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Summary 

The likelihood function of a continuous-discrete state space model is com
puted recursively by Monte Carlo integration, using importance sampling 
techniques. A functional integral representation of the transition density is 
utilized and importance densities are obtained by smoothing. Examples are 
the likelihood surfaces of an AR(2) procestJ, a Ginzburg-Landau model and 
stock price models with stochastic volatilities. 
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1 Introduction 

The continuous-discrete state space model is a convenient specification for 
the dynamic modeling of quantitative variables in continuous time, which 
are subject to random disturbances both in the dynamics and in the discrete 
process of observation (Jazwinski, 1970). In order to meet requirements of 
empirical data analysis, the dynamics of the state vector is given in con
tinuous time (system equation), whereas the measurements are assumed to 
be given only at discrete, possibly unequally spaced time points (measure
ment model). Moreover, analogously to structural equation models (SEM) 
or factor analysis, the state is only incompletely observable and subject to 
measurement error. 

In the linear case with gaussian random errors, the system can be estimated 
efficiently by maximum likelihood (ML) using the Kalman filter algorithm 
(cf. Jones, 1984, Harvey and Stock, 1985, Jones and Tryon, 1987, Zadrozny, 
1988, Jones and Ackerson, 1990, Singer, 1993, 1995), but in nonlinear sys
tems complicated equations for the transition density arise, which must be 
solved numerically. One approach to do this is the Monte Carlo simulation 
method, where many sample trajectories are simulated and unknown proba
bility densities and integrals are estimated from these data. In order to keep 
close contact to the linear Kalman filter, a sequence of time and myasurement 
updates (continuous-discrete filter) is utilized, and the resulting integral ex
pressions (expectation values) are approximated by statistical averages. To 
reduce the simulation error of the likelihood function, importance sampling 
and other variance reduction techniques (such as antithetical sampling) are 
used. 

Simulation based filtering methods in discrete time have been used in the lit
erature such as Markov chain Monte Carlo (MCMC; Carlin et al., 1992, Kim 
et al., 1998), rejection sampling using density estimators (Tanizaki, 1996, 
Tanizaki and Mariano, 1995, Hi.irzeler and Ki.insch, 1998), importance samp
ling and antithetic variables (Durbin and Koopman, 1997, 2000) and recursive 
bootstrap resampling (Gordon et al., 1993, Kitagawa, 1996). 

In this paper the time update is generalized to the continuous time case 
by using the Chapman-Kolmogorov equation and importance sampling is 
implemented by approximate smoothing in order to reduce the variance of 
the simulated likelihood function. For this purpose the Gaussian sum filter 
of Alspach and Sorenson (1972) is used. In linear systems, the smoothing is 
exact and the simulation error of the likelihood estimate is zero, given the 
data ( cf. section 7.1). 

Section 2 defines the continuous-discrete state space model and section 3 
presents the recursive computation of the filter densities and the likelihood. 
Sections 4 and 5 derive the variance reduction and its implementation by 
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smoothing, whereas sections 6 and 7 discuss practical issues and present 3 
examples. 

2 Nonlinear continuous-discrete 
state space models 

We discuss the nonlinear continuous-discrete state space model (Jazwinski, 
1970) 

dy(t) 

Zi 

J(y(t), t, 1/J)dt + g(y(t), t, 1/J)dW(t) (1) 

(2) 

where discrete time measurements Zi are taken at times { t0 , t 1, ... , tT}, to :S 
t :S tT. In state equation (1), the process error W(t) is a r-dimensional 
Wiener process and the state is described by the p-dimensional state vector 
y(t). It fulfils a system of stochastic differential equations (SDE) in the sense 
of Ito (cf. Arnold, 1974) with random initial condition y(to) rv Po(y, to) 
(prior distribution). The functions f : JRP x lR x ]Ru --+ JRP and g : JRP x 
lR x JRu --+ JRP x JRr are called drift and diffusion coefficients, respectively. 
In measurement equation (2), Ei rv N(O, R(ti, 1/J)) is a k-dimensional discrete 
time white noise process (measurement error) and h : JRP x lR x JRU --+ JRk 
is the output function. It is assumed that the error processes dW(t), Ei and 
the initial state y(to) are mutually independent. Parametric estimation is 
based on the u-dimensional parameter vector 1/J. The key quantity for the 
computation of the likelihood function is the transition probability p(y, tix, s) 
between states y and x at times t and s, respectively, which is a solution of 
the Fokker-Planck equation 

ap(y, tlx, s) 
at 

a - L ~[fi(y, t, 1/J)p(y, tlx, s)] 
i y, 

a2 
+~ L ~[J!ij(y,t,'lj;)p(y,tlx,s)] 

ij y, Y; 

·- F(y, t, 1/J)p(y, tlx, s) 

(3) 

subject to the initial condition p(y, six, s) = 5(y- x) (Dirac delta function). 
The symbol F(y, t, 1/J) denotes the Fokker-Planck operator. The diffusion 
matrix is given by J7 = gg': JRP x lR x IR'.u--+ JR'.P x JR'.P. Under certain technical 
conditions the solution of (3) is the conditional density of y( t) given y( s) = x 
(see, e.g. Wong and Hajek, 1985, ch. 4). 

In order to model exogenous influences, j, g, h and R are assumed to de
pend on deterministic regressor variables x(t) : lR'. --+ lRq, i.e. f(y, t, 1/J) = 
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f(y,t,x(t),'¢) etc. For notational simplicity, the dependence on x(t) and on 
'¢ will be suppressed. 

It may be noted that state space model (1, 2) allows the modeling of ARIMA 
systems, since unobserved higher order derivatives can be accomodated in an 
extended state vector T) = {y, y, jj, ... }. 

Furthermore, the functions f, g and h, R may depend on earlier measure
ments zt = {z(tj); tj ::::; t} and zt;_ 1 = {z(tj); tj ::::; ti-d, respectively, 
which allows the modeling of (G)ARCH effects ((generalized) autoregressive 
conditional heteroskedasticity). For example, the diffusion matrix g(y, t) may 
depend on earlier innovations llj = Zj- E[zjiZj-l, ... , z0 ]; tj ::::; t and if the 
functions are linear in the state y, the state space model is conditionally gaus
sian (cf. Liptser and Shiryayev, 1978, vol. II, ch. 13). Again, for notational 
simplicity, the dependence on the zt will be suppressed. 

