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Abstract The purpose of this paper is to improve the knowledge of the Spanish urban
system. We study the evolution of population growth among the group of 722 munic-
ipalities included in the Spanish urban areas over the period 1900–2001. A spatial
SUR model is estimated for Zipf’s law and shows the existence of two main phases:
divergence (1900–1980) and convergence (1980–2001). Then, the cross-sectional dis-
tribution of urban population is characterized by means of nonparametric estimations
of density functions and the growth process is modeled as a first-order stationary
Markov chain. Spatial effects are finally introduced within the Markov chain frame-
work using regional conditioning. This analysis shows a low interclass mobility, i.e.,
a high-persistence of urban municipalities to stay in their own class from one decade
to another over the whole period, and the influence of the geographical environment
on urban population dynamism.
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1 Introduction

Economic development is associated with the movement of population from the coun-
tryside to cities. This observation raises the question of how cities of different sizes
grow during the process of development. The size distribution of cities may become
more even over time if smaller cities catch up with larger ones. At the other extreme,
urbanization may take the form of the expansion of the largest cities. In this case, the
size distribution would become more unequal.

In this paper, we consider the particular experience of Spain between 1900 and
2001. Our aim is thus to improve the knowledge of the Spanish urban system and
answer the following questions. How has the size distribution evolved over the last
century? Has it become more even or more unequal? Is there a lot of mobility of cities
within this size distribution? These questions are particularly relevant since the Spanish
urbanization process has mainly taken place during the twentieth century producing
significant processes of industrialization and economic growth. Specifically in Spain,
this process has not been uniform and different results may be found depending on the
definition of an “urban area”. In fact, there is no official definition of an “urban area”
in Spain and it is not easy to obtain statistical data at the level of municipalities. Hence,
analyses of the Spanish urban system are still scarce. Nevertheless, some authors have
considered the group of “main cities” -above 50,000 inhabitants—as urban units (e.g.
Lanaspa et al. 2003, 2004, Mella and Chasco 2006).

In this paper, we propose to work with the set of municipalities that form the Spanish
“urban areas”, as defined by the Ministerio de Fomento (2000). It is a heterogeneous
group of municipalites that not only includes the main cities but also all the satellite
towns that make up the complete metropolitan area. We study the evolution of pop-
ulation growth among this set of 722 municipalities included in the present Spanish
urban areas over the period 1900–2001.

In order to examine urban evolution and answer the preceding questions, we first
examine the city size distribution by centering on the question of whether Zipf’s law
or its deterministic equivalent, the rank-size rule, holds for Spanish cities. Zipf’s law
has been applied in numerous studies (see Gabaix and Ioannides 2004, for a recent
review) but none of them considers the possibility of spatial effects. However, due
to the geographical nature of the empirical data used, we emphasize in this paper the
need to pay attention to the appropriate econometric methodology needed for a reliable
statistical inference. Therefore, we formally test for spatial autocorrelation and spatial
heteroskedasticity in the spatial SUR framework suggested by Anselin (1988).

This empirical work on the rank-size rule is essentially involved with one particular
characteristic of the distribution of city sizes: the shape of that distribution. However,
some papers have also paid attention to the intra-distribution dynamics (Eaton and
Eckstein 1997; Black and Henderson 1999, 2003; Lanaspa et al. 2004). Indeed, as
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Quah (1996) has forcefully argued, typical cross-section or panel data econometric
techniques do not allow inference about patterns in the intertemporal evolution of the
entire cross-sectional distribution. Making such inferences requires estimating directly
the full dynamics of the entire distribution of cities. We therefore follow this strand of
literature by focusing on how cities develop relatively to the rest of the urban system,
both in terms of rankings and relative sizes. For that purpose, the cross-sectional
distribution of urban population is analyzed by means of nonparametric estimations of
density functions and the growth process is modeled as a first-order stationary Markov
chain. The evolution of the shape of the population cross-sectional distribution and the
changes in the municipalities’ relative positions within this distribution is then able
to uncover the existence of alternate divergence/convergence trends. Moreover, as in
the analysis of Zipf’s law, we also adopt an explicit spatial approach by measuring
the extent to which the geographical environment influences the urban municipalities’
relative position within the population cross-sectional distribution.

Hence, we extend previous studies focusing on the Spanish case (mainly Lanaspa
et al. 2003, 2004) in two ways. First, not only do we consider a broader set of cities,
but we also analyze the complete set of municipalities that actually belong to the
Spanish urban areas: bigger cities and metropolitan towns. This feature allows for a
better knowledge of the evolution of the complete urban system in Spain, which is
not exactly the same as the one experienced by other groups of cities in the same
country. Second, we explicitly introduce spatial dependence specifications and tests
in both Zipf’s law and Markov Chains analyses to capture the influence of space on
convergence and transition probabilities and we perform a more complete analysis of
movement speed and form of convergence in the city size distribution.

The paper is organized as follows. In the first section, the evolution of the disparities
between the Spanish urban municipalities is characterized by examining the population
cross-sectional distribution over the period from 1900 to 2001. We also test the validity
of Zipf’s law over this period. In the second section, we estimate a first-order Markov
chain and analyze its ergodic properties. The article concludes with a summary of key
findings.

2 The evolution of the Spanish urban system 1900–2001

This section examines growth in the Spanish urban system and changes in the relative
size distribution of urban municipalities over a 100-year period.

2.1 Data

In order to explore these issues, we need a data set with urban areas defined consistently
over the century. For that purpose, we have considered the classification proposed by
the Spanish Ministry of Urbanism and Public Works (Ministerio de Fomento 2000). It
divides the Spanish territory into urban areas, which include a set of 722 municipalities:
(1) a set of 495 towns included in the 65 “Large Urban Areas” (areas above 50000
inhabitants each); (2) the group of 227 municipalities considered as “Small Urban
Areas” (towns above 10000 inhabitants not included in the Large Urban Areas, with
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minor corrections). This is rather different from the approach in Lanaspa et al. (2003),
who operated with a sample of 100 largest cities1 as proxies of the Spanish urban
system.

