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Summary 

The present paper deals with the study of continuous interval data by means 
of suitable Principal Component Analyses (PCA). Statistical units described 
by interval data can be assumed as special cases of Symbolic Objects (SO) 
(Diday, 1987). In Symbolic Data Analysis (SDA), these data are represented 
as hypercubes. In the present paper, we propose some extensions of the PCA 
with the aim of representing, in a space of reduced dimensions, images of 
such hypercubes, pointing out differences and similarities according to their 
structural features. 
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1 lntrod uction 

Statistical methods have been mainly developed for the analysis of single 
valued variables. However, in real life there are many situations in which the 
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use of these variables may cause severe loss of information. 
Dealing with quantitative variables, there are many cases in which a more 
complete information can be surely achieved by describing a set of statistical 
units in terms of interval data. 
For example, daily temperatures registered as minimum and maximum values 
offer a more realistic view on the weather conditions variations with respect 
to the simple average values. Another example can be given by the financial 
series. The minimum and the maximum transaction prices, daily recorded 
for a set of stocks, represent a more relevant information for experts in order 
to evaluate the stocks tendency and volatility in the same day. 

Most widely used approaches to interval data analysis treat intervals as spread 
ranges with respect to a central value. The spread is generally assumed as 
the consequence of a measurement error and is considered as a perturbation 
in the data. In this paper we do not consider the interval central value, but 
we only point the attention on the minimum and maximum values. These 
are evaluated as two different and related aspects of the same phenomenon. 

The statistical treatment of interval data has been recently considered in the 
context of Symbolic Data Analysis (SDA) (Diday, 1996), whose aim is to 
extend classical statistical methods to the study of more complex data struc­
tures with respect to the simple tabular model individuals x variables. The 
present paper introduces some new Principal Component Analyses (PCA) 
techniques in order to visualize and compare structures of interval data. Sta­
tistical units described by interval variables can be considered as special cases 
of symbolic data, in which only quantitative variables are considered. More­
over, the SDA approach for the interval data treatment offers many useful 
tools that can be helpful in the interpretation of results. For these reasons 
our approach to interval data representation is presented by adopting the 
notations and definitions of the SDA domain. 

2 Basic concepts and notation 

Let n be a set of Wi (1 ~ i ~ n) Symbolic Objects (SO), that are described 
by p variables or descriptors: Y = {Yt, ... , Y;, ... , Yp}. 

Nowadays the SDA is based either on numerical treatments of suitably coded 
SO's followed by symbolic interpretation of results, or on symbolic methods 
that directly process the symbolic descriptors. 
In the following we are set in the first approach framework in order to analyze 
SO's described only by quantitative interval variables. 
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Afterwards, the generic variable Yi represents no more a single valued vari­
able, like in the classical data analysis, but refers to the lower Yi and the 
upper Yi bounds of the interval assumed by the j-th variable. "'The nota­
tion olo ... I 0;. ... I Op is adopted to define the domains of the p variables. 
Therefore, the symbolic data matrix Y has dimensions (n x 2p). 
A basic kind of SO, denoted as event, is indicated as: e; = [Y; = Vj], where 
Vj ~ 0;. The logical conjunction of events defines the so called symbolic 
assertion object ai = /\~=I [Y; = V/]. In order to process, by numerical meth­
ods, SO's described by interval variables, they are re-coded combining min 
and maz values into the so called vertices data matrix. In the simple case 
of p = 2, the generic SO Wi description is associated with the ith row of the 
interval data matrix Y: 

The related vertices coordinates with respect to the new variables z1 and z2 

- having the same domains of Y1 and Y2 1 respectively - correspond to the rows 
of the matrix Zi: 

Z1 Z2 

Yi,l Yi,2 

Zi= 
Yi,l Yi,2 

Yi,l Yi,2 

Yi,l W,2 

In a geometric view (Figure 1) the generic SO Wi is represented by a rectangle, 
having 2P = 4 vertices corresponding to all possible (min,maz) combinations. 