3 Computation of the likelihood function 

The exact time and measurement updates of the continuous-discrete filter 
are given by the recursive scheme (Jazwinski, 1970) for the a priori and a 
posteriori densities Pi+lfi,Pifi: 

time update: 

ap(y, tizi) 
at 

p(y, tiizi) 

p(y, ti+liZ') 

F(y, t)p(y, t!Zi) ; t E [ti, ti+l] 

·- P(YiiZi) :=Pili 

P(Yi+liZi) := Pi+lfi 

measurement update: 

p(zi+liYi+l, zi)P(Yi+liZi) 
p(zi+liZi) 

·- Pi+lli+l 

J p(zi+liYi+l, zi)P(Yi+li zi)dYi+l, 

(4) 

(5) 

(6) 

i = 0, ... , T- 1, where F is the Fokker-Planck operator, zi = {z(t)it::::; ti} 
are the observations up to time ti and Li+l := p(zi+1 IZi) is the likelihood 
function of observation Zi+l· The time update describes the time evolution 
of the conditional density p(y, t!Zi) given information up to the last mea
surement and the measurement update is a discontinuous change due to new 
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information zi+1 using the Bayes formula. Thus the likelihood of the com
plete observation zT = {zT, ... , z0 } can be computed sequentially and new 
observations ZT+l can be processed with only one more update step. 

Some remarks may be in order: 

1. In the linear case, the conditional densities are gaussian and the recur
sive steps can be implemented for the conditional moments y(tit;) = 
E[y(t)IZi] and P(tit;) = Var[y(t)IZi]. Instead of the Fokker-Planck 
equation, only linear ordinary differential equations must be solved. 
Furthermore, the measurement update can be computed analytically 
since all involved quantities are jointly (conditionally) gaussian. This is 
the celebrated Kalman filter algorithm extensively used in engineering, 
control theory, statistics, economics and the social sciences ( cf. J azwin
ski, 1970, Gelb, 1974, Liptser and Shiryayev, 1977, 1978, Harvey, 1989, 
Fahrmeir and Kaufmann, 1991, Singer, 1993). 

2. In the general nonlinear case, the time and measurement updates re
quire the solution of partial differential equations and integrals (li
kelihood function) which can be obtained only numerically by sev
eral approximation methods. Linearizing the system one obtains the 
extended Kalman filter (EKF), but more elaborate methods such as 
the second order nonlinear filter (SNF; Jazwinski, 1970), the gaussian 
sum filter (Alspach and Sorenson, 1972), numerical integration (Kita
gawa, 1987), and simulation methods have been used (Kitagawa, 1996, 
Tanizaki, 1996, Singer, 1997, Kim et al. 1998, Hiirzeler and Kiinsch, 
1998). Usually, the filters are formulated in discrete time, however. 

In order to compute the solution of Fokker-Planck equation ( 4), a Monte 
Carlo approach was utilized (Wagner, 1988, Kloeden and Platen, 1992). We 
use an integral representation based on the Chapman-Kolmogorov-equation 
for Markov processes 

(7) 

which can be iterated to express 

(8) 

as a product of transition densities inserted into the interval [ti, ti+ll· 

The auxiliary variables on the grid are defined as 'r)j = y( Tj); Tj = t; + j bt; j = 
0, ... , 1; = !5.td ot, Yi = rJo, . .. , T/J; = Yi+l, so that Ot = !5.td 1; can be chosen 
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so small, that 

(9) 

D := gg', can be approximated by a Gaussian density¢ (cf. equation (1)). 
The Ji-fold product of Gaussian densities is called an Euler density ( cf. Kloe
den and Platen, 1992, ch. 16.3). In the limit Ji ----+ oo the so called path 
integral (functional integral) representation 

J-l 

}~ooj exp [- ~ ~ (TJJ+l- T}j- /jot)'(Djot)- 1 x 

J;-l 

x('r/Hl- 'r/j- fp5t)] II [2KDj5t[-112dryJ,-l· .. dry1 
j=O 

·- j exp( -~O[y])Dy(t) (10) 

of the transition density is obtained (Haken, 1977, ch. 6.6, Risken, 1989, ch. 
4.4.2). The exponent 

O[y] = 1t;+1 

[y(t)- f(y, t)]'D(y, t)- 1 [y(t)- f(y, t)]dt 
t.,~ 

(ll) 

is the Onsager-Machlup functional. The expression is only formal since y(t) 
is not differentiable. Analogous expressions are obtained when computing 
likelihood functionals, which can be transformed to formally existing limits 
(likelihood ratios) on dividing by a reference density and using Ito or Strato
novich integrals ( cf. Wong and Hajek, 1985, ch. 6, p. 216 and the remark in 
ch. 7, p. 257; Stratonovich, 1989). 

In numerical computations one does not go to the limit, but uses a ot small 
enough (a so called E-Version in the sense of Stratonovich). The resulting 
(Ji- !)-dimensional integral (8) can be estimated by the mean value 

N 

.P(Yi+l[Yi) = N-l LP(Yi+l['rln,J;-l), (12) 
n=l 

where N is the Monte Carlo sample size . .Here TJn = { 'r/n,J, -1, ... , TJn,l, 'r/o} 
are replications of the vector {y(ti + ( Ji - 1 ).st), ... , y( ti + ot), y(ti)}, which 
represents the path of the Ito process y ( t) on the time grid (conditioned on 
the initial value Yi = ry0 ). The approximation errors are controlled by the 
parameters ot and N, where the first corresponds to the approximation of 
the SDE and the second reflects the accuracy of the Monte Carlo integration. 
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The SDE is simulated by using the Euler-Maruyama scheme 

77J+1 
Zj 

7]j + j( 7]j, Tj )Jt + g( 7]J, Tj) vJt Zj; j = 0, ... , Ji - 2 

N(O, I), i.i.d. 

(cf. Kloeden and Platen, 1992, ch. 9 and 14). 

