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Abstract Parametric efficiency analysis is one of the most investigated areas
in applied production economics. Nevertheless, the vast majority of empiri-
cal studies are not accompanied by a thorough theoretical interpretation of the
underlying functional form and the obtained estimates. The robustness of policy
suggestions based on inferences from efficiency measures nevertheless crucially
depends on theoretically well-founded estimates. This research contribution
adresses parametric efficiency measurement by critically reviewing the theoret-
ical consistency of recently published technical efficiency estimates. The theo-
retical concerns are verified by empirical applications confirming the need for
a posteriori checking the regularity of the estimated frontier by the researcher
and, if necessary, the a priori imposition of the theoretical requirements. Boot-
strapping based stochastic simulations of a simple parametric efficiency model
by using different flexible functional forms confirmed the severeness of the
theoretical concerns especially with respect to the merely locally restrictable
translog specification.

Keywords Flexible functional forms · Parametric efficiency measurement ·
Regularity

1 Introduction

Parametric efficiency analysis is one of the most investigated areas in applied
production economics. Here the stochastic production frontier model domi-
nates the empirical literature of efficiency measurement. The availability of
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estimation software – freely distributed via the internet and relatively easy to
use – recently inflated the number of corresponding applications. Nevertheless,
the econometric applications provided by these ‘black box’-tools are mostly not
accompanied by a thorough theoretical interpretation of the underlying func-
tional form and the obtained estimates. A critical assessment with respect to the
evidence on theoretical consistency, flexibility and the choice of the appropriate
functional form is missing for the vast majority of studies. The effectiveness and
robustness of policy suggestions based on inferences from efficiency measures
nevertheless crucially depends on proper estimates.

This contribution aims to show the importance of testing for the regularities
of an estimated efficiency frontier based on flexible functional forms. The basic
results of the discussion on theoretical consistency and functional flexibility are
therefore reviewed and briefly applied to the translog production function. Sub-
sequently parametric efficiency measurement is discussed to the background of
these findings and essential implications are shown (Sect. 2). In the empirical
part of the paper (Sect. 3) some randomly selected frontier applications are
reviewed with respect to their theoretical consistency. Further different flexible
functional forms are tested with respect to the effect on the efficiency estimates
by a priori restricting them to functional regularity. Finally bootstrapping pro-
cedures are applied to investigate the robustness of regularity regions as well
as the relative efficiency estimates.

2 Theoretical considerations

2.1 Consistency, flexibility and applicability

With respect to the empirical investigation of the relations between different
dependent and independent variables the applied economist has to specify the
mathematically described functional form of the relations investigated. Fur-
ther the researcher has to specify a probability distribution for the stochastic
residual ε. These two major assumptions about the underlying functional form
and the probability distribution of the error term are usually considered as
maintained hypotheses (see Fuss et al. 1978). For the ex ante selection of an
algebraic form with respect to the particular economic relationship Lau’s (1978,
1986) criteria can be used as a general guideline. He lists the following: (1) the-
oretical consistency: the algebraic functional form chosen must be capable of
possessing all of the theoretical properties required for an appropriate choice
of parameters. With respect to a production possibility set this would mean that
the relationship is single valued, monotone increasing as well as quasi-concave
implying that the input set is required to be convex.1 (2) domain of applicability:
most commonly the domain of applicability refers to the set of values of the

1 In the following we only consider a production function relationship. However, the same argu-
ments apply for a cost, profit, return or distance function each showing different exogenous vari-
ables. A general discussion would require relatively complex arguments without providing any
further insights.
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independent variables xi over which the algebraic functional form satisfies all
the requirements for theoretical consistency. Lau (1986) refers to this concept
as the extrapolative domain since it is defined on the space of the independent
variables with respect to a given value of the vector of parameters βi.2 If, for
given βi, the algebraic functional form f (xi, βi) is theoretically consistent over
the whole of the applicable domain, it is said to be globally theoretically consis-
tent or globally valid over the whole of the applicable domain. Fuss et al. (1978)
stress the interpolative robustness as the functional form should be well-behaved
in the range of observations, consistent with maintained hypotheses and admit
computational procedures to check those properties, as well as the extrapo-
lative robustness as the functional form should be compatible with maintained
hypotheses outside the range of observations to be able to forecast relations. (3)
flexibility: a flexible algebraic functional form is able to approximate arbitrary
but theoretically consistent economic behaviour through an appropriate choice
of the parameters.3 The production function can be said to be second-order flex-
ible if at any given set of non-negative (positive) inputs the parameters β can be
chosen so that the derived input demand functions and the derived elasticities
are capable of assuming arbitrary values at the given set of inputs subject only
to theoretical consistency.4 (4) computational facility: this criteria implies the
properties of ‘linearity-in-parameters’, ‘explicit representability’, ‘uniformity’
and ‘parsimony’. For estimation purposes the functional form should there-
fore be linear-in-parameters, possible restrictions should be linear. Different
functions in the same system should have the same ‘uniform’ algebraic form
but differ in parameters. In order to achieve a desired degree of flexibility the
functional form should be parsimonous with respect to the number of param-
eters. This to avoid methodological problems as multi-collinearity and a loss
of degrees of freedom. (5) factual conformity: the functional form should be
finally consistent with established empirical facts with respect to the economic
problem to be modelled.

