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Summary 

Popular smoothing techniques generally have a difficult time accommodat
ing qualitative constraints like monotonicity, convexity or boundary condi
tions on the fitted function. In this paper, we attempt to bring the problem 
of constrained spline smoothing to the foreground and describe the details 
of a constrained B-spline smoothing (COBS) algorithm that is being made 
available to S-plus users. Recent work of He & Shi (1998) considered a spe
cial case and showed that the £ 1 projection of a smooth function into the 
space of B-splines provides a monotone smoother that is flexible, efficient 
and achieves the optimal rate of convergence. Several options and general
izations are included in COBS: it can handle small or large data sets either 
with user interaction or full automation. Three examples are provided to 
show how COBS works in a variety of real-world applications. 

Keywords: Constraint; Information criterion; Knot selection; Linear pro
gram; Nonparametric regression; Regression quantile; Smoothing Spline. 
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1 Introduction 

A huge amount of research has been carried out in the past few decades on 
nonparametric function estimation based on the idea of smoothing. A num
ber of highly successful smoothing methods are available in S-plus. Among 
them are smoothing splines (Wahba 1990), kernel smoothing (Watson 1966), 
local-span supersmoother (Friedman 1984), and robust smoothing via Lowess 
(Cleveland 1979). Several other smoothers are also available from statlib. Im
portant recent references to nonparametric smoothing include Hardie (1990), 
Hastie & Tibshirani (1990), and Green & Silverman (1994). 

Data smoothing is often viewed as a graphical method to uncover the 
underlying relationship between two variables. In some applications, the 
functions being estimated are known to satisfy certain qualitative properties 
such as monotonicity. For example in variable transformations, it is often 
desirable to restrict oneself to monotone functions. Further applications can 
be found in growth charts, brain image registrations, and probability curve 
estimation. In other cases, concavity or convexity constraints may be de
sirable. Examples include cost functions and efficient production frontiers 
in economics, where the estimated functions are expected to be convex and 
concave respectively. If the response variable is a proportion, one naturally 
wants the fitted curves to fall between 0 and 1. For cyclical time series, one 
might want the fitted curve at the last period to match that at the first pe
riod of a cycle. In some cases, the function values or its derivatives at some 
specific points are known and need to be satisfied by the fitted curve. 

Any smoother that performs local averaging over the response values will 
yield a fitted function falling within the range of the response values. In some 
applications, this is highly desirable. For example, if the response variable 
is age or income, zero is the intrinsic lower bound of the estimated function. 
Conventional spline methods, however, may not preserve this positivity near 
the boundaries. The constrained B-spline smoothing method we introduce 
in this paper can easily impose such boundary conditions and help overcome 
this weakness of spline smoothers. 

We will argue that a constrained smoother that incorporates prior in
formation often improves efficiency of the estimators. Delecroix, Simioni & 
Thomas-Agnan (1995) report a simulation study on this. In the case of 
monotone smoothing, several methods have been proposed in the literature; 
see Hardie (1990, Chapter 8) , Hawkins (1994) and Ramsay (1988) for fur
ther details. Wright & Wegman (1980) contain a general treatment using 
splines that includes monotonicity and convexity constraints in least squares 
regression. Nevertheless, few constrained smoothing algorithms are publi
cally available as we write due to the difficulty of incorporating restrictions 
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like those mentioned above. 
COBS (COnstrained B-Splines) is a very attractive constrained smoothing 

method with some unique advantages. Extending the earlier work of Ramsay 
(1988) and Koenker, Ng & Portnoy (1994), He & Shi (1998) considered a 
special case of monotone smoothing and laid down the foundation for COBS. 
The present paper focuses on the algorithmic aspect of COBS and contains 
a wide variety of options for flexible application. 

We begin with a general framework of L1 minimization for function es
timation. This includes two general classes of spline smoothers: smoothing 
splines (with a roughness penalty) and regression splines (without roughness 
penalty). Two options are provided in COBS to determine the smoothing 
parameter of the smoothing splines as well as the knot formation of the re
gression splines. The first option allows user interaction, which allows users 
formulate their own choice of the smoothing parameter or knot mesh. Since 
it takes very little time for COBS to return the fitted curve for each set of 
chosen parameters, visual comparison and judgment can be performed inter
actively. The second option provides full automation. Users are not required 
to supply any smoothing parameter; COBS makes adaptive choices using 
information criteria similar to those in model selection. 

The L1 framework leads to linear programming (LP) formulations of the 
computational problems and allows efficient computation via standard linear 
programming techniques. The LP form makes it possible to naturally incor
porate all the constraints discussed above. As far as we know, COBS is the 
only smoothing algorithm that can do this without substantial increase in 
computational costs. 

