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1. Introduction

High frequency duration models were first introduced in empirical finance by
Engle and Russell (1997, 1998), with the autoregressive conditional duration
(ACD) model. In these papers, the authors did not take the traditional
viewpoint of looking at the volatility of the price process, but modelled in-
stead the durations between successive market transactions of a stock. These
durations exhibit clustering and overdispersion (the standard deviation is
larger than the mean). The structure of ACD models is quite similar to the
structure of GARCH processes, but rather than specifying a dynamic model
on the conditional variance of the returns, they introduce a dynamic structure
on the durations.

Duration models are particularly suited for applications in a high fre-
quency setting, as one deals with irregularly spaced data. In this framework,
the time elapsed between two market events (for example a trade, a specific
type of trade such as a large buy, a revision of bid-ask quotes ...) conveys
meaningful information and is the object of modeling. The importance of
taking into account the time dimension of the price process is particularly
stressed by the recent market microstructure literature; see e.g., Easley and
O’Hara (1992), O’Hara (1995), and Easley et al. (1997).

Since the seminal papers by Engle and Russell (1997, 1998), several high
frequency duration models have been put forward. Bauwens and Giot (2000)
introduced a logarithmic version of the ACD model, called the Log-ACD
model, which is more convenient than the ACD model when conditioning
variables are included in the model in order to test microstructure effects.! As
an alternative to the Weibull distribution used in the original ACD model,
Grammig and Maurer (2000) use the Burr distribution, and Lunde (1998)
uses the generalized gamma distribution (both distributions include the
Weibull as a particular case). Ghysels et al. (1997) proposed the stochastic
volatility duration model, which accounts for stochastic volatility in the
durations. Bauwens and Veredas (2002) introduced the stochastic conditional
duration (SCD) model, which uses a stochastic volatility-type model instead
of a GARCH-type model to model the durations. Lunde (1997) has proposed
a similar type of model. More information on high-frequency duration
models and related issues can be found in Bauwens and Giot (2001).

All these models share a common feature: they only take into account the
duration between market events, and do not include information given by
the price process (at most they include additional variables drawn from the
market microstructure literature). This may be an important drawback, as the
information on the price process is of primary importance. Combining
information given by the price process and the duration between market
events is an important extension. This issue was first addressed by Engle
(2000), who proposed an ACD-GARCH model: a marginal ACD model is
specified for the durations, while the volatility of the returns is modelled by a
GARCH process, conditionally on the duration. The ACD-GARCH model is
also studied by Ghysels and Jasiak (1998), and Grammig and Wellner (2002).

I'A similar model (under the name of “Nelson form ACD model”) has been proposed
independently by Lunde (1998) and Engle and Russell (1998), and used in Engle and Lunde
(1998).



Asymmetric ACD models 711

Other recent papers contain joint models for the price and duration
processes. Meddahi et al. (1998) consider a continuous time framework for
modelling volatility with irregularly spaced data. Darolles et al. (2000) model
the transaction price dynamics by taking into account both the irregularly
spacing of the data and the discreteness of the price. Russell and Engle (2002),
with the autoregressive conditional multinomial (ACM) model, combine an
ACD model on the durations and a generalized linear model on conditional
transition probabilities of the price process. Hafner (1999) specifies an ACD
model for the duration, and a non-parametric model for the return condi-
tionally on the current duration, the lagged returns and the lagged volume.
Prigent et al. (2001) focus on option pricing formulae in incomplete markets
by making use of the Log-ACD model to describe the dynamics of the price
process.

In this paper, we also focus on the joint modelling of the duration process
and of the price process. We use a Log-ACD model for the durations between
bid-ask quotes posted by a market maker, which takes into account the
direction (upward or downward) of the change of the average of the bid and
ask prices. The model can be viewed as a two-state transition model (in a
competing risk framework) combined with a Log-ACD model, the two states
being the upward and downward price movements. As such, the model is
actually an asymmetric Log-ACD model, in the sense that the duration
dynamics depends on the direction of the previous price change. Under
appropriate parameter restrictions, the asymmetric model becomes the Log-
ACD model of Bauwens and Giot (2000).

We apply the new model to intraday data of Disney and IBM, two stocks
traded on the New York Stock Exchange (NYSE). Our empirical results
indicate that the asymmetric model is an improvement over the simple model.
We also study the influence of several characteristics of the trade process on the
bid-ask quote revision process by introducing the trading intensity, the average
volume per trade, and the spread in the specification of the asymmetric model.
In order to illustrate a possible practical use of the model, we use it to forecast
the price changes, and we implement a trading strategy based on such forecasts.
The performance of our strategy is compared to that of a benchmark strategy.

The rest of the paper is organized in the following way. In Sect. 2, we
briefly review ACD models, to set up the framework. In Sect. 3, we introduce
the asymmetric Log-ACD model. In Sect. 4, we apply the model to the two
stocks. In Sect. 5, we examine the forecasting performance of the model and
we implement the trading strategy. Section 6 concludes.

2. Review of ACD models

Let x; be the duration between two bid-ask quotes occurring at times ¢;_; and
t; (a quote being a collection of data relative to a buy or a sell of a security on
a stock exchange), i.e. x; = t; — t;_;, which is usually measured in seconds. The
assumption introduced by Engle and Russell (1998) is that the time depen-
dence in the durations can be subsumed in their conditional expectations
E(x;|Fi-1), in such a way that x;/E(x;|F;—1) is independent and identically
distributed. F;_; denotes the information set available before time ¢, which
includes at least the past durations. The ACD model specifies the observed
duration as
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x; = Wie, (1)

where the ¢ are positive IID random variables, with E(e;) = u, so that
E(x;|F;—1) = p¥;. Notice that u is not a parameter to be estimated, but a
function of the parameters of the distribution of ¢;. The variable ¢; can be
divided by u to define a new innovation of expectation equal to 1, in which
case a new ¥; replaces u'¥;.

