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Summary 

Skewed binary classification concerns the assignment of a new unknown ob­
ject to one of two populations, 0 or 1, on the basis of a q-dimensional vector 
x = (x1 , ••• xq), where one of the populations, for example population 0, is 
the prevalent class. Assignment rules are developed from learning samples 
of known objects, that is, objects known to come from each of the two 
populations. Since population 1 is the rare class, overfitting and general­
ization problems arise easily for many classification models. We propose 
an effective solution by assigning more weights to class 1. The idea is to 
produce noisy replicates of the rare cases while keeping the dominant class 0 
cases unchanged. The classification models considered are: nearest neighbor 
method, neural networks, classification trees, and quadratic discriminant. 
Noisy replication of the rare cases was applied to three real world and simu­
lated data sets. Encouraging results were obtained for all the classification 
models considered. 

Keywords: ROC curve 

1 Introduction 

Regularization is a technique of avoiding overfitting to the training data 
and improving generalization to the test data by penalizing the fit via some 
"smoothness" criteria. Raviv & Intrator (1995) and Sietsma & Dow (1991) 
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showed that adding some noise during neural network training helps gen­
eralization. Although it has been mentioned by Ripley (1996), the idea of 
regularization by adding noise is new in the Statistics community and no se­
rious work has been done in this direction. The success of such regularization 
in neural networks suggests that it is a technique also worth investigating in 
Statistics, especially in the context of skewed binary classification. 

Skewed binary classification concerns the assignment of a new unknown 
object to one of two populations, 0 or 1, on the basis of a q-dimensional 
explanatory vector x = (x17 ... xq}, where one of the populations, population 
0, is the prevalent class. Assignment rules are developed from learning a 
training data set T = {(x;, y;), i = 1, · · ·, n }, where y = 0 if the object comes 
from class 0 and y = 1 if it comes from class 1. 

Let class 0 be the numerous class and class 1 be the rare class. Overfitting 
and generalization problems arise easily in such skewed binary classification 
because of the sparseness of (xi, 1) in the training data. A natural way to 
overcome the problem of sparseness is to increase the occurrence of the rare 
cases by noisy replication of (xi, 1) in the training data set many times, say k 
times, to become (xi+ .6xu, 1), ···,(Xi+ .6x;~:, 1), where .6X;;,j = 1, · · · ,k 
are small random perturbations at Xi· The numerous cases (Xi, 0) remain 
unchanged. 

In this paper we will study the effect of replicating and adding noise to the 
rare cases during training in skewed binary classification for several classifi­
cation models. The models considered are nearest neighbor method, neural 
networks, classification trees, and quadratic discriminant. We will briefly re­
view the classification methods in section 2 along with an assessment of their 
predictive performance. In section 3 we implement the idea of replicating and 
adding noise during training in an algorithm and perform computer simula­
tion experiments on three data sets which are available from the Information 
and Computer Science repository of the University of California at Irvine 
(ftp ics.uci.edu /pub/machine-learning-databases). Promising and encourag­
ing results are obtained and are summarized in section 4. The reason why 
noisy replication works is explained in section 5 along with some concluding 
remarks for further research. 

2 Methods 

There are many ways to develop the assignment rules. In the case of binary 
classification, some methods assign y = 0 or 1 for a given x, while others 
could be viewed as methods to estimate the conditional probability f(x) = 
P(y = 1lx) = 1-P(y = Olx), where xis any point in the q-dimensional space 
of all possible explanatory vectors. The classification models considered in 
this paper are nearest neighbor method, neural networks, classification trees, 
and quadratic discriminant. The first model classifies y as either 0 or 1, and 
the other three estimate the conditional probability P(y = 1lx). We give 



279 

a brief outline for each model; a detailed description can be found in many 
books, for example, Ripley (1996). 

2.1 Models 

2.1.1 k nearest neighbor (k-nn) 

For a given future x, the k nearest (in terms of the scaled Euclidean distance) 
training observations are found, and 11 is classified as either 0 or 1 by major­
ity vote, with ties broken at random, from these known k neighbors in the 
training set. We selected k = 1, a standard choice. 