Robust smoothing via L1 methods was also investigated in Wang & Scott 
(1994). COBS facilitates more than just robust function estimation via condi
tional median estimation of the response given the covariate. It also provides 
computation of other conditional quantile functions which have gradually 
become an integral part of data analysis. See Koenker & Bassett (1978) for 
their pioneering work on regression quantiles. 

In Section 2, we introduce linear and quadratic splines and describe how 
the L1 minimization problem can be solved as a linear program. Section 3 
discusses how COBS chooses the smoothing parameter or the knot mesh if 
full automation is desired. Section 4 describes some additional features of 
COBS and finally three illustrative examples are provided in Section 5. The 
underlying Fortran program and S-plus interface for COBS are available from 
www.econ.uiuc.edu/-ng or www.stat.uiuc.edu/-hefsoftware.html. The S
plus code used for the examples in this paper are also available. 
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2 Constrained Smoothing 

For a pair of bivariate random variables (X, Y), the Tth conditional quantile 
function, Ur (x), of Y given X= x is a function of x such that 

P(Y~gr(x)IX=x)=T. 

The conditional median function ( T = .5) provides a measure of central ten
dency and can be used to describe the overall relationship between X and 
Y. When a more complete picture of the relationship is needed, the whole 
spectrum of conditional quantile functions can be examined. 

Given n pairs of realizations {(x;, yi)}7=1 with a = Xo < x1 < · · · < 
Xn < Xn+l = b, some smooth function g and the check function Pr(u) = 
2 [T- I(u < 0)] u = [1 + (2T- 1) sgn (u)Jiul with I(·) being the indicator 
function, we define "fidelity" to the data as 

n 

"fidelity"= I:>r(Yi- g(xi)). 
i=l 

Koenker et al. (1994) introduced the Tth Lp quantile smoothing spline, Ur,Lp (x ), 
which is the solution to 

mm "fidelity"+ A "Lp roughness" 
g 

(1) 

as a nonparametric estimator for Ur (x). The usual smoothing parameter A 
controls the trade-off between fidelity to the data and roughness of the fit. 
The smoothing spline Ur ,Lp ( x) becomes an interpolating function as A -+ 0 
and corresponds to a linear fit when A-+ oo. Two versions of the roughness 
measure, 

n-2 

"L1 roughness" = V (g') = L: Jg' (xt+1)- g' (xt) J (2) 
i=l 

and 
"Loo roughness" =II g11 lloo= maxg" (x) 

X 
(3) 

were suggested, where V(.) denotes the total variation norm. They show that 
Ur,L, (x) is a linear (second order) smoothing spline for the L1 roughness 
penalty while Ur,Loo ( x) can be approximated by a quadratic (third order) 
smoothing spline for the L00 roughness penalty. 

In this section,. we will concentrate on the special case of T = .5 so "fi
delity" is measured by the L1 norm, 

n 

"fidelity" = L: IYi- g (x;)l. 
i=l 
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The resulting linear and quadratic smoothing splines are two alternative es
timators for the conditional median function. 

It is well known that any mth order smoothing spline with simple knots 
at x1, ... , Xn has an equivalent B-spline representation on the same knot 
sequence. We, however, start with a more general knot mesh T = {ti}f:,12m 
with t1 = · · · = tm < tm+l < · · · < tN+m < tN+m+l = · · · = tN+2m· 
The motivation for this generalization, pertaining to computational efficiency 
considerations, will be explained in Section 2.1. The B-spline representation, 
s E Sm,T, of a smooth function becomes 

N+m 

s(x) = L ajBj (x) 
j=l 

where N is the number of internal knots, Bj ( x) are the normalized B-spline 
basis functions, aj are the coefficients for the B-spline basis functions and 
Sm,T is the space of polynomial splines of order m with mesh T. See De Boor 
(1978), Dierckx (1993) or Schumaker (1981) for more details. An elegant 
presentation of flexible smoothing with B-splines and penalties is provided 
by Eilers & Marx (1996). 