In the desired extrapolation integral (time update) 

(13) 

(14) 

Pi+1li := P(Yi+l[zi) = J P(Yi+l[Yi)P(Yi[zi)dyi (15) 

J P(7]J, [7]J,-1)P(7]J,-1[7]J,-2) · · .p(7]1[77o) X 

xpili(77o)d7]J,-1 ... d7]1d7]o 

an additional integration over the initial condition 7]o = Yi is required, which 
can be simulated by drawing Yn,i = 7ln,o rv Pili· The result is an estimator of 
delta type, similar to a kernel density estimator with variable band widths 
(variances) S2(7Jn,J,-1, TJ,-1)5t (cf. Silverman, 1986): 

N-1 L>(Yi+l[7ln,J;-1) (16) 

;::::: N-
1 L ¢(YH1; Yn,i+lli' Pn,i+1li), 

where Yn,i+1li := 7]n,J;.-1 + f(7ln,J;-l, TJ,-1)5t and Pn,i+1li := S2(7]n,J; -1, TJ,-1) 
5t. The Gauss form occurs only if the process errors dW are gaussian, how
ever. In contrast, a kernel density estimator can be chosen of gaussian form 
even if nongaussian error terms (e.g. Poisson processes) are used, as in some 
finance applications (cf. Lo, 1988). See Singer (1997) for a comparision of 
several filter algorithms. 

4 Importance sampling 

The integral representation (15) can be rewritten to reduce the the variance 
of the estimate (16). In general, the integral 

J g(y)p1(y)dy = J g(y)~~~~~P2(y)dy (17) 

E2 [g~~] 
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can be approximated by a variance reduced unbiased estimate 

(18) 

Yn "'p2 , if the density p2 (importance density) is chosen appropriately. One 
can show that the optimal density is given by 

P2,opt 
lg(y) IPl (y) 
E1lg(y)l 

(19) 

and the variance of (18) is zero if g is positive ( cf. Kloeden and Platen, 
1992, ch. 16.3). Unfortunately, the definition involves the desired quantity 
E1lg(y)l and P2,opt must be approximated (see below). Setting g(rJJ,-1) = 

P(Yi+ll'r/J,-1) and Pl = p(rJJ,-ll'r/J,-2) ... p(rJllrJo)P(rJoiZi) leads to the opti
mal importance density 

where the transition densities are conditioned on future states Yi+l, which 
are not observed. Replacing Yi+l by Zi+l yields a modified density P2,opt and 
an estimate 

(21) 
n 

X P(rJn,J,-ll'r/n,J;-2) · · .p(rJn,llrJn,o) 

P(rJn,J;-ll'r/n,J;-2, Zi+l) · · .p(rJn,ll'r/n,o, Zi+l) 

X P(rJn,oiZi) 

P(rJn,oiZ\ Zi+l) 

LP(Yi+llrJn,J;-l)an,i+lli 
n 

~ L ¢(Yi+l; Yn,i+lli> Pn,i+lli)an,i+lli, 
n 

which can be shown to imply zero variance (given the data zi) for the unbi
ased estimated likelihood 

J p(zi+IIYi+dP(Yi+ll zi)dYi+l 

LP(Zi+lirJn,J,-l)an,i+lli· 
n 

(22) 
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Furthermore the expressions (22) and (25) coincide for bt ---+ 0 (see appendix). 

Since the time update P(Yi+11Zi) (15) can be approximated by a sum of 
gaussian densities (21) of small band width ex bt, the usual measurement 
updates of the extended Kalman filter (EKF) can be applied to each element 
in the superposition (21) (cf. Anderson and Moore, 1979, theorem 2.1). One 
obtains the estimated a posteriori density 

n 

Ln,i+1 
O:n,i+1li ---

Li+1 

'2..:::: Ln,i+1 O:n,i+lli' 
n 

where the EKF updates are given by 

Yn,i+lli 'T/n J-1 + f(TJn J.-1 1 TJ-l)bt ' /, ' '· /, 

Pn,i+lli D(TJn,J;-1, TJ;-I)bt 

Yn,i+1li+l Yn,i+1li + Kn,i+lliVn,i+l 

Pn,i+lli+1 (J- Kn,i+lliHn,i+1)Pn,i+1li 

Kn,i+lli Pn,i+1liH~,i+1 r:,;+lli (Kalman gain) 

Vn,i+1 Zi+1- h(Yn,i+1li• ti+1) (innovation) 

rn,i+1li Hn,i+1Pn,i+1liH~,i+ 1 + Ri+1 (innovation covariance) 

Ln,i+l 
1 

( det 27r Tn,i+lli)- 2 exp[- ~V~,i+1 r:,;+1liVn,i+l] 

¢(zH1; h(Yn,i+1li• tH1), Hn,i+1Pn,i+1liH~,i+1 + Ri+l) 

Hn,i+1 hy(Yn,i+1li• ti+1) (Jacobian). 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

The sequence of estimated a priori and a posteriori densities P(Yi+ 11 zi)' 
P(YH11Zi+1) (21, 23) yields a numerical implementation of the continuous
discrete filter ( 4, 5) and permits the variance reduced computation of the likeli-

hood function L = Tii=~1 Li+lLo, where L 0 is the likelihood of the first obser
vation zo. Since a functional integral representation of the density P(Yi+ 1l zi) 
is utilized the algorithm will be called functional integral filter (FIF). 
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5 Implementation of the importance density 
by smoothing 

In general the optimal weights (likelihood ratio) 

(36) 

i = 0, ... , T- 1, determined by the importance density p 2,opt are difficult to 
compute, since they involve the unknown conditional densities p( 'TJj+II'TJj, z;+l) 
and p(y; I zi, z;+l), but for the linear system an exact result is available which 
can be generalized to the nonlinear case. 

Thus in linear systems the likelihood estimate (22,25) is dispersion free and 
the mean is exact with one trajectory. In nonlinear systems, the approximate 
importance density P2 leads to a suboptimal estimate LH1 with variance > 0 
but still to a variance reduction. 