The concept of functional flexibility is commonly regarded as essential with
respect to the choice of the functional form. The latter can be denoted as
‘flexible’ if its shape is only restricted by theoretical consistency implying the
absence of unwanted a priori restrictions. Algebraically this can be formulated
as follows: if F(β, x) is an algebraic form for a real-valued function including
variables x and a vector of unknown parameters β. F shall approximate the
function value F, the gradient F ′ and the Hessian F ′′ of an unknown function

2 The set of k’s for which a given functional form f (x, β(k)) ≡ f (x, k) will have a domain of theoret-
ical consistency (in x) that contains the prespecified set of x’s is consequently called the interpolative
domain of the functional form.
3 Alternatively flexibility can be defined as the ability to map different production structures at
least approximately without determining the parameters by the functional form. The concept of
flexibility was first introduced by Diewert (1973, 1974), Lau (1986) and Chambers (1988) discuss
local and global approximation characteristics with respect to different functional forms.
4 This implies that the gradient as well as the Hessian matrix of the production function with
respect to the inputs are capable of assuming arbitrary non-negative and negative semidefinite
values respectively.
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F̄(x) at an arbitrary x̄. Flexibility of F implies and is implied by the existence of
a solution β

(
x̄; F̄, F̄ ′, F̄ ′′) to the following set of equations:5

F(β; x̄) = F̄, ∇F(β; x̄) = F̄ ′, ∇2F(β; x̄) = F̄ ′′ (1)

with respect to certain consistency conditions on the variables x and possible
values F̄, F̄ ′, F̄ ′′ depending on the behavioural function F is representing. Due
to our production framework F denotes a production function, therefore the
solution is subject to non-negativity of x̄, F̄ and F̄ ′ as well as negative semi-defi-
niteness of F̄ ′′ such that F̄ = x̄F̄ ′ and F̄ ′′x̄ = 0. Hence for an arbitrary vector
of exogeneous variables x̄, a vector β exists such that the value of the function,
its gradient as well as its Hessian matrix are equal to some F̄, F̄ ′, F̄ ′′. The set of
F̄, F̄ ′, F̄ ′′ for which this is true includes all possible theoretically consistent val-
ues. Due to this framework, a flexible functional form can provide a local second
order approximation of an arbitrary function, either formulated as a differen-
tial approximation, as a Taylor series or as a numerical approximation. Hence
this form is called ‘locally flexible’. With respect to a single-product technology
with an n-dimensional input vector, a function exhaustively characterizing all
of its relevant aspects should contain information about the quantity produced
(one level effect), all marginal productivities ( n gradient effects) as well as
all substitution elasticities (n2 substitution effects). As the latter are symmetric
beside the main diagonal with n elements, only half of the off-diagonal elements
are needed, i.e. 1/2n(n − 1). The number of effects an adequate single-output
technology function should be capable of depicting independently of each other
and without a priori restrictions amounts to a total of 1/2(n+2)(n+1). Hence a
valid flexible functional form must contain at least 1/2(n+2)(n+1) independent
parameters.

The relation between the supposed true function and the corresponding
flexible estimation function can be described by the following hypotheses (see
Morey 1986).

1. The estimation function is a local approximation of the true function: this
simply means that the approximation properties of flexible functional forms
are only locally valid and therefore value, gradient and Hessian of true and
estimated function are equal at a single point of approximation (see Fig. 1).
As only a local interpretation of the estimated parameters is possible, the
forecasting capabilities with respect to variable values relatively distant from
the point of approximation are severly restricted.6 In this case e.g. at least
the necessary condition of local concavity with respect to global concavity
can be tested for every point of approximation (see Sect. 3).7

5 Where the vertical bars denote the numerical value of the respective terms, determined at x̄.
6 In the immediate neighbourhood of the approximation point each flexible functional form pro-
vides theoretically consistent parameters only if the true structure is theoretically consistent (see
Morey 1986; Chambers 1988).
7 Morey (1986) raises the question about the location of the approximation point and stresses that
there is no way to infer from the approximation function to the location of the approximation point.
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Fig. 1 Local approximation

2. The estimated function and the true structure are of the same functional
form but show the desired properties only locally: most common flexible
functions can either not be restricted to a well-behaved function without
losing their flexibility (e.g., the translog function) or cannot be restricted to
regularity at all. Points of interest in the true structure can be examined by
testing the respective points in the estimation function. However, a positive
answer to the question whether the estimation function and the true struc-
ture are still consistent with the properties of a well-behaved production
function if the data does not equal the examined data set is highly uncer-
tain. This uncertainty can only be illuminated by systematically testing all
possible data sets.

3. The estimated function and the true structure are of the same functional form
and show the desired properties globally: a flexible functional form which
can be restricted to global regularity without losing its flexibility allows for
the inference from the estimation function to the true structure and hence
allows for meaningful tests of significance as the model is theoretically well
founded (see Morey 1986).8 This approach of a flexible functional form pro-
motes a concept of flexibility where the functional form has to fit the data
to the greatest possible extent, subject only to the regularity conditions fol-
lowing from economic theory and independently depicting all economically
relevant aspects (see Fig. 2).

Hence, it is evident that the quality of the estimation results crucially depends
on the choice of the functional form. However, Lau (1978) notes that one should
not expect to find an algebraic functional form satisfying all of these criteria
(Lau’s ‘incompatibility theorem’). He suggests the domain of applicability as

Commonly, the point of approximation is held to be located at some mean of variables over all
observations.
8 On the other side, a serious problem arises for the postulates of economic theory if a properly
specified flexible function which is globally well-behaved is not supported by the data (see Feger
2000).
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the only area left for compromises with respect to the functional choice.9 For
most functional forms there is a fundamental trade-off between flexibility and
theoretical consistency as well as the domain of applicability. Production econ-
omists propose two solutions to this problem, depending on what kind of viola-
tion shows to be more severe: (1) the choice of functional forms which could be
made globally theoretical consistent by corresponding parameter restrictions,
here the range of flexibility has to be investigated; (2) to opt for functional
flexibility and check or impose theoretical consistency for the proximity of an
approximation point only. However, a globally theoretical consistent as well
as flexible functional form can be considered as an adequate representation of
the production possibility set. Locally theoretical consistent as well as flexible
functional forms can be considered as an i-th order differential approximation
of the true production possibilities.

