-likelihood 686 623 642 700

Obs 190 190 190 242

Diagnostics for spatial autocorrelation

Moran’s I err-u* 0.12 (0.00) 0.16 (0.00) 0.17 (3.00) 0.07 (0.00)

Moran’s I err-f* −0.03 (0.24) −0.01 (0.87) −0.02 (0.42) −0.02 (0.44)

* P values within parentheses
Standard errors within parentheses. OLS estimates and diagnostics for spatial autocorrelation
Data source Cambridge Econometrics, European Regional Database, 2004

reasons. First, in the Nineties major institutional changes, such as the implementation
of Cohesion policies and the establishment of the adhesion criteria to EMU, may
have had an impact on the convergence process of the EU regions. Second, such a
breakdown makes it possible to compare the smaller sample with the larger one, to see
if the regions which first joined the Union experienced different convergence patterns.
The results are shown in Table 1.

Over the whole period, the convergence coefficient for the EU-15 sample is highly
significant. Its magnitude, however, is only about one fourth of the “empirical norm”
of 2%. Actually, the convergence rate equals about 0.6% per annum, leading to a
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half-life of 108 years.14 The poorest regions are thus supposed to fill half the gap with
the richest ones in over a century. Looking at the two sub-periods, it can be clearly seen
that the bulk of convergence is given by 1990s. During 1980s, the convergence coef-
ficient is very slow and not statistically significant, pointing to a lack of convergence.
Enlarging the sample to the EU-25 regions does not change the picture very much,
since convergence decreases only slightly when compared to the EU-15 sample.

Finally, the bottom part of Table 1 shows the spatial autocorrelation diagnostics.
The test is based on Moran’s I statistic applied to regression residuals. Under some
regularity conditions, the distribution of the test corresponds to the standard nor-
mal (Anselin, 1988). The results highlight a significant spatial autocorrelation among
the residuals,15 for both samples, either over the whole period or for the two sub-
periods. Interestingly, during 1990s, the spatial dependence is higher for the EU-15
regions, meaning that per capita income is less concentrated in the enlarged Eu-
rope. This preliminary spatial analysis shows that spatial phenomena can be relevant
for the study of EU regional convergence, and that they should be taken into ac-
count in the cross-sectional framework, in order to avoid misspecification problems.
Absolute β-convergence, tested by standard OLS with no spatial specification, suffers
from many shortcomings which invalidate its ability to explain the regional growth
processes.

4 The spatially filtered mixture of regressions

Given the spatial influence highlighted in the previous section, our interest here lies
in an endogenous determination of heterogeneity in regional convergence patterns,
once the spatial dependence in the data has been properly treated. We avoid a priori
restrictions, such as geographical (North–South or centre–periphery), or exploratory
(based upon spatial association indices) divisions. To this end, we use a spatially filtered
mixture regression approach (for mixture densities, see Titterington et al. 1985; Wedel
and Kamakura 1998; MacLachlan and Peel 2000). Previous attempts to apply mixture
densities, or mixture regressions, to convergence analysis are found in the works of
Paap and Van Djik (1998), Tsionas (2000), and Bloom et al. (2003). Those studies,
however, do not deal with spatial related questions, and differ from ours as regards
several other aspects.

Let us begin by considering spatial dependence. As we have seen in the previous
section, if spatial dependence is present across a sample, OLS estimates are biased or
not efficient. In the case of spatial effects influencing the errors in Eq. (1), statistical
inference based on OLS is not reliable, because assumption of errors independence
from neighbouring regions may be violated. We treat potential sources of misspecifi-
cation in the β-convergence framework by isolating the spatial correlation by means of

14 The result may not be very interesting in terms of policy implications. On how to calculate β̂ see note 4
in Sect. 2.
15 The test was carried out on the residuals of the unfiltered series (err-u), as well as on the filtered series
(err-f) obtained with the filtering procedure described in the next section. Once spatial correlation is filtered
out from the series, the test become not significant.
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a local filter.16 Two filtering procedures have been shown to give the same empirical
results in “cleaning up” the spatial effects from geographically organized variables
(Getis and Griffith 2002).

