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Summary 

Regression spline smoothing involves modelling a regression function as a 
piecewise polynomial with a high number of pieces relative to the sample 
size. Because the number of possible models is so large, efficient strategies 
for choosing among them are required. In this paper we review approaches 
to this problem and compare them through a simulation study. For simplic
ity and conciseness we restrict attention to the univariate smoothing setting 
with Gaussian noise and the truncated polynomial regression spline basis. 
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1 Introduction 

The use of piecewise polynomials to model regression functions has a long 
history. See, for example, Hudson (1966), Fuller (1969), Studden and Van Ar
man (1969), Gallant and Fuller (1973), Wold (1971, 1974) and Smith (1979). 
However, their use in nonparametric regression, or smoothing, is relatively 
young. In this context the number of polynomial pieces and the locations of 
the join points, or knots, are arbitrary which permits a very large class of pos
sible fits. The cost of this flexibility is a challenging model selection problem 
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because of the high number of candidate models. This can be appreciated 
through the consideration of Figure 1. Figure 1a is a scatterplot of simulated 
regression data while Figure 1b shows a set of possible functions of the inde
pendent variable for use as predictors. If the response variable Y is regressed 
on all of these functions of the independent variable, x, using least squares 
then the resulting estimate is the one given in Figure 1c. Mathematically, 
this corresponds to fitting the model 

where u+ = ma.x{O, u }. This fit is somewhat unsatisfactory because of the 
high degree of variability on the right hand side. A visually more pleasing 
answer is obtained by fitting the reduced model 

E(Yi) = /3o + f31xi + f3n(xi- 0.1)+ + ... + f3Is(xi- 0.5)+ (1.1) 

which leads to the fit shown in Figure 1d. Smoother fits could be obtained 
by using higher degree, such as those of the form (xi - Kk)~ for p equal to 
2 or 3. Other bases, such as B-spline bases (e.g. de Boor 1978), can be used 
instead. In non parametric regression contexts this type of modelling is often 
called regression spline smoothing, and is also known as polynomial spline 
smoothing and B-spline smoothing. 
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Figure 1: Portrayal of regression spline smoothing. (a) fictional regression 
data set, (b) set of possible basis functions, (c) fit based on all basis functions 
(d) fit based on basis functions with knots less than or equal to 0.5. 

In the above example it is not overly difficult to arrive at a model close 
to ( 1.1) since it is clear that there is a lot more curvature on the left than on 
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the right, and therefore there should be more polynomial pieces on the left 
hand side to capture this curvature. However, the automation of this idea 
for the smoothing of general scatterplots is a non-trivial problem. The main 
underlying reason for this is that a model with K knots has 2K+2 sub-models. 
Even for moderate values of K this results in a prohibitively large number of 
models to have to fit and compare through, say, a model selection criterion 
such as AIC or GCV. This has led to the recent development of strategies 
for simplifying this model selection problem. These strategies are now quite 
numerous and varied so a review and comparison seems in order. 

The main purpose of this article is to compare current regression spline 
smoothing strategies. Theoretical comparison is very difficult for adaptive re
gression spline smoothing estimators because of their complicated implicit na
ture. Therefore, the comparison presented here will be done entirely through 
performance in a large simulation study. This necessarily entails restriction 
to a limited class of settings. However, we alleviate this restriction through 
the use of "families" of settings, where one factor is varied at a time. This 
format allows patterns to be more easily detected. Another shortcoming of 
a simulation-based comparison is that, for simplicity, quantification of the 
performance of a smoother is usually reduced to a single number correspond
ing to a conveniently chosen measure of error. ·while this tells us something 
about the comparative statistical performance of a set of smoothers, it ig
nores other attributes of a smoother such as simplicity and interpretability. 
Nevertheless, comparison of the statistical accuracies of regression smoothers 
is still of considerable interest. For conciseness, this study is restricted to the 
single predictor setting with independent Gaussian noise. This is only one 
special case of the very high number of settings to which regression spline 
smoothers have been extended. However, this setting is also the most fun
damental, so a particular algorithm should perform well here to be a serious 
contender as a general principle for extension to other settings. Finally, for 
simplicity, we will concentrate on the truncated polynomial basis. It is ex
pected that the results presented here are not very sensitive to the choice of 
basis. 