2.1.2 Neural networks (NN) 

There are many kinds of neural networks (see Hertz et al. 1991 for an in­
troduction) but we restrict ourselves to only supervised feedforward single 
hidden layer neural networks with logistic output activation function in this 
paper. The estimate of f(x) is 

II 

/(x) = t/>(wo + L;wht/>(woh + L;w;hz;)), 
h j=l 

where wo,wh,woh,Wjh are the connection weights and t/>(8) = Hex!(-ll)' 
This type of network has q units at the input layer, h hidden units at the 
middle hidden layer, and 1 output unit at the output layer. Such networks 
are very general and it has been shown by many authors that any contin­
uous function f(x) can be approximated by these networks for sufficiently 
large numbers of hidden units. Backpropagation is the most commonly used 
training algorithm to estimate the weights but it is known to converge very 
slowly. We chose to use the Splus library nnet provided by Brian Ripley 
and is available at Statlib (http:/ /lib.stat.cmu.edu/). Fundamentally, the li­
brary nnet uses the backpropagation algorithm, but it treats the training as 
an optimization problem which utilizes quasi-Newton optimizer to speed up 
the calculation. Each explanatory variable in the training and test data was 
normalized by subtracting its mean and dividing by its standard deviation. 
The training of the nets was stopped at the 500-th epoch. We chose a simple 
neural network with one single hidden layer and 2 hidden units (i.e., h = 2). 

2.1.3 Classification and Regression Trees (CART) 

A tree partitions the space of explanatory variables into locally constant 
regions, often hypercubes parallel to the variables axes. There are many 
different schemes for estimating trees. The idea is to recursively choose a 
variable or combination of variables and to split the variable's space on a 
carefully chosen value. The schemes differ in allowing multiway splits or 
restricting binary splits and in deciding how the best split is computed. Also, 
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they differ in when to stop growing the tree and how to prune it back for 
generalization. In this paper, we will use Breiman's CART (1984) which 
is best known and is commonly used in many disciplines. The conditional 
probability f(x) is estimated to be the proportion of y = 1 observations 
among those in the terminal node containing the prediction point x. 

2.1.4 Quadratic Discriminant (QD) 

This method estimates f (x) via the Bayes theorem 

P(xly = 1)P(y = 1) 
f(x) = P(y = 11x) = P(xly = O)P(y = 0) + P(xly = 1)P(y = 1)' 

where P(xly = i) is the probability density function of x for the population 
of class i, and P(y = i) is the prior unconditional probability of class i, i = 
0, 1. In Splus, these priors are not assumed to be uniform, instead, the 
class proportions for the training set are used to estimate the priors. The 
probability density function P(xly = i) for class i, i = 0 and 1, is assumed 
to be a q-variate normal with mean Jl.i and variance covariance matrix Ei. 
That is to say, 

P(xly = i) = (27r)q/;j:Eil112 exp{-~(x- Jl.i)'E;1 (x- Jl.i) }, i = 0, 1. 

The parameters are estimated from the training data T and the estimated 
normal densities are substituted into the Bayes theorem to estimate f(x). 

2.2 Assessment via ROC curve 

Since classification is a prediction problem, the performance of these assign­
ment rules are measured in terms of the error rate for future x values. Let n 
be the entire space of explanatory variables; that is, the collection of all possi­
ble future x observations. Let Ro be the decision region of future x values for 
which we classify objects as class 0, and R1 =O-Ro be the remaining region 
for which we classify objects as class 1. Let Ci,i be the misclassification cost 
of assigning an object as class j when, in fact, it is from class i. Let Pi be the 
prior probability of class i, and Ui(x) be the probability density function of 
the q-dimensional explanatory vector x for the class i. H the misclassification 
costs could be specified, then the error rate could be found by 

C0 ,1 * P(misclassify a class 0 object)+ Ct,o * P(misclassify a class 1 object) 

= Co,t *Po { Uo(x)dx + Ct,o * Pt { 91 (x)dx. 
}R1 }Ro 

This error rate depends on the specification of the misclassification costs and 
the prior probabilities which are subjective. To avoid the arbitrariness of 



281 

specifying these quantities, we will adopt the area under a Receiver Operative 
Characteristic (ROC) curve (Hanley and McNeil 1982) as the measure of 
predictive performance. 

Let us call class 0 cases as negatives and class 1 cases as positives. An 
ROC curve is a plot of the true positive rate versus the false positive rate 
of a classification rule as the cut-off probability varies from 0 to 1. H the 
classification model estimates f(x), then a case is classified as positive if the 
model outputs a /(x) value larger than or equal to the cut-off; otherwise, the 
case is classified as negative. The true positive rate is defined as the number 
of positives correctly classified divided by the total number of positives; the 
false positive rate is defined as the number of negatives incorrectly classified 
divided by the total number of negatives. An ideal model would have an 
area equal to 1.0 since the true positive rate is 1 and the false positive rate 
is 0 regardless of the cut-off value. One model is better than another with 
respect to this criterion if it has a larger ROC area. 