2.2 A translog production function

As a prominent textbook example as well as one of the most often used func-
tional forms with respect to efficiency measurement the translog production
function has to be noted:

f (x) = a0 +
n∑

i=1

ai ln xi + 1
2

n∑

i=1

n∑

j=1

aij ln xi ln xj (2)

where symmetry of all Hessians by Young’s theorem implies that αij = αji. It
has (n2 + 3n + 2)/2 distinct parameters and hence just as many as required

9 Hence, even if a functional form is not globally theoretically consistent, it can be accomodated to
be theoretically consistent within a sufficiently large subset of the space of independent variables.
Even so it has to be stressed that the surest way to obtain a theoretically consistent representation
of the technology is to make use of a dual concept such as the profit, cost or revenue function.
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to be flexible. The theoretical properties of the second order translog are well
known (see e.g. Lau 1986): it is easily restrictable for global homogeneity as well
as homotheticity, correct curvature can be implemented only locally if flexibil-
ity should be preserved, the maintaining of global monotonicity is impossible
without losing second order flexibility. Hence, the translog functional form
is fraught with the problem that theoretical consistency can not be imposed
globally. The monotonicity condition holds for the translog specification if the
following equation is positive:

∂y
∂xi

= y
xi

∗ ∂ ln y
∂ ln xi

= y
xi

∗
⎛

⎝ai +
n∑

j=1

aij ln xj

⎞

⎠ > 0 (3)

Since both y and xi are positive numbers, monotonicity depends on the sign
of the term in parenthesis, i.e. the elasticity of y with respect to xi. If it is
assumed that markets are competitive and factors of production are paid their
marginal products, the term in parenthesis equals the input i’s share of total
output, si. However, until most recent studies the issue of assuring monoto-
nicity was neglected. Barnett et al. (1996) e.g. showed that the monotonicity
requirement is by no means automatically satisfied for most functional forms,
moreover violations are frequent and empirically meaningful.10 By adhering to
the law of diminishing marginal productivities, marginal products, apart from
being positive should be decreasing in inputs implying the fulfillment of the
following expression:

∂2y
∂x2

i
=

⎡

⎣aii+
⎛

⎝ai−1 +
n∑

j=1

aij ln xj

⎞

⎠ ∗
⎛

⎝ai +
n∑

j=1

aij ln xj

⎞

⎠

⎤

⎦ ∗
(

y/x2
i

)
< 0 (4)

Again, this depends on the nature of the terms in parenthesis. However, both
restrictions (i.e. ∂y/∂xi > 0 and ∂2y/∂x2

i < 0) should hold at least at the point
of approximation.

The necessary and sufficient condition for a specific functional curvature
consists in the semi-definiteness of its bordered Hessian matrix as the Jacobian
of the derivatives ∂y/∂xi with respect to xi: if ∇2Y(x) is negatively semi-defi-
nite, Y is quasi-concave, where ∇2 denotes the matrix of second order partial
derivatives with respect to (•) (see Appendix). The conditions of quasi-concav-
ity are related to the fact that this property implies a convex input require-
ment set (see in detail e.g. Chambers 1988). The most operational way of
testing square numerical matrices for semi-definiteness is the eigen – or spectral
decomposition: let A be a square matrix. If there is a vector X ∈ Rn �= 0 such that

10 Barnett (2002) notes: “In specifications of tastes and technology, econometricians often impose
curvature globally, but monotonicity only locally or not at all. In fact monotonicity rarely is even
mentioned in that literature. But without satisfaction of both curvature and monotonicity, the
second-order conditions for optimizing behaviour fail, and duality theory fails.” (p. 199).
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AX = λX (5)

for some scalar λ, then λ is called the eigenvalue of A with the corresponding
eigenvector X. Following this procedure the magnitude of the m + n eigen-
values of the bordered Hessian have to be determined. With respect to the
translog production function curvature depends on the input bundle with fij as
the second cross-derivative

∂2y
∂xi∂xj

=
⎡

⎣aij+
⎛

⎝ai +
n∑

j=1

aij ln xj

⎞

⎠ ∗
(

aj +
n∑

i=1

aij ln xi

)⎤

⎦ ∗ (
y/xixj

)
< 0 (6)

For some bundles quasi-concavity may be satisfied but for others not and hence
what can be expected is that the condition of negative-semidefiniteness of the
bordered Hessian is met only locally or with respect to a range of bundles. It
became clear that there is a a trade-off between flexibility and theoretical con-
sistency with respect to the translog as well as most flexible functional forms.
Economists propose different solutions to this problem:

1. Imposing globally theoretical consistency destroys the flexibility of the tran-
slog as well as other second-order flexible functional forms,11 as e.g. the gen-
eralized Leontief. However, theoretical consistency can be locally imposed
on these forms by maintaining their functional flexibility. Further, Ryan and
Wales (2000) even argue that a sophisticated choice of the reference point
could lead to satisfaction of consistency at most or even all data points in the
sample.12 Jorgenson and Fraumeni (1981) firstly propose the imposition of
quasi-concavity through restricting A to be a negative semidefinite matrix.

Imposing curvature at a reference point (usually the sample mean) is attained
by setting aij = −(DD′)ij + aiδij + aiaj where i, j = 1, . . . , n, δij = 1 if i = j and 0
otherwise and (DD′)ij as the ij-th element of (DD′)ij with D a lower triangular
matrix. The approximation point could be the data mean. However, the pro-
cedure is a little bit different. First, all data are divided by their mean. This
transfers the approximation point to an (n + 1)-dimensional vector of ones. At
the approximation point the terms in (3) and (6) do not depend on the input
bundle anymore. It can be expected that input bundles in the neighbourhood
also provide the desired output. The transformation even moves the obser-
vation towards the approximation point and thus increases the likelihood of
getting theoretically consistent results (see Ryan and Wales 2000). Imposing
curvature globally is attained by setting aij = −(DD′)ij. Alternatively one can

11 Second-order flexibility in this context refers to Diewert’s (1974) definition where a function is
flexible if the level of production (cost or profit) and all of its first and second derivatives coincide
with those of an arbitrary function satisfying linear homogeneity at any point in an admissable
range.
12 In fact Ryan and Wales (1998, 1999, 2000) could confirm this for several functional forms in a
consumer demand context as well as for the translog and generalized Leontief specification in a
producer context. See also Feger (2000) and the example by Terrell (1996).
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use Lau’s (1978) technique by applying the Cholesky factorization A = −LBL′
where L is a unit lower triangular matrix and B as a diagonal matrix. However,
the elements of D and L are nonlinear functions of the decomposed matrix, and
consequently the resulting estimation function becomes nonlinear in param-
eters. Hence, linear estimation algorithms are ruled out even if the original
function is linear in parameters.