2.1 Smoothing B-Splines 

For the sake of expositional convenience, we assume in this subsection that 
the Xi are all distinct from one another. We use linear B-splines (m = 2) 
with N = n- 2 internal knots in the mesh T = {ti}f:,12m such that t1 = 
tm = Xl,tm+l = X2, ... ,tN+m = Xn-l,tN+m+l = tN+2m = Xn for the 
optimization problem of the linear smoothing spline in (1) and (2). Now the 
objective function can be written as 

n N+m 

L Yi- L ajBj (xi) 
i=l j=l 

N N+m N+m 

+A L L ajBj (ti+m)- L ajBj (ti+m-d 
i=l j=l j=l 

where (} = (a1, ... , aN+m). 
We can express the above in a more compact form as 

(4) 

where 
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is an ( n + N) x 1 pseudo response vector, 

is an (n + N) x (N + m) pseudo design matrix with 

B = [. B1 ~xi) 
B1 (xn) 

and 

BN+m (x1) l 
BN+m (xn) 

[ 
B~ (tm+l)- B~ (tm) 

C = B~ (tN+m) _:B~ (tN+m-d 

BN+m (tm+t)- BN+m (tm) l 
BN+m (tN+m) -:BN+m (tN+m-d 

The fitted curve, m>.,L 1 (x) = Ef=~m O.j Bj (x), is a linear (median) smoothing 
B-spline. 

The objective function (4) can be solved by any efficient linear program
ming algorithm. To see this, rewrite (4) as 

min{ l'(u + v) l;i/- XO = u- v, ( u',v') E R~n+N)}. (5) 

A modification of Bartels & Conn (1980)'s non-simplex active-set algorithm 
for the quantile smoothing splines described in Ng (1996) and Koenker & Ng 
(1996) can be easily adapted for (5). 

Similarly, using quadratic (m = 3) B-splines with N = n-2 internal knots 
in the mesh T = {ti}f::i2m such that t1 = t2 = tm = Xt, t4 = x2, ... , tN+m = 
Xn-1, tN+m+1 = tN+2m-1 = tN+2m = Xn, we rewrite (1) and (3) as 

where O' = (a1, .. . ,aN+m)· This is equivalent to 

n N+m 
BER~~~+1 ~ Yi- ~ ajBj (xi) + >.u 

•=1 J=1 

N+m 
s.t. - 0' $ L aiB'/ (ti+m-d $ 0' fori= 1, ... , N + 1 

i=1 

where 0' = ( a1, ... , aN +m, 0' ). In a more compact form, we have 

n+1 
min 2: 11/, - x,OI 

9ERN+m+l i=1 
(6) 
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s.t. .Do = [ ~ ! ] o ~ o 

where 

is an ( n + 1) pseudo response vector, 

is an (n + 1) x (N + m + 1) pseudo design matrix and 

D = [ Bf (tm) 

Bf(t~+m) 

B~+m (tm) l 
B~+m (tN+m) 

The resulting fitted curve, rh>.,Loo (z) = Ef=im O.jBj (z), is a quadratic (me
dian) smoothing B-spline. 

The LP equivalence of (6) is 

min{ 1' (u + v) IY- XO = u- v,DO ~ 0, (u', v') E R!(n+N)}. (7) 

The pseudo design matrices in (5) and (7) are both of the order 0 (n2) . 

This will impose a huge burden on computational speed and memory space for 
large data sets. But this can be alleviated by approximating the smoothing 
splines using a smaller number of internal knots N and hence reducing the 
order of the pseudo design matrices to 0 ( nN). For example, we can use 
T = {ti}~i2m with t; chosen to be the N (~ n) sample quantiles of the 
covariate z, see Section 3 for further details. 

2.2 Imposing Additional Constraints 

Due to the LP nature of the problems (5) and (7), many qualitative re
strictions on the fitted curves can be incorporated easily by the addition of 
equality or inequality constraints as described below. 

Monotonicity Constraints 
For the linear spline mL1 (z), the additional set of constraints needed is 

HO~O 

for increasing functions and 
HO~O 
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for decreasing functions where 

H= 
BN+m (tm) l 

BN+m (tN+m+l) . 

For the quadratic spline mLoo (x), the extra set of N + 2 constraints is 

[H 1]0~0 

for increasing functions and 

[H 1]0~0 

for decreasing functions. 

Convexity Constraints 
For m£ 1 (x), we need the N constraints 

co~ 0. 

For mLoo (x), the additional set of N + 1 constraints is 

[ D 0 ] 0 ~ 0. 

Concavity restriction can similarly be imposed with all the inequalities 
reversed. 

Periodicity Constraints 
A restriction of the form g (x1) = g (xn) is useful for cyclical time series 

where x1 and Xn are the first and last unique observed values in the time 
domain of a cycle, e.g. the first (x1 = 1) and last (xn = 12) months of a year 
in monthly data. This can be achieved easily with the addition of the single 
equality constraint 

[x(l)- X<n>] o = o 
where X(l) and X(n) are the first and nth row of the pseudo design matrix 
x. 