··-··········-·--··················- -·························-·········-··· .. ··························• 

Figure 1: 2-D space SO graphical representation 

In the general case of any p variables, each coding matrix Zi will have 2P 
rows and p columns. The stack coding matrix Z is obtained by superposing 
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then coding matrices Zi (with 1 ~ i ~ n). Matrix Z has N = n2P rows and 
p columns, and represents the numerical coding of the n SO's. Without loss 
of generality we can assume that z; variables are standardized. 

3 Vertices Principal Component Analysis 

The extension of the Principal Component Analysis (PCA) to interval data 
has been proposed by Cazes, Chouakria, Diday and Schektman (1997} and 
by Chouakria, Diday and Cazes (1998} as "Vertices Principal Component 
Analysis" (V-PCA). 
In the original proposal, the V-PCA consists in performing a classical PCA 
on the standardized matrix Z. In this way, vertices are elements of the 
subspace JR.P, whereas the p quantitative descriptors are elements of JR.N • V­
PCA looks for a suitable subspace where to represent SO's and, from a dual 
point of view, to represent the p variables. 
As in classical PCA the optimal sub-space is here spanned by the axes v m 

(with 1 ~ m ~ p), maximizing the sum of squares of projected vertices 
coordinates '1/Jm = Zvm: 

(1} 

with v~ Vm• = 0 form =/:- m 1 and v~ Vm• = 1 form = m 1• Therefore, the 
characteristic equation of V-PCA in JR.N is given by: 

1 I Nz Zvm = .Xmvm (2} 

where Vm and .Xm are the generic eigenvector and the generic eigenvalue 
respectively, associated to the matrix kZ1Z. 
Performing the analysis in the JR.P space we define the equation: 

1 I 
NZZ Wm = .Xmwm 1~m~p (3} 

that has same non-zero eigenvalues of (2}, but different eigenvectors, holding 
the following relation: Vm = x;1/ 2 Z1Wm· The principal axes interpretation, 
also in V-PCA, is accomplished with reference to the var~ables z;'s having 
maximal contributions, see Lebart, Morineau and Piron (1995}. 

In case of normalized variables, contributions are calculated as the squared 
correlation variable/factor: CTA;,m = (.X~2v;,m}2 /.Xm = vlm· 
The vertices coordinates of the SO Wi on the principal axes are given by 
the vector: '1/Ji,m = Z;vm. The representation of w; on the generic axis 
m is given by the segment including all vertices projections. Adopting the 
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same criterion in a two dimensional space spanned by the axes m and m', 
the extreme vertices projections define a rectangle called maximum covering 
area rectangle (MCAR). 

Even if the MCAR representation of SO's on a plane is coherent with the 
hypercubes associated to each SO, it does not rarely happen that they are 
oversized with respect to the real SO in JRP . 
In order to overcome this drawback, Chouakria et al. (1998) proposed to 
reduce MCAR's dimensions by retaining in the representation only vertices 
with high quality representation. The latter is measured in terms of squared 
cosines criterion: CRT9,m = Ei=l (z9,;v;,m)2 / E; z:.; (1 ~ m ~ p), where 
Zq,i is the generic vertex of the :sO Wi· 

It seems clear that these drawbacks- concerning MCAR's representations of 
SO's- depend on the optimized criterion in V-PCA. In fact, the V-PCA 
aims at optimizing the vertices representation at the expense of SO's one; 
vertices are assumed to be independent and any relationship among vertices 
belonging to the same SO is lost. The SO's rebuilding- via MCAR's- is done 
ex post and consequently the principal axes interpretation cannot be referred 
to SO's main characteristics. 

In the next sections, we propose some new approaches allowing to treat, in a 
consistent way vertices belonging to the same SO [§4] and to stress SO's size 
and shape in graphical representation [§5]. 

4 Symbolic Objects based PCA 

In this section, we introduce a new PCA that takes into account the necessary 
vertices cohesion constraint. In this direction, our proposal is to maximize 
the variance among SO's instead of the total vertices variance, as done in V­
PCA. Hereinafter, we call the proposed approach Symbolic Object Principal 
Component Analysis (SO-PCA). The method represents the more realistic 
PCA extension to interval data and it can be extended - without loss of gen­
erality - to any numerically handable data structure. 
Analogously to classical PCA, SO-PCA is based on the search of axes max­
imizing the differences among statistical units which, in this context, are 
SO's. 