However, by imposing global consistency on the translog functional form
Diewert and Wales (1987) note that the parameter matrix is restricted lead-
ing to seriously biased elasticity estimates. Hence, the translog function would
lead its flexibility. Any flexible functional form can be restricted to convexity or
(quasi-)concavity with the above method – i.e. to local convexity or (quasi-)con-
cavity. The Hessian of most flexible functional forms are not structured in a way
that the definiteness property is invariant towards changes in the exogenous
variables (see Jorgenson and Fraumeni 1981).

2. Functional forms can be chosen which could be made globally theoretical
consistent through corresponding parameter restrictions and by simulta-
neously maintaining flexibility. This is shown for the symmetric generalized
McFadden cost function by Diewert and Wales (1987) following a technique
initially proposed by Wiley et al. (1973). Like the generalized Leontief,
the symmetric generalized McFadden is linearily homogenous in prices by
construction, monotonicity can either be implemented locally only or, if
restricted for globally, the global second-order flexibility is lost (as impres-
sively shown by Barnett 2002). However, if this functional form is restricted
for correct curvature the curvature property applies globally.13 Other mod-
els as the semi-nonparametrically estimated Almost Ideal Model (AIM) or
the generalized symmetric Barnett model (including the generalized McF-
adden) could show even better regularity properties. Furthermore regular
regions following Gallant and Golups (1984) numerical approach to account
for consistency by using e.g. Bayesian techniques can be constructed with
respect to flexible functional forms.14

2.3 Parametric efficiency measurement

The technical and allocative efficiency of netput bundles have been received
primary interest by production economists in the recent years. This trend is
accompanied by a shift in the interpretation insofar as the estimated results are
not interpreted for the approximation point but for all input values. While it is
possible to investigate the structure of the production possibilities at any virtual
production plan, efficiency considerations can only be made for the individual

13 Unfortunately, the second order flexibility property is in this case restricted to only one point.
14 To avoid the disturbing choice between inflexible and inconsistent specifications this approach
imposes theoretical consistency only over the set of variable values where inferences will be drawn.
Here the model parameters are restricted in a way that the resulting elasticities meet the require-
ments of economic theory for the whole range of variable constellations that are a priori likely to
occur, i.e. a regular region is created.
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observations. However, this in turn requires that the properties of the produc-
tion function have to be investigated for every observable netput vector. The
consequences of a violation of theoretical consistency for the relative efficiency
evaluation will be discussed using Figs. 3 and 4 by showing the effect on the
random error term.

As becomes clear the estimated relative inefficiency equals the relative ineffi-
ciency for the production unit A with respect to the real production function.

Fig. 3 Violation of
monotonicity
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As the estimated function violates the monotonicity critera for parts of the
function the estimated relative inefficiency of production unit B understates
the real inefficiency for this observation. Figure 4 shows the implications as a
result of irregular curvature of the estimated efficiency frontier.

The dotted line describes an isoquant of the estimated production function.
The relative inefficiency of the input combination at production unit B mea-
sured against the estimated frontier (at B′) understates the real inefficiency
which is obtained by measuring the input combination against the real produc-
tion frontier at point B′′. Observation A lies on the estimated isoquant and
is therefore measured as full efficient (point A). Nevertheless this production
unit produces relatively inefficient with respect to the real production frontier
(see point A′′). The graphical discussion shows the implications for efficiency
measurement: theoretical inconsistent frontiers over- or understate real relative
inefficiency and hence lead to severe misperceptions and finally inadequate as
well as counterproductive policy measures with respect to the individual pro-
duction unit in question. However, a few applications exist considering the need
for theoretical consistent frontier estimation.15 Here global curvature correct-
ness is assured by maintaining functional flexibility. However, the vast majority
of existing efficiency studies uses the error components approach by applying an
inflexible CobbDouglas production function or a flexible translog production
function without checking or imposing monotonicity as well as quasi-concavity
requirements.

3 Empirical considerations

3.1 Testing for local consistency a posteriori

Theoretical consistency of the estimated function should be ideally tested for
all points of observation which requires e.g. for the translog specification beside
the parameters of estimation also the output and input data on every observa-
tion. Most contributions fail to satisfactorily document the applied data set at
least with respect to the sample means. However, the following analysis uses a
number of translog production function applications published in recent years
focusing on agriculture related issues. Here monotonicity – via the gradient of
the function with respect to each input by investigating the first derivatives – as
well as quasi-concavity – via the bordered Hessian matrix with respect to the
input bundle by investigating the eigenvalues – are checked for the individual
local approximation point at the sample mean:

15 See Khumbhakar (1989), Pierani and Rizzi (1999), Christopoulos et al. (2001), Craig et al. (2003)
as well as Sauer and Frohberg (2006) estimated a symmetric generalized McFadden cost frontier
by imposing concavity and checking for monotonicity. Whereas Kumbhakar, Christopoulos et al.
as well as Sauer and Frohberg uses a non-radial approach, Craig et al. uses a shadow cost frontier
to efficiency measurement. O’Donnell (2002) applies Bayesian methodology to impose regularity
constraints on a system of equations derived from a translog shadow cost frontier.
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– Kumbhakar and Hjalmarrson (1993) investigated the efficiency of 608 Swed-
ish farms engaged in milk production for the period 1968–1975 considering
labor, material, land and capital as inputs. All first derivatives with respect
to inputs showed positive signs at the sample mean and therefore fulfilled
the monotonicity criterion. However, the second derivative with respect to
land revealed to be non-negative and therefore indicates non-observance
of the law of diminishing productivity. Hence checking the eigenvalues of
the corresponding bordered Hessian matrix, the latter turned out to be not
negative semi-definite and the estimated production frontier does not fulfill
the curvature criterion of quasi-concavity (see Table 1 for the results of the
regularity tests and Table 2 for the numerical details of the tests performed).