We use the Getis local filter Gi(d) (Getis 1995) constructed as, for each spatial
unit i ,

Gi (d) =
∑n

j=1wi j (d)x j
∑n

j=1 x j
, i �= j

where x is the original unfiltered variable and wi j is the element of the spatial weight
matrix related to the j neighbouring regions comprised within the distance threshold
d. The filtered variable x F (where F stands for filtered) can then be obtained as

x F
i = xi

[∑n
j=1wi j (d)

]

(n − 1)

/

Gi (d),

while the residual spatial component can be defined as x S = x − x F (S stands for
the spatial component). Applying this filter to the series makes the OLS estimates
consistent.

We test different specifications of W (k = 10, 15, 20) until Moran’s I on regression
residuals becomes not significant. The specification with k = 20 gives the desired
outcome.17

A similar two-step procedure, with a spatial filtering in the first step and a panel
regression in the second, is implemented, for example, by Badinger et al. (2004). Our
approach uses the same first step, where the spatial dependence is “cleaned up”, while
the second step is based on the application of the mixture regression model to the
filtered variables. At the end of the procedure we obtain a transformed version of
Eq. (1)

gF
i = a − bx F

i + ui (2)

the least squares estimation of which is consistent.18

In the second step we employ the mixture regression model to detect the exis-
tence of regional convergence patterns. Assume that the “true” density function of
a population is a mixture of several functions, one for each pattern with different
parameters, weighted by the probability of belonging to a specific pattern. If the pop-
ulation is divided into k groups,19 the number of groups being unknown and the sum

16 In a previous version of this work we used a global filter obtained by means of a spatial parameter
estimated in a spatial error model (see Anselin and Bera 1998). Results about convergence rates and
patterns identification were quite similar, but that procedure is less consolidated in the literature and it
causes inference problems in the second step deriving from estimating mixtures of equation with generated
regressors (see Pagan 1984).
17 See the row labelled Moran’s I err-f in Table 1.
18 We estimate Eq. (1) without control variables, because we admit heterogeneity in steady-states, allowing
for different intercepts across clubs.
19 We refer to patterns, groups, or regimes without distinction.
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of the probabilities of belonging to one of these being equal to one for each obser-
vation, then, according to the total probability theorem, the conditional distribution
function is

f (gF
i |θ) =

k∑

s=1

ψs fs(g
F
i |θs) (3)

where gF
i is the dependent variable, ψs is the probability of belonging (a priori)

to a regime s, with s = 1, . . . , k, and θ is a vector of parameters. Once ψs has
been estimated, the subsequent probability that observation i comes from s has to be
computed by Bayes theorem.

Consider the function of the filtered variable gF
i as normal. The density function

conditional to belonging to the regime k is

f (gF
i |s = k,θ) = (2πσ 2

k )
1/2e−[

gF
i −(ak−bk x F

i )
]2
/2σ 2

k. (4)

In this way, the component represented by (ak − bk x F
i ) gives us a linear predictor

that replaces the population mean of the group. From Bayes rule, it is straightforward
to extract the unconditional probability of gF

i for s = k as a joint probability, that is
the product of the conditional probability and the marginal probability of belonging
to a club. This latter is equal to ψk , hence the joint probability is ψk f (gF

i |s = k,θ).
Summing all the values of s gives the unconditional density of gF

i

f (gF
i ,θ) =

k∑

s=1

ψs(2πσ
2
s )

1/2e−[
gF

i −(as−bs x F
i )

]2
/2σ 2

s . (5)

The vector of parameters θ, which also contains the weights ψs , is unknown. A
simple way to solve this type of missing data problem is through the Expectation–
Maximization (EM) algorithm. The solution is to find an initial value of the
parameters, then compute the density for these parameters, and re-compute the
final θ, by maximization of the log-likelihood. The algorithm therefore has two alter-
nated steps: in the first (expectation), it computes the density function for the chosen
parameters, while in the second (maximization), it derives the estimation of the
parameters as, bs , and σ 2

s . In the case of a linear mixture regression, De Sarbo and
Cron (1988) show how the second step is equivalent to performing k weighted least
squares regressions, where the weights are the roots of the probabilities of belonging to
a club.