3 Simulations 

We applied the four classification models, namely, !-nearest neighbor, neural 
net with 2 hidden units, CART, and quadratic discriminant, to the following 
three data sets which are publicly available from the UCI repository. The 
first two are real world data sets and the third is a simulated data. 

3.1 Data sets 

The following is a brief description of the three chosen data sets: 

3.1.1 Diabetes 

This is a data set gathered among the Pima Indians by the National Institute 
of Diabetes and Digestive and Kidney Diseases. The data set consists of 
768 cases and 8 input variables which are medical information and physical 
measurements on each patient. The response variable y is one of two classes: 
tested positive for diabetes (268 cases) or negative (500 cases). Mutually 
disjoint training and validation data sets of the same size were randomly 
drawn from these 768 cases. To make the classification more skewed, we 
randomly selected 250 negatives and 15 positives in the training data set. 
The validation data set consists of the same number of positive and negative 
cases as the training data. 

3.1.2 Hypothyroid 

This is a data set with many qualitative and quantitative input variables 
and a lot of missing values. Since it does not make sense to add noise to 
qualitative variables, we just consider the five quantitative variables denoted 
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by TSH, T3, TT4, T4U, and FTI from the UCI repository. We cleaned up 
the data set by removing all missing values. After such data preprocessing, 
there are 2000 cases left consisting of 1878 class 0 (negative) cases and 122 
class 1 (positive) cases. Mutually disjoint training and validation data sets 
of the same size were randomly drawn from these 2000 cases. To make the 
classification even more skewed, we randomly selected 900 negatives and 30 
positives in the training data set. The validation data set consists of the 
same number of positive and negative cases as the training data. 

3.1.3 Waveform 

This is a simulated data set consisting of 5000 cases and 3 types of waves 0, 1, 
and 2, each having probability 1/3. It is described in Breiman et al. (1984) 
and a C subroutine for generating the data is in the UCI repository. To make 
it into a binary classification problem, we grouped the 3343 waves 0 and 1 to 
form the class 0 and the 1657 wave 2 to form the class 1. Mutually disjoint 
training and validation data sets of the same size were randomly drawn from 
these 5000 cases. To skew the classification, we randomly selected 1000 class 
0 cases and 10 class 1 cases in the training data set. The validation data set 
consists of the same number of class 0 and 1 cases as the training data. 

3.2 Simulation Algorithm 

Simulation experiments were performed based on the following algorithm to 
add noise to the data sets: 

• Initialization. Let j = 1. 

- Step 1: Training data set T; and validation data set V; are inde­
pendently drawn without replacement from the data sets. 

- Step 2: Noisy replicates of rare cases (x;, 1)s in T; are produced 
as follows: 

* Let T; = {(x;, Yi), i = 1, · · ·, n} be a training data set of size 
n = no + n1, where x is a q-dimensional vector of explanatory 
variables andy is a binary 0 and 1 (rare) response, with no 
class 0 cases and n1 class 1 cases, and no » n1. 

* Let repl and ·unoise be two fixed constants. When Yi = 1, 
replicate ( x;, y;) repl times to become the set {(X; + Eifc. y;): 
Eik "'N9 (0,u~oise:E9), k = 1, · · ·, repl}, where E 9 is the q X q 
diagonal matrix diag{s~, · · ·, s:}, with s~ the sample variance 
of the l-th explanatory variable x, over the training data set. 
Note that the set becomes repl exact-copies of (X;, y;) when 
O'noise = 0. 

* When Yi = 0, (Xi, y;) remains unchanged. 
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* The resulting training data set is denoted by TJ, with sample 
size increased from (no + nl) to (no + repl * nl). 

- Step 3: Classification models are fitted to T; and TJ, and the 
estimated models are denoted by Modelr; and Model.noisyr~, 
respectively. ' 

- Step 4: Using the validation data set Vj, the predictive accuracy 
of the two models are measured and compared in terms of the 
areas under their ROC curves. Let A; and Aj denote the respec­
tive ROC areas for Modelr;(V;) and Model.noisyr~(Vj). When 
the quantity ~A; = Aj - A; is positive, the regularized model 
Model.noisy predicts better than the unregularized model. When 
the quantity ~A; is negative, adding noisy replicates does not help 
in prediction. 