Moreover, these 722 urban settlements are located across the whole Spanish ter-
ritory: Andalusia (137), Aragón (10), Asturias (25), Balearics (13), Canary Islands
(29), Cantabria (5), Castille and León (23), Castille-La Mancha (17), Catalonia (192),
Valencian Community (96), Extremadura (11), Galicia (32), Madrid (33), Murcia (19),
Navarre (18), Bask Country (58), Rioja (2), Ceuta and Melilla (2).

The evolution of population distribution is analyzed using the Census data over
the period from 1900 to 2001. There are 11 decades under consideration: 1900, 1910,
1920, 1930, 1940, 1950, 1960, 1970, 1980, 1991 and 2001. The data on population
are extracted from the Spanish Office for Statistics (INE) databank.2

2.2 The evolution of the shape of urban population distribution

Using this dataset, we first analyze the evolution of the shape of urban size. For that
purpose, we estimate non-parametric kernel density estimates of the urban population
distribution for each decade and we analyze its monomodality or multimodality char-
acteristics. More precisely, we examine relative urban municipality size distribution
in 1900 and the way this distribution has changed over time in 1950, 1970 until 2001.
Relative size distributions are considered, where size for each decade is normalized
by dividing by the average municipal area size. Figure 1 shows the relative log urban
municipality size distributions in 1900, 1950, 1970 and 2001. This density plot may
be interpreted as the continuous equivalent of a histogram in which the number of
intervals has been set to infinity and then to the continuum. From the definition of the
data, 1 on the horizontal axis indicates Spanish average city size, 2 indicates twice this
average, and so on.

Figure 1 plots an interesting graph where the distribution is bimodal in 1900 but
becomes a unimodal distribution in 2001 (minor mode around 70–80%). This may
reflect the existence, in 1900, of a group of urban municipalities with sizes below
the average, converging toward a lower population level than the rest of the towns.
Compared with 1900, more urban municipalities reported in 2001 population about
the Spanish average. The distributions in 1900 and 1950 are quite similar, while the
central mass significantly increased in 1970 to reach the highest point in the 2001
distribution. This progressive concentration of probability mass around 100% can be
interpreted as evidence for slight convergence. This result is similar to others in the
literature (Lanaspa et al. 2003, 2004, for Spanish largest cities; Anderson and Ge 2005,
for Chinese cities), though differs from Black and Henderson (2003) results for US
metropolitan areas.

1 These authors chose a relatively arbitrary number of “largest cities” after finding that the results were
qualitatively robust to different sample sizes. In a posterior paper, Lanaspa et al. (2004) chose different
subsets with the 100, 300, 500 and 700 most-populated municipalities.
2 This data are available in the INE webpage: http://www.ine.es.
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Fig. 1 Densities of log relative urban municipality size

2.3 Zipf’s law, or the rank-size rule

We continue our exploration of the evolution of the Spanish urban municipality size
distribution by using Zipf’s law, or the rank-size rule. Zipf (1949) claimed that the
size distribution of cities follows a Pareto law (Pareto 1897) when it holds that:

R = a · S−b (1)

where R is the city rank order of the population distribution; S is the population of the
cities; and a and b are parameters, with the latter being the Pareto exponent, always
positive by construction.

The rank size rule, which emerged from regularly observed features of the data lack-
ing any economic theoretic foundation, has recently been analyzed, among others, by
Krugman (1996), Eaton and Eckstein (1997), Overman and Ioannides (2001), Dobkins
and Ioannides (2000), Davis and Weinstein (2002), Ioannides and Overman (2003),
Cordoba (2003), Rossi-Hansberg and Wright (2004), Gabaix and Ioannides (2004),
Soo (2005), Gabaix and Ibragimov (2006). Gabaix (1999a,b) has derived a statistical
explanation of Zipf’s law for cities. He shows that if different cities grow randomly
with the same expected growth rate and the same variance, the limit distribution of city
size will converge so as to obey Zipf’s law. Duranton (2006) provides some economic
foundations for Zipf’s law: he embeds the endogenous growth model suggested by
Grossman and Helpman (1991) into an urban framework and views investments in
R&D as the main driver of city growth. This model can then generate Zipf’s law under
some particular condition detailed in the paper. Finally, Nitsch (2005) carries out a
meta-analysis combining 515 estimates from 29 studies and finds that cities are on
average more evenly distributed than suggested by Zipf’s law.

Formally, in this framework, the size distribution of cities is more or less even,
depending on the value of the Pareto exponent (b). At the limit, if b tends to infinity, then
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all the cities will be of an equal size. When b is equal to one, we obtain the well-known
rank-size rule or Zipf’s law. According to this rule, city populations among any group
of cities at any time are proportional to the inverse of the ranking of their populations in
that group. The Pareto exponent can therefore be interpreted as a convergence indicator.
Indeed, values that fall over time indicate relatively more important roles (increasing
weights) for the largest cities. More precisely, as b decreases, a 1% increase in city
size produces a smaller fall (in %) in rank and the city size distribution becomes more
spread out. Therefore, this will cause a divergence trend inside the group of urban
municipalities or greater metropolitan concentration. Likewise, a 1% increase in city
size produces a larger fall (in %) in rank as b increases. Therefore, increasing values
of the Pareto exponent represent convergence dynamics, or in other words, greater
dispersion of the population outside the large metropolitan areas and a more balanced
population distribution between urban centers of different sizes.

Empirically, departing from Eq. (1), we take logarithms on both sides and estimate
the resulting linear expression for the set of 722 urban municipalities (i = 1, . . . 722)
for each of the eleven decades (t = 1, . . . 11) under consideration:

ln Rit = ln at − bt · ln Sit + εi t (2)

Gabaix and Ioannides (2004) have shown by Monte–Carlo simulations that OLS
estimation of this equation presents several pitfalls in small samples.3 Moreover, OLS
may be affected by the omission of spatial autocorrelation. More precisely, if spatially
autocorrelated residuals represent the effects of an unmodelled spatially autoregressive
error process, then the parameter estimates remain unbiased but become inefficient.
Statistical inference is biased in this case. Conversely, if they are due to the omission
of spatial autocorrelated variables, then the parameter estimates are biased.