Since in the linear case all densities are gaussian, one obtains the conditional 
mean and variance ('Tfj = yb); Tj = t; + jot;j = 0, ... , J;- 1) 

E[Yi+liTJj, Zi+I] 

Var[Yi+liTJj, Z;+I] 

Ki+l 

E[TJJ+lirJj, Z;+I] 

Var(rJHli'TJj, z;+l) 

E[Yi+llr}j] + KH1(zi+1- h(E[y;+IITJJ], ti+1)) 

(I- K;+IHi+I)Var[y;+II7JJ] 

Var(YH1I'TJJ )Hf+1 x 

x (HHI Var(YHII7JJ )Hf+1 ) + RHI)-1 

E[7Jj+1I7Jj l + Fj (E[Yi+II'IJJ, Z;+I] - E[Yi+II'IJJ]) 

Var('TfJ+II7JJ) + 
+ Fj (Var(YH117JJ, ZHI) - Var(YHII7JJ) )Fj 

Var(7JH1I7JJ )P' (ti+1, TJ+I)Var(y;+Ii'IJJ) - 1, 

which characterize the density p('IJJ+II'TJJ, Z;+I) in P2,opt· 

The smoother gain F1 and the update formulas are similar to the fixed interval 
smoother ( cf. Anderson and Moore, 1979) . The quantities in the update 
formulas can be obtained by solving the differential equations (Tj::; t::; ti+1) 

y(tiTJ) 

P(tiTj) 

4J(t1TJ+1) 

f(y(tiTj), t); y(TJITJ) = 'l}j 

A(t)P(tiTJ) + P(t!TJ)A'(t) + D(t); P(TjiTj) = 0 

A(t)P(tiTJ+I); P(TJ+IiTJ+1) = l;TJ+1 :S; t:::; ti+l 

(37) 

(38) 

(39) 



89 

J(y, t) ·- A(t)y + b(t) (linear system) (40) 

(41) h(y, t) ·- H(t)y + d(t) 

and setting 

E[771+1177J] 

E[Yi+li7Jj] 

Var( 7JJ+li7JJ) 

Var(Yi+li7Jj) 

y(TJ+liTj) 

y(ti+lh) 

P( Tj+liTj) 

P(ti+l!TJ). 

(42) 

(43) 

(44) 

( 45) 

For the density p(y;IZi, Zi+l) in P2,opt one obtains the moments: 

E[y;+ll zi+l] 

Var(Yi+liZi+ 1
) 

Ki+l 

E[y;IZ\ Zi+l] 

Var(y;IZ\ zi+l) 

F; 

E[Yi+IIZi] + Ki+l(zi+l- h(E[Yi+liZi],t;+l)) 

(I- K;+lH;+1 )Var(Yi+liZi) 

Var(Yi+liZi)H;+l (Hi+l Var(Yi+liZi)H;+l + Ri+l)- 1 

E(y;IZ;) + F;(E[Yi+liZi+1
]- E[Yi+liZ;)]) 

Var(y;IZ;) + F;(Var(Yi+llzi+l) - Var(Yi+IIZi))Ff 

Var(y; IZi)<P' (tt+l' ti)Var(Yi+ll zi)-1
. 

Again the quantities in the update formulas can be obtained by solving the 
differential equations ( t; ::; t ::; t;+l), but with different initial conditions: 

y(tlt;) 

P( tit;) 

<i>(tlt;) 

and setting 

E[Yi+liZi] 

Var(y;+liZ') 

f(y(tit;), t); y(tilt;) = E[y;IZ;] (46) 

A(t)P(titi) + P(tit;)A'(t) + D(t); P(t;lt;) = Var[yiiZ'] (47) 

A(t)<P(titi); <P(t;it;) =I (48) 

y(ti+llt;) 

P(ti+1lt;). 

( 49) 

(50) 

In the limit of small 6t one can write 

E[7JJ+ll77j' Zi+l] 7]j + !( 7]j' Tj )6t + Fj (E[Yi+li7Jj' Zi+ll - E[Yi+li7Jj]) 

·- 77J + h(7J1,T1)ot 

Var( 77J+Ii77J, zi+l) D( Tj )ot + Fj (Var(Yi+ll771, z;+l) - Var(Yi+ll771) )Fj 

·- D2(T1)ot, 

which may be interpreted as a correction to the drift f and the diffusion ma
trix D. Therefore the optimal density P2,opt and trajectories 7Jn = { 7Jn,J,_ 1 , ••• , 
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TJn,o} drawn from it can be obtained by using a modified drift h and diffu
sion coefficient D2 . More precisely, a stochastic Euler-Maruyama scheme (13) 
with drift h and diffusion coefficient D2 is used to simulate T}n ""'P2,opt· 

Since the moment equations (37-41, 46-48) can be generalized to nonlinear 
systems by replacing A(t) -----* ]y(y, t), D(t) -----* D(y, t), and H(t) -----* hy(y, t), 
one obtains a sampling scheme where the (sub )optimal density p 2 is imple
mented by means of the EKF updates and trajectories { T}J, -1, ... , 7]o }n ""' P2 
can be simulated using h and n2. 

6 Practical implementation 

6.1 Smoothing with Gaussian Sums 

If the density POl-l = p0 (yo, to) (initial condition) is represented by a gaussian 
mixture distribution of N populations 

N 

Pol-l L ¢(yo; f..Ln, L'n)an,OI-1 (51) 
n=l 

using appropriate weights an,OI-l, all updates preserve the structure of a 
gaussian sum and the computation of the importance density proceeds by 
anN-fold solution of the smoother equations and related trajectories drawn 
from the density p 2 . More precisely, the measurement update 

L ¢(yo; Yn,OIO> Pn,Oio)an,OIO (52) 
n 

is again a gaussian sum and the smoothed density p(y0 I Z 0 , Z1) =POll required 
in P2 may be represented by the moments E[yn,oiZ0 , z1], Var(Yn,oiZ0, z1) of 

population nand an updated weight an,Oil = an,OIO L£~ 1 , L1 = :Lan,DIDLn,l, 
i.e. 