– Kumbhakar and Heshmati (1995) estimated technical efficiency for a panel of
Swedish Dairy Farms by a multi-step approach. They used fodder, material,
labor, capital, grass fodder, cultivated land, pasture land as well as the age of
the farmers as input variables. Evaluated at the sample mean only three of
eight inputs fulfilled the monotonicity requirement. The estimated function
showed not be quasi-concave (see Table 3 and 4).

– Battese and Broca (1997) estimated technical efficiencies of 109 wheat farm-
ers in Pakistan over the period 1986–1991 using land, labor, fertilizer and

Table 1 Example I – regularity

Input Monotonicity Diminishing Quasi-concavity Local regularity
Marginal (input bundle) (monoton and quasi-concave)
Productivity

Labor F F NF NF
Material F F
Land F NF
Capital F F

Kumbhakar and Hjalmarrson (1993), Sweden, 608 observations, period: 1968–1975, output vari-
able: dairy output
F fulfilled, NF not fulfilled

Table 2 Example I – numerical details of regularity tests

Input Monotonicity Diminishing marginal Quasi-concavity
first derivatives productivity second eigenvalues of bordered

derivatives hessian matrix

Labor 0.07571 −0.00002 E1: −0.58005
E2: 0.00079, E3: −181.13829
E4: 0.63627, E5: 181.13849

Material 1.76208 −0.00487
Land 0.60774 0.06243
Capital 0.26717 −0.00033

Not consistent with economic theory indicated in bold
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Table 3 Example II – regularity

Input Monotonicity Diminishing Quasi-concavity Local regularity
Marginal (input bundle) (monoton and quasi-concave)
Productivity

Fodder NF NF NF NF
Material NF NF
Labor F F
Capital NF NF
Grass F F
Land F F
Pasture NF F
Age NF F

Kumbhakar and Heshmati (1995), Sweden, 4890 observations, period: 1976–1988, output variable:
dairy output
F fulfilled, NF not fulfilled

Table 4 Example II – numerical details of regularity tests

Input Monotonicity Diminishing marginal Quasi-concavity
first derivatives productivity second eigenvalues of

derivatives Bordered Hessian Matrix

Fodder −1.44259 3.24172E−05 E1: 2116.84741, E2: 46.42065,
E3: 0.04901, E4: −1.55354E−06,
E5: −0.07129, E6: −0.00564,
E7: −2137.260, E8: −18.40785,
E9: −68.18484

Material −0.44539 2.36834E-05
Labor 0.189542 −1.33923E-06
Capital −0.59149 1.04829E-05
Grass 8.56558 −0.00516
Land 1586.66 −33.4089
Pasture −1408.62 −0.86203
Age −146.971 −26.3370

Not consistent with economic theory in indicated in bold

seed as inputs. Model 1 evaluated at the sample mean failed to adhere to
monotonicity and quasi-concavity (see Tables 5 and 6).16

– Brümmer and Loy (2000) analysed the relative technical efficiency of dairy
farms in northern Germany for the period 1987–1994: both models estimated
fulfilled monotonicity for all inputs but failed to adhere to diminishing mar-
ginal productivity as well as quasi-concavity. Tables 7 and 8 give the details
for model1.

– Brümmer (2001) attempted to analyse the technical efficiency of 185 private
farms in Slovenia for the years 1995 and 1996. For both years the estimated
function showed to be non-monoton in the inputs land and intermediates.

16 Model 2 failed to adhere to quasi-concavity.
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Table 5 Example III – regularity

Input Monotonicity Diminishing Quasi-concavity Local regularity
marginal (input bundle) (monoton and quasi-concave)
productivity

Land F F NF NF
Labor NF NF
Fertiliser F F
Seed F NF

Battese and Broca (1997), Pakistan, 330 observations, period: 1986–1991, output variable: wheat
output
F fulfilled, NF not fulfilled

Table 6 Example III – numerical details of regularity tests

Input Monotonicity Diminishing marginal Quasi-concavity
first derivatives productivity second eigenvalues of

derivatives bordered Hessian matrix

Land 1115.82115 −47.18914 E1: 1298.53011,
E2: −1321.70761, E3: 0.01271,
E4: −0.02751, E5: −23.99859

Labor −1.17838 0.00133
Fertiliser 5.23465 −0.01544
Seed 26.37129 0.00042

Not consistent with economic theory is indicated in bold

Table 7 Example IV – regularity

Input Monotonicity Diminishing Quasi-concavity Local regularity
marginal (input bundle) (monoton and quasi-concave)
productivity

Capital F F NF NF
Land F NF
Labour F F
Intermediates F NF
Quota F NF

Brümmer and Loy (2000), Germany, 5093 observations, period: 1987–1994, output variable: dairy
output
F fulfilled, NF not fulfilled

The estimated translog frontiers do not fulfill the curvature requirement of
quasi-concavity (see Tables 9 and 10).

– Ajibefun et al. (2002) aimed to investigate factors influencing the technical
efficiency of 67 crop farms in the Nigerian state of Oyo for the year 1995. The
authors used land, labor, capital as well as hired labour to estimate a translog
production frontier. However, the estimated function showed to be monoton
in all inputs but not quasi-concave for the input bundle as Tables 11 and 12
document.
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Table 8 Example IV – numerical details of regularity tests

Input Monotonicity Diminishing marginal Quasi-concavity
first derivatives productivity eigenvalues of

second derivatives bordered Hessian matrix

Capital 1.74868 −0.03126 E1: 10.70562, E2: −0.95049
E3: 96.62495, E4: −33.98629
E5: −96.60718, E6: −0.00039

Land 0.03524 0.01624
Labour 17.94161 −24.20236
Intermediates 1.00768 0.00298
Quota 0.49772 0.00061

Not consistent with economic theory is indicated in bold

Table 9 Example V – Regularity

Input Monotonicity Diminishing Quasi-concavity Local regularity
marginal (input bundle) (monoton and
productivity quasi-concave)

Labor F F NF NF
Land NF NF
Intermediates NF NF
Capital F NF

Brümmer (2001), Slovenia, 185 observations, period: 1995/1996, output variable: total farm output
F fulfilled, NF not fulfilled