Therefore, and since we have allowed for different intercepts and slopes in each
period, we have followed the strategy suggested by Anselin (1988, pp. 203) for the
specification of spatial SUR models. In a first stage, we have estimated Eq. (2) by
Ordinary Least Squares (OLS) for the 11 spatial equations individually considered
(i.e., one equation for each decade under consideration). For each model, we have
tested for the presence of spatial effects. As shown in Table 1, the OLS residuals of
the 11 equations are non-normal and exhibit both heteroskedasticity and spatial auto-
correlation (as pointed out by Jarque–Bera, Koenker–Basset and Kelejian–Robinson
tests, respectively). Therefore, we can conclude that both spatial effects (spatial auto-
correlation and spatial heterogeneity characterized by heteroskedasticity) are present
in the 11 models. We will focus in the remaining discussion on the former prob-
lem, leaving an explicit treatment of heteroskedasticity problems for further research.
Regarding spatial autocorrelation, the non-normality of the error terms implies that the

3 Gabaix and Ibragimov (2006) also point out that the OLS estimator of b in equation (2) is strongly biased
in small samples. To overcome this problem, they provide a simple practical remedy and show, by Monte-
Carlo simulations, that this bias is considerably reduced when using the Rank −1/2, and run log (Rank
−1/2) = α − b log (Size). Although we do not have a small sample and we use estimation methods other
than OLS, we have also estimated equation (2) introducing this change. As expected, the results obtained
are robust to the modification suggested by Gabaix and Ibragimov, and they are available upon request from
the authors.
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Lagrange Multiplier (LM) tests are less reliable. The Kelejian–Robinson statistics—
though highly significant—cannot orient towards a spatial lag or spatial error formu-
lation.

In addition, we can also test for the existence of temporal correlation between the
11 equations under the form:

E
[
εtε

′
s

] = σts IN with s, t = 1, . . . 11 (3)

where εt is an (N , 1) vector containing the N error terms for time period t and N = 722.
This assumption of dependence between equations can be tested for by means of a LM
test or a likelihood ratio (LR) test of the diagonality of the error covariance matrix. Note
that this specification differs from the most familiar SUR design (Zellner 1962) with
N fixed and T → ∞, where the regression coefficients are assumed to vary by cross-
sections (but are constant over time) and where the error terms are contemporaneously
correlated. When the cross-sectional units pertain to spatial units, this latter assumption
allows estimating nonparametrically cross-sectional dependence, interpreted as spatial
autocorrelation, which is left unspecified as a general covariance (see Hordijk and
Nijkamp 1977; White and Hewings 1982 for applications). In our case, N > T , so
that the standard SUR is not appropriate and spatial autocorrelation should instead be
expressed as a parameterized function.

The SUR model can be estimated using FGLS or maximum likelihood (ML). The
latter corresponds to iterated FGLS, yielding consistent and asymptotically normal
estimates under the assumption of normality of errors. Spatial autocorrelation can be
incorporated either in the form of a spatial lag or in the form of a spatial error term.
In the first case, the model can be written as follows:

ln Rit = ρt ·
N∑

j=1

wi j ln R jt + ln at − bt · ln Sit + εi t (4)

where the error terms are as in (3) and where wi j is an element of a spatial weights
matrix W . It is equal to 1 if urban municipality i is, at most, 160 km away from
urban municipality j . The role of the spatial weights matrix is to introduce the notion
of a neighborhood set for each of the urban municipalities.4 This model can also be
estimated with ML. Note that for the spatial lag spatial SUR model, the three stage least
squares estimation method has also been suggested when the assumption of normality
is untenable and/or to avoid the computational problems associated with the Jacobian
term in the ML estimation. However, in this case, appropriate instruments must be
found and the estimation can yield explosive estimation of the spatial parameter,
whereas it remains bounded with ML (see Anselin 1988; Anselin et al. 2007 for
further technical details and Fingleton 2001 for an empirical application). Conversely,

4 We have also used a contiguity spatial weights matrix using a Thiessen polygonalization of the Spanish
territory for the 722 urban municipalities. The results are similar and can be obtained upon request from
the authors.
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the spatial error SUR model is as follows:

⎧
⎨

⎩

ln Rit = ln at − bt · ln Sit + εi t

εi t = λt ·
N∑

j=1
wi jε j t + uit

(5)

where uit are in the form of (3). Again, this model can be estimated with ML. Two
LM tests, LMERR for spatial error and LMLAG for spatial lag, can be computed on
the residuals of the spatial SUR model (Eqs. (2), (3)) in order to discriminate between
a spatial lag or a spatial error specification (Anselin 1988). Moreover, the temporal
stability of the coefficients (αt = ln at and/or bt ) and of the spatial coefficients (ρt or
λt ) can be tested for in Eqs. (2), (4) and (5). However, due to the presence of spatial
autocorrelation, the Wald tests used in this case must be adjusted.

The computation of the LM and LR diagonality tests of the error covariance matrix -
as well as the Wald test on the homogeneity of the parameters across equations - points
out to the superiority of a SUR specification over 11 individual equations (see Table 1).
On the other side, both LM tests on spatial dependence reject the null of no spatial
autocorrelation. The higher value of the LM test for spatial-error dependence is an
indication that the spatial SUR spatial-error model (5) is more appropriate than a
spatial lag one (4). Moreover, it shows a better performance in terms of goodness of
fit (higher LIK and lower AIC).