(53) 
n 

Therefore, the EKF's and smoothers computing the optimal weights and the 
importance density run on a gaussian sum which is called a gaussian sum 
filter (Anderson and Moore, 1979, chapter 8). This filter does not involve 
any simulation and computes an approximate time update via deterministic 
moment equations using N EKF's. Whereas these are only valid for small 
sampling intervals Llti, the stochastic simulation of trajectories via (13) leads 
to an estimate of the a priori density valid for arbitrary sampling intervals. 
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From the density POll N random initial conditions 'T7n,Oil can be drawn and 
used to simulate the trajectories {'17n,Jo-l, ... , 'T)n,o} ,..._, P2 using hand S?2 in 
(13). From this the a priori density PliO= p(y1 IZ0 ) (21) can be estimated and 

the a posteriori density Plll = fi(y1 IZ1 ) and the likelihood estimate L1 in (23) 
is obtained. fi1 1 1 is again a gaussian sum and the update fi1 1 2 = p(y1 IZ2 ) may 
be computed as before etc. The algorithm runs recursively from i = 0, ... , T 
and yields a sequence of likelihood contributions Li. 

6.2 Resampling Strategies and Antithetical Sampling 

Drawing y1, j = 1, ... , N from the mixture distribution (a posteriori density) 

N 

p(y) L cp(y; Yn, Pn)a.n (54) 
n=l 

can be accomplished by drawing a population n with probability a.n and then 

setting YJ = Yn + P~12 z1 where z1 ,..._, N(O, I) and p~/2 is a Cholesky root 
(or another matrix square root). The drawing of n may be implemented by 

drawing Uj "" U[O, 1] (uniform distribution) and solving ~:-=\am < Uj :::; 

~~=l a.m. Alternatively, the deterministic values Uj = (j- c)/N; c E (0, 1) 
or stratified values u1 = (j + U1 - 0.5- c)/N; Uj ,..._, U[O, 1], c E (0, l) could be 
used. According to Kitagawa (1996, appendix), when using deterministic or 
stratified drawing, it is preferrable in advance to sort the mixture in order of 
magnitude, i.e. lliinll < lliin+lll and draw from the sorted iin,Pn and O:n· In 
my experience, sorting improves the smoothness of the simulated likelihood 
surface as a function of the parameter vector 1jJ ( cf. example 7.3, figs. (10-
15)). 

Another device in reduction of sampling error is antithetical sampling (Ham
mersley and Handscomb, 1964, p. 60). Instead of simulating z1 "" N (0, I); j = 

1, ... ,N, pairs {zj,-Zj};j = 1, ... ,N/2, are drawn. The negatively corre
lated sample leads to estimators with smaller variance. When simulating the 
Euler scheme (13), the i.i.d. sequence -zj;j = 0, ... , Ji- 2 can be used to 
simulate a trajectory '17J (-z) which is anticorrelated with 'l]j ( + z). 

6.3 Implementation Details 

The algorithm was programmed with Mathematica (Wolfram Research, 1992) 
and the MPW C compiler (Apple Computer, 2001) using the Mathlink com
munication library and run on Apple Power PC 604e and G3 computers. The 
Mathlink routines allow the calling of C programs from within Mathematica. 
For numerical computations (Cholesky roots, random numbers, sorting), the 
C algorithms in Numerical Recipes in C (Press et al., 1992 ) have been used. 
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7 Examples 

7.1 AR(2) process 

In order to test the performance of the importance sampling algorithm, a 
linear AR(2) model was simulated. The sampler should give a variance free 
estimate of the likelihood which must coincide with the exact result obtained 
by the Kalman filter. I used the state space model (equivalent to a 2nd order 
differential equation) 

d [Y1 (t)] 
Y2(t) [ -~6 ~4H~~~~ndt+ [~ ~Jd[:~mJ (55) 

[1 OJ [~~~~:n + Ei, 

where Var(Ei) := R = 0.1, the data were equispaced with LJ.t = 2, to = 0:::::; 
t <::: ty = 50, and the discretization interval was chosen as t5t = 0.01, Ji = 

LJ.tj ot = 200, i = 0, ... , T = 25. A time series was computed according to 
(55) and using this data the likelihood function l ( 1j;) was simulated. 

Results: The results are displayed in figures (1-4), where the var~ance reduc
tion in M = 10 replications of the likelihood surface is summarized. Also 
shown is the exact result using the (linear) Kalman filter. The likelihoods 
and scores are plotted as a function of the parameter 1/;3 = -16 in the interval 
[-20, -14]. Even in the case N = 1 (fig. 2), the sampling error is very small. 
Using larger discretization intervals Ot = 0.1, 0.05, one can show numerically 
that the variance of the estimated likelihood increases. Therefore, approxi
mation errors in the simulation (13) and in the transition density (9) lead 
to deviations from the (theoretically) exact variance free estimate p(zi+1 1Zi) 
(22). 

7.2 Ginzburg-Landau model 

The Ginzburg-Landau equation is a nonlinear diffusion equation where the 
drift coefficient is the gradient of a double well potential <P(y, {a, jJ}) = ~y2 + 
~y4 , f = -8if?j8y: 

dy -[ay + j)y3 ]dt + u-dW(t) 

y(ti) + 1'-i· 

(56) 

(57) 

Models of this kind have been used to model limit cycles, bifurcations, phase 
transitions and normal forms of nonlinear systems (cf. V.I. Arnold, 1973, 
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Figure 1: Simulated likelihood surface l('l/;3 ): AR(2) without importance samp
ling (sample size N = 10). M = 10 replications (left), means and standard 
deviations (middle) and score (right). Interval -20 :S: 'l/;3 :S: -14. Bold line: 
exact likelihood Z('l/;3 ) and score (right). 

Figure 2: Simulated likelihood surface: AR(2) with importance sampling (sample 
size N = 1). Bold line: exact likelihood and score (right). 
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Figure 3: Likelihood surface: AR(2) with importance sampling (sample size 
N = 10). 
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Figure 4: Likelihood surface: AR(2) with importance sampling (sample size 
N = 20). 
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1986, Haken, 1977, Holmes, 1981, normal form theorem 4.4). Other appli
cations are in the modelling of equilibrium states of an economy (Herings, 
1996) and the theory of system failure (Frey, 1996). 

In the present context a parameter constellation of 1/J = {a, ,8, u, R} = 

{-1.,0.1,2.,0.1}, R = Var(Ei) was chosen, which corresponds to a poten
tial with two minima and noisy sampled measurements (Llt = 2; 0 ::; t S 
50; ot = o.1). 