Pointwise Constraints 
Pointwise constraints on the function and/or its derivatives can be directly 

imposed on the coefficients of the spline as illustrated in Section 4.3. 

2.3 Regression B-splines 

The computational burden can be ameliorated in a different way by dropping 
the penalty term totally; i.e. setting A = 0 in (1). This gives rise to the 
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{median) regression B-splines of He & Shi (1994). Fidelity in regression B
splines is still measured the same way as in smoothing splines but roughness 
is controlled by the number of internal knots N rather than the smoothing 
parameter..\. 

The linear {median) regression B-spline, mT,Ll, will solve 

mineeRN+m 
s.t. 

L:(u+v) 
y- xo = u- v 
u E Rf., v E Rf. 

where 

is now an n x (N + m) pseudo design matrix with m = 2. The quadratic 
(median) regression B-spline, mT,Loo, solves the same minimization problem 
with m = 3. 

The quantity (N + m) plays the role of effective dimensionality of the fit. 
The two extreme fits correspond to N = 0, which yields the globally linear 
and quadratic B-spline fits form= 2 and m = 3 respectively, while N = n-2 
with ti+m-1 = Zi for i = 1, ... , n, gives the interpolating fit. 

3 Choice of Smoothing Parameter or Knots 

The calling sequence of COBS is given in the Appendix. If a fully automated 
smoother is required, we must resolve the issue of choosing either the smooth
ing parameter ..\ for the smoothing splines or the knot mesh T = {ti}~i2m 
in the case of regression B-splines. Asymptotically, the generalized cross
validation ( GCV) criterion commonly used in least squares based smoothing 
splines is equivalent to the Akaike information criterion (AIC). AIC is sim
ilar to the Schwarz information criterion (SIC) for moderate sample sizes. 
For our £1-type objective function, however, the projection based GCV can 
not be as directly motivated. 

When the argument lambda is supplied with a negative value, COBS 
computes the smoothing spline with ..\ chosen to minimize a Schwarz-type 
information criterion used in Koenker et al. (1994), and He, Ng & Portnoy 
(1998). Denote mA,Ll or mA,Loo simply as rnA, our variant of SIC is defined 
as 

SIC(..\) =log(~~ PT(Yi- mA(:z:i))) + ~PA log(n)/n 
• 

where PA is the number of interpolated data points and serves as dimensional
ity measure of the fitted model. When r = .5, we may view the above SIC as 
the Gaussian likelihood based information criterion of Schwarz (1978) where 
the root mean square error is replaced by a robust alternative using the mean 
absolute residual as a measure of fidelity to the observed data. 
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From the LP nature of the objective functions, we know there are only 
finitely many distinct rnA as A varies over (0, oo). Parametric linear pro
gramming (PLP) as described in Ng (1996) is used to obtain all the possible 
distinct rnA when A decreases to zero from a value specified in the argument 
lstart. 

The total number of distinct A values grows with the sample size n. As a 
result, PLP will rapidly become the computational bottle-neck for moderately 
large n. From our experience, rnA is not very sensitive to small perturbation 
in the A values. In typical cases, there exist several very similar solutions 
corresponding to neighboring values of A obtained from PLP. To speed things 
up, COBS allows users to skip some neighboring A values via the argument 
factor by specifying 1 <factor< 4 while performing PLP. A bigger factor 
allows more neighboring A's to be skipped. This is equivalent to using a 
coarser grid in the search for the optimal A. 

It is important to note that the first term of SIC becomes infinitely small 
if rnA interpolates every single data point. As a result, the A that minimizes 
SIC could be too small for unconstrained fits. Since SIC is meant to be 
used for model comparison with dimensionality not too close to n, COBS 
displays a warning message recommending the user examine the plot of SIC 
against A when the chosen A is near zero to see if the second minimizer of 
SIC will provide a more reasonable fit. COBS returns the necessary plotting 
information in the components $pp.lambda and $sic. 

When lambda is provided with a positive number, it will be used as the 
value of the smoothing parameter. No efforts will be made to choose the 
optimal A. This option allows the user to experiment with various fits of 
different smoothness. 

The argument knots allows users to specify the location of the knots while 
nknots is used to control the number of knots. If knots is missing, a default 
set of nknots knots will be generated by one of the two methods specified by 
the method argument. The default method is 'quantile', which uses nknots 
design points uniform in their percentile levels as the knot sequence. For 
example, ifnknots = 3, the median of the covariate will be the single internal 
knot. The quartiles will be used if nknots = 5. If method = 'uniform', 
uniformly spaced points between the smallest and largest design values will 
be used as the knot sequence. COBS will display an error message if there 
is no observation which falls between any pair of adjacent knots when the 
'uniform' option is chosen. If nknots is missing, a default value of 20 is 
assigned. 