Table 10 Example V – numerical details of regularity tests

Input Monotonicity Diminishing marginal Quasi-concavity
first derivatives productivity second eigenvalues of

derivatives bordered Hessian matrix

Land 1474.20723 −198.88438 E1: −2.10927, E2: −240882.7599
E3: 1.93102E-06, E4: 240710.0172
E5: 0.00681

Labor −0.05921 3.34786E-06
Fertiliser −172.24372 20.03483
Seed 5.12042 0.00445

Not consistent with economic theory is in indicated in bold

– Alvarez and Arias (2004) tried to find evidence on the relationship between
technical efficiency and the size of 196 dairy farms in Spain for the period
1993–1998. For the inputs labour and land the estimated frontier showed to
be non-monoton at the sample means. The production frontier estimated is
not curvature correct (see Tables 13 and 14).

– Finally Kwon and Lee (2004) estimated stochastic production frontiers for the
years 1993–1997 with respect to Korean rice farmers. All efficiency frontiers
showed to be non-monoton for the input fertilizer and do not fulfill the
curvature requirement of quasi-concavity (See Tables 15 and 16).
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Table 11 Example VI – regularity

Input Monotonicity Diminishing Quasi-concavity local regularity
marginal (input bundle) (monoton and quasi-concave)
productivity

Labor F NF NF NF
Land F F
Capital F F
Hired Labor F F

Ajibefun et al. (2002), Nigeria, 67 observations, period: 1995, output variable: total crop output
F fulfilled, NF not fulfilled

Table 12 Example VI – numerical details of regularity tests

Input Monotonicity Diminishing marginal Quasi-concavity
first derivatives productivity eigenvalues of

second derivatives bordered Hessian matrix

Labor 545.51798 325.59682 E1: −473.82527, E2: 756.14889
E3: −0.61524, E4: 41.48851
E5: −0.00035

Land 63.39966 −0.07723
Capital 210.64866 −2.32279
Hired Labor 1.22185 −0.00026

Not consistent with economic theory is indicated in bold

Table 13 Example VII – regularity

Input Monotonicity Diminishing Quasi-concavity local regularity
marginal (input bundle) (monoton and quasi-concave)
productivity

Labor NF NF NF NF
Cows F F
Feedstuff F NF
Land NF NF
Roughage F NF
Alvarez and Arias (2004), Spain, 196 observations, period: 1993–1998, output variable: milk output
F fulfilled, NF not fulfilled

To sum up: 100% of all arbitrarily selected translog production frontiers fail
to fulfill (at least) local regularity at the sample means. Hence, as the investi-
gated frontiers are flexible but not regular (at least at the sample mean) derived
efficiency scores are not theoretical consistent and therefore are not an appro-
priate basis for the formulation of policy measures.

3.2 Testing flexible functional forms by a priori imposition

In order to demonstrate the theoretical concerns with respect to the econo-
metric practice of constructing and estimating efficiency frontiers expressed so
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Table 14 Example VII – numerical details of regularity tests

Input Monotonicity Diminishing Marginal Quasi-Concavity
first derivatives productivity eigenvalues of

second derivatives bordered Hessian matrix

Labor −13848.63785 3208.26404 E1: −13276.23262, E2: 16174.03199
E3: −116.13557, E4: −3.9745E-05
E5: 889.68296, E6: 0.00672

Cows 269.10386 −11.85909
Feedstuff 2.70035 1.22526E-05
Land −4609.10832 474.94612
Roughage 20.27928 0.00236

Not consistent with economic theory is indicated in bold

Table 15 Example VIII – Regularity (Here the results for the base model are reported.)

Input Monotonicity Diminishing Quasi-concavity Local regularity
marginal (input bundle) (monoton and quasi-concave)
productivity

Land F F NF NF
Labor F F
Capital F F
Fertiliser NF NF
Pesticides F F
Others F F

Kwon and Lee (2004), Korea, 1026 observations, period: 1993–1997, output variable: rice output
F fulfilled, NF not fulfilled

Table 16 Example VIII - Numerical Details of Regularity Tests

Input Monotonicity Diminishing marginal Quasi-concavity
first derivatives productivity eigenvalues of

second derivatives bordered Hessian matrix

Labor −13848.63785 3208.26404 E1: −13276.23262, E2: 16174.03199
E3: −116.13557, E4: −3.9745E-05
E5: 889.68296, E6: 0.00672

Cows 269.10386 −11.85909
Feedstuff 2.70035 1.22526E-05
Land −4609.10832 474.94612
Roughage 20.27928 0.00236

Not consistent with economic theory is indicated in bold

far, an empirical application is given subsequently. Using cross-sectional data
on two different groups of production units we are interested in the relative
technical efficiency of the two groups and the effects of imposing functional
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regularity.17 We use a simple model based on Kumbhakar (1989) and Sauer and
Frohberg (2006) and compare the estimation outcome for different functional
specifications. The production structure of a representative sample of producers
is therefore assumed to be described by:

yj = f
(
xij, βi; Dj, ζk

) + εj (7)

with y denoting the output produced by the j-th producer using the inputs xi
where i = input 1, input 2, and input 3. One group of producers are subject to the
exogenous determinant D (e.g. a climatic shock or unforeseen policy events)
modelled in the form of a binary dummy variable taking the value 1 for the
observations subject to the determinant and 0 otherwise. β and ζ denote the
parameters with respect to the explanatory variables. The disturbance term εj
has zero mean and constant variance. The production function is ‘corrected’
with respect to the ‘best’ group of production units by calculating the relative
technical inefficiency ô of group k:

τk = ζk − min
k

(ζk) (8)

As we use only two groups the frontier is defined by the technology of the
‘best’ sub-sample and τk can be interpreted as the relative efficiency difference
between the two groups of producers. The model in (7) is estimated by applying
different functional specifications: the translog (TL), the generalized Leontief
(GL), the symmetric generalized McFadden (SGM), the symmetric generalized
Barnett (SGB) as well as the parametrically estimated asymptotically ideal pro-
duction model of order 2 (AIM2). The stochastic efficiency model is estimated
in an unrestricted version, by imposing local monotonicity, by imposing local or
global quasi-concavity, by imposing local monotonicity as well as global quasi-
concavity, and by imposing local or global regularity. The corresponding model
specifications as well as the estimation results are given by Table 17.