Figure 2 displays the evolution through time of the three estimations of the Pareto
exponent. Though the OLS estimators for this parameter are always higher, they follow
a similar evolution. From Fig. 2, it is clear that, in general terms, the estimation
over time of the b parameter displays a decreasing trend until 1980, from which it
starts to increase. As a result, we can deduce two different patterns over the course
of the twentieth century: from 1900 to 1980, the size distribution of the set of 722
urban municipalities is increasingly divergent while from the 1980s to the end of
the period this distribution becomes progressively even. Looking in more depth, we
can also distinguish two other sub-periods in the first moment: from 1900 to 1930
(smaller divergence) and 1930–1981 (steeped divergence). This result is more or less
consistent with Lanaspa et al. (2003) that found an inflexion date in the 1970s for
the group of 100 Spanish largest cities. In our case, we find evidence of inflexion
in the 1980s—instead of the 1970s—due to the composition of the sample. Indeed,
when considering the whole set of urban units—not only a group of metropolises—
we can capture suburbanization or deconcentration of individual processes, which
were common in industrialized countries during the last decades of the twentieth
century (Stanback 1991).5 In the case of Spain, though larger cities started to lose some
population during the 1970s, we find evidence for a general phenomenon of counter-
urbanization during the 1980s, when the declining process of traditional monocentric

5 Fielding (1989) demonstrated that the change from urbanization to counter-urbanization occurred in
Spain during the 1980s, some years later than in most countries in Western Europe. Monclús (1997) and
Esteve and Devolder (2004) also reached the same conclusion when analyzing urban growth for different
sets of municipalities in Catalonia: the inflexion towards convergence in urban areas took place mainly
during the 1980s as a consequence of a broad range of political and socio-economic changes.
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b PARAMETER

0.46

0.53

0.60

0.67

1900   1910     1920   1930     1940   1950    1960    1970    1981    1991    2001

OLS
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Fig. 2 Evolution of the estimations of the Pareto exponent (N =722). OLS OLS estimation; SSURLAG
Spatial SUR lag model; SSURERR Spatial SUR spatial-error model

cities clearly benefited the peripheral cities, leading to the modern multicentric city.
This fact can be interpreted as a consequence of a broad range of historical, socio-
political and economic changes: end of the Franco dictatorship, generalized increase
of family income, return of emigrants, crisis in housing supply inside the core cities,
demand of more space for housing and industries, improvement in accessibility and
motorization, etc.

Consequently, the analysis of Zipf’s law leads to an interesting result, i.e., the
existence of two main phases in the evolution of Spanish urban municipalities. The
main one, which extends over 80 years, consists in an increase of urban concentration
only broken after the 1980s. Inside this first stage, we can distinguish two sub-periods,
in which the divergence course between urban municipalities has different speeds:

• From 1900 to the 1930s, the b parameter displays a slower decreasing trend coin-
ciding with a significant industrialization and urbanization expansion that led to
progress and social changes in Spain. In the first decade, though most of the
active population was located in the countryside, labor force began to migrate to
the main industrial cities, e.g. Barcelona and Bilbao, as well as to Madrid and
Valencia. Neutrality during World War I and capital stock growth (provided by
American and international investments) helped the development of some indus-
trial activities (only located in certain cities) that demanded more workers (Tuñón
de Lara et al. 1982). Moreover, during the 1920s, industrialization and urbanization
went on growing, especially in the Axis Madrid-North-Barcelona, leading to an
incipient development of other satellite towns along the Cantabric Coast (Bilbao
Estuary area, Santander, Asturian cities) and the Mediterranean Coast (Valencia
and Alicante). However, during the mid 1930s, the economic crisis and the Civil
War stopped the urbanization process (Tuñón de Lara and Malerbe 1982).

• From 1940 to the 1970s, the b parameter experiences a quicker decline or, in
other words, during this period the largest cities grew at significantly greater
rates than the smallest population nuclei, exhibiting an intense divergent growth
pattern. Indeed, during the 1940s, Spain lived under an autarkical regime that
led to a real ruralization process: the main cities, destroyed after the Civil War,
had to be re-built, hunger and poverty expelled a lot of people to the villages
and, in general, urban population and active population decreased significantly.

123



Spatial analysis of urban growth in Spain, 1900–2001 69

Nevertheless, some big cities grew a lot, such as Madrid (due to the huge centraliza-
tion and bureaucratization of the Regimen), Barcelona and other capitals (Valencia,
Saragossa, Alicante and Seville). The incipient political and economic openness
during the 1950s stopped the ruralization drive and set the basis for the decisive
industrialization and tertiarization process experienced during the 1960s and 1970s
(Tuñón de Lara and Viñas 1982). The industrial sector was severely constrained
to make it more competitive and many workers had to migrate to Europe or to
the Spanish capitals and new economic centers. Development was geographi-
cally irregular and affected only the cities located in richer provinces: Guipúzcoa,
Biscay, Barcelona, Navarre, Madrid and Álava. Nevertheless, the Development
Plans also created new economic poles, such as Vigo, Pontevedra, Coruña and
Ferrol (in Galicia), Valladolid and Burgos (in Castile), Huelva, Cádiz, Seville (in
Andalusia), Saragossa (in Aragón) and Badajoz (in Extremadura). If in 1960 only
30% of Spanish population lived in cities above 100,000 inhabitants, in 1975,
urban population rose to 50%: Spain was no longer rural and became an industrial
and urban country (Fusi et al. 1983).

During the two last decades of the twentieth century, the Zipf’s parameters change
from the 80-year decreasing tendency to a noteworthy increasing one. In other words,
the group of 722 urban municipalities displayed a clear convergence growth pattern
as the smallest towns grew faster than the largest cities. Actually, Spain went through
a strong counter-urbanization process that is not finished yet. By the beginning of
the 1980s, there was a peculiar urban structure similar to a star, with its centre in
Madrid. In the axis, there were the vast Mediterranean metropolitan areas (Girona-
Barcelona-Tarragona, Castellón-Valencia-Alicante-Murcia), Andalusia (Seville and
Cádiz), Galicia (A Coruña-Ferrol, Vigo) and the Cantabric Coast (Bilbao-San
Sebastián, Santander, Gijón-Oviedo). In addition, inside this big star, there was a vast
rural desert, only broken by a few urban oases, like Valladolid, Saragossa, Badajoz,
Burgos, Vitoria and Pamplona. In the Islands, there was a similar process due to the
huge growth of Palma (the Balearics), Las Palmas and Santa Cruz de Tenerife (the
Canary Islands). The cities of Madrid and Barcelona grew towards their respective
peripheries as did Valencia and Bilbao, although to a lesser extent. Indeed, the whole
Basque Country was declared an “urban area”, as well as the Oviedo-Gijón-Avilés
triangle (in Asturias) and the cities along the Mediterranean coast from Tarragona (in
Catalonia) to Cartagena (in Murcia).