When lambda is set to zero, COBS computes the regression B-spline esti
mate. If both knots and nknots are provided and nknots equals the length 
of knots, COBS uses the supplied knot sequence without performing the knot 
selection procedure Step 1 - 3 below. This allows users to interactively ex
periment with various fits for their specified sets of knots. Otherwise, the knot 
selection procedure described below will be performed. If knots is missing, 
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COBS will generate a default set ofnknots (default to 6 ifnknots is missing 
as well) knots by one of two methods specified through method as described 
above. If knots is not missing, COBS will use it to begin the following knot 
selection procedure: 

Step 1: Choose the initial optimal number of internal knots 
N. Compute the regression B-splines for N = 0, ... , (nknots -2) internal 
knots from knots. Denote mT,Ll or mT,Lco simply as mT' select N that 
corresponds to the smallest 

AIC(T) =log(.!_ L:PT(Yi- ffiT(zi))) + 2(N + m)fn 
n . 

I 

where Tis the knots mesh, N is the number of internal knots in T, and m is 
the order of spline used. 

Step 2: Perform stepwise knot deletion. Each of the internal knots 
is deleted sequentially to obtain a sequence of AIC values. The one whose 
deletion leads to the largest reduction in AIC is then slated for actual dele
tion. This process is repeated until no more existing knot can be removed. 

Step 3: Perform stepwise knot addition. When the argument 
knots. add is set to TRUE , COBS takes the mid-point between every ad
jacent pair of existing knots as potential new candidate. If inclusion of any 
such point reduces the value of AIC, we choose to add the one which provides 
the largest reduction in AIC as long as there are observations between the 
knots. This process repeats until no more knot needs to be added. 

We should note that in the current implementation, we do not cycle 
through Step 2 and 3 repeatedly. That is, we do not go back to the knot 
deletion process after knot addition. 

We use the constant 2/n in the second term of AIC as it appears to 
give the best overall results in our experiments with monotone and con
cave/convex functions. Should AIC undersmooth the data, users also have 
the option of using the SIC by substituting log(n)/n for 2/n. This is done 
in COBS via assigning ic=' sic' instead of the default setting of ic= 'aic'. 

In constrained smoothing, the number of knots needed is typically small. 
The initial number of knots chosen by AIC in Step 1 is often less than 
4 when the sample size is not too large. However, if the chosen number 
is N = 4, we may want to investigate estimated fits with larger N values. 
COBS will remind the user of this through a warning message at the end of 
the computation. The user can then re-run the program with a larger value 
ofnknots ifknots is missing, or supply COBS with a longer knots sequence. 

4 Other Features of COBS 

In this section, we discuss additional issues related to the design and use of 
COBS. 
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4.1 Large Sample Problems 

The amount of time needed to obtain an estimate may disappoint even the 
most patient users when a fully automated solution is chosen for a large 
data set. COBS seeks an approximate solution to the choice of smoothing 
when the sample size n exceeds 1000. This is achieved by using a subset of 
the original data during the selection of the smoothing parameter A. The 
sub-sample size is chosen to be n. = 670 + log( n )3 rounded to the nearest 
integer. Assuming that the true function is twice differentiable, we know that 
the optimal smoothing parameter is in the order of n115 , see Portnoy (1997). 
The SIC-based choice of A from the subset can be adjusted by multiplying 
a factor of (n/n.) 115 , and then the whole data set is used in the final model 
fitting stage. As noted in the previous section, the storage space needed in 
the regression B-spline (with lambda= 0) is of the order much smaller than 
the smoothing B-spline. We, therefore, recommend using the smoothing B
spline with a small number of internal knots N or the regression B-spline 
when the sample size is big and automation is required. 

4.2 Roughness Penalty 

COBS uses the argument degree to determine the type of roughness penalty 
for the smoothing B-splines. The £1 roughness penalty is selected by setting 
degree = 1 for linear spline fits and the £ 00 roughness penalty is chosen 
with degree = 2 for quadratic splines. 

4.3 Pointwise Constraints 

Four types of pointwise constraints can be imposed in COBS via the argument 
pointwise, whose value is a three-column matrix with each row representing 
one of the following conditions: 

(0, x, y) 
(1,x,y) 
(-1,x,y) 
(2, x, y) 

for g(x) = y; 
for g(x) 2:: y; 
for g(x) ~ y; 
for g'(x) = y. 

Multiple constraints are allowed. COBS performs a feasibility check to ensure 
that they do not contradict one another. 