A second equation specifies an autoregressive model for the conditional
durations W;:2

Y=o+ oxi_1 + ¥ (2)

with the following constraints on the coefficients: @ > 0, « > 0, > 0 (but
p=0if «=0), and a+ < 1 (assuming u = 1). The last constraint ensures
the existence of the unconditional mean of the duration, the others ensure the
positivity of the conditional durations.

A variant of the ACD model that does not require the positivity of the
coefficients is the Log-ACD model of Bauwens and Giot (2000). It is obtained
by defining

¥ = evi (3)
in (1), and replacing (2) by
Vi =o+oae .+ By, (4)

i.e., the autoregressive equation bears on the logarithm of the conditional
expectation. The autoregressive structure in Egs. (2) and (4) allows the model
to account for the clustering of the durations. Moments and stationarity
conditions for the Log-ACD model are provided by Bauwens et al. (2002).
One important condition for stationarity is that |f] < 1.

In order to estimate the model by the maximum likelihood (ML) method,
a parametric hypothesis on the distribution of ¢; is necessary. Possible choices,
among others, are the Gamma and the Weibull families, which nest
the exponential one. Let us assume for example that ¢; is distributed as a
Weibull(1,y) random variable, such that u=T(1+ 1/y), where T'(.) is the
usual Gamma function. The hazard function of ¢;, which is equal to the
density divided by the survivor function, is given by

h(er) = 7€l (5)

If y < 1, the hazard function is decreasing, if y > 1, it is increasing, and if
y =1, it is constant (and the distribution is exponential). While (5) gives the
hazard function for ¢;, it is straightforward to compute the (conditional)
hazard function of x; = W;e¢;, which is given by
Y Xi \y—1
h ,'.F,'_ = — — )’ . 6
(IF i) =4 () (©)

By definition, when W¥; is small, the expected duration of x; is small. In this
case, as implied by Eq. (6), the corresponding hazard of x; is high: the
instantaneous probability of witnessing the end of duration x; is high.

2 This model is the ACD(1,1). More lags of x; and ¥; can be added. As we use only one lag, we
use the short notation ACD.
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As such, these duration models are self contained: the durations between
two consecutive bid-ask quotes, or more generally between two market events,
are modelled conditionally on the past durations. The information given by
features linked to the market events is not used. Such observable features may
include the traded volume and the corresponding transaction price, the bid and
ask prices quoted by the market makers, released news, or functions thereof.
Other features, such as the volatility, may be relevant but unobservable.

A natural extension of ACD models consists of combining them with a
model bearing on such features of the market. As briefly explained in the
introduction, this has been proposed by several authors. At a high level of
generality, such models can be described as follows. Let us consider the
marked point process (x;,);), where y; (the marks) is a set of variables (ob-
served or latent) at the end of duration x;, usually referred to as the ‘end state’
of duration x;. The ACD models described so far in this section can be
conceived as marginal models of x;. Durations can be modelled conditionally
on a variable in ); in order to introduce a microstructure effect, as in Engle
and Russell (1998), Bauwens and Giot (2000) or Coppejans and Domowitz
(1998). The ACD-GARCH model of Engle (2000) is a model for a subset of y;
(the return and its volatility) conditional on x; (the duration between two
market transactions), combined with a marginal ACD model for x;.

The model introduced in the next section is a joint model for a duration x;
and the direction of the price change y; (a binary variable) that occurs at the
end of x;. Clearly, different choices of x; and y;, combined with different
marginalization and conditioning operations can generate a vast range of
statistical models. Future research is likely to focus on the specification of
such models, and on their relevance for different objectives, such as (ex-post)
market analysis, prediction, tests of microstructure hypotheses ...

3. Introducing asymmetry in ACD models

In this section, we introduce a new way of modelling the durations between
two bid-ask quotes. The new asymmetric ACD model includes the main fea-
tures of ‘standard’ ACD models but also makes use of the information given
by the upside or downside movements in the bid-ask price process. Indeed, it
turns out that existing ACD or Log-ACD models can be extended into models
that combine information on the duration and direction of the price move-
ment. We begin by presenting a simple two-state competing risk model that
highlights the feature we want to include in the model, in order to get the
asymmetric ACD model, which is then presented (in the second part of this
section) and extended to introduce microstructure effects (in the third part).

3.1. A two-state transition model

A multi-state transition model has been applied to data from the Paris Bourse
by Bisi¢re and Kamionka (2000), who model the possible transitions between
the different types of orders that can be submitted by traders: each type of
order (for example a large buy, a small buy, a small sell, ...) represents a given
state and the succession of these states is the object for their transition model
(which is set up as a competing risk model).
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In our framework, we consider the marked point process consisting of the
pairs (x;,);), where x; is the duration between two bid-ask quotes posted by a
market maker, and y; is a variable indicating the direction of change of the
mid price defined as the average of the bid and ask prices, i.e.,

— y; = 1 if the mid price increased over duration x;;
— y; = —1 if the mid price decreased over duration x;.

At the end of duration x;, there are only two possible end states:® y; = 1 or
y; = —1. For simplicity, let us assume that the hazard function is constant,
which is equivalent to assume an exponential distribution for x;. The idea of
the transition model is to let the hazard vary with the end state, in this case to
have two hazards since y; is binary. Moreover in each case the hazard can be a
function of the previous state y;_; (letting the hazard depend on the previous
durations is done in the next subsection). If we define 4. (respectively ;) as
the hazard of duration x; when the end state is y; = 1 (respectively -1), then

5 =B+ Bl (7)
A = BalTy + Baly, (8)
where
m={y o)
0 ify =0,
I, =1-1I,. (10)
At the end of duration x;, either state y; = 1 or state y; = —1 is realized. In

the framework of a competing risk model, the duration corresponding to the
state that is not realized is truncated, since the observed duration is the
minimum of two possible durations: the one which would realize if y; = 1,
and the one which would realize if y; = —1. The realized state contributes to
the likelihood function via its density function, while the truncated state
contributes to the likelihood function via its survivor function. Assuming
independence (conditionally on the past state) between the durations ending

at states y; = 1 and y; = —1, the joint ‘density’ of duration x; and state y,
given the previous state, is equal to
N IY oty 71[7 iy
S yilvicr) = (/ﬁ) Le ik (ﬂvi ) et (11)

For example, if state y; = 1 is observed (/;" = l and I; = 0) Xx; contributes
to the likelihood function via the density function ﬁ ~%% and via the
survivor function e~% . A possible refinement of the model would consist of
introducing interdependence between the two ‘competing’ durations, as
suggested in the recent literature in labor econometrics.*

3 In principle, a third end state is possible: the state where there is no price change in the mid price
over duration x;. We do not take this state into account as it does not occur in the data we use.
The model could easily be extended to a multi-state transition model (see also Subsect. 3.3).
Another reason for considering more than two states arises if one wants to account for several
levels of price increase or decrease. Notice, however, that a continuous price change is excluded
because of the discreteness of price changes.