In Section 2 we review the various regression spline procedures. Section 
3 compares these procedures through a simulation study. Conclusions are 
given in Section 4. 

2 Review of Methodology 

While regression spline methodology has been extended in several directions 
(e.g. Stone, Hanson, Kooperberg and Truong 1997; Ruppert and Carroll, 
1998), in this study we will concentrate on the one-dimensional nonparamet
ric regression setting 
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where m is a univariate function, v is a positive univariate function, the xi 
are either deterministic real numbers or a random sample from a univariate 
distribution and the c; are independent N(O, 1) random variables. 

In this normal errors context, a useful class of regression spline estimates 
of m(x) is those of the form: 

P K 

m(x) = L: bjXj + L bjk(X- ll:k)~ (2.1) 
j=O k=l 

Clearly m(x) is a linear combination of the set of functions, 

(2.2) 

known as the truncated power basis of degree p. The ll:k lie within the range 
of the x; and are called knots because they correspond to the join points 
of the piecewise polynomials that result from a linear combination of this 
basis. While this basis has the virtue of conceptual simplicity it does have 
shortcomings from a numerical viewpoint because of its near-multicollinear 
nature. For this reason, other bases, such as those based on B-splines (see 
e.g. de Boor 1978, Eilers and Marx 1996) and natural splines (see e.g. Green 
and Silverman 1994, pp.12-13), are often recommended instead. But because 
of its intuitiveness we will explain the methodology in terms of the truncated 
power basis. 

In recent years three main types of approaches to fitting nonparametric 
regression splines have emerged: (1) stepwise selection, (2) Bayesian selec
tion and (3) penalised shrinkage. The next three subsections describe these 
general approaches. 

2.1 Stepwise selection 

This idea appears to have been first proposed by Smith (1982) and has under
gone refinement by C.J. Stone and coauthors since then. A comprehensive 
summary of their work can be found in Stone, Hanson, Kooperberg and 
Truong (1997). Their algorithm POLYMARS ha.S one-dimensional nonpara
metric regression as a special case. It takes the following form: 

1. Start with a subset of the full basis, called the minimal basis. Set this 
to be the current basis. 

2. Stepwise addition 

Repeat until the current basis becomes the full basis: 

(a) Add to the current basis the basis function having the largest 
absolute Rao statistic among all those not in the current basis. 

(b) Fit the model with the new basis using least squares and 
record the GCV value of the fit. 
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3. Stepwise deletion 

Repeat until the current basis becomes the minimal basis: 

(a) Delete from the current basis the basis function having the 
smallest absolute Wald statistic among all those in the current 
basis. 

(b) Fit the model with the new basis using least squares and 
record the GCV value of the fit. 

The final estimate is that having the lowest GCV out of all models fit in 
the above process. 

It remains to define the Rao and Wald statistics and the GCV criterion. It 
is easiest to do this in a general multiple linear regression context. Consider 
the model 

y = {31 X1 + · · · + f3rXr + e 

where Y is then x 1 vector of responses, each Xj is ann x 1 vector containing 
values of the jth predictor variable (which could be an intercept) and the 
n x 1 vector e contains independent N(O, a 2

) noise. Suppose that the current 
model is 

Y = Xcf3c +e 

where the columns of Xc are a subset of the xi. Then the Rao statistic 
corresponding to an Xk that is not in Xc is 

Rk = xf(I- Hc)Y 

J xr (I - Hc)Xk 

where He = Xc(X'[ Xc)- 1 X'[ is the hat matrix associated with the current 
model. This criterion can be shown to correspond to a score-based hypothesis 
test and has the computational advantage that it does not require the model 
corresponding to Xk to be fitted. Such statistics are also used to construct 
added variable plots in regression diagnostics (see e.g. Weisberg, 1985). 

The Wald statistic for deletion of the jth column of Xc is 

W· _ {(X'[ Xc)-1 XJY}i 
J - j{(X[ Xc)-1 lii 

and is equivalent to the t-statistic attached to the least squares estimate of 
/3j-

Note that the variable selection nature of this method does not apply 
to the B-spline bases. If B-spline bases are used then deletion of a variable 
requires a new Xc matrix to be computed, corresponding to the vector space 
induced by the deleted knot. 