Pointwise constraints are particularly useful in imposing boundary condi
tions. For example, if the response variable is weight or salary, it is useful to 
impose the (1, 0, 0) constraint which corresponds to g(O) 2:: 0. For monotoni
cally increasing function, this will imply g(x) 2:: 0 for all x > 0. See Example 
2 for an implementation of such boundary restriction. 

The constraints we have included in COBS are certainly not meant to 
be exhaustive. Other types of pointwise restrictions could be added as need 
arises. 
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4.4 Binary Choice Model 

In a binary choice model where there are only two possible values of the 
response variable, the £1 based COBS may not be appropriate. COBS will, 
therefore, print out a warning message recommending users pre-smooth the 
data with one of the S-plus smoothers like ksmooth, loess or smooth. spline. 
The pre-smoothed fitted values can then be passed on to COBS to incorporate 
further monotonicity or pointwise constraints. 

4.5 More on Other Quantiles 

Conditional quantile functions beyond the median may provide a more com
plete picture of the relationship between the response and the covariate. 
COBS provides estimates of the Tth conditional quantile via the tau ar
gument. We should point out that AIC and SIC criteria may not perform 
as well in choosing the smoothing parameters for extreme quantiles ( T close 
to 0 or 1) as for the median. User intervention is recommended in such 
situations. 

It is also possible that the conditional quantile estimates may cross each 
other in the areas where data are sparse. One way to avoid this is to begin 
with some specific quantile of interest, say the median. Pointwise constraints 
as discussed above can then be imposed on the subsequent quantiles of inter
est to ensure that a subsequent quantile falls above or below the previously 
estimated quantile. Another practical approach is to compute the restricted 
regression quantiles proposed in He (1997). 

4.6 Speeding Up 

Recently, Portnoy & Koenker (1997) propose an improved interior point al
gorithm to solve an LP problem like ours. Their idea is to combine the recent 
advances in interior point method with a new statistical pre-processing ap
proach so the algorithm can handle massive data sets at a speed comparable 
to that of least squares computation. Although the current version of COBS 
has not adopted this new method, it does appear possible that a substantial 
improvement in computational speed can be achieved for massive data sets 
in the future. 

5 Illustrative Examples Using COBS in S-plus 

To help readers familiarize themselves with the COBS approach, we provide 
three examples in this Section using COBS in S-splus. The S-plus codes used 
to produce our results are available at the web site provided at the end of 
Section 1. In Examples 2 and 3, we find it more difficult to modify other 
smoothers to satisfy the necessary pointwise constraints. 
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Example 1: We consider the annual average global surface temperature 
measured in degrees K (Hansen & Lebedeff 1987, Hansen & Lebedeff 1988). 
The data covers the period of 1880 to 1992. The temperatures presented in 
Figure 1 are temperature deviations. 

The monotonicity constraint was used under a strong assumption of global 
warming; see Figure la. The automated AIC knot selection criterion picked 
N = 4 (the largest allowed by the default value of nknots = 6) internal 
knots for the 50th percentile curve. As discussed in Section 3, COBS printed 
a warning message so we increased nknots incrementally to 9. The final 
knots selected are located at (1880, 1908, 1936, 1964, 1978, 1992). These 
same knots were used for the lOth and 90th percentile curves. 

The extreme temperature years in the top and bottom 10% after adjusting 
for the overall trend of global warming (if so believed) can be readily identified 
in Figure la. The hotter years are 1889, 1897*, 1900, 1901, 1915*, 1926, 
1937*, 1938*, 1940, 1947*, 1953, 1980*, 1981 and 1990* with those years 
followed by an '*'fall exactly on the 90th percentile curve. The colder years 
are 1884, 1887*, 1904, 1907*, 1917, 1918, 1950*, 1956, 1964, 1965, 197h, 
1976 and 1992* again with those followed by an '*' lie exactly on the lOth 
percentile curve. After adjusting for the trend, 1987, 1988, and 1991 would 
not be considered extreme as they all fell below the top lOth percentile curve. 

If the assumption of rising temperatures is dropped, the unconstrained 
version of the curves are presented in Figure lb. They show a cooling period 
from 1936 to 1964. These unconstrained percentile curves are quite similar 
to the linear quantile smoothing splines presented in Koenker & Schorfheide 
(1994, p.401, Fig 3) except their tenth percentile is somewhat oversmooth as 
compared to ours. 

The percentiles curves provide an ordering of data adjusted for the overall 
trend. They also suggest that variability of global temperature is rather stable 
over the last century. We have not attempted to correct for serial correlations 
in the data in all the fits. Our main objective here is to demonstrate how 
COBS can be applied to real data sets. Readers are encouraged to refer 
to Koenker & Schorfheide (1994) for a more careful treatment of possible 
autocorrelation in the model. 