The logical problems of the big cities (with uncontrolled growth in the peripheries
and an incipient depopulation process of their historical centers) broke their later
expansion in favor of middle-sized even small-cities and certain rural areas. Moreover,
this de-urbanization of the largest cities was accompanied by some growth in their
neighboring towns: suburban settlements gained many inhabitants and city centers
were depopulated, restored and converted into CBD’s and/or historical/cultural cores.

3 Mobility within the Spanish urban system 1900–2001

The density functions and Zipf’s law allow the characterization of the evolution of the
global distribution, but they do not provide any information about the movements of
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the urban municipalities within this distribution. For example, they do not say whether
the right tail of the initial distribution (year 1900) contains the same municipalities
as the right tail in the final distribution (year 2001). A possible way to answer these
questions is to track the evolution of each urban municipality’s relative size over time
by estimating transition probability matrices associated with discrete Markov chains
(Kemeny and Snell 1976). This line of analysis has been pursued by Eaton and Eckstein
(1997) for Japanese and French urban areas and by Black and Henderson (1999, 2003)
for the US urban system.

3.1 Markov chains

The analysis of the evolution in time of an entire cross-section distribution, or distri-
bution dynamics analysis, is a method aimed at describing the law of motion of the
distribution as a Markovian stochastic process. In that respect, working in a discrete
state–space has several advantages, as argued by Bulli (2001). Indeed, compared to
continuous stochastic kernels,6 discrete probability distribution and transition matrices
are easier to interpret: various descriptive indices and the long-run or ergodic distrib-
ution are easier to compute. On the other hand, this methodology raises the problem
of arbitrary discretization. We will develop this latter problem when presenting the
empirical results.

Formally, denote Ft the cross-sectional distribution of municipal size (population)
at time t relative to the Spanish average. Define a set of K different size classes, which
provide a discrete approximation of the population distribution. We first assume that
the frequency of the distribution follows a first-order stationary Markov process. In
this case, the evolution of the municipal size distribution is represented by a transition
probability matrix, M , in which each element (i, j) indicates the probability that a
municipality that was in class i at time t ends up in class j in the following period.7

Formally, the (K , 1) vector Ft , indicating the frequency of the urban municipalities in
each class at time t , is described by the following equation:

Ft+1 = M Ft (6)

where M is the (K , K ) transition probability matrix representing the transition between
the two distributions as follows:

M =

⎡

⎢⎢
⎣

p11 p12 .. p1K

p21 p2 .. p2K

..... ...... .. ......

pK 1 pK 2 .. pK K

⎤

⎥⎥
⎦ (7)

6 For examples of studies using continuous stochastic kernels, see, among others, Quah (1997), Johnson
(2001), Fingleton and Lopez-Bazo (2003) and the references in therein.
7 The so-called Markov property implies that the future of a process depends only on its present class and
not on its history.
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where each element pi j ≥ 0,
∑K

j=1 pi j = 1. The stationary transition probabilities
pi j capture the probability that a municipality in class in t − 1 ends up in class j in t .

The elements of M can be estimated from the observed frequencies in the changes
of class from one period to another. Thus, following Amemiya (1985) or Hamilton
(1994), the maximum likelihood estimator of pi j is:

p̂i j = ni j

ni
(8)

where ni j is the total number of urban municipalities moving from class i in decade
t − 1 to class j in the immediate following decade t over all the ten transitions and ni

is the total sum of municipalities ever in i over the ten transitions.
If the transition probabilities are stationary, that is, if the probabilities between two

classes are time-invariant, then:

Ft+s = Ms Ft (9)

In this framework, one can determine the ergodic distribution (also called the long-
term, long-run, equilibrium or steady state distribution) of Ft , characterized when s
tends toward infinity in Eq. (9), that is to say, once the changes represented by matrix
M are repeated an arbitrary number of times. Such a distribution exists if the Markov
chain is regular, that is, if and only if, for some m, Mm has no zero entries. In this
case, the transition probability matrix converges to a limiting matrix M∗ of rank 1.
The existence of an ergodic distribution, F∗, is then characterized by:

F∗M = F∗ (10)

This vector F∗ describes the future distribution of the urban municipalities if the
movements observed in the sample period are repeated to infinity. Each row of Mt

tends to the limit distribution as t → ∞. According to Eq. (10), this limit distribution
is therefore given by the eigenvector associated with the unit eigenvalue of M .

The assumption of a first-order stationary Markov process requires the transition
probabilities, pi j , to be of order 1, that is, to be independent of classes at the beginning
of previous periods (at time t − 2, t − 3, …). If the chain is of a higher order, the
first-order transition matrix will be misspecified. Indeed, it will contain only part of
the information necessary to describe the true evolution of population distribution.
Moreover, the Markov property implicitly assumes that the transition probabilities,
pi j , depend on i (i.e., that the process is not of order 0).

In order to test this property, Bickenbach and Bode (2003) emphasize the role of
the test of time independence. In determining the order of a Markov chain, Tan and
Yilmaz (2002) suggest, firstly, to test order 0 versus order 1; secondly, to test order 1
versus order 2; and so on. If the test of order 0 against order 1 is rejected, and the test
of order 1 against order 2 is not rejected, the process may be assumed to be of order 1.

To test for order 0, the null hypothesis H0 : ∀i : pi j = p j (i = 1, . . . , K ) is tested
against the following alternative Ha : ∃i\pi j �= p j . The appropriate likelihood ratio
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(LR) test statistic reads as follows:

L R(O(0)) = 2
K∑

i=1

∑

j∈Ai

ni j (t) ln
p̂i j

p̂i
∼ asyχ2

[
(K − 1)2

]
(11)

assuming that p̂ > 0,∀ j( j = 1, . . . , K ). Ai = {
j : p̂i j > 0

}
is the set of nonzero

transition probabilities under Ha.
To test for order 1 versus 2, a second-order Markov chain is defined by also taking

into consideration the population size classes k(k = 1, . . . , K ) in which the munic-
ipalities were at time t − 2 and assuming that the pair of successive classes k and
i forms a composite class. Then, the probability of an urban municipality moving
to class j at time t , given it was in k at t − 2 and in i at t − 1, is pki j . The corre-
sponding absolute number of transitions is nki j (t), with the marginal frequency being
nki (t − 1) = ∑

j nki j (t − 1).
To test H0 : ∀k : pki j = pi j (k = 1, . . . , K ) against Ha : ∃k : pki j �= pi j ,

the pki j are estimated as p̂ki j = nki j/nki , where nki j = ∑T
t=2 nki j (t) and nki =