We begin with random starting probabilities, then we update the probabilities step
by step. This strategy could have two types of shortcoming. First, the results might
depend on the initial probabilities. Second, the maximization of the log-likelihood
could converge in a local optimum. To avoid these problems, and to be reason-
ably confident that our estimates do not correspond to a local maximum, we tried
500 different starting values. We chose the highest value of log-likelihood, which
also helps to determine the number of components in the mixture, as we will
see below.
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Finally, each region is attributed to a regime, if the probability of belonging to that
regime is higher than the probability to belong to the others. A last point refers to
inference considerations. Since standard errors in the EM algorithm are not used to
iterate (Wedel and Kamakura 1998), when the algorithm converges to the final value,
an estimation of the covariance matrix is given by the Fisher information matrix. In the
case of the EM algorithm, Louis (1982) finds this observed information matrix as the
difference between two matrices—the total information matrix and the missing data
information matrix. Turner (2000) shows computational details for mixture regression
models.20

5 Results

This section shows the results obtained with the two-step methodology described
above. The choice of the mixture’s components number is based upon two comple-
mentary rules. On the one hand, we look at the improvements given by additional
components in the log-likelihood, through a set of information criteria. On the other
hand, we consider a meaningful interpretation of the data. The latter rule regards
either the existence of appreciable differences in the significance of the parameters, or
the certainty of the regions’ attribution to specific regimes.21 The logic of the former
rule is to penalize the increase of the components in the mixture, in order to avoid an
excessive—and useless—number of parameters. The AIC (Akaike Info Criterion) is
the less restrictive criterion, so it generally selects less parsimonious specifications.
On the contrary, the BIC (Bayesian Info Criterion) is the most restrictive one. The
MAIC (Modified Akaike Info Criterion) falls in-between (for a detailed description,
see Hawkins et al. 2001).

According to the criteria reported in Table 2, a specification with only one com-
ponent is a choice not supported by the data, while a three-components specification
is the better approximation for all the samples, except for the EU-15, 1991–2002, for
which all the criteria indicate a choice of two regimes.22 Table 3 reports the results
obtained by the mixture regression, applied to the spatially filtered variables. Gener-
ally, the two-components specification selects a small group with very fast convergence
rates, ranging from about 1.3–3.2%, becoming in the Nineties a divergence regime.
Such a group, comprising from 12 to 26% of the data, seems to behave like an “outliers
bin”, since it collects regions with particular growth experiences. The majority of the
regions fall into a regime characterized by a very slow convergence rate, equal to about

20 The observed information matrix can be computed as the difference between the total information
matrix and the missing data information matrix. This matrix is then inverted to extract the square roots
of the elements from the main diagonal, in order to obtain the standard errors of the parameters. The
matrix dimension is given by the number of parameters minus one, because one of the weights is a linear
combination of the others.
21 In some cases the attribution may be less precise (i.e. there are regions with a 100% probability of
belonging to a group, and regions with only a 51% probability). Generally, we find about 90% of regions
that are attributed with a high difference with respect to the alternative regime.
22 To save space, we do not show the tables with four and five components. The criteria, however, do not
record any improvement with respect to the three components specification.
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Table 2 Decision criteria for the mixture’s components number

Log-likelihood AIC MAIC BIC

EU-15: 1980–2002

1 Component (OLS) 693 −1,380 −1,377 −1,370

2 Components 730 −1,446 −1,439 −1,423

3 Components 736 −1,450 −1,439 −1,415

EU-15: 1980–1991

1 Component (OLS) 629 −1,252 −1,249 −1,243

2 Components 660 −1,306 −1,299 −1,283

3 Components 669 −1,316 −1,305 −1,281

EU-15: 1991–2002

1 Component (OLS) 637 −1,268 −1,265 −1,258

2 Components 653 −1,293 −1,286 −1,270

3 Components 657 −1,292 −1,281 −1,256

EU-25: 1991–2002

1 Component (OLS) 732 −1,458 −1,455 −1,447

2 Components 750 −1,485 −1,478 −1,461

3 Components 754 −1,487 −1,476 −1,448

Data source Cambridge Econometrics, European Regional Database, 2004

0.5% per year. This regime does not show substantial differences across samples and
periods. The half-lives, in all cases, exceed a century, being this way not particularly
interesting in terms of cohesion.

The three-components specification makes it clear that the slow convergence regime
is constituted by a smaller group of fast convergence rates, ranging from about 1.2
to 4.7%, and a larger regime with slower or absent convergence.23 This latter com-
prises one half or two thirds of the regions in the samples, depending on the periods
considered. The convergence regime shrinks during the Nineties, a decade that saw
the fostering of the EU integration process due to the Maastricht Treaty and adhe-
sion to EMU. Overall results, interestingly, seem to be in line with recent empirical
investigations on the subject (see Meliciani and Peracchi 2006).