Example 2: The US Army Construction Engineers use flashing condition 
index (FCl) as one of several important roof condition measures. Roughly 
speaking, FCI shows what percentage of roof flashing is in good condition. We 
use records from 153 roof sections with EPDM base flashing from a number 
of U.S. Army bases and wish to study how FCI decreases over time. The 
ages of the roof sections vary between several weeks to fifteen years. Due 
to skewness of the FCI distribution, it is especially helpful in this case to 
compute the percentile curves instead of the mean and variance functions. 
The three quartiles corresponding to r = 0.25, 0.50 and 0.75 are computed 
for this example. 
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In addition to the obvious constraint of monotonicity, the engineers sug
gested that the majority of the new roofs at age 0 should have FCI at 100. 
Hence, we need a boundary constraint of g(O) = 100 for these quartiles. We 
choose to use the quadratic smoothing B-splines in COBS,. To ensure that 
enough observations fall between adjacent knots, we use ten distinct ages 
(equally spaced in their percentile ranks) as knots. 

For each T, we obtained a plot of SIC versus the values of A. Examination 
of these plots proved to be useful. The SIC plot for T = 0.5 is presented 
in Figure 2a. The global minimum occurs at A = 21.58. The corresponding 
median smoothing spline is given in Figure 2b. In this example, a range of 
larger A's yield similar SIC values and similar fitted curves mainly due to 
the simplicity in data structure when the monotonicity constraint is present. 
The second minimum of SIC occurs at 239.24, and the corresponding median 
smoothing spline is also plotted in Figure 2b as the dotted curve. When a 
large value of A is an acceptable choice, it suggests that the resulting fit is 
close to globally quadratic and the roughness penalty is near zero. 

We can see from Figure 2b that the top 25% of the EPDM roofs still 
remain in perfect condition after fifteen years. In fact, about 38% (58/153) 
of the responses stay at 100 for the 15-year period. Even the lower quartile 
shows a very slow rate of degradation after the eighth year. 

Example 3: This example serves to illustrate the use of 'periodic' 
constraint for cyclical data. The response variable is the daily average wind 
speed (in knots) recorded at the synoptic meteorological station in Dublin, 
Ireland from 1961 to 1978. There are altogether 6574 observations. The data 
was analyzed in detail in Haslett & Raftery (1989) and can be downloaded 
from statlib. Here, we use the quadratic smoothing B-spline with thirteen 
knots which correspond roughly to the beginning of all the twelve months of 
a year. The data is plotted in Figure 3a. For r = .5, the initial A chosen 
by SIC reached the largest possible value allowed by the default setting 
of lstart. As recommended in the warning message of COBS, we re-fit 
the model to allow the parametric linear programming in A to begin from a 
larger A value. The final fits forT= .1, .5, and .9 using A values automatically 
selected from the SIC criterion are given in Figure 3b. Notice that for each 
of the quantiles, we have required that the fitted values at the beginning and 
the end of a year are the same. However, we have not attempted to correct 
for any possible correlation in the data. Another point worth noting is that 
the upper percentile curve looks rather rough. Further research is needed to 
determine how the SIC criterion should be adjusted when Tis close to 0 or 
1. 
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Appendix 

Following is the calling sequence for COBS. 

cobs(x, y, constraint, z, minz = knots[1], maxz = knots[nknots], nz = 100, 
knots, nknots, method= 'quantile', degree= 2, tau= 0.5, lambda= 0, ic = 
'aic', knots.add = F, pointwise, print.warn = T, print.mesg= T, coef= rep(O, 
nvar), w = rep(1, n), maxiter = 20*n, lstart = log( .Machine$single.xmax) 
** 2, factor= 1) 

ARGUMENTS 

x vector of covariate. 

y vector of response variable. It must have the same length (n) as x. 

constraint 'increase', 'decrease', 'convex', 'concave', 'periodic' or 'none'. 