∑T
t=2 nki (t − 1). The pi j are estimated from the entire data set as p̂i j = ni j/ni .The

appropriate LR test statistic reads as follows:

L R(O(1)) = 2
K∑

k=1

K∑

i=1

∑

j∈Chi

nki j ln
p̂ki j

p̂i j
∼ asyχ2

[
K∑

i=1

(ci − 1) (di − 1)

]

(12)

Similar to the notation above, Ci = {
j : p̂i j > 0

}
, ci = #Ci , Cki = {

j : p̂ki j > 0
}

and di = Di = #{k : nki > 0}.
If both Markovity of order 0 and of order 1 are rejected, the tests can be extended

to higher orders by introducing additional dimensions for population size at time
t − 3, t − 4, and so on. However, since the number of parameters to be estimated
increases exponentially with the number of time lags, while the number of available
observations decreases linearly for a given data set, the reliability of estimates and the
power of the test decrease rapidly. Therefore, Tan and Yilmaz (2002) suggest setting
an a priori limit up to which the order of the Markov chain can be tested.

3.2 Empirical results

In order to carry out the methodology described above, a discretization of the contin-
uous state-space must be chosen. However, as pointed out by Magrini (1999), Bulli
(2001) or Cheshire and Magrini (2000), an improper discretization may have the unde-
sired effect of removing the Markov property and therefore may lead to very misleading
results, especially when the computation of ergodic distributions are based on the esti-
mates of the discrete transition probabilities. Some authors (Quah 1993; Lopez-Bazo
et al. 1999; Kawagoe 1999 or Le Gallo 2004) choose to discretize the distribution in
such a way that the initial classes include a similar number of individuals. Conversely,
Magrini (1999) or Cheshire and Magrini (2000) base their choice between possible
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Table 2 Probability transition matrix, 1900–2001: Spain-relative population size

1
<20%

2
<50%

3
<80%

4
<135%

5
<185%

6
>185%

Number of 
observations

1 0.944 0.053 0.002 0 0 0 2567 

2 0.040 0.879 0.074 0.005 0.002 0.001 1751 

3 0 0.162 0.752 0.078 0.005 0.003 1029 

4 0 0.001 0.184 0.741 0.066 0.008 852 

5 0 0 0 0.273 0.632 0.095 315 

6 0 0 0 0.001 0.061 0.938 706 

classes in terms of the ability of the discrete distribution to approximate the observed
continuous distribution.

In this paper, we have tried numerous ways of discretizing the distribution, with
different numbers of classes (5, 6, 7). Finally, the discretization has been chosen by
considering the best performance of the test for order one, though we have tried to set
up balanced classes even if it comes at some cost to this test. We distinguish between six
different classes: (1) population less than 20% of the Spanish average, (2) population
between 20 and 50% of the Spanish average, (3) population between 50 and 80% of
the Spanish average, (4) population between 80 and 135% of the Spanish average (5)
population between 135 and 185% of the Spanish average, and (6) population more
than 185% of the Spanish average.

Table 2 contains the first-order transition probability matrix between 1900 and 2001
with the ML estimates p̂i j of the transition probabilities for population. For example,
during the century, there were 2,567 instances of an urban municipality having a
population size lower than 20 percent of the Spanish average. The majority of these
municipalities (94.4%) remained in that size class at the end of the year, while 5.3%
moved up one class by the end of the year. Note also that the transition probability
matrix is regular.

For the process in Table 2, Markovity of order 0 is tested by comparing each row of
the transition matrix to the population distribution at time t using the test statistic (11).
The result (L R = 16602.90; prob = 0; d f = 25) leaves no doubt that the process
strongly depends on the initial condition at time t − 1, i.e., that the chain is at least of
order 1.

To test Markovity of order 1, six subsamples k = 1, . . . , 6 are defined, representing
the urban municipalities’ size at time t − 2. Observations for municipalities that were
in the first size class at time t −2 are allocated to the first subsample (k = 1) and so on.
For each of these subsamples, a separate matrix is estimated for observed transitions
from time t − 1 to t in the usual way. The general test comparing the matrices for all
five subsamples to the matrix for the entire sample simultaneously, similar to Eq. (12)
above, results in L R = 198.12. This statistic is significant with 63 degrees of freedom
(prob = 0), indicating that the process under consideration is of a higher order, at
least of order 2, if Markovian at all. However, there are a number of classes within
subsamples for which we cannot expect reliable estimates of transition probabilities
because there are only very few observations available. In addition, Fingleton (1983a,b,
1986, 1999) has argued that tests for Markov chains are inflated in the presence of
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spatial autocorrelation, which is proved to exist in our case. Therefore, we decided to
keep the assumption of order 1 for the Markov chain.

We can make several comments about this matrix in Table 2, related to interclass
movements, mobility speed, convergence pattern and influence of space.

First, the high probabilities on the diagonal show a low interclass mobility, i.e., a
high-persistence of urban municipalities to stay in their own class from one decade
to another over the whole period. Diagonal elements of the transition approaching 1
have been interpreted as parallel growth by Eaton and Eckstein (1997). However,
since these elements are not exactly 1, we can analyze the propensity of cities in each
cell to move into other cells. In particular, it appears that the largest and smallest
urban municipalities (classes 1 and 6, respectively) have higher persistence while
medium-sized cities (categories 3, 4 and 5) have more probability of moving to smaller
categories. In addition, in classes 2 and 3, a small number of urban municipalities move
up to higher categories more than two steps, even reaching the top (some towns within
the Madrid, Barcelona and Bilbao metro areas), while they only move down one cell.
Nevertheless, only in class 2 the probability of moving up a class exceeds that of
moving down.