The convergence of the simulated likelihood as a function of sample size N 
is shown in figure (5). Again the variance of the estimates is considerably 
reduced by importance sampling. The form of the likelihood surface and of 
the score as a function of 'lj;1 = a is compared in figures ( 6-7). 

Finally, figs. (8-9) explain the effect of importance sampling on the trajec
tories drawn from p 2 . As shown in section 5, the actual drift and diffu
sion coefficients f, g are modified to h, g2 in order to draw from the im
portance density, which yields more random numbers near the points in 
state space, where p(ziiYi) is averaged in the likelihood expression Li+l = 

J p(zi+IIYi+I)P(Yi+IIZi)dyi+l ( cf. eq. 6). Clearly, without importance samp
ling, only few trajectories are near the measurement at the end of the interval 
(see fig. 6) and the mean shows high dispersion. 

Simulation studies (Singer, 1999b) compared the performance of the func
tional integral filter (FIF) with a filter based on kernel density estimates and 
with approximations based on Taylor expansions (EKF, 2nd order nonlinear 
filter SNF and local linearization (11), cf. Shoji and Ozaki (1997, 1998)). 
It was shown that for large sampling intervals, the FIF with importance 
sampling exhibits the smallest bias even for small Monte Carlo sample sizes 
(N = 10), whereas without importance sampling, sample sizes of at least 
N =50 are required. Moreover, Taylor expansion methods (EKF, SNF, 11) 
only yield good results for small measurement intervals. 

7.3 Stochastic Volatility 

Stochastic volatility models such as 

dS(t) 

du( t) 
MS(t)dt + u(t)S(t)dW(t) 

>.[u(t) - O']dt + ')'dV(t), 

(58) 

Var(dW, dV) = pdt (Scott, 1987, Hull and White, 1987), where the volatility 
process u(t) is not observable, can account for the fact that the returns 

r(t) = dS/S = Mdt + u(t)dW(t) (59) 
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Figure 5: Convergence of the simulated likelihood (Ginzburg-Landau model). 

Means ± standard deviations in M = 10 replications. Right picture: with 

importance sampling. Sample size N = 10, 50,100,200. 
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Figure 6: Likelihood surface (Ginzburg-Landau model) as a function of '!/!1 =a. 

M = 10 replications (left), means and standard deviations (middle) and score 

(right). Sample size N = 10 (without importance sampling). 
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Figure 8: Sample trajectories from p1 (Ginzburg-Landau model). Sample size 

N = 10 (without importance sampling). 
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Figure 9: Sample trajectories from p2 (Ginzburg-Landau model). Sample size 

N = 10 (with importance sampling). 
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on financial time series exhibit a time dependent variance and for the lep
tokurtosis of the return distribution. In contrast to ARCH and GARCH 
models exhibiting conditional heteroscedasticity, too, the variance equation 
is driven by a separate Wiener process and the variance cannot be eliminated. 
For example, the discrete time GARCH(1,1) process 

Ei O"iZi 

o-f w + mf-1 + f3o-f-l 

permits the recursive computation of O"i given measurements of the innova
tion process Ei (which corresponds to a-dW) and an initial value cr0 . It has 
been shown by Nelson (1990) however, that a continuous time limit of the 
GARCH(l,1)-M model (Engle and Bollerslev, 1986) in the mean corrected 
log returns log(Si+r/ Si) := Yi+l - Yi 

leads to the system of stochastic differential equations 

w(t) 2 dt + cr(t)dW(t) 

[w- Bcr(t) 2]dt + acr(t) 2 dV(t), 

where W and V are independent standard Wiener processes and the coeffic
ients are scaled as dt ~ 0 (w ~ wdt, f3 ~ 1- ajdi12- Bdt, a~ ajdi72). 
This differs somewhat from equation (58), where the volatility satisfies an 
Ornstein-Uhlenbeck process. 

Stochastic volatility models in discrete time have been used as approximations 
to the stochastic differential equation (58) or some variants such as 

dS(t) 

dloga-2 (t) 

( dh( t) 

p,S(t)dt + cr(t)S(t)dW(t) 

.A[loga-2 (t) -loga2]dt + rydV(t) 

.A[h(t)- h]dt + rydV(t)), 

(60) 

where the log-volatility h(t) is modeled by an Ornstein-Uhlenbeck-process to 
ensure a positive a- (cf. Wiggins, 1987, Nelson, 1990). Taking logarithms and 
using Ito's lemma, y = logS fulfils 

[p,- cr(t) 2 /2]dt + cr(t)dW(t) 
.\[log cr2 (t) - log a2]dt + rydV( t). 

(61) 
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This has been shown to be the continuous time limit of an AR(1)-EGARCH 
model (Nelson, 1990, sect. 3.3) and corresponds to the discrete time model 

exp(hi/2)t:i 

>-[hi - h] + /''TJi 

log a}) 

used for the mean corrected returns by Kim et al. (1998). 

Since available data are measured in discrete time (daily or weekly), but 
the models in the option pricing literature are mostly formulated in contin
uous time, times series formulations are only approximations to the sam
pled stochastic processes. The continuous time asymptotics and asymptotic 
GARCH filters developed by Nelson (1990, 1992) are only valid in the limit of 
small sampling interval. In analogy to linear theory, the differential equations 
should be filtered and estimated using discrete data with arbitrary time in
terval. This involves sampled diffusion processes with latent variables, since 
the volatility is not observed. In contrast to linear models, where exact dis
crete time series can be derived explicitly ( cf. Bergstrom, 1990), the exact 
analogs of nonlinear systems involve transition densities which are solutions 
of the Fokker-Planck equation. 

The following example serves to illustrate the simulated properties of the con
tinuous time stochastic log volatility model (61). We assume that T = 365 
daily data are simulated (y0 = log 100, ho = log0.22), but measurements 
are taken only weekly, i.e. ot = 1/365; L1t = 7/365. Parameters were 
chosen as 7/J = {JL,A,h,/',P} = {.07,-1,log(0.22 ) = -3.21888,2,0} and 
the prior distribution of the state 'TJ(O) = {y(O), h(O)} was set to Po[-l "' 

N( { 4, -3.}, diag(1, 1)). Thus the correlation p between the Wiener processes 
W and V is zero in accordance with Kim et al. In the measurement model 
the measurement error was set to a variance of R = 0.0001. Figures (10-15) 
show the simulated likelihood surface as a function of 7/J3 = h in the interval 
[-6,1]. It is seen that sorting of the posterior distribution (cf. section 
6.2) improves the smoothness of the likelihood and lowers the sampling error 
of the score function 8l j 87/J. In figure (12), antithetical sampling still further 
improves the smoothness as seen in the score (right picture). Figures (13 -
15) demonstrate that importance sampling permits the usage of much smaller 
Monte Carlo sample size N. 