The GCV criterion used by Stone et al. (1997) is of the form 

GCV = n-1RSS/ {1- a(J -1)/n}2 (2.3) 
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where RSS is the residual sum of squares and J is the number of terms in 
the model and a is a parameter which these authors "typically set equal to 
2.5". 

He and Ng (1996) develop a stepwise knot selection algorithm in the 
quantile regression context. This can be viewed as a variation of the algorithm 
of Stone et al. (1997). 

2.2 Bayesian selection 

Smith and Kahn (1996) develop a Bayesian variable selection approach to 
choosing the regression spline knots. Once again, it is easiest to describe 
their approach in the general linear multiple regression context. Consider 
the model 

Y=X,B+c-

where Y is an n x 1 vector of observations, X is an n x r design matrix, .B 
is an r x 1 vector of coefficients and c....., N(O, a 2 J). Define 'Y to be the r x 1 
vector of indicator variables with ith entry given by 

{ 
0, if .Bi = 0 

'Yi = 1, if .Bi =1- 0 

For a given"(, ,81 is defined to be the vector of non-zero .Bi's and X 1 is the 
matrix containing only those columns of X with a corresponding 'Yi equal 
to one. In their empirical work, Smith and Kohn (1996) place the following 
priors 

.B1 I"(,a2
....., N(O,ca2 (X~X1)- 1 ), p(a2 i'Y) ex 1/a2 and p('Y) = 2-r 

on the parameters and then show that the posterior distribution of 'Y given 
the data is 

With respect to squared error loss, the Bayes estimate of m is the posterior 
mean 

ffiBayea XE(.BIY) = 2::: X 1 E(,81 i"f, Y)p('YIY) 
IE{O,lV 

2::: XI(X~ X/)-1 X~Yp('YIY). 
c+1 

1E{0,1}" 

c 

However, this estimator is impractical for general use because it involves 
computation of 2r terms. Smith and Kohn (1996) propose the approximation 

G 

mGibb. = c: 
1 
c-

1 2::: X1 1o1 (X~91 X1[oJ)- 1 x~91 y 
g=1 
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where 'Y[l], ... , 'Y[GJ are a sample from p('YjY) obtained using Gibbs sampling 
(Gelfand and Smith, 1990). The algorithm for accomplishing this task is: 

1. Start with an initial value 'Y[oJ. 

2. Warm-up period 

(a) Set yunent = 'Y(OJ. 

(b) Repeat W times: 

Fori= 1, ... , r: 

Determine PbiiY, rj#i""') and reassign 'Yt"""' to be a value 
randomly generated from this distribution. 

3. Generation of Gibbs iterates 

For g = 1, ... , G: 

i. For i = 1, ... , r: 

Determine p( 'Yi jY, rj#i."') and reassign 'Yr"""' to be a value 
randomly generated from this distribution. 

ii. Set 'Y[g] = '/'current. 

Smith and Kohn (1996) take 'Y(o] to be the K-tuple (1, 0, 1, 0, 1, ... ), W = 
100 and G = 1500. The parameter c controls the diffuseness of the prior 
on the coefficients. Smith and Kohn (1996) report that the estimator is not 
very sensitive to the choice of this parameter. The default value for cis 100, 
assuming that all columns of X are standardised. Smith and Kohn (1996) 
also develop an efficient procedure for determining the required conditional 
distributions. 

More recently Denison, Mallick and Smith (1998) have developed an al
ternative Bayesian approach to regression spline fitting. The main differences 
between their approach and the approach of Smith and Kohn (1996) is that 
the number of knots, and their locations, are not fixed in advance and instead 
are considered random components of a Bayesian model. The Markov Chain 
Monte Carlo (MCMC) strategy for selecting the model involves knots being 
added and deleted, and therefore a change in the dimension of the model. 
This leads to the deployment of reversible jump MCMC methods (Green, 
1995). 