This low inter-class mobility of urban municipalities is in line with the results
found for other cases such as US MSA’s (Black and Henderson 2003) or the largest
Spanish cities (Lanaspa et al. 2003): changes in city-size are not drastic over a decade.
However, the highest persistence of both the largest and smallest urban municipalities
to stay in the initial state highlights the major role of medium-sized towns (10,000 to
70,000 inhabitants) in the processes of urban agglomeration and suburbanization that
occurred in Spain during the twentieth century. In other words, on the one hand, a
group of cities progressively moved to lower states in the distribution: cities located in
the Northwest (Asturias and Galicia), some Castilian provinces inland (mainly Ciudad
Real) and in the South of Spain (Andalusia, Alicante and Murcia). On the other hand,
another group of medium-sized towns was thriving in Madrid, Barcelona, Bilbao and
Seville metro areas, as well as some tourist enclaves in The Balearics, Canary Islands,
Comunidad Valenciana, Almería and Málaga. These results demonstrate the existence
of some spatial regularity in the main urban changes.

Second, in order to determine the speed with which the urban municipalities move
within the distribution, we consider the matrix of mean first passage time MP , where
one element MPi j indicates the expected time for a region to move from class i to
class j for the first time. For a regular Markov chain, MP is defined as (Kemeny and
Snell 1976, Chap. 4):

Mp = (
IK − Z + ee′Zdg

)
D (13)

where IK is the identity matrix of order K , Z is the fundamental matrix: Z =
(IK − M + M∗)−1, M∗ is the limiting matrix, e is the unit vector, Zdg results from Z
setting off-diagonal entries to 0, and D is the diagonal matrix with diagonal elements
1/m∗

j .
Table 3 displays the mean first passage time matrix for population. The mean number

of years to reach any class is relatively high: the shortest time passage is 91.9 years
and the longest is 3110.7 years. Globally, movements up are slower than movements
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Table 3 Mean first passage time matrix in decades, 1900–2001: Spain-relative population

1
<20%

2
<50%

3
<80%

4
<135%

5
<185%

6
>185%

1 3.93 18.67 39.00 78.88 158,83 311.07 

2 51.88 2,82 21.99 62.01 142.50 294.48 

3 63.87 11.99 5.53 45.12 127.61 279.61 

4 73.55 21.67 9.90 10.20 95.73 251.82 

5 82.74 30.86 19.08 9.19 28.87 189.41 

6 98.57 46.69 34.92 25.02 18.22 12.89 

down, especially for high-size classes, i.e., the expected time to first move from class
5 to class 6 is 1894.1 years. Remember that these calculations account for the fact that
starting from class 5, a site might visit classes 4, 3, 2 or 1 before going to class 6.
From class 1 it takes 3110.7 years to first visit class 6, with the outstanding upward
mobility of some metropolitan cities in the Madrid metro area (Alcobendas, Alcorcón,
Coslada, Móstoles, Parla and Torrejón de Ardoz) and the Barcelona metro area (Santa
Coloma de Gramenet) as examples of actual moves from state 1 to state 6.

This result of faster declines shows that urban municipalities are more likely to lose
population than to gain it, especially inland, in big capitals and old industrial centers
(e.g. several cities in Andalusia, Asturias, Comunidad Valenciana and Murcia).8 This
finding leads to the conclusion of the existence of a general progressive suburbanization
process, as in other modern post-industrialized countries (Blakman et al. 1999), which
has put an end to the era of big-city growth, favoring the progressive appearance of
smaller population nuclei enjoying lower levels of congestion. This conclusion is also
compatible with the 80-year phase of divergence, in size, between urban municipalities,
only reversed during the last two decades, as pointed out by the Zipf’s parameter in
Fig. 2.

Third, we consider the ergodic distribution that can be interpreted as the long-run
equilibrium urban municipality-size distribution in the urban areas system. Explicitly,
given a regular transition matrix, with the passage of many periods, there will be a
time where the distribution of urban municipalities will not change any more: that is
the ergodic or limit distribution. It is used to assess the form of convergence in a distri-
bution. Concentration of the frequencies in a certain class would imply convergence
(if it is the middle class, it would be convergence to the mean), while concentration
of the frequencies in some of the classes, that is, a multimodal limit distribution, may
be interpreted as a tendency towards stratification into different convergence clubs.
Finally, a dispersion of this distribution amongst all classes is interpreted as divergence.

Ergodic distributions are computed for population size in Table 4. It appears that
the ergodic distribution is more concentrated in the small-size municipalities (1st
and 2nd classes), a result that reveals the existence of convergence towards smaller-
size populations. In addition, we find stability of ergodic distribution compared to the
initial one, though there is slightly more probability in category 2. This outcome points
to a very slight downward convergence, a result compatible with the kernel density

8 Again, this result contrasts with the US metro areas behavior (Black and Henderson 2003, pp. 358).
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Table 4 Initial versus ergodic distributions 1900–2001: Spain-relative population size

1 2 3 4 5 6
< 20% < 50% < 80% < 135% < 185% > 185%

Initial distribution 0.356 0.243 0.143 0.118 0.044 0.098

Ergodic distribution 0.254 0.355 0.181 0.098 0.035 0.078

function (Fig. 1) and transition matrix (Table 2) results. As we have mentioned earlier,
the choice of a discretization may have a heavy impact on the determination of the
ergodic distribution. Consequently, we have also computed other ergodic distributions
with different discretization methods and different numbers of classes. For example,
with 6 classes and the same number of individuals in each class, there is an increase
in probability in the ergodic distribution (compared to the initial distribution) for the
classes containing the municipalities with population less than 62% of the Spanish
average. When the discretization is chosen so that it minimizes the value of the chi-
square test of order 1 versus order 0, there is again an increase in probability for the
classes containing the municipalities with a population less than 74% of the Spanish
average. In fact, in every configuration we have tried, we observe an increase in
probability in the ergodic distribution for the classes containing the municipalities
with a population less than 60 to 75% of the Spanish average. We can therefore
conclude that our result of slightly downward convergence is robust to the choice of
discretization.