8 Conclusion 

We have shown how the likelihood function of a continuous-discrete state 
space model can be simulated using Monte Carlo integration. The variance 
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Figure 10: Stochastic volatility model. Likelihood surface simulated without 

importance sampling. Deterministic resampling without ordering (sample size 

N = 10000). 

Figure 11: Stochastic volatility model. Likelihood surface simulated without 

importance sampling. Deterministic resampling with ordering (sample size N = 

10000). 

Figure 12: Stochastic volatility model. Likelihood surface simulated without 

importance sampling. Deterministic resampling with ordering and antithetical 

variates (sample size N = 10000). 
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Figure 13: Stochastic volatility model. Likelihood surface simulated with im

portance sampling. Deterministic resampling without ordering (sample size 

N = 200). 
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Figure 14: Stochastic volatility model. Likelihood surface simulated with impor

tance sampling. Deterministic resampling with ordering (sample size N = 200). 
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Figure 15: Stochastic volatility model. Likelihood surface simulated with impor

tance sampling. Deterministic resampling with ordering (sample size N = 500). 
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of the estimate is considerably reduced by using importance sampling. The 
importance density was computed by approximate smoothing algorithms, 
which run on gaussian sums and are only suboptimal in general nonlinear 
systems. Nevertheless, a strong reduction in dispersion is achieved. Currently 
the algorithms are tested in estimating the parameters of stochastic volatility 
models and the Lorenz model. 
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Appendix 

In this appendix it is shown, that the EKF update of the a priori density (21) 
leads to the correct variance reduced Monte Carlo estimator of the likelihood 

(62) 

Using the Bayes formula this can be rewritten as 

where d'f) = d7]J,- 1 ... d7]o and for this the optimal variance reducing density 
is 

P2,opt p(zi+1ITJJ, -1)P( TJ!Zi) /p(zi+liZi) 
P(77lzi+1) 

Therefore the optimal estimator is 

-1"'""""' P(TJIZi) 
p(zi+liZi) = N ~p(zi+II7Jn,J,-1) P(TJ!Zi+l) 

-1"'""""' P(TJIZi) 
N ~p(zi+IITJn,J,-d p(TJ!Zi+1) 

L P(Zi+II7Jn,J, _l)an,i+1li 
n 

which is the same as inserting (21) into (62). It remains to note that 

p(zi+1ITJJ-d >=:::: ¢(zi+1; h(Yi+1li, ti+1), Hi+1pi+1liH~+l + Ri+1) 

Yi+1li 7JJ,-1 + f(TJJ,-1,TJ,-1)ot 

pi+lli D(7]J,-1, TJ,-1)0t, 

since 

Zi+l h(Yi+1> ti+1) + Ei+1 

>=:::: h(TJJ;-1 + f(TJJ;-1> TJ,-1)0t + 
g('f)J,-1, TJ;-1)oW(TJ,-1), ti+l) + Ei+l 

>=:::: h(TJJ,-1 + f(TJJ,-1, TJ,-1)ot, ti+d + 
Hi+1g(TJJ,-1, TJ,-1)oW(TJ,-1) + Ei+1 

Hi+1 hy(TJJ,-1 + f(7JJ;-1, TJ,-1)ot, ti+1)· 



103 

References 

Alspach, D. & Sorenson, H. (1972), 'Nonlinear Bayesian estimation using 
Gaussian sum approximations', IEEE Transactions on Automatic Con
trol17, 439-448. 

Anderson, B. & Moore, J. (1979), Optimal Filtering, Prentice Hall, Engle
wood Cliffs. 

Apple Computer (2001), Macintosh Programmer's Workshop, http:j /
developer. apple. com/ tools/ mpw-tools/. 

Arnold, L. (1974), Stochastic Differential Equations, John Wiley, New York. 

Arnold, V. (1973), Ordinary Differential Equations, MIT Press, Cambridge 
(Mass.), London. 

Arnold, V. (1986), Catastrophy Theory, Springer, Berlin. 

Bergstrom, A. (1990), Continuous Time Econometric Modelling, Oxford Uni
versity Press, Oxford. 

Carlin, B., Polson, N. & Stoffer, D. (1992), 'A Monte Carlo Approach to Non
normal and Nonlinear State-Space Modeling', Journal of the American 
Statistical Association 87, 493-500. 

Durbin, J. & Koopman, S. (1997), 'Monte Carlo maximum likelihood esti
mation for non-Gaussian state space models', Biometrika 84,3, 669-684. 

Durbin, J. & Koopman, S. (2000), 'Time series analysis of non-Gaussian ob
servations based on state space models from both classical and Bayesian 
perspectives.', Journal of the Royal Statistical Association B 62, 1, 3-
56. 

Engle, R. & Bollerslev, L. (1986), 'Modelling the persistence of conditional 
variances', Econometric Reviews 5, 1-50. 

Fahrmeir, L. & Kaufmann, H. (1991), 'On Kalman Filtering, Posterior Mode 
Estimation and Fisher Scoring in Dynamic Exponential Family Regres
sion', Metrika 38, 37-60. 

Frey, M. (1996), 'A Wiener Filter, State-Space Flux-Optimal Control Against 
Escape from a Potential Well', IEEE Transactions on Automatic Control 
41, 2, 216-223. 

Gelb, A., ed. (1974), Applied Optimal Estimation, MIT Press, Cambridge, 
Mass. 



104 

Gordon, N., Salmond, D. & Smith, A. (1993), 'Novel approach to 
nonlinear /non-Gaussian Bayesian state estimation', IEEE Transactions 
on Radar and Signal Procesing 140, 2, 107-113. 

Haken, H. (1977), Synergetics, Springer, Berlin. 

Hammersley, J. & Handscomb, D. (1964), Monte Carlo Methods, Methuen, 
London. 