4 For example, in Lindeboom and Van den Berg (1994) and in Carling (1996), dependence between
durations arises because the hazard rates depend on stochastically related unobserved components.
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Table 1. Transition probabilities for two-state transition model (11)

yvi=+1 yi=-1
_ _ 5 — b
Vot =41 T = g Mol SRR
3 :,1 T :/372 P — Ba
Y-t TR I TRk

Ty, ., 18 the transition probability of moving from state y,_; to state y;. See also Table 3.

Based on the density function given in (11), the transition probabilities for
given past and end states can be obtained by integrating this expression with
respect to the duration x;. The results are given in Table 1. The computations
are detailed in the Appendix, where more information about the statistical
properties of the model are provided. Although this model is too simple to
capture the dynamics of the duration and price processes inherent in high-
frequency quote data, it puts forward a simple way of combining a duration
model and a transition model for the direction of the price process.

3.2. An asymmetric Log-ACD model

Instead of assuming a constant static hazard® for the two-state transition
process, we can use a non-constant hazard of the Weibull-ACD type, i.e., we
let the hazard depend not only on the previous state, but also on the previous
durations. Combining a two-state competing risk model with a Log-ACD
model yields an asymmetric Log-ACD model, which is defined by the
following equations:

— If the end state of duration x; is y; = 1, the hazard for x;, assuming a
Weibull distribution, is given by

7T X\l
Wby = 1LF) = g= (=) (12)
with ¥/ = ¢V, and the autoregressive process on ¥} is defined as
¥ = (o1 +onel 5 + (02 +onel )T + BT, (13)
with
xi=e e (14)

When y™ = 1, the hazard simplifies to A(x;[y; = 1, F,_1) = 1/¥;, and thus
W is similar to the inverse of 4 of the previous subsection (the difference
being that ;" depends on the previous duration and its own lag).

— If the end state of duration x; is y; = —1, the hazard for x; is given by
ol = =1, Fi) == (=) (15)
with W, = e%, and the autoregressive process on ; is defined as
¥r = (03 +ome )0 A (04 +oue D7+ B Yy, (16)
with
xi=éee . (17)

5 Static with respect to previous durations.
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This model exhibits the main feature of the Log-ACD model (i.e., a
dynamic structure on the conditional expectation of the duration) while
including conditioning information on the underlying bid-ask mid price
change. The autoregressive structure of the conditional expectation of the
duration process can differ according to the direction (upward or down-
ward) of the mid price. In this framework, the density function of x; and y;,
given the past information (that now includes past states and durations) is
given by

ot —
:|1"+e_(#)l |:£( X; )yf—l}li’e_(%),
¥

¥

+ 1

S (i il Fior) = [\;_f(‘;’c})/

(18)
We can estimate the parameters by maximizing the likelihood which is the
product of the densities (18) over all observations, or equivalently, we can
estimate the parameters relative to the price increase and decrease separately
(by splitting the log-likelihood function into two parts which depend on
different parameters).

In the model, we could assume an identical (Weibull) distribution for "
and €, i.e. that y* = y~, a testable hypothesis. In the Appendix, it is shown
that this hypothesis implies that the transition probabilities, conditionally on
the past durations, do not depend on the current duration x;, but that
otherwise, this conditional independence does not hold.® Because ¥;” and ¥,
depend on the past through the autoregressive process of the conditional
durations, the transition probabilities change through time: at the start of
each duration x;, the transition probabilities can be updated based on the
information set available at the start of this duration. This is an important
feature of the asymmetric ACD model, as it provides evolving forecasts
regarding the next price movement. In Sect. 5, we illustrate and use this
property using empirical data for two stocks traded on the NYSE.

3.3. Comparison with the ACM model

Russell and Engle (2002) propose a joint model for the duration between two
trades and the state of the price change between these trades. Because of the
tick rule, price changes can occur only in a small number of values (like 0,
+$1/8, £$81/4, ...). They specify a marginal ACD model for the duration x;,
and a conditional model for the discrete valued price change. Furthermore,
both parts of the model are conditional on past durations and price changes
(and possibly other past information, see also the next subsection). Because
the price change is a discrete random variable with a finite number (say k) of
possible states, it is convenient to define a k x 1 vector z; whose j-th com-
ponent is equal to 1 if the price change is equal to the j-th possible value of the
price change, while the other components are equal to 0. To each component
is associated a probability of being equal to 1, and the vector z; is assumed to
have a multinomial distribution parameterized by the £ — 1 probabilities

% However, when y+ and y~ are not equal, we cannot obtain the conditional (on the past)
transition probabilities analytically.
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(obviously the last probability is redundant). Russell and Engle (2002) pro-
pose to specify convenient transformations of the probabilities as a function
of their past history and of the past values of z;, i.e., ARMA-type specifica-
tions. They call their conditional model of z; given x; and the past history the
autoregressive conditional multinomial (ACM) model.

Obviously, the ACM-ACD model of Russell and Engle (2002) shares
several features of the asymmetric ACD model of this paper. Both models
specify the joint distribution of the duration and a discrete variable describing
the price change. Both are competing risk models (or transition models),
which specify the conditional hazard rate 4;(x|F;_;) of a transition from a
given state (the previous price change) to the next state., i.e., the instanta-
neous probability of exiting to state j at time ¢;,_; + x given that the next event
has not occurred by ¢;_; + x.