The main idea behind the method consists in maximizing the between SO's 
variance matrix: 

~Z'A(A'A)-1 A'Z, 
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where we denote by A the boolean matrix (N x n) describing the belonging 
of the N vertices to the n SO's. 
Looking for the axes that maximize the difference among SO's, the solution 
in the space RN is obtained by the following characteristic equation: 

~[Z'A(A'A)-1A'Z]vm = 

= ~Z'PAZ = Xmvm, (4) 

where v m is defined under the orthonormality constraints already expressed 
in (1). Considering that P A = A(A' A)-1 A' is an orthogonal projector 
matrix, this approach represents a special case of the so called PCA with 
respect to a reference sub-space (D'Ambra and Lauro, 1982), here spanned 
by the columns of A. 
Vertices coordinates, of the generic SO Wi on the axis m, are given by the 
vector 'fii,m = Z;Vm· 
The analysis can also be exploited in RP and leads to the following eigen­
equation: 

(A' A)-112 (A'ZZ' A)(A' A)-1/ 2 = Xm Wm• 

Variable contributions are defined like in V-PCA, whereas, we propose to 
evaluate the SO's representation considering the whole SO and representing 
only SO's having high CRT values. In fact, in V-PCA vertices contributions 
are individually evaluated and the MCAR's are built only with vertices having 
high contribution. The proposed contribution measure CRT w; is obtained by: 

p p 

CRTw;,m = L L (zq,jVj,m) 2 / L L:z!,j (5) 

The graphical interpretation of SO's - as in V-PCA - is made by means 
of maximum covering area rectangles. Nevertheless, in our approach the 
adopted constraints on the vertices make the analysis consistent with the 
aim of PCA on SO's and offer a more compact SO's representation. 

The previous treatment of interval data remains in the context of the so 
called multiple PCA (Escofier and Pages, 1988) where vertices of each SO 
are referred to the general mean of each variable. 
The partial PCA can be alternatively used to better stress the differences 
among SO's. The following section shows a partial PCA in which vertices 
are centered with respect to the min value. 
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5 A PCA on the range transformation of in­
terval data 

In the classical PCA, each statistical unit is represented by a point, while 
in SDA we have to cope with SO's shape and size. In order to take into 
account these SO's structural elements, we use the range transformation 
~i = [Yi,j - Yi,;], that reveals useful information in studying SO's size and shape. 

In SDA, in fact, an important role is played by the Description Potential 
(DP) measure, which is the hypervolume of a SO, computed as the Carte­
sian product Vli X ••• X Vj X ... X v; of the p descriptors associated to the 
Symbolic Object Wi (1 ~ i ~ N) (De Carvalho, 1992; De Carvalho, 1997). 
When intervals descriptors need to be normalized, the DP of the assertion ai 
is formally defined as: 

(6) 

where Vj indicates the normalised range with respect to the 
domain 0;: f;i = ~i /0;. As the DP measure tends to zero if at least 
one Vj is close to zero, we prefer to use the following alternative measure, 
called Linear Description Potential (LDP). The LDP of ai is defined by De 
Carvalho (1997) as: 

(7) 

Let a11 ... , ai, ... , aN a set of assertion SO's described by p interval descrip­

tors, and X indicates the (n x p) matrix having as generic term Xij = VVJ. 
The method proposed in this section performs a factorial decomposition of 
the quantity :E?=l a(ai) allowing a graphical representation that- differently 
from V-PCA- shows the descriptors influence to the total LDP. 

From a geometric point of view, the range transformation implies an affine 
translation of each object, so that the vertices min = {Yi,l, ... , Yi,i, . .. , Yi,p} 

are reported in the origin (see Figure 2). - - -

It is easy to see that, given the orthogonality relationship between couples 
of sides of each hypercube, the search for a suitable sub-space in order 
to visualize the size and shape of each SO, can be simply realized on the 
n max vertices as a PCA with respect to the origin (non centered PCA): 
Yi,1 1 ••• , Yi.i• ... , Yi,p· Notice that, in this way the curse of dimensionality, 
that affects the V-PCA as well as the SO-PCA, can be eliminated. The total 
number of points is reduced from n2P to n. 