• Let nsim represents the number of times we repeat the experiment. If 
j < nsim, then j = j + 1, and go to Step 1. Otherwise, stop and report 
{(A;,Aj),j = 1,···,nsim}. 

There are three metaparameters in the above algorithm: repl, the num­
ber of noisy replicates generated for a given rare case; O'noise, the standard 
deviation of the noise; and nsim, the number of pairs of training data set and 
validation data set generated in the simulation. We chose repl = 2 which cor­
responds to the smallest non-trivial number of replication and nsim = 500. 
For the more critical metaparameter O'noise, we did an empirical study for 
various O'noise values started from zero and increased in steps of .5 until the 
performance deteriorated. Let #Jil.A,u,.,.,.. denote the true unknown mean 
change in ROC area when noisy replicates of magnitude O'noise are added 
during training. We computed a 95% confidence interval for Jl.ll.A,u,.,.;.. via 
the formula 

where 

T7 U/l.A 
U.l:l.±l.96• .~' 

vnssm 

""nsim AA ""nsim A* 
Kif = L....j=l u i = L....j=l i -A; 

nsim nsim 
and U/l.A is the standard deviation of {~;,j = 1, · · · ,nsim}. 

If there is no difference in adding noisy replicates during training, then 
#Jil.A,u,.,., •• = 0 and the constructed interval should contain the point 0. If the 
addition of noisy replicates during training improves the generalization, then 
Jl.ll.A,u,.,., •• > 0 and the constructed confidence interval should not contain 0 
and the entire interval should be positive, and vice versa. The confidence 
intervals were plotted in Figures 1, 2, and 3, which correspond to the three 
data sets Diabetes, Hypothyroid, and Waveform, respectively. The four clas­
sification models were fitted to all three data sets. 
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Figure 1: 95% Confidence Intervals of the ROC area difference for 
the Diabetes Data as Unoue is increased from 0 in steps of 0.5 

It is clear from the figures that some confidence intervals lie above the 
x-axis, indicating that the addition of noisy replicates during training could 
produce better predictions for some Unoise values. 

4 Results 

The optimal Unoise was selected when the performance, with respect to the 
ROC area, of the noisy model just started to go downhill. Let /-&ROC,original 

and J.&ROC,opt-noise denote the true mean ROC area for the original (no noisy 
replicates) model and the optimal-noise model, respectively. Table 1 sum­
marizes the results and the meaning of the columns' label are as follows: 
Data set, the name of the data set; Model, the classification model; Opt. 
Unoise• the optimal noise standard deviation; Mean ROC area: Orig. tiS. 

Opt., the average of the 500 ROC areas for the original model versus the 
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1-nearest neighbor Neural net 

~ 
I a! T 

C> 
T ., 

I _L 

I ~-------:I:-------- ~ _L 

m 
a! I 

'r T 
c;> . 

~ I ~ 
C! ::1=..----------- -=..1::._-- --=r C> 

~ ::I Ci ...l 
c;> 

0.0 0.!5 1.0 1.!5 2.0 0.0 0.!5 1.0 1.!5 2.0 

algma_nol- algma_nolae 

CART Quadratic Discriminant 

~ C! -------------C> 

::: 
. 

- -,. 

s S! I ~ ~-------L---------

i 
c;> 

T 

I I § _L c;> 

~ ~ --,.. ~ : 
C> 

.J. ....L Ci 
c;> 

o.o 0.!5 1.0 1.!5 2.0 0.0 0.!5 1.0 1.!5 2.0 

algma_nol- algma_nolae 

Figure 2: 95% Confidence Intervals of the ROC area difference for 
the Hypothyroid Data as Unoise is increased from 0 in steps of 0.5 

optimal-noise model (the symbol'<' indicate the quantity on the left is sig­
nificantly less than the quantity on the right, the symbol ·~· indicate the two 
quantities are not significantly different); p-value, the two-tailed p-value for 
testing Ho : J.I.ROO,original = J.I.ROO,opt-noise against Ha : J.I.ROO,original =I 
P.ROO,opt-noise using a paired-sample t test; and % change, the percentage 
increase or decrease in mean ROC area of the optimal-noise model relative to 
the mean ROC area of the original model (i.e., % change = {mean ROC area 
of the optimal-noise model- mean ROC area of the original model}/mean 
ROC area of the original model). Boxplots of the 500 ROC areas obtained 
from the original and optimal-noise models fitted to the three data sets are 
presented in Figures 4, 5, and 6. 