There are two main differences between the models. The first difference
concerns the functional form of the hazard functions: in Russell and Engle’s
model, adapted to the case of two states (price increase and price decrease),
the two hazard functions are proportional to each other, such that their ratio
is equal to the ratio of the probability of a price increase to the comple-
mentary probability of a price decrease. In that respect, our model is more
flexible: its hazard functions, given by Eqs. (12) and (15), are not proportional
to each other. The second main difference, which is the ‘mirror’ of the first
one, is that the specification of the transition probabilities of the ACM-ACD
model is more flexible than in our model: in Eq. (26) (given in the Appendix
of the paper), which is our most flexible specification, the transition proba-
bilities (conditional on x;) are completely determined by the two hazard
functions. In the ACM-ACD model, they can be specified as flexibly as one
wishes in terms of their functional form (in particular in the way they depend
on x;). These differences reflect the way the model are built: we focus on the
duration given the price change, they focus on the price change given the
duration.

There are also minor differences. We consider a Log-ACD specification,
whereas they consider an ACD specification, but each model can be easily
adapted to the alternative specification. Another small difference concerns the
number of states (k): we consider two states (k = 2) whereas they consider the
possibility of more than two states. As explained earlier (see Footnote 3), our
model can be easily extended to cover several states.

3.4. Additional explanatory variables

The specification of the conditional expectation of duration x; as given by
Eqgs. (13) and (16) does not use possible relevant information that may be
included in the information set (as argued at the end of Sect. 2). Indeed, it
only includes information on the past duration, the past expected duration
and the past state of the price process (increase or decrease). Although this
specification is an improvement over the basic ACD model, it can be further
extended.

Recently, several authors have proposed to include in such equations
explanatory variables drawn from the market microstructure literature, in
order to better specify the expected conditional duration. The variables
that are taken into account are usually related to the information models
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originally developed by Glosten and Milgrom (1985). These models assume
that the market maker posting the bid and ask quotes faces non informed
(or liquidity traders) and informed traders. Because the informed traders
know the outcome of the price process when dealing with the market maker,
they have an informational advantage and the market maker loses on the
trades made with this type of traders. This key feature has led to the devel-
opment of the so-called information models and to a whole range of pre-
dictions for the behaviour of the market maker regarding the way he updates
his quotes, increases or decreases his spread, and reacts to the trade process.

With respect to the possible additional variables that can be included in
the specification of the autoregressive process, some of the proposals that can
be made are:

— The trading intensity: Bauwens and Giot (2000) introduce the lagged
trading intensity as an explanatory variable for the expected conditional
duration. Over each bid-ask quote duration, the trading intensity is defined
as the number of trades divided by the bid-ask duration. The model of
Easley and O’Hara (1992) implies that an increase in the trading intensity
(due for example to a release of news) should lead to more frequent revi-
sions of the quotes and thus to a shortening of the durations between the
posting of bid and ask quotes by the market maker. This should lead to
a negative coefficient for the trading intensity when introduced in the
specification of the expected conditional duration.

— The volume: introducing a link between the price process and the volume is
one of the main features of technical analysis, an empirical tool much
favored by market practitioners. This issue is also closely studied by Easley
and O’Hara (1992), and by Blume et al. (1994). In the Easley and O’Hara
(1992) paper, the argument presented regarding the influence of the spread
(see below) and trading intensity is extended to the volume. More precisely,
it is the unexpected volume that matters most.” To capture the influence of
volume on the bid-ask quote revision process, we use the average volume
per trade. As it is the unexpected component of the variable that matters,
the variable included in the model is the time-of-day adjusted average
volume per trade (see Sect. 4 for the definition of the variable with respect
to the time-of-day effect). If unexpected volume is related to informed
trading, its increase should shorten the next expected duration: a negative
coefficient is expected for this variable when included in the specification of
the model.

— The spread: Easley and O’Hara (1992) extend the information model
introduced by Glosten and Milgrom (1985) by focusing on the role of time
in price adjustment. Easley and O’Hara argue that the duration between
two trades conveys information. In their model, a no-trade outcome (a
long duration) means that no new information has been released. Thus the
probability of dealing with an informed trader is small, relative to the case
where the duration would be small. Consequently, with a low probability
of dealing with an informed trader, the market maker decreases his bid-ask

7 The unexpected volume is defined as the volume in excess of the normal volume or liquidity
volume. It is thus the ‘deviation’ of the actual trading volume from the time-of-day adjusted
volume. The source of the unexpected volume is the arrival of informed traders in the market.
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spread. This should lead to a negative coefficient for the lagged spread
when introduced in the specification of the expected conditional duration.
Note that this argument should also extend to the case of price durations
(as studied in this paper, see Sect. 4.1 for a description of price durations).
Indeed, shorter price durations mean increased volatility (see Giot 2000)
and Jones et al. (1994) suggest that increased trading activity (i.e., small
durations between trades) is a main determinant of volatility. Therefore, it
is expected that price durations should qualitatively exhibit the same
dependence on the lagged spread as durations between trades.

By adding these additional explanatory variables, the specification for the
asymmetric Log-ACD model becomes

U = (o1 +one” L5 A+ (02 +ooel )T+ A + 0/ Ei (19)

for the end state y; = +1, where &7 is the coefficient of the additional variable
E;_1, which can be the past trading intensity (tint;_; and J7), the past average
volume per trade (vo/;_; and &), and the past spread (sp,_; and J7). The
specification for the end state y; = —1 is

¥ = (o3 +oaze )Ly + (04 +owe )+ B + 0, Ei, (20)

where 6; is the coefficient of the additional variable E;_;. As explained above,
according to the market microstructure information models, all six coeffi-
cients 5}' and o, should be negative. These hypotheses are investigated in
the next section, where we apply the asymmetric Log-ACD model to actual
bid-ask quote data for two stocks traded on the NYSE.

4. Application to stocks traded on the NYSE

Using data over a three-month period for Disney and IBM, two stocks traded
on the NYSE.? we estimate the asymmetric Log-ACD model. We start by a
description of the data, and we proceed with a discussion of the results.