We refer to this approach as Principal Component Analysis on the Range 
Transformation (RT-PCA) of interval variables. As in this PCA the ver-
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Figure 2: SO's transposition to the origin 

tices cohesion is automatically respected, hypercubes and their images can 
be easily visualized by projecting on the factorial plans the other vertices as 
supplementary points. 

The PCA performed on the matrix X decomposes the LDP 
criterion: (tr(XX') = tr(X'X) = Ei a(ai)), according to the following eige­
nanalysis: 

(8) 

or equivalently: 

XX'Um = P.mllm (9) 

being P.m the generic eigenvalue (Em Jl.m = Ei a(ai)) and Um and tm are the 
associated eigenvector in the space RP and lRn respectively. Both analyses 
are defined under the usual ortho-normality constraints. 

The SO Wi representation in the optimal sub-space m* < p can be ob­
tained by the matrix ~, whose elements are the juxtaposition of the first 
m* (1 ~ m* ~ p) axes: 

~ = [ tPt · · · tPm • • · tPm• ] (10) 

being tPm = Xtm. 

In the RT -PCA the amount of information contribution associated to each 
axis is given by the corresponding eigenvalue Jl.m· The ratio between the 
square coordinate and the eigenvector, both with respect to the axis m: 

CTA; m = t/J~,m 
' P.m 

(11} 

measures the contribution of the SO Wi to principal axis m. The relative 
contribution, indicating the quality of the representation, is measured by 
CTR;,m = Ei t/J~,m/ E; x~.i' with m = {1, ... ,m*}. 
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Having the matrix X has all positive entries, also the eigenvector u 1 and the 
factor t 1 have all positive values, so that the first axis is easily interpreted as 
SO's size factor, while the following ones discriminate SO's according to their 
shape features. Their interpretation depends on the contribution (squared 
coordinates) of the original variables to the axis: CTA;,m = tlm· 

It is worth noticing that in this PCA on the range transformation, SO's can 
be, more simply, represented by single points (Max vertices coordinates). 
Therefore, close points refer to SO's whose LDP's are mainly influenced by 
the same variables. In other words, the closeness indicates that SO's are 
characterized by hypercubes having similar shape and size. 

A direction for future research could be the definition of new SO's coding 
techniques that can directly cope with interval variables. In this framework, 
we propose to consider, for each SO, the following (p + 2)characteristics: 
[(Vl, ... , Vj, ... , v;); U; cosai], where Li is the lenght of the main diagonal 
of the i-th hypercube (i.e. the euclidean distance between the vertices yj 
and yj), ai the angle that the segment Li forms with the variable y1 . These 
variables include all the SO's characteristics but define a data structure easier 
to handle. 

6 SO-PCA: a mixed strategy 

In the above sections, we have considered two different approaches to the 
analysis of the interval data. The SO-PCA permits to evaluate SO's with 
respect to their positioning in the space of the recoded descriptors. On the 
other hand, RT-PCA processes interval data putting in evidence SO's size and 
shape. This section provides a mixed strategy combining the SO-PCA [§4) 
and the RT-PCA [§5) in order to improve SO's representation taking into 
account their differences in terms of scale and structural (size and shape) 
characteristics. 
With this aim, we consider the following three-steps approach: 

a) perform the RT-PCA of X in order to extract the principal axes that 
better represent the size and shape of SO's; 

ia) transform Z as Z = PAZ, that permits to take into account the SO 
vertices cohesion; 

iii) perform a PCA on the projections of the rows of Z on cl» by P • projec­
tion matrix (defining Po~-= cl» (cl»'cl»)-1 cl»'), in order to stress the size 
and shape information as extracted by X in [§5). 
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The approach leads to the following eigenanalysis: 

Z'P.,Z = Z' A (A' A)-112 P., (A' A)-112 A'Zsm = Pmsm, (12) 

where the diagonal matrix (A' A)-1 has been decomposed in the product 
(A' A)-112 (A' A)-112 in order to ensure the symmetry and sm and Pm are 
the generic eigenvector and the eigenvalue, respectively, calculated under the 
orthonormality constraints (1). 