2.3 Penalised shrinkage 

Consider the full truncated polynomial regression spline model 

P K 

m(x) = L,Bixi + L,Bpk(x- ~k)~. 
j=O k=l 
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The least squares criterion for fitting the full model is 

n 

S = I:{Yi -m(xi)}2
• 

i=l 

For a large number of knots this fit tends to be too noisy so a simple remedy 
is to borrow an idea from classical spline smoothing methodology (Reinsch 
1967) and replace S by a penalised criterion: 

(2.4) 

This has the effect of shrinking the coefficients towards a smoother estimator, 
the extent to which is controlled by a ~ 0. Roughness penalties based on 
other functions of the coefficients of m may also be used, but the one used 
in (2.4) leads to a particularly simple estimate. 

The resulting family of estimates of m = [m(x1 ), ... ,m(xn)JT can be 
easily shown to be 

where X is the design matrix for the full basis and D is the (K + p + 1) x 
(K + p + 1) diagonal matrix with zeroes in the first p + 1 diagonal positions 
and ones in the remaining K diagonal positions. 

This approach to regression spline smoothing was introduced by O'Sullivan 
(1986, 1988). It has since been extended by Eilers and Marx (1996) and 
Ruppert and Carroll (1998). The first three of these references work with the 
B-spline basis rather than the truncated polynomial basis. 

The advantage of the penalised shrinkage approach is that the model 
selection problem reduces to the choice of a single parameter, a. Any common 
model selection criterion can be used to choose a. Eilers and Marx (1996) 
use GCV while, in their examples, Ruppert and Carroll (1996) use Mallows' 
Cp. In this context Cp can be expressed as 

Cp(a) = RSS(a) + 2a2tr{XTX(XTX + aD)-1 } 

where RSS(a) is the residual sum of squares of m(a). An appropriate choice 
for a2 is RSS(O)/(n- K- p- 1), the estimated residual variance based on 
fitting the full model. 

As a referee has pointed out, regression spline smoothing procedures fall 
into two categories: 

1. Select a subset of basis functions and apply ordinary least squares to 
obtain the estimate. 
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2. Use all the basis functions, but do not use ordinary least squares to 
estimate the coefficients. 

Stepwise selection is in the first category, while the Bayesian technique 
and penalized shrinkage is in the second category. 

2.4 Other approaches 

Several other proposals for knot selection exist. One of the earliest is an un
published algorithm of Agarwal and Studden (1978) and discussed in Agarwal 
and Studden (1980). The algorithm is based on their asymptotic results and 
is so mew hat complicated. Moreover, their numerical results suggest that 
it it not competitive with the more recent algorithms described in Sections 
2.1-2.3. The TURBO algorithm of Friedman and Silverman (1989) and its 
subsequent generalisation, the MARS algorithm (Friedman, 1991), include 
knot selection for univariate scatterplot smoothing as a special case. How
ever, TURBO and MARS are tailored for multivariate smoothing and their 
computational overhead requires restriction to piecewise linear basis functions 
for practical implementation. Luo and Wahba (1997) propose a procedure 
that can be considered as a combination of stepwise selection and penalized 
shrinkage. It involves performing forward stepwise regression to select basis 
functions, with a version of GCV used as a stopping criterion. A penalized 
regression is then performed on this basis. 

Other approaches, not explicitly mentioned in the literature, might be 
considered for regression spline smoothing. Examples include all subsets 
regression approximations such as "Leaps and Bounds" (Furnival and Wilson, 
1974) and the "Least Absolute Shrinkage and Selection Operator (LASSO)" 
of Tibshirani (1996). 

3 Simulation Study 

As we saw in the previous section, nonparametric approaches to regression 
spline fitting are now quite numerous and varied. There is clearly a strong im
perative to compare their practical performance. In this section we describe 
a simulation study which aims to perform an objective comparison. 

The knots for the largest possible model were chosen according to the rule 

"-k = (x(dk)- X(dk+l))/2, k = 1, ... ,K 

where K = ln/d-1J and d = max{4, ln/35J}. This assignment ensures that 
there are at least d observations between each knot. 