4.1. Data description

The data were extracted from the Trades and Quotes (TAQ) database made
available by the NYSE. This database consists of two parts: the first reports
all trades, while the second lists the bid and ask prices quoted by the spe-
cialists (at the NYSE). Some information about the data is given in Table 2.

As in other papers (Engle and Russell 1998; Bauwens and Giot 2000;
Bauwens and Veredas 2002; Giot 2000), we estimate the model on price
durations because we are interested in significant price changes and the
corresponding durations implied by these price changes. Price durations are
defined by thinning the bid-ask quote durations using the mid price, i.e., we
compute the durations leading to a significant cumulated change in the mid
price of the specialist’s quote. A significant change in the mid price of the

8 We did not take into account the data from the other regional stock exchanges where these
stocks are traded too.
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Table 2. Information on the data

Disney IBM
Number of trades 33,146 61,063
Number of b/a price durations 2,160 6,728
Mean of x; and X; 0.98-646.98 0.99-215.92
Standard deviation of x; and X; 1.25-966.34 1.50-365.46
Minimum value x; and X; 0.0050-3 0.0030-1
Maximum value x; and X; 12.29-9739 35.82-7170

Data extracted from the September, October and November 1996 TAQ database. The number
of bid-ask price durations is the number obtained after thinning the data (the original number of
bid-ask quotes is equal to 37,325 for Disney and 34,321 for IBM). x; is the time-of-day adjusted
duration, see (21), and is measured in seconds. X; is the non-adjusted price duration.

specialist is defined as a change leading to at least a $0.125 cumulated
change in the mid price. Thus we did not take into account the numerous
$0.0625 changes in the mid price, which are due to a $0.125 price change of
the bid or of the ask. Of course, two successive $0.0625 changes in the same
direction yield a cumulative $0.125 change (and thus lead to a retained
duration). The thinning can be justified by the presumption that the $0.0625
changes are transitory, i.e., are mainly due to the short term component of
the bid-ask quote updating process. Indeed, Biais et al. (1995) provide
evidence that information effects in the order process lead to similar (suc-
cessive) changes in quotes on both sides of the market (i.e., information
events quickly lead to movements of the bid and ask quotes in the same
direction). More information on price durations is given in Bauwens and
Giot (2001).

For the IBM data, the number of original bid-ask quotes (34,321) is
approximately half the number of trades (61,063). After thinning, the number
of price durations is 6,728. For the Disney data, the number of original
bid-ask quotes is equal to 37,325. It is reduced to 2,160 by the thinning. The
number of trades is equal to 33,146.

As explained by Engle and Russell (1998), it is necessary to transform the
raw durations before estimating the ACD model. Indeed these durations
consist of two parts: a stochastic component (which is explained by the ACD
model) and a deterministic part, which is called a ‘time-of-day’ effect. This
time-of-day effect arises from the systematic variations of the quote arrivals
over the trading day and mainly depends on the institutional features of the
exchange and the behavior of traders and market makers (Bauwens and Giot
2001). This effect should be removed from the raw durations before
estimating the model. We follow Engle and Russell (1998) in defining this
deterministic effect as a multiplicative component, i.c.,

X =xi¢(t:) (21)
where JX; is the raw duration, ¢(z;) is the time-of-day function, and x; denotes
the time-of-day (tod) adjusted duration. Two methods have been used in
previous studies to compute the time-of-day function: spline smoothing and
kernel smoothing. In the first case (Engle and Russell 1998), the tod function
is defined as the expected duration conditioned on time-of-day, the expecta-

tion being computed by averaging the durations over thirty-minute intervals.
Cubic splines are then used to smooth the time-of-day function on the
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Fig. 1. Time-of-day pattern for the price durations and the market microstructure variables
(IBM). From left to right and up to down: Price durations, trading intensity, average volume per
trade and spread

thirty-minute intervals.’ In the second case, a non-parametric regression of
the raw durations on the time of day is used. Veredas et al. (2001) advocate
the use of a gamma kernel with the Nadaraya-Watson estimator. This is the
method used in this paper.!°

Because the trading intensity tint; and the average volume per trade vol;
depend on the number of trades and duration X;, they also feature a time-
of-day effect. As far as the spread is concerned, it is well known that it also
displays a strong intraday seasonality (see for example Chung et al. 1999). The
time-of-day function for the price durations and the three market micro-
structure variables is shown in Fig. 1 (for the IBM stock). For all those
variables, we removed the time-of-day effect by the same method as for X;. The
adjusted trading intensity (average volume per trade, spread) can then be
interpreted as measuring the unexpected component of the trading intensity
(average volume per trade, spread), which can be larger or smaller than the
‘normal’ level of a particular time. Finally, in order to illustrate the price
transitions, we compute the empirical transition probabilities for the mid price
changes associated with the price durations. The results, given in Table 3, show
that the succession of similar states (either increase or decrease) is more likely

% An alternative method is to estimate jointly the parameters of the duration model and the tod
function; Engle and Russell (1998) indicate that this method gives almost equivalent results to
those of the simpler two step method.

10 We have also used the spline method. Our empirical results and conclusions are not
qualitatively different according to the method used.
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than price reversals (increase followed by decrease or vice-versa) for IBM, but
not for Disney (for which a price decrease was observed on the sample period).
The figures in Table 3 provide estimates of the probabilities in Table 1 and can
obviously be transformed into estimates of the parameters f§; (i = 1,...4) of
the static transition model of Subsect. 3.1. All the reported probabilities are
significantly different from 0.5, except in the case of Disney for a transition
from +1 to +1 (and of course to —1).

4.2. Estimation results

Estimates of the asymmetric Log-ACD model are reported in Table 4 for the
IBM and Disney stocks. The estimation has been performed by maximizing

Table 3. Empirical transition probabilities

yi =+l yi=-1 z-statistic n
Yie1 = +1 0.575 (0.512) 0.425 (0.488) 8.93 (0.81) 3462 (1148)
Vi1 =—1 0.451 (0.553) 0.549 (0.447) —5.63 (3.13) 3265 (1011)
y; = +1 corresponds to an increase of the midprice from #_; to #, y; = —1 corresponds to an

decrease. Numbers in parentheses are for Disney, others are for IBM. The z-statistics in the last
column are the asymptotic N (0, 1) statistics for the hypothesis that each probability is equal to
0.5. The last column gives the number of observations such that y,_; = +1 (first row) and
Yi—1 = —1 (last row).