Harvey, A. (1989), Forecasting, structural time series models and the Kalman 
filter, Cambridge University Press, Cambridge. 

Harvey, A. & Stock, J. (1985), 'The estimation of higher order continuous 
time autoregressive models', Econometric Theory 1, 97-112. 

Herings, J. (1996), Static and Dynamic Aspects of General Disequilibrium 
Theory, Kluwer, Boston, London, Dordrecht. 

Holmes, P. J. (1981), 'Center manifolds, normal forms and bifurcations of 
vector fields', Physica D 2, 449-481. 

Hull, J. & White, A. (1987), 'The Pricing of Options with Stochastic Volatil
ities', Journal of Finance XLII,2, 281-300. 

Hurzeler, M. & Kunsch, H. (1998), 'Monte Carlo Approximations-for General 
State-Space Models', Journal of Computational and Graphical Statistics 
7,2, 175-193. 

Jazwinski, A. (1970), Stochastic Processes and Filtering Theory, Academic 
Press, New York. 

Jones, R. (1984), Fitting multivariate models to unequally spaced data, in 
E. Parzen, ed., 'Time Series Analysis of Irregularly Observed Data', 
Springer, New York, pp. 158-188. 

Jones, R. & Ackerson, L. (1990), 'Serial correlation in unequally spaced lon
gitudinal data', Biometrika 77, 721-731. 

Jones, R. & Tryon, P. (1987), 'Continuous time series models for unequally 
spaced data applied to modeling atomic clocks', SIAM J. Sci. Stat. Com
put. 8, 71-81. 

Kim, S., Shephard, N. & Chib, S. (1998), 'Stochastic Volatility: Likelihood 
Inference and Comparision with AROH Models', Review of Economic 
Studies 45, 361-393. 

Kitagawa, G. (1987), 'Non-Gaussian state space modeling of nonstationary 
time series', Journal of the American Statistical Association 82, 1032-
1063. 



105 

Kitagawa, G. (1996), 'Monte Carlo Filter and Smoother for Non-Gaussian 
Nonlinear State Space Models', Journal of Computational and Graphical 
Statistics 5,1, 1-25. 

Kloeden, P. & Platen, E. (1992), Numerical Solution of Stochastic Differential 
Equations, Springer, Berlin. 

Liptser, R. & Shiryayev, A. (1977, 1978), Statistics of Random Processes, 
Volumes I and II, Springer, New York, Heidelberg, Berlin. 

Lo, A. (1988), 'Maximum Likelihood Estimation of Generalized Ito Processes 
with Discretely Sampled Data', Econometric Theory 4, 231-247. 

Nelson, D. (1990), 'ARCH models a diffusion approximations', Journal of 
Econometrics 45, 7-38. 

Nelson, D. (1992), 'Filtering and forecasting with misspecified ARCH models 
I', Journal of Econometrics 52, 61-90. 

Press, W., Teukolsky, S., Vetterling, W. & Flannery, B. (1992), Numerical 
Recipes in C, second edn, Cambridge University Press, Cambridge. 

Risken, H. (1989), The Fokker-Planck Equation, second edn, Springer, Berlin, 
Heidelberg, New York. 

Scott, L. (1987), 'Option pricing when the vari'ance changes randomly: The
ory, estimation, and an application', Journal of Financial and Quanti
tative Analysis 22, 419-438. 

Shoji, I. & Ozaki, T. (1997), 'Comparative Study of Estimation Methods for 
Continuous Time Stochastic Processes', Journal of Time Series Analysis 
18, 5, 485-506. 

Shoji, I. & Ozaki, T. (1998), 'A statistical method of estimation and simu
lation for systems of stochastic differential equations', Biometrika 85, 
1, 240-243. 

Silverman, B. (1986), Density estimation for statistics and data analysis, 
Chapman and Hall, London. 

Singer, H. (1993b), 'Continuous-time dynamical systems with sampled data, 
errors of measurement and unobserved components', Journal of Time 
Series Analysis 14, 5, 527-545. 

Singer, H. (1995), 'Analytical score function for irregularly sampled continu
ous time stochastic processes with control variables and missing values', 
Econometric Theory 11, 721-735. 



106 

Singer, H. (1997a), Nonlinear Continuous-Discrete Filtering and ML Esti
mation using Kernel Density Estimates and Functional Integrals, Re
gensburger Beitriige zur Statistik und Okonometrie 40, Universitiit Re
gensburg. 

Singer, H. (1999b ), Parameter Estimation of Nonlinear Stochastic Differen
tial Equations: Simulated Maximum Likelihood vs. Extended Kalman 
Filter and Ito-Taylor Expansion, Regensburger Beitriige zur Statistik 
und Okonometrie 41, Universitiit Regensburg. 

Stratonovich, R. (1989), Some Markov methods in the theory of stochastic 
processes in nonlinear dynamic systems, in F. Moss & P. McClintock, 
eds, 'Noise in nonlinear dynamic systems', Cambridge University Press, 
pp. 16-71. 

Tanizaki, H. (1996), Nonlinear filters: estimation and applications, second 
edn, Springer, Berlin. 

Tanizaki, H. & Mariano, R. (1995), Prediction, Filtering and Smoothing 
in Nonlinear and Non-normal Cases using Monte-Carlo Integration, in 
H. Van Dijk, A. Monfort & B. Brown, eds, 'Econometric Inference using 
Simulation Techniques', John Wiley, pp. 245-261. 

Wagner, W. (1988), 'Monte Carlo Evaluation of Functionals of Solutions of 
Stochastic Differential Equations. Variance Reduction and Numerical 
Examples', Stochastic Analysis and Applications 6, 447-468. 

Wiggins, J. (1987), 'Option values under stochastic volatility', Journal of 
F-inancial Economics 19, 351-372. 

Wolfram, S. (1992), Mathematica, 2nd edn, Addison-Wesley, Redwood City. 

Wong, E. & Hajek, B. (1985), Stochastic Processes in Engineering Systems, 
Springer, New York. 

Zadrozny, P. (1988), 'Gaussian likelihood of continuous-time armax models 
when data are stocks and flows at different frequencies', Econometric 
Theory 4, 108-124. 