The truncated cubic basis ((2.2) with p = 3) was used throughout. Trun
cated polynomial bases are used in Smith and Kohn (1996) and Ruppert 
and Carroll (1998). Eilers and Marx (1996) work with B-spline bases, but 
for penalised shrinkage, the estimators are equivalent to those obtained with 
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truncated polynomial bases of the same degree. Stone et al. (1997) rec
ommend the natural cubic B-spline basis. As we mentioned in Section 2.1, 
stepwise selection estimators are different for B-spline bases. Nevertheless, 
we have stuck with the truncated cubic basis in this study so that all methods 
are directly comparable. Thus we aim to answer the question: given a large 
set of regression spline basis functions, how do each of the selection methods 
compare in terms of estimating the underlying regression function? 

A fully automatic procedure was chosen from each of the three types of 
methods described in Section 2. Specifically, the procedures used in the study 
were: 

1. The stepwise procedure described in Section 2.1 with minimal basis 
1, x, x 2 , x3 and Stone et al.'s GCV as given by (2.3) with their default 
of a= 2.5 (further justification for use of this default is given below). 

2. The Bayesian variable selection procedure of Smith and Kohn with 
defaults as described in the second last paragraph of Section 2.2. 

3. The penalised spline method with a chosen using Cp, as described in 
Section 2.3. 

The settings for the simulation were devised in a family-wise fashion 
where, for each family, a different factor was tweaked. The factors are (1) 
noise level, (2) distribution of the design variable, (3) degree of spatial vari
ation and ( 4) the variance function. Table 1 summarises the settings. These 
are based on settings developed by Professor Steve Marron and most of the 
credit for their development belongs to him. The last group of settings in
volve heteroskedastic errors despite the fact that each of selection methods 
are each based on the homoskedasticity assumption. Nevertheless, it is of 
interest to see how the methods perform when this assumption breaks down. 
The simulation involved 250 replications. 

The error criterion of an estimate m of m was taken to be the root mean 
squared error: 

n 

RMSE = n-1 ~)m(xi)- m(xi)p. 
i:=l 

As mentioned above, the value of a used in the GCV measure for stepwise 
selection was the Stone et al. (1997) default of 2.5. However, as pointed 
out by Charles Kooperberg in private communication, this value was chosen 
because it giwe reasonable answers for multivariate linear splines and without 
any consideration of RMSE performance. Since this study involves univariate 
cubic splines a preliminary investigation into the effect of a on RMSE was 
carried out. One hundred replications of each of the simulation settings were 
run with a values of 2, 2.5, 3 and 4. In terms of RMSE performance, none 
of these values was found to be dominant over the others although a = 2.5 
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had the best average ranking. For this reason use of the Stone et al. (1997) 
default of a = 2.5 is justified for this study. 

factor generic form 

noise Y;i = m(x;) + ajci 
level 

random Y;i = m(Xj;) + ac; 

design 

spatial Y;i = mi(x;) + ac; 

variation 

variance Y;i = m(x;) + vi(x;) 112 c; 
function 

j = 1, ... ,6 

particular choices 

n = 200, m = mNM' 

aj = 0.02 + 0.04(j- 1)2 

n = 200, m = mNM' 

a= 0.1, Xi;= Fi- 1 (Xi) 

n = 400, a = 0.2, 
mj(x) = Jx(1- x) 

. { 211"(1+2(9-4;)/5)} 
X Sln z+2(9-4i)/5 

n = 200, m = mNM' 

Vj(x) = [0.15{1 + 0.4 
x (2j - 7)(x- 0.5)}]2 

x; = (i- ~)jn, X; i.i.d. Uniform(O, 1], c; i.i.d. N(O, 1) 
( ) 1 5..1. (z-0.35) A. (z-0.8) 

mNM X = . 'I' ~ -'I' o:Q4 1 . . 

¢(u) = (27r)-112e-u /2, Fj is the Beta(y, ll,51 ) c.d.f. 

Table 1: Settings used in simulation study 

Figures 2-5 provide graphical summary of the results. Each pair of pan
els corresponds to (1) one replication of data and the true mean function for 
the setting and (2) boxplots of the log10(RMSE) for each method. Paired 
Wilcoxon tests were performed to determine whether the median RMSE's 
were significantly different. Procedures shared the same RMSE ranking when 
the test showed no difference at the (5/3)% level. Otherwise, separate rank
ings were assigned ·with "1" signifying the best performer and "3" the worst. 
These rankings are listed at the base of each set of boxplots. 