Table 4. ML results for the asymmetric Log-ACD model

End state: price increase End state: price increase

IBM Disney IBM Disney
Without market microstructure variables
W) —-0.103 (0.018) —-0.069 (0.019) w3 —0.077 (0.013) —-0.115 (0.021)
W —-0.074 (0.015) —0.017 (0.024) wq  —0.100 (0.016) —0.004 (0.022)
o 0.139 (0.031) 0.101 (0.036) o3 0.218 (0.033) 0.202 (0.051)
o) 0.257 (0.043) 0.128 (0.041) o 0.182 (0.032) 0.104 (0.033)
Bt 0.976 (0.009) 0.974 (0.013) ' 0.984 (0.005) 0.988 (0.007)
yt 0.988 (0.012) 0.929 (0.018) Y 0.990 (0.012) 0.973 (0.020)
With the lagged trading intensity
57 —0.056 (0.012) —0.047 (0.021) o7  —0.050 (0.012) —0.047 (0.019)
With the lagged average volume per trade
55 —-0.013 (0.007) —-0.012 (0.010) o,  —0.027 (0.007) —0.030 (0.013)
With the lagged spread
5 —-0.076 (0.037) —0.127 (0.049) 63 —0.094 (0.030) —0.083 (0.036)
With all market microstructure variables included simultaneously
57 —-0.056 (0.012) —-0.038 (0.022) o7  —0.047 (0.013) —-0.039 (0.020)
5y —0.009 (0.008) —-0.002 (0.012) o,  —0.022 (0.008) —-0.026 (0.014)
5y —0.053 (0.036) —0.112 (0.059) o3  —0.059 (0.029) —0.014 (0.048)

For a definition of the model, see Eqs. (14) with (13) or (19) for the price increase, and Eqs. (17)
with (16) or (20) for the price decrease. 5] and J; are the coeflicients of the lagged trading
intensity, 3 and &, are the coefficients of the lagged average volume per trade, and 83 and &5 are
the coefficients of the lagged spread. QML asymptotic standard errors are given in parentheses.
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the likelihood function defined in Sect. 3, (using the BHHH algorithm
implemented in GAUSS). The first three columns of Table 4 are for the part
of the model when the end state is a price increase — see Eqgs. (13) and (19) —
and the last three columns are for the part when the end state is a price
decrease — see (16) and (20). In the upper block of the table, we present the
results for Egs. (13) and (16). In the lower blocks, we report only the results
for the coefficients of the market microstructure variables when they are
included in the specification of the model (first separately, and then simul-
taneously). Standard errors are computed using the QML ‘sandwich’
formula. The main features of these results are:

1) Strong autoregressive effects (ff coefficients) for all specifications and for
both stocks, indicating a strong persistence in the dynamics of the
duration process. This result is similar to those of Bauwens and Giot
(2000) for the symmetric Log-ACD model and of Engle and Russell
(1998) for the ACD model. The inclusion of the explanatory variables
hardly changes the estimates of the f coefficients.

2) The estimates of the y parameters are very close to 1, indicating that
exponential distributions for the innovations are acceptable for the data
we use. Moreover, the hypotheses that y™ =y~ and " =y~ = 1 are not
rejected at conventional levels of significance for the IBM stock, while the
hypotheses that y© = 9~ and y~ = 1 are not rejected for the Disney stock
(the hypothesis that y* =1 is rejected for this stock).

3) When the end state is a price increase (y; = 1), o is significantly smaller
than o, for the IBM stock: the expected (conditional) duration of wit-
nessing a transition from state +1 to state +1 is smaller than the ex-
pected duration of witnessing a transition from state —1 to state + 1. For
Disney, the two coefficients are close. When the end state is a price
decrease (y; = —1), a3 is larger than o4 for both stocks although the
difference is not significant for IBM; the expected duration of witnessing
a transition from state —1 to state —1 is smaller than the expected
duration of witnessing a transition from state + 1 to state —1.

4) The estimates of §] and §] are negative and significant for both stocks:
an increase of the trading intensity (defined relatively to its normal level
measured by the time-of-day function) decreases the next expected
duration between the bid-ask quotes, both for the exit at state +1 and
the exit at state —1.

5) The estimates of &, and &, are negative, with &, being significant for
both stocks: when the average volume per trade (defined relatively as
above) increases, the next expected duration becomes smaller.

6) The estimates of §; and J; are also significantly negative for both
stocks. Once more, these coefficients have the expected sign: an in-
crease of the spread (defined relatively as above) decreases the next
expected duration between the bid-ask quotes. This is in agreement
with the Easley and O’Hara (1992) model as explained ecarlier in the

paper.

The estimation results obtained after including the additional variables
altogether are given in the lower part of Table 4. Not surprisingly, the
corresponding coefficients are all negative, although some of them are not
significant. Among the three additional variables, the trading intensity seems
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to be the most relevant, as 6] and d; are significant in all cases and for both
stocks. It is interesting to note that these results are quite similar to those of
Jones et al. (1994). Indeed, in their study (using daily data) on a large sample
of stock traded on the NASDAQ, they found that it is the number of trades,
and not the average volume per trade, that has the most important impact on
the volatility of the bid-ask quote process. With respect to the estimation of
the model with the microstructure variables, we conclude that the empirical
evidence in favour of the information model of Easley and O’Hara (1992) is
rather convincing. In all cases, the coefficients are negative, supporting the
idea that an assumed release of information decreases the next expected
duration of the bid-ask quotes.