The Figure 3 shows an intuitive scheme of the procedure. The upper side 
represents vertices in the lRz space, the two ellipses refer to two different 
SO's. By means of P.,, these are projected into the space lRt, where the V­
PCA is performed. The analysis final result is represented by the sub-space 
spanned by s1 and s2 where SO's are represented by means of MCAR's. 

Figure 3: Vertices projection on the structure sub-space 

The interpretation of results depends on the choice of P •· In fact, the pro­
jection matrix allows putting in evidence different aspects of the considered 
set of SO's, being P., a weighting system with respect to the SO's size and 
shape. The generic diagonal term of P., is equal to the quantity in ( 11): 

r/>i(r/>~r/>i)- 1 ¢>~ = Em rf>lm/ Jl.m· 
Aiming at showing the SO's size we shall include the first principal compo-
nent ¢1 in the definition of P.,; alternatively, the shape aspects could be put 
in evidence by dropping the first principal component. 

7 Example on a real data-set 

This section shows an example of the proposed methodology on a real data­
set. We use the Oils' data set (!chino, 1988) (reproduced in Table 1) largely 
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used in SDA applications, whose characteristics are well-known to people 
working on the topic. The data set presents eight different classes of oils 
described by five variables, we only refer to the four quantitative interval 
variables: "Specific gravity", "Freezing point", "Iodine value" and "Saponi­
fication". 

Table 1: Oils Data Matrix 

Spec Freezing Iodine Saponifi- so 
gravity point value cation LDP 

Linseed 0.93 0.94 -27 -18 170 204 118 196 1.394 
Perilla 0.93 0.94 -5 -4 192 208 188 197 .343 
Cotton 0.92 0.92 -6 -1 99 113 189 198 .289 
Sesame 0.92 0.93 -6 -4 104 116 187 193 .299 
Camellia 0.92 0.92 -21 -15 80 82 189 193 .277 
Olive 0.91 0.92 0 6 79 90 187 196 .390 
Beef 0.86 0.87 30 38 40 48 190 199 .403 
Hog 0.86 0.86 22 32 53 77 190 202 .452 

In the following, we confine the presentation to the graphical results of the 
different approaches proposed in the paper. 

In Figure 4, we show the results with respect to the first two axes (first 
plane), achieved by the V-PCA. Notice that the 88.4% of the total inertia 
is explained by the first two axes. In the figure, closeness among MCAR's 
indicates SO's mainly influenced by the same descriptors. We cannot give 
any interpretation of the similarity in size and shape among MCAR's . As 
supplementary points we have also represented the variables, even if these 
should have been represented in the space R.N. However, this simultaneous 
representation is very useful to the interpretation, provided that variables 
must be only evaluated with respect to their directions. 

u 
:{~~·~ 

1.1 

1.1 

lA 

u 

..• 
~.1 

·U 

u 

·U 

·].1 

Figure 4: V-PCA: first two axes (88.4%) 

SO's associated to MCAR's representations on the left side of the plane refer 
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to oils mainly characterized by high values of Saponification and Freezing 
point, whereas, on the opposite side we have representations of oils charac­
terized by Specific gravity and Iodine high values. 

In Figure 5, we represent the result obtained by the SO-PCA approach. The 
interpretation shall be done following the same rules of the V-PCA. In this 
case, the total inertia associated to the first plane is equal to 90. 7'1.. Compar­
ing the two outputs, we note how the vertices cohesion constraints reduce the 
MCAR's and make the SO's representation more clear. In fact, the MCAR's 
overlapping is considerably reduced, in particular with respect to the SO's in 
the axes origin. 