The raw RMSE data and S-PLUS/Fortran code for computation of each 
of the estimators are available on request from the author (current e-mail 
address: mvand\Oharvard. hsph. edu). 
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Figure 2: Varying the noise level. The left half of each pair of panels cor
responds to one replication of data from the simulation study and the true 
mean function. The right half are boxplots of log10 (RMSE) for each method 
along with paired Wilcoxon test rankings. 
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4 Conclusions 

The rankings from the simulation study are summarised in Table 2. 

Stepwise 
Bayesian 
Penalty 

noise 
2.83 
1.08 
2.08 

design 
2.5 
1.0 
2.5 

spatial var. 
2.0 
1.5 
2.5 

variance func. 
2.92 
1.08 
2.00 

Table 2: Average rankings from simulation study. 

average 
2.56 
1.17 
2.27 

For the 24 different settings considered in the simulation study the average 
rankings were 2.56 for stepwise selection, 1.17 for Bayesian selection and 2.27 
for penalised shrinkage. So by this measure the Bayesian procedure is clearly 
the best performer, with the other two performing roughly equally. Some 
patterns are apparent from Figures 2-5. In the case where the noise level 
was varied (Figure 2) we see that Bayesian selection is dominant for lower 
noise levels. But for higher the noise the methods each perform about the 
same. Penalised shrinkage performs relatively well for the normal mixture 
mean curve used in most of the settings but, as depicted in Figure 4, begins 
to suffer when there is more spatial variation. 

The computational times for computation of each type of estimate are 
roughly equal, with none taking more than 3 seconds elapsed time throughout 
the whole study. So, in terms of this measure of performance the methods 
seem to be about the same. 

To gain some appreciation for the types of problems that the methods 
can run into plots for the data and estimates at the 90th percentile of the 
RMSE distribution were obtained. Space restrictions do not permit showing 
these for all 24 settings, so a selection of 3 of the more revealing ones were 
chosen and are displayed in Figure 6. The settings correspond to the rows of 
Figure 6 and are (refer Table 1) (1) factor is design with j = 6, (2) factor is 
spatial variation with j = 5 and (3) factor is variance function with j = 2. 

In the first and third rows of Figure 6 we see that stepwise selection 
leads to some spurious wiggles. For the first setting plots of the other two 
methods for the same data (not shown) lead to wiggles in the same place, but 
not quite as accentuated. For the third setting the other two methods are 
much more well-behaved near the left boundary, with the Bayesian selection 
estimator having no wiggles at all. The middle row shows a situation where 
stepwise selection performs very well, with Bayesian selection having trouble 
resolving the structure near the left boundary. The Achilles' heel of penalised 
shrinkage: not being able to adapt to the spatial variation in curvature, is 
apparent from the estimate depicted here in the third column. 

It is possible that the problem of wiggliness in the tails, exhibited mainly 
by the stepwise approach, could be alleviated by using the natural spline 
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Figure 6: Data and estimates corresponding to the 90th percentile of the 
RMSE distribution from the simulation study. The dashed curve is the true 
mean while the solid curve is the estimate.The settings correspond to the 
rows. 

basis rather than ordinary polynomial splines. This is because natural splines 
impose linearity constraints at the boundaries. Simulation results given in 
the rejoinder of Stone et al. (1997) show that the use of natural splines leads 
to substantial improvements. It would be interesting to see if substitution 
with the natural spline basis would change the rankings substantially. 

The inferior performance of penalised shrinkage is due to the restrictive
ness that comes with having the model selection controlled by a single param
eter and comes as no surprise. The reason inferior performance of stepwise 
selection compared with Bayesian selection requires some deeper investiga
tion. However, it is conjectured that this is due to (1) the Gibbs sampler 
traverses the model space in a more effective way that the stepwise proce
dure based on Rao and Wald statistics and (2) the Bayesian estimator is a 
weighted average of several regression spline fits, while the stepwise estima
tor is a single regression spline fit. On the other hand, Stone et al. have 
shown that stepwise selection extends naturally to a wide array of settings, 
particularly those of a non-Gaussian nature such as binary response data. 
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The extent to which Bayesian selection can be adapted successfully to these 
settings is unclear at this stage. 
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