Furthermore, the results given in Table 4 indicate that, for each addi-
tional variable included in the model, the corresponding coefficients for the
two states (price increase and price decrease) are quite close. Testing
07 =67 (trading intensity), 6; = J, (average volume per trade), and J7
and 65 (spread) separately by a t-test for the IBM (Disney) stock, we do
not not reject the null hypotheses since the statistics are equal to —0.55
(-0.01), 1.60 (1.29), and 0.40 (—0.73), respectively. Moreover, testing the
three hypotheses jointly by a likelihood ratio test does not reject the null
hypothesis either.

It is also possible to test the asymmetric Log-ACD model (without the
additional explanatory variables) against the symmetric version of Bauwens
and Giot (2000). The asymmetric model introduced in Sect. 3.2 can be
constrained into a symmetric one by setting ;= w; = w3 = wy,
a =0y =03 =04, fT =, and y7 =y, so that xpf =1, . The constrained
model is then equivalent to the original Log-ACD model of Bauwens and
Giot (2000). The likelihood ratio test statistic, distributed as y*(8), is equal to
31.9 for the Disney stock and to 66 for the IBM stock: both values are highly
significant. The symmetric model is strongly rejected against the asymmetric
one.

5. Forecasting and trading with the model

As detailed in Sect. 3, an interesting property of the asymmetric Log-ACD
model is to provide two hazards (one for the exit at a price increase, the other
for the exit at a price decrease) that change over time as they depend on the
previous state and durations. This feature implies a time-varying transition
probability matrix for the mid price. In this section, we use this feature to
assess the forecasting performance of the model on the available intraday
data. We also combine the ‘predictions’ of the model regarding the next price
movement with a possible trading strategy in order to present a possible
empirical use of the model.

5.1. Forecasting intraday price changes

The sequence of time-varying transition probability matrices is based on the
estimates of the asymmetric Log-ACD model imposing that y© =y~ = 1. As
we have seen in Sect. 4, this restriction is far from being rejected by our
data. We impose it because it allows to compute analytically the transition
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Table 5. Forecasting and trading results

Threshold Percentage of correct  Gain/loss on portfolio

decisions

AACD model Managed Unmanaged
IBM:
$1/8 53.90 -212,031 1,284,944
$1/4 55.23 -52,074 634,561
$1/2 59.37 334,370 292,483
Disney:
$1/8 54.28 2,017,417 1,006,596
$1/4 59.24 788,044 491,740

A correct decision is a correctly forecasted direction of price change. ‘AACD Model’ is the
asymmetric Log-ACD model. Resulting gain/loss after the three-month period is in $. ‘Managed’
means that the portfolio is managed using the model, and ‘unmanaged’ means it follows the
buy/hold strategy.

probabilities (unconditional with respect to the current duration x;). Using the
constrained estimates,'! at the start of each price duration, we compute the
(conditional) probability of a price increase. If this probability is greater
(lower) than 1/2, we predict a price increase (decrease). At the end of each
duration, the end state is observed and the realized outcome is compared to
the predicted outcome. By repeating this procedure for all available dura-
tions, we can compute the percentage of correct decisions implied by the
model. For the two stocks and for several possible price thresholds,'? the
results are given in column 2 of Table 5. For the IBM stock and for a
threshold of $1/4, we show in Fig. 1 the evolution of the probability of a price
increase, i.e. the conditional probability P(y; = 1|F;_1), given by formula (6)
specialized to the case y© =y~ = 1. When this probability is larger than 1/2,
the next price movement is forecasted to be an increase. The dotted line in
Fig. 2 gives the realized states at the end of the price duration. As can be seen
on Fig. 2 and as expected from the structure of the model, the conditional
probability P(y; = 1|F;_1) is strongly influenced by the previous realized
states (price movements). As indicated in Table 5, the model delivers a per-
centage of correct decisions greater than 50%, for both stocks and for all
thresholds. Before drawing conclusions regarding the forecasting perfor-
mance of the model, we conduct an evaluation based on trading strategies.

5.2. A trading strategy

We now combine the computed transition probabilities with a possible
trading strategy. We stress however that this strategy is only meant to be
illustrative. In a ‘real life’ situation, other parameters have to be taken into
account: risk analysis of the positions, limitations on overnight positions,

1 They are not reported because they are almost identical to the estimates in Sect. 4.

12 We have estimated the model for each set of price durations corresponding to a different
threshold of the price change used to thin the quote process. Estimates are not reported since they
are qualitatively similar to those reported in Sect. 4.



726 L. Bauwens, P. Giot

100 110 120 130 140 150 160 170 180 190 200

Observations

P(y—i=+1)
0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70
.
I—|
'_l

Fig. 2. Conditional Probability of a Price Increase P(y; = 1|F,_1). The solid line shows the
evolution of the probability of a price increase computed from the asymmetric Log-ACD model
for IBM price durations (threshold at $§1/4). The dotted line shows the evolution of the realized
price, with the value 0.40 indicating a decrease and the value 0.65 an increase

limited amount of short-selling or limit positions in trading. Moreover, the
literature on technical analysis and corresponding trading strategies would
suggest many more possibilities regarding the choice of additional explana-
tory variables that could be included in the specifications of the hazards:
trading signals based on past volumes, trading signals based on the ‘distance’
between the last recorded price and moving averages, ... In our case, we
define the trading rules as follows:

— If a price increase is forecasted, n shares of the stock are bought at the
prevailing ask price and are added to the existing position; if the portfolio
has an existing short position, it is settled at the prevailing ask price, prior
to buying the n shares;

— If a price decrease is forecasted, n shares are short-sold at the prevailing bid
price and are added to the existing short position; if the portfolio has an
existing long position, it is settled at the prevailing bid price, prior to short-
selling the n shares.

We choose n = 1,000 with a transaction cost equal to $10. The first
decision is taken at the start of the second duration and the game is ended at
the end of the three-month period. The portfolio is self-financed, i.e. it bor-
rows money (at a 10% interest rate) if shares are to be bought. When shares
are short-sold or when a trading profit is realized, the amount of money
received earns interests at a 10% rate.

For the two stocks and for several thresholds, the outcome of this trading
strategy (which we call the managed portfolio) after a three-month period is
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given in column 3 of Table 5. Generally speaking, the results are quite in line
with those given in column 2: because the percentage of correct decisions is
higher than 50%, the model ends up with a gain in most cases. When it does
not, the loss seems to be due to very large transaction costs because of the
frequent trading imposed by the model (as for IBM and price durations at
$1/8 where 6,728 trades have to be made).