From Table 1 and Figures 4 to 6, we observe the following: 
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Figure 3: 95% Confidence Intervals of the ROC area difference for 
the Waveform Data as Unoise is increased from 0 in steps of 0.5 

• !-nearest neighbor: All three data sets had significant increase in the 
mean ROC area. The largest percentage increase in mean ROC area 
was 4.1%. 

• Neural Nets: All three data sets had significant increase in the mean 
ROC area. The largest percentage increase in mean ROC area was 
4.8%. 

• CART: All three data sets had no significant change in the mean ROC 
area. This could be improved as explained in section 5. 

• Quadratic discriminant: All three data sets had significant increase in 
the mean ROC area. The largest percentage increase in mean ROC 
area was 15%. 
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Table 1: Summary of the 500 ROC areas for the original and 
optimal-noise models. 

Data Model Opt. Mean ROC area: p-value % 
set Unoise Orig. vs. Opt. change 

Diabetes 1-nn 0.5 .544 < .556 < .0001 2.2% 
NN 0.5 .670 < .692 < .0001 3.3% 

CART 0.5 .621 ~ .623 .6600 0.3% 
QD 1.0 .629 < .667 < .0001 6.0% 

Hypo- 1-nn 0.5 .712 < .741 < .0001 4.1~ 

thyroid NN 0.5 .876 < .889 < .0001 2.2% 
CART 0.5 .873 ~ .870 .1100 -0.3% 

QD 0.5 .898 < .902 < .0001 0.5% 
Wave- 1-nn 0.0 .518 < .519 .0074 0.2~ 

form NN 0.5 .645 < .676 < .0001 4.8% 
CART 0.5 .552 ~ .549 .3200 -0.5% 

QD 1.0 .585 < .673 < .0001 15.0% 

5 Discussion 

The improvement in prediction by adding noisy replicates during training 
could be explained by the trade off between bias and variance of the estimates. 
It is clear that adding noise will increase the bias of the estimator. If the 
decrease in variance is even larger, then this will result in a better prediction. 

This is clearly the case for the nearest neighbor method and the improve­
ment is encouraging for the three data sets. 

It is known that neural networks and CART have a tendency to easily 
overfit the training data. Regularization by adding noisy replicates to neural 
network inputs does indeed help to improve prediction as expected. The re­
sult for CART does not turn out to be as good as we expected. However, it 
does not surprise us because the structure of CART is very sensitive to noise 
perturbation. In other words, a slight change in x will lead to a drastically 
different tree. We have started a new research direction in which we are 
averaging multiple copies of noise-generated trees. We are anticipating that 
such regularized CART will show a more positive improvement because aver­
aging different trees will significantly decrease the variance of the estimates 
(Breiman 1996). 

The improvement to quadratic discriminant analysis obtained by adding 
noisy replicates is very encouraging. The increase in ROC area was very sig­
nificant. Quadratic discriminant analysis is being commonly used in many 
disciplines, especially in the medical community where it is used to discrimi­
nate and diagnose various diseases. In many cases, the situation is a skewed 
binary classification. 
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1 -nearest neighbor Neural net 
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1 -nearest neighbor Neural net 
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Many forms of regularization exist for different models and they are 
model-specific. For example, neural networks could be regularized via weight 
decay (Venables and Ripley 1994), and CART could be regularized through 
pruning (Venables and Ripley 1994) according to some criteria, say, AIC, and 
many regularization techniques exist for quadratic discriminant (Mkhadri et 
al. 1997). Adding noisy replicates in skewed binary classification offers a 
simple, elegant, and unified treatment for regularization which is model-free. 

To conclude, we found that adding noisy replicates to skewed binary clas­
sification is a promising and natural form of regularization. It is our hope 
that the success demonstrated for the models studied in this paper will pro­
vide a basis for further research. One potentially fruitful area worth inves­
tigation is the averaging of different versions of the noise-generated models 
M odel.noisYT• for a given training data set T. Furthermore, we assumed 
equal noise variance for the two classes and the variance covariance matrix of 
the noise Eq is diagonal; room for improvement exists if the variance equal­
ity assumption is relaxed and Eq is carefully chosen so that the correlations 
between the explanatory variables are taken into account. It might also be 
interesting to try some other nonparametric flexible models such as general 
additive model GAM and projection pursuit regression. 
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