As a final step, we proceed with a visual inspection of the regions, allocated by the
mixture to the different regimes, net of spatial effects (Fig. 2). As an illustration, the
EU-25 sample is shown. Regions in dark grey make up the faster convergence group,
the light grey group is the slower convergence regime, while white indicates the regions
which do not converge. The map depicts the existence of dualistic phenomena in many
States. Rich and poor regions in Ireland, the UK, France, Germany, Spain, Italy, as well
as in many of the New Member States, fall into opposite regimes that are not converging
between themselves. Such phenomena reinforce the “diverging-converging” paradox
(i.e. convergence between States, but not within).

23 In the case of EU-15, 1980–1991, the convergence rate remains similar to the two-components specifi-
cation, being equal to about 0.6% per year.
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Table 3 Spatially filtered mixtures regressions

2 Components 3 Components

Regime 1 Regime 2 Regime 1 Regime 2 Regime 3

EU-15: 1980–2002

â 0.324 (0.120) 0.062 (0.015) 0.340 (0.120) 0.183 (0.023) 0.037 (0.020)

b̂ 0.032 (0.013) 0.005 (0.002) 0.034 (0.013) 0.018 (0.002) 0.002 (0.002)

Half-life (years) 5 131 11 30 339

Weight 12% 88% 12% 22% 66%

EU-15: 1980–1991

â 0.267 (0.108) 0.067 (0.021) 0.454 (0.048) −0.072 (0.127) 0.075 (0.023)

b̂ 0.027 (0.012) 0.005 (0.002) 0.047 (0.005) −0.010 (0.014) 0.006 (0.003)

Half-life (years) 22 135 10 – 112

Weight 26% 74% 15% 19% 66%

EU-15: 1991–2002

â −0.061 (0.145) 0.064 (0.025) −0.161 (0.179) 0.255 (0.111) 0.036 (0.030)

b̂ −0.008 (0.015) 0.005 (0.003) −0.019 (0.02) 0.025 (0.012) 0.002 (0.003)

Half-life (years) – 135 – 24 343

Weight 20% 80% 14% 24% 62%

EU-25: 1991–20e02

â 0.144 (0.063) 0.069 (0.016) 0.222 (0.085) 0.137 (0.032) 0.012 (0.024)

b̂ 0.013 (0.007) 0.006 (0.002) 0.021 (0.009) 0.012 (0.003) −0.000 (0.002)

Half-life (years) 49 112 29 54 –

Weight 23% 77% 16% 38% 46%

Standard errors within parentheses
Data source Cambridge Econometrics, European Regional Database, 2004

6 Conclusions

In this work we analysed regional convergence patterns, trying to avoid potential
sources of problems due to spatial effects, parameter heterogeneity and outliers. The
methodology adopted here shows that neither absolute, conditional, nor club con-
vergence are the best hypotheses for explaining regional growth in Europe, over the
period 1980–2002. Summarizing, a common specification for the whole sample is an
assumption too much restrictive, convergence rates are far removed from the “empir-
ical norm” of 2% per year, and spatial effects matter.

Once the data have been spatially filtered, the mixture endogenously identifies
multiple, a-spatial, growth regimes. In the case of a three-components specification,
generally one regime behaves as an “outlier bin”, the other shows a sustained conver-
gence rate, and the third, comprising the majority of the sample, shows no convergence
at all. Many regions, whether inside “poor” or “rich” States, fall into the non conver-
gence regime, where agglomeration factors, and increasing returns, might play a role.
Such a mechanism reinforces the paradox of the so-called “diverging-convergence”,
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Fig. 2 Convergence patterns, net of spatial influence, EU-25: 1991–2002∗. ∗Dark grey fast convergence,
light grey slow convergence, white no convergence

that is, the convergence between States but not within. Furthermore, a North–South
division does not emerge, except in Italy’s case, while a core-periphery dynamic seems
a more plausible scenario.

Finally, since the main intent of this work was to take into account misspecification
sources in the β-convergence framework, policy prescriptions cannot be easily drawn.
However, some implications may be discussed. Since convergence rates do not vary
very much between the two sub-periods, cohesion policies do not make a substantial
difference. If anything, 1990s see an expansion of the non convergence area. Looking
at the enlarged sample, regions belonging to the New Member States show different
trends. In conclusion, over the period considered, regional growth dynamics does not
seem to have followed a common pattern towards the convergence of per capita income
across Europe.
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