While this trading strategy seems to be profitable in some cases (even after
taken into account the transaction costs, the financing costs and the losses
due to the bid-ask bounce), it is worthwhile to compare it with a benchmark
strategy, which we take to be the buy/hold strategy in this case. The buy/hold
strategy is one of the standard benchmark models in finance when actively
managed portfolio are evaluated; see for example Sharpe et al. (1999) for a
general discussion regarding the performance of actively managed portfolio.
Under the buy/hold strategy (which is equivalent to tracking an unmanaged
portfolio), n shares are bought at the start of the three-month period and they
are sold at the end, resulting in a profit or loss. To conduct a fair comparison
between the two strategies, n is chosen such that the financing cost of the buy/
hold strategy is equal to the total cost of the managed portfolio, i.c., the
available amount of money needed at the start of the three-month period to
buy the shares is equal to the amount that can be borrowed for an interest
cost (at a 10% interest rate) equal to the total cost of the managed portfolio.
As indicated in Table 5, the two trading strategies deliver a gain after the
three-month period in three cases out of five. However, the results are less
good for the actively managed IBM portfolio than for the unmanaged one.
For the Disney stock, the active strategy based on the model outperforms the
buy/hold strategy. Note that we do not take into account the risk of the two
strategies as we only compare the nominal amounts gained or lost by the
models at the end of the trading game.'3

5.3. Some comments

In the two preceding subsections, we have presented a possible practical
application of the asymmetric Log-ACD model. However, we want to stress
that the results are highly dependent on the stock we study and the period
under review. In the finance literature dealing with the assessment of the
performance of trading strategies and actively managed portfolio, studies are
usually conducted on a large sample of stocks and for a much longer timespan.
Thus we view these results as an interesting illustration of what the model can
do, but more work would be needed to evaluate the performance and riskiness
of the model by considering a wide variety of cases. Furthermore, the per-
formance of an actively managed portfolio strongly depends on the transac-
tion costs involved in the trading of the shares. Regarding the Disney stock for
example, if the transaction costs are increased from $10 to $100 per trade, then
the buy/hold strategy becomes more profitable than the one based on the
asymmetric Log-ACD model. Hence this kind of trading strategy should be
applied to intraday stock futures data as the trading costs and bid-ask spread

13 See also the comments in the next subsection.
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are much lower for futures contracts than for individual stocks. In addition,
active trading strategies are usually characterized by a high level of risk
compared to passive investment strategies as end-of-period outcomes are
usually more variable and therefore exhibit a larger variance than outcomes
from passive investment strategies. Therefore, extensions of our study should
focus on the performance of the model in a risk-adjusted framework.

Finally, the question may be raised whether our results contradict the
efficient market hypothesis, since it seems possible to predict prices at the
intraday level. This is not the first study that concludes in this way, see
Alexander (2001, p. 389) for references. In that respect, we have to be careful.
Testing of the efficient market hypothesis at the intraday level and over a
relatively short time horizon is an issue that has to be investigated in much
more detail. At the theoretical level, the hypothesis, which says (loosely
speaking) that prices incorporate the relevant information, is not in contra-
diction with the statement that it takes some time for the information to be
incorporated in prices. If the adjustment is not instantaneous, prices may
be predictable in the short run.

6. Conclusion

ACD models seem to be a useful and promising tool not only to model
durations arising from irregular events occurring on financial markets, but also
as a building block of larger models bearing on features of the market events,
such as price, volume, volatility. This paper has proposed a two-state transition
model for the intraday price of a stock, where the two states correspond either to
a price increase or to a price decrease, and where the durations are modelled by a
Log-ACD process. Our empirical results favour the asymmetric specification
as an enrichment of the symmetric one. Three additional explanatory variables
drawn from the market microstructure literature related to information
models were included in the model: the past spread, the past trading intensity
and the past average volume per trade. The coefficients of these variables were
negative and most were significant. This provides support to the information
models and explains the quick revision of bid-ask prices when information
has been released. As a possible practical application, we conducted a study
bearing on the forecasting performance of the model and the resulting gain/
loss of a trading strategy making use of the predictions of the model.

Extensions of this model could consist of considering a more refined state
space (more than two states), other distributions than the Weibull for the
innovations (possibly a semi-parametric specification), more refined param-
eterizations of the autoregressive equations for the conditional durations, and
a more thorough investigation of the performance of the model on a large
sample of stocks and over a much larger timespan. More fundamentally,
theoretical foundations for the determinants of the asymmetry revealed by
our empirical results should be uncovered.

Appendix

We consider the joint density of the static two-state exponential transition
model set in the competing risk framework, i.e. the function defined in (11).
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Several features of the model can be highlighted. First, this density integrates
to one, as it should:
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Integrating x; in (11) yields the transition probabilities

00 TR ARPIRERNY i

Fobin) = )Y ) [ erimag = G 22)
0

so that Py = 1ly-1) = 47 /(G + A7) and P(y = —1ly1) = 4 /(5 + ),
which are the results given in Table 1. Furthermore, as
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(an exponential distribution), we have that
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which does not depend on x;. Thus y; is independent of x;, conditionally
on y;—i.

When the model is extended to the Weibull-ACD case, the joint density
S (i, 1| Fiz1) (where F;_; includes the past states and durations) is given by
(18). Similar computations as above give
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which implies that generally y; is not independent of x;, given the previous
state and all the previous durations. However, it is obvious that when
T =9y, filxi, Fio1) no longer depends on x;, meaning that in that case y; is
(conditionally) independent of x;. In the empirical applications of this paper,
we accept the hypothesis that y* =79~, and we can even accept that
y7 =97 =1 (see Section 4). Moreover it can be shown that when

yh=9"=y,
Flyizt) = [(FF) 7+ (87) e (VD T+ YO (27)

i.e., a Weibull distribution with parameters y and [(¥;) 7 + (¥; )]/
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