3.4 

2.1 

u· 

1.4 
~li~ 

0.1 

~ .. 
~.1 

-3.4 

-3.4 ·.3.1 -Z.I -Z.3 -1.9 -1.5 -U -1.1 -8.4 1.1 -1.4 1.1 1.1 1.5 1.!1 Z.l 2'.6 3.1 3.4 

Figure 5: SO-PCA: first two axes (90. 7'/,) 

It is very important to stress the attention on the interpretation of the 
MCAR's dimensions. The Linseed MCAR is represented along the direc­
tions of Iodine value and Specific gravity variables meaning that high values 
have been registered for these two variables. Nevertheless, we cannot give 
any indication on which variables have mainly influenced its size and shape. 
This could be done by looking at the results of the RT-PCA analysis showed 
in the rest of the paragraph. 

In the two above examples, we gave an interpretation with respect to MCAR's 
position but to their size and shape. Here, we start analyzing these two 
aspects by adopting the approach discussed in [§5]. 
At first we have to compute the variables domains (defined in [§5]) as the 
ranges between the lower minimum value and the higher maximum value for 
each variable. They resulted equal to: Specific gravity = 0. 08; Freezing point 
= 65. 0; Iodine value = 168. 0; Saponification = 84. 0. 
Sums of normalized ranges define the SO's LDP as showed in the last right 
column of the table 1. 

Looking at variable contributions to LDP, we have the following values: 
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Specific gravity = 0. 775; Freezing point = 0. 723; Iodine value = 0. 720; 
Saponification = 1. 619. Variables have almost the same contribution but 
Saponification that has a much larger value ( 1. 619). A large amount of this 
contribution comes from the Linseed oil. 
Figure 6 shows the descriptors positioning with respect to the first two factors. 
The total amount of LDP explained by these two factors is equal to 96. 7%. 

Figure 6: Descriptors contribution to SO's LDP (96. 7%) 

Looking at Figures 6 and 7 at the same time we note that: the biggest SO is 
Linseed Oil (Fig. 7) and its dimension is mainly determined by Saponification 
descriptors (Fig. 6) . 

.. 

Figure 7: SO's size/shape graphical representation (96. 7%) 

Dealing with very few SO's, these statements can also be easily verified by 
looking at the original data table (Table 1). Moreover, Linseed, Cotton and 
Hog oils have their LDP mainly influenced by Saponification and Iodine value, 
whereas the rest of oils have been mainly influenced by Freezing point and 
Specific gravity descriptors. 

The last approach proposed is the SO-PCA mixed strategy [§6), in which 
all the information is involved. Figure 8 shows the related representation, 
however, in this example, due to the small number of variables, we cannot 
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appreciate very relevant changes in the representation with respect to the 
V-PCA. This approach, in fact, became useful in case of many variables in­
fluencing the SO's structure. Whereas, in the considered example, structures 
are mainly influenced only by Saponification variable. 

].7 

].I 

... 
1.5 

., _,, _¥11Ut ... 
~.1 

-l.!i 

·Z.Z 

-],7 

·17 ·l.l .Z.J ·Z.!i ·Z.l ·1.1 ~I.Z ... 1 ·CU -1.1 0.4 1.1 l.Z 1.7 Z.l Z.!i Z.J l.l 1.7 

Figure 8: SO-PCA mixed strategy (95.4%) 

8 Perspective and conclusion 
In the present paper we proposed some new approaches to the PCA for 
interval data in the SDA definition. From this point of view, we represented 
the SO's on the factorial planes putting in evidence both structural aspects 
(size and shape) and their positioning in the factorial sub-space. 

The proposed methodologies represent a first step in the SDA analysis and 
should be generalized to any typology of symbolic descriptor (modal and 
multinomial variables) and, at the same time, to take into account rules and 
taxonomies that could be defined in the symbolic data structure (Bock and 
Diday, 2000). 
Another relevant aspect concerns the graphical representation that could be 
made with more efficient geometric tools than the MCAR. For example, we 
indicate convex hulls and maximum inertia diagonals (Verde and De Angelis, 
1997). 

As a final point, we indicate the axes interpretation that, in order to ensure 
the necessary consistency, should be made using the SDA language and tools. 
Also in this direction there are some contributions (Gettler-Summa, 1997) 
in literature that could be extended to the proposed factorial analyses. 
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