Fourth, we have analyzed the influence of space on the transition probabilities, as
in Le Gallo (2004) and Rey (2001). The relationship between the direction of an urban
municipality’s transition in the population distribution and the relative populations of
its neighbors is considered more generally in Table 5. The probability of a particular
transition (Down, None, or Up) conditioned on the populations of the urban munici-
pality’s neighbors at the beginning of the year is reported. There is clear evidence that
the probability of an upward or downward move is different depending on the urban
area context. For example, the probability for an urban municipality of moving up in
the hierarchy is 7.1% when its spatial lag contains on average less population whereas
it is 8% when it contains on average more population. Conversely, the probability for
an urban municipality of moving down in the hierarchy is 18.9% when its spatial lag
contains on average less population whereas it is only 3.9% (almost five times lower)
when it contains on average more population.

Specifically, the highest degree of spatial autocorrelation is of positive sign and
occurs in nuclei with downward movements that are surrounded by smaller-size
neighbors (18.9%). This situation takes place in declining areas with high levels of

Table 5 Transition probabilities
conditioned on the spatial lag of
population

Spatial lag Move

Down Same Up

Less population 0.189 0.740 0.071

Same 0.057 0.898 0.045

More population 0.039 0.881 0.080
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unemployment and emigration, which is the case of some inland capitals
(Córdoba, Jaén) and heads of comarca9 (Guadix, Úbeda, Orihuela, Lorca), as well
as old industrial settlements (Langreo, Mieres, Linares, Puertollano, Tortosa). Other-
wise, the lowest degree of spatial autocorrelation is of negative sign and can be found in
regressive towns, which are close to a big city absorbing their population (3.9%). This
is the case, amongst others, of the urban municipalities of Huelva, which are attracted
by the Seville metro area, or the cities of Teruel and Calatayud, which are close to
Saragossa. It is also interesting to highlight that the process of counter-urbanization is
related to positive spatial autocorrelation (8%), e.g. growing towns surrounded by a
big metropolis. In these cases, the big city spills population out to the peripheral towns
that benefit from their advantageous location. Most towns in the metro areas of Madrid
and Barcelona share this situation, as well as some tourist municipalities along the
Mediterranean coast and the Islands. Finally, there is another case of agglomeration
characterized by negative spatial autocorrelation when a thriving city grows if it is
surrounded by smaller towns (7%). This condition is present in some capitals that are
still in an urbanization process (Málaga) or mainly in prosperous middle-sized cities
that attract population from dying rural villages. Therefore, the influence of space on
the urban municipality transition probabilities seems more important for downward
movements.

The influence of neighbors is confirmed by the χ2 test statistic of independence of
direction of move and neighbors population size, with 4 degrees of freedom, which
generated a value of 398.087, which is significant at prob = 0. In conclusion, direction
of movement in the population distribution of urban municipalities is not independent
from the geographic environment.

4 Main conclusions

The urbanization process has mainly taken place during the twentieth century pro-
ducing significant processes of industrialization and economic growth. Specifically in
Spain, this process has not been uniform and exhibits different shapes depending on
the definition of “urban area”. In our case, we work with a set of 722 municipalities
that make up the Spanish urban areas: main cities and their satellite towns.

Zipf’s law shows the existence of two main phases in the evolution of these urban
municipalities: 1900–1980 (divergence) and 1980–2001 (convergence). The main one
extends over 80 years and consists in an increase in urban concentration, though
two different sub-periods should be distinguished: 1900–1940 and 1940–1980. In
effect, from 1900 to the 1930s, divergence is not that deep, coinciding with a sig-
nificant industrialization and urbanization expansion that led to progress and social
changes. However, this dynamism is violently broken by the end of the decade due
to the Civil War. From 1940 to the 1970s, the largest cities grew much more quickly
than the smallest population nuclei, leading to a more intense divergent pattern of
growth.

9 The comarca is a historical -non official- division of Spanish provinces. This area is headed by a city that
used to be a historic settlement and traditional center of trade, transportation, administration and cultural
activities.
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During the last decades of the twentieth century, the Zipf’s parameters change from
the 80-year decreasing tendency to a noteworthy increasing one. In other words, the
group of 722 urban municipalities displayed a clear convergence growth pattern, since
the smallest towns grew faster than the largest cities. The logical problems of the big
cities (with an uncontrolled growth in the peripheries and an incipient depopulation
process of their historical centers) halted their later expansion in favor of middle-sized
even small-cities and certain rural areas.

The Markov Chains analysis shows a low interclass mobility, i.e., a high-persistence
of urban municipalities to stay in their own class from one decade to another over the
whole period. However, the largest and smallest urban municipalities display higher
persistence than the medium-sized cities, which have more probability of moving to
smaller categories. This proves the major role played by the medium-sized cities in
the processes of urban agglomeration and suburbanization occurred in Spain during
the twentieth century. In general terms, movements up are slower than movements
down, especially for high-size classes. This result of faster declines indicates that
urban municipalities are more likely to lose population than to gain it, especially
inland, in big capitals and old industrial centers. This conclusion is compatible with the
80-year phase of divergence in size between urban municipalities, only reversed during
the last two decades. This is why population convergence is still slight and mainly
“downwards” inside the group of urban municipalities.

Finally, the probability of an urban municipality losing population (moving down
in the hierarchy) is almost five times higher when it is surrounded by towns that
contain, on average, less population. This result confirms the influence of space on
urban population dynamism, also being more important for downward movements.

In summary, the Spanish urban municipalities have experienced an agglomeration
process throughout practically the whole of the twentieth century, only broken by an
incipient suburbanization in the last decades. The main actors of these changes have
been the medium-sized towns: on the one hand, some peripheral cities around the
metro areas of Madrid, Barcelona, Bilbao and Seville have experienced strong growth
whereas on the other hand, a considerable number of industrial nuclei and inland heads
of comarcas have lost their old influence and size. The influence of space on urban
change is certainly conspicuous. It leads to the so-called “two Spains”, which are no
longer split along the usual North vs South partition. In the case of urban growth,
another spatial division is relevant: on the one hand, there is a group of declining towns
located in the Northwest, Center and South of Spain, which have progressively moved
to lower states in the city-size distribution. On the other hand, there is another group
of “winners” formed by most of the metro area cities (Madrid, Barcelona, Bilbao
and Seville) and some tourist enclaves in The Balearics, Canary Islands, Comunidad
Valenciana, Almería and Málaga.
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