OPTIONAL ARGUMENTS 

z vector of grid points at which the fitted values are evaluated; default to an 
equally spaced grid with nz grid points between minz and maxz. If 
the fitted values at x are desired, use z = unique(x). 

minz needed if z is not given; default to min(x) or the first knot if knots 
are given. 

maxz needed if z is not given; default to max(x) or the last knot if knots 
are given. 

nz number of grid points in z if z is not given; default to 100. 

knots vector of locations of the knot mesh; if missing, nknots number of 
knots will be created using the specified method and automatic knot 
selection will be carried out for regression B-spline (lambda= 0); if not 
missing and length(knots) == nknots, the provided knot mesh will 
be used in the fit and no automatic knot selection will be performed; 
otherwise, automatic knots selection will be performed on the provided 
knots. 

nknots maximum number of knots; default to 6 for regression B-spline, 20 
for smoothing B-spline. 

method method used to generate nknots number of knots when knots is 
not provided; 'quantile' (equally spaced in percentile levels) or 'uniform' 
(equally spaced in covariate); default to 'quantile'. 

degree degree of the splines; 1 for linear spline and 2 for quadratic spline; 
default to 2. 
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tau desired quantile level; default to 0.5 (median). 

lambda penalty parameter; lambda== 0: no penalty (regression B-spline); 
lambda>O: smoothing B-spline with the given lambda; lambda<O: 
smoothing B-spline with lambda chosen by a Schwarz-type information 
criterion. 

ic information criterion used in knot deletion and addition for regression B
spline method when lambda== 0; 'aic' (Akaike-type) or 'sic' (Schwarz
type); default to 'aic'. 

knots.add logical; an additional step of stepwise knot addition will be per-
formed for regression B-spline if T; the default is F. · 

pointwise an optional three-column matrix with each row specifying one of 
the following constraints: (l,xi,yi) - fitted value at xi will be >= yi; 
(-l,xi,yi)- fitted value at xi will be<= yi; (O,xi,yi)- fitted value at xi 
will be = yi; (2,xi,yi) - derivative of the fitted function at xi will be yi. 

print. warn logical flag for printing of warning messages; default toT; prob
ably needs to be set to F if performing monte carlo simulation. 

print.mesg logical flag for printing of intermediate messages; default to T; 
probably needs to be set to F if performing monte carlo simulation. 

coef initial guess of the B-spline coefficients; default to a vector of zeros. 

w vector of weights the same length as x (y) assigned to both x and y; 
default to uniform weights adding up to one; using normalized weights 
that add up to one will speed up computation. 

maxiter upper bound of the number of iteration; default to 20*n. 

lstart starting value for lambda when performing parametric programming 
in lambda if lambda<O; default to log( .Machine$single.xmax)**2. 

factor determines how big a step to the next smaller lambda should be while 
performing parametric linear programming in lambda; default to one 
will give all unique lambda's; use of bigger factor (> 1& < 4) will save 
time for big problems. 

VALUE 

coef B-spline coefficients. 

fit fitted value at z. 

resid vector of residuals from the fit. 

z as in input. 
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knots the final set of knots used in the computation. 

ifi exit code: 1 - ok; 2 - problem is infeasible, check specification of the 
pointwise argument; 3 - maxiter is reached before finding a solu
tion, either increase maxiter and restart the program with coef and 
knots set to the value upon previous exit or use a smaller lstart value 
when lambda<O or use a smaller lambda value when lambda>O; 4 
- program aborted, numerical difficulties due to ill-conditioning. 

icyc number of cycles taken to achieve convergence. 

k the effective dimensionality of the final fit. 

lambda the penalty parameter used in the final fit. 

pp.lambda vector of all unique lambda's obtained from parametric pro
gramming when lambda< 0 on input. 

sic vector of Schwarz information criteria evaluated at pp.lambda. 
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Figure la. Monotonically increasing linear regression B-splines for global 
temperature at T = .1, .5, .9. 

~ 

~ 
0 

~ 

~ 

i ~ 
~ ~ 

~ 
c;> 

; 
1aM 

1880 11100 11120 1940 19110 1880 

v .... 

Figure lb. Unconstrained linear regression B-splines for global temperature 
at r = .1, .5, .9. 
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Figure 2a. SIC plot for the monotonically decreasing quadratic median 
smoothing B-spline for FCI degradation. A good choice of A is at the global 
minimizer 21.57 but a range oflarger values may also be considered in this ex
ample. The second smallest SIC value occurs at A = 239.24 whose quadratic 
median smoothing B-spline fit is presented as the dotted curve in Figure 2b. 
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Figure 2b. Monotonically decreasing quadratic smoothing B-splines for FCI 
degradation at T = .25, .5, (.5), and .75 with A = 57.62, 21.57, (239.24) and 
108 respectively. A single point in the plot may represent multiple observa
tions at the same location. 
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Figure 3a. Scatter plot of wind speed (in knots) in Dublin, Ireland. 
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Figure 3b. The 'periodic' constrained quadratic smoothing B-spline fits for 
T = .1, .5, and .9. The smoothing parameters are A = 26782, 136589, and 
10367 respectively. The dotted lines indicate the location of the knots, which 
are the first days of each month. 
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