The estimation results reveal the stark differences in the relative efficiency
estimates obtained by unrestricted and restricted model specifications. This
holds with respect to all functional forms tested. From a purely statistical per-
spective the translog specification shows the best fit for the unrestricted version
(TL0). From a purely theoretical perspective the symmetric generalized Bar-
nett specification shows the lowest number of violations in its locally monoton
and globally quasi-concave version (SGB3). However, the effect of theoretical
restrictions on the efficiency difference between the two groups of producers is
the greatest for the translog functional form (TL0 to TL2) and the lowest for

17 The exemplary cross-sectional sample consists of agricultural production data on maize produc-
tion in Malawi for the year 2003. The exogenous determinant represents the different soil fertility
management practices applied.
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Table 17 Flexible functional forms and efficiency measurement – summary statistics

Functional specificationa F-Value Number of Number of Efficiency
(level monotonicity quasi-concavity difference
of significance) violations violations (in %)

(N = 252) (N = 252)

Translog (TL)
y = a0 + ∑n

i=1 ai ln xi + 1
2
∑n

i=1
∑n

j=1 aij ln xixj

TL0 – unrestricted 3450.54b 252 252 95.06
TL1 – local monotonicity 1171.82b 33 33 58.74
TL2 – local quasi-concavity 1193.62b 33 33 49.40
TL3 – local regularity 1175.77b 34 32 49.90
Generalized Leontief (GL)

y = ∑n
i=1 bi

√
xi + ∑n

i=1
∑n

j=1 bij

√(
xixj

)

GL0 – unrestricted 69.66b 0 252 75.24
GL1 – local monotonicity 20.25b 0 50 75.24
GL2 – local quasi-concavity 19.87b 0 67 75.08
GL3 – local regularity 17.95b 0 94 70.43
Symmetric Generalized McFadden (SGM)
y = ∑n

i=1 βixi + 1
2
(∑n

i=1 θixi
)−1∑n

i=1
∑n

j=1 ϕij
(
xixj

)

SGM0 – unrestricted 111.02b 252 201 85.15
SGM1 – local monotonicity 25.27b 212 158 83.27
SGM2 – global quasi-concavity 110.00b 252 0 85.38
SGM3 – local monotonicity, 25.05b 241 0 83.66
global quasi-concavity
Symmetric Generalized Barnett (SGB)

y = 2
∑n

i=1
∑n

j=1,j>i bij

√(
xixj

) + ∑n
i=1 βixi

SGB0 – unrestricted 100.72b 101 252 75.24
SGB1 – local monotonicity 23.68b 101 252 99.97
SGB2 – global quasi-concavity 100.64b 94 0 75.17
SGB3 – local monotonicity, 23.35b 34 0 99.97
global quasi-concavity
Asymptotically Ideal Production Model [2] (AIM2)

y = ∑n
i=1 βixi + ∑n

i=1
∑n

j=1,j �=i αijx
1
2
i x

1
2
j + ∑n

i=1
∑n

j=1,j �=i χijx
3
4
i x

1
4
j + ∑n

i=1
∑n

j=1,j �=i δijx
1
4
i x

3
4
j

+ϕ1123x
1
2
i x

1
4
j x

1
4
k + ϕ1223x

1
4
i x

1
2
j x

1
4
k + ϕ1233x

1
4
i x

1
4
j x

1
2
k

AIM(2)0 – unrestricted 0.04 225 219 91.39
AIM(2)1 – local monotonicity 5.06b 251 127 21.40
AIM(2)2 – local quasi-concavity 11.36b 2 62 73.18
AIM(2)3 – local regularity 11.65b 35 96 76.17

a Notes: Sample size is 252. All models were estimated by nonlinear estimation. The point of local
approximation is the sample mean. Local quasi-concavity was imposed at the point of approxima-
tion by Cholesky decomposition of the Hessian, global quasi-concavity was imposed by Cholesky
decomposition of the global Hessian
b Significance of the model specification at the 1%-level. With respect to functional flexibility
the Translog, Generalized Leontief, and the Asymptotically Ideal Production Model can only be
restricted for local regularity. The Symmetric Generalized McFadden as well as the Symmetric Gen-
eralized Barnett can be restricted for global quasi-concavity but lose their flexibility if restricted
for global monotonicity
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Fig. 5 Efficiency difference – variation per functional specification

the generalized Leontief (GL0 to GL1). Figure 5 illustrates the variation in the
estimated efficiency difference for the various model specifications.

3.3 Testing for regularity by stochastic resampling

In order to test for the robustness of the estimates and the validity of the
conlcusions drawn a bootstrapping technique is used to create 50 pseudorepli-
cate datasets for every functional form specification. Hereby it is possible to
assess whether the distribution of characters has been influenced by stochastic
effects.18 Tables 18, 19 and 20 give a summary statistic for the efficiency values,
the correct curvature, and monotonicity range (see also Appendix).

Whereas the most robust estimates with respect to efficiency can be reported
for the restricted symmetric generalized Barnett (SGB3) specification, the least
robust ones were revealed by the simulations for the restricted translog (TL3)
specification. The bootstrapping procedure showed the highest range of func-
tional quasi-concavity beside the globally restricted SGM and SGB specifica-
tions for the locally restricted translog (TL3). The most robust estimates can
be reported beside the globally restricted functional forms for the restricted
AIM(2) specification, the lowest for the unrestricted SGM specification. The
restricted generalized Leontief specification (GL3) showed the highest range
of monotonicity, the unrestricted translog specification (TL0) the lowest range.
Both specification, however, deliver the most robust estimates. Finally Kernel
density distributions for the locally restricted functional forms with respect to

18 The bootstrapping procedure included in STATA8.0 was used. See for the theoretical back-
ground e.g. Hastie et al. (2001).
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Table 18 Bootstrap simulations – efficiency

Specification Efficiency (%)

Mean Stdev 95%, Confidence interval

TL0 – unrestricted 94.57 1.24 [94.23; 94.91]
TL3 – local regularity 32.61 18.04 [27.66; 37.56]
GL0 – unrestricted 61.19 5.96 [59.56; 62.83]
GL3 – local regularity 54.28 5.79 [52.70; 55.87]
SGM0 – unrestricted 84.83 2.35 [84.18; 85.47]
SGM3 – local monotonicity, global quasi-concavity 83.37 2.20 [82.76; 83.97]
SGB0 – unrestricted 74.92 2.64 [74.20; 75.65]
SGB3 – local monotonicity, global quasi-concavity 99.97 0.00 n.a.
AIM(2)0 – unrestricted 89.98 5.00 [88.61; 91.36]
AIM(2)3 – local regularity 88.94 5.54 [87.42; 90.46]

Table 19 Bootstrap simulations – quasi-concavity

Specification Range of quasi-concavity (%)

Mean Stdev 95%, Confidence interval

TL0 – unrestricted 2.18 9.47 [0.00; 4.78]
TL3 – local regularity 78.05 16.10 [73.63; 82.47]
GL0 – unrestricted 1.13 2.45 [0.46; 1.80]
GL3 – local regularity 61.20 5.96 [59.91; 62.50]
SGM0 – unrestricted 36.10 28.89 [28.45; 43.76]
SGM3 – local monotonicity,
global quasi-concavity 100.00 0.00 n.a.
SGB0 – unrestricted 0.36 1.55 [0.00; 0.78]
SGB3 – local monotonicity,
global quasi-concavity 100.00 0.00 n.a.
AIM(2)0 – unrestricted 12.77 1.83 [12.27; 13.27]
AIM(2)3 – local regularity 47.49 5.82 [45.90; 49.09]

the relative range of functional consistency were estimated and are given in the
Appendix.19

Figure 6 impressively documents that there is a significant effect on the effi-
ciency estimates for every functional form and sample by the curvature of the
functional form. This is empirical proof for the concerns expressed in the more
theoretical part of this paper. Imposing theoretical consistency hence always
affects the approximated relative efficiency of the production units analysed.
This was found to be less severe for the globally restrictable symmetric general-
ized McFadden as well as the asymptotically ideal production model of order 2.

19 See for the theoretical background e.g. Greene (2001).
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Table 20 Bootstrap simulations – monotonicity

Specification Range of Monotonicity (%)

Mean Stdev 95%, Confidence interval

TL0 – unrestricted 0.00 0.00 n.a.
TL3 – local regularity 93.03 6.32 [91.29; 94.76]
GL0 – unrestricted 96.28 15.63 [91.99; 100.00]
GL3 – local regularity 100.00 0.00 n.a.
SGM0 – unrestricted 13.35 28.14 [5.63; 21.08]
SGM3 – local monotonicity, global quasi-concavity 1.31 1.16 [0.99; 1.62]
SGB0 – unrestricted 49.30 14.67 [45.27; 53.33]
SGB3 – local monotonicity, global quasi-concavity 77.41 17.78 [72.53; 82.29]
AIM(2)0 – unrestricted 1.23 4.12 [0.10; 2.36]
AIM(2)3 – local regularity 4.51 14.10 [0.64; 8.38]
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Fig. 6 Absolute difference in efficiency – bootstrapped samples

4 Conclusions

This contribution aims to shed light on the link between microeconomic theory
and econometric practice with respect to parametric efficiency analysis. The-
oretical concerns are verified by empirical applications. The results highlight
the compelling need for a critical assessment of the estimates with respect to
the current evidence on theoretical consistency, flexibility as well as the choice
of the appropriate functional form. The majority of existing studies do not
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adequately test for whether the estimated function has the required regularities
of monotonicity and quasi-concavity, and hence run the risk of making improper
policy recommendations. The researcher has to check a posteriori for the reg-
ularity of the estimated frontier which means checking these requirements for
each and every data point. If these requirements do not hold they have to be
imposed a priori to estimation. Imposing global regularity, however, leads to a
significant loss of functional flexibility with respect to the majority of flexible
functional forms. The imposition of local regularity requires a differentiated
interpretation: if theoretical consistency holds for a range of observations, this
‘consistency area’ of the estimated frontier should be determined and clearly
stated. Estimated relative efficiency scores hence only hold for observations
which are part of this range. Alternatively flexible functional forms – as e.g.
the symmetric generalized McFadden or the symmetric generalized Barnett
– could be used. These functional forms can be easily accomodated to global
quasi-concavity over the whole range of observations. Bootstrapping based sto-
chastic simulations of a simple parametric efficiency model by using different
flexible functional forms confirmed the severeness of the theoretical concerns
especially with respect to the only locally restrictable translog specification.

Acknowledgements The author thanks Klaus Frohberg and Heinrich Hockmann for helpful com-
ments as well as Hardwick Tchale for generously allowing access to the data set. He is also indebted
to an anonymous referee and an co-editor, Baldev Raj, for valuable suggestions improving the final
paper.

Appendix: Negative semi-definiteness of a matrix

Any symmetric matrix M ∈ Rn × Rn is negative semi-definite (nsd) if and only
if

Q(M, Z) = Z′MZ ≤ 0 (9)

for arbitrary Z ∈ Rn. The Q (M, Z) is referred to as the quadratic form of the
symmetric matrix M. If Q (M, Z) < 0, M is called ‘negative definite’.

Lemma A1 Q(M, Z) is nsd only if

(a) its principal minors (i.e. determinants) alternate in sign starting with a neg-
ative number,

(b) its principal submatrices are nsd, and
(c) the diagonal elements of M(mij) are nonpositive (i.e. mij < 0).
(d) Q(M, Z) of the rank > 3 × 3 is nsd if for all eigenvalues e of Q : e ≤ 0

(Figs. 7, 8 and 9).
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