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Abstract
We consider two inverse Gaussian populations with a common mean but different 
scale-like parameters, where all parameters are unknown. We construct noninforma-
tive priors for the ratio of the scale-like parameters to derive matching priors of dif-
ferent orders. Reference priors are proposed for different groups of parameters. The 
Bayes estimators of the common mean and ratio of the scale-like parameters are also 
derived. We propose confidence intervals of the conditional error rate in classify-
ing an observation into inverse Gaussian distributions. A generalized variable-based 
confidence interval and the highest posterior density credible intervals for the error 
rate are computed. We estimate parameters of the mixture of these inverse Gauss-
ian distributions and obtain estimates of the expected probability of correct classi-
fication. An intensive simulation study has been carried out to compare the estima-
tors and expected probability of correct classification. Real data-based examples are 
given to show the practicality and effectiveness of the estimators.

Keywords  Probability matching priors · Reference priors · Confidence interval · 
Generalised variable approach · Bayes classification rule · Conditional error rate

1  Introduction

The inverse Gaussian (IG) distribution has applications in various fields such as 
engineering, actuarial science, medical science, environmental, and management 
sciences. The IG distribution is a good choice for modeling data with a long right 
tail and a relatively small mean. ‘Together with the normal and gamma distribu-
tions, the inverse Gaussian completes the trio of families that are both an exponen-
tial and a group family of distributions’ (Lehmann and Casella 2006, p. 68). The IG 
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distribution is widely applied in life-testing and reliability analysis. Consider a toy 
example for classifying an observation into IG distributions. Suppose the observed 
lifetimes of two types of electronic components used in an automatic machine are 
available. It is known that the lifetime of two kinds of components follow IG distri-
butions and their mean lifetimes are equal. One of the components has failed, and 
the failure time has been recorded. The problem is identifying the component type 
based on the observed lifetime. If the component is of type-1 and the classification 
rule assigns it to type-2 or vice versa, it will be misclassified. It is desired that the 
error rate in classiifcation (ERC) be minimized. We aim to derive several confidence 
intervals (CIs) and credible interval of the conditional ERC using the training sam-
ples from each population.

Ahmad et  al. (1991) first considered the model of k IG distributions having an 
equal mean � and developed MLE, and Graybill-Deal type estimator of � . They 
explored the decision-theoretic properties of the estimator. Gupta and Akman (1995) 
considered the mixture model of IG and length-biased IG distribution and derived 
the Bayes estimators of the model parameters. Since the Bayes estimator of the mean 
is not in explicit form, different numerical techniques were used to solve it. Karlis 
(2002) considered the mixture model of normal and IG distribution and derived the 
estimators of the parameters using the method of moments. He also calculated the 
MLE of the parameters using the EM algorithm. Tian and Wilding (2005) used a 
modified direct likelihood ratio statistic to derive the CI of the ratio of two means of 
IG distributions. They used reciprocal root IG distribution to simplify the CI. Sindhu 
et al. (2018) studied different properties of the mixture of half-normal distributions. 
They proposed Bayes estimators of the parameters of the mixture model using non-
informative priors under different loss functions.

Noninformative priors provide satisfactory results when little or no prior informa-
tion is available. A probability matching prior is a noninformative prior designed to 
match the frequentist coverage probabilities (CPs) of certain regions. This means 
that the posterior probability of a region will be equal to the frequentist CP of that 
region. Bernardo (1979) derived noninformative priors by separating the parame-
ters of interest and nuisance parameters. This approach is known as the reference 
prior approach. Berger and Bernardo (1989) introduced the idea of reverse reference 
prior, in which the parameter of interest and nuisance parameters are pretended to 
be interchanged. Kim et al. (2006) used noninformative priors to study the Bayes-
ian inference for a linear combination of normal means. They derived the second 
order probability matching priors for the linear combination of the normal means as 
a function of other nuisance parameters. They also showed that these priors match 
the alternative CPs up to the second order. Considering two IG populations having 
an equal mean, the noninformative priors for the parameters are not studied in the 
literature.

There is extensive literature on classifying observations into normal populations. 
A few articles are focused on classification into non-normal or skewed distributions. 
Amoh (1985) derived the estimated classification function for a mixture of IG distribu-
tions with a common scale-like parameter. They analyzed the efficiency of the clas-
sification function for small samples. Conde et al. (2005) proposed classification rules 
for two exponential distributions under the restrictions on parameter. The proposed rule 
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has lower misclassification probabilities than the likelihood ratio-based rule. Batsidis 
and Zografos (2006) studied the classification techniques for elliptically contoured 
populations with a common scale matrix. They considered separate discriminant func-
tions for complete and incomplete samples when missing data were observed. Their 
proposed discriminant function is a linear combination of those two discriminant func-
tions. For small samples, different point estimators of error rate are nearly unbiased but 
not consistent. In such situations, interval estimation of the conditional error rate pro-
vides a better alternative. The conditional ERC measures the probability of misclassi-
fication given a training data set. Chung and Han (2009) derived CIs of the conditional 
and unconditional error rate for classifying into two or more p-dimensional normal 
populations with a common covariance matrix. The CIs are obtained using bootstrap 
and jackknife methods, which improve other methods such as binomial approximation, 
k-fold cross-validation, and parametric approach. Jana and Chakraborty (2023) investi-
gated classification problem for several normal populations with an equal mean and dif-
ferent variances. They used the bootstrap and jackknife procedures to calculate the con-
ditional error rate’s CI. Jana and Kumar (2019) studied the classification problem for 
two IG populations in various cases under order restriction on parameters. They also 
derived the likelihood ratio-based rule for two IG populations without restrictions and 
generalized the same for k populations. Note that the estimation of conditional ERC has 
not been studied under the Bayesian framework for IG populations.

In estimating the ERC, one requires the estimation of a function of parame-
ters. While dealing with multiple parameters, as in frequentist inference, one may 
encounter challenges in constructing suitable pivotal quantities that effectively 
remove nuisance parameters. In such cases, probability-matching priors can be used 
to create approximate CIs. The current study has two objectives. First, noninforma-
tive priors are derived for the ratio of scale-like parameters �i s of two IG populations 
having a common mean. Second, the classification problem for this model has been 
considered to show applications of the estimators besides proposing other classical 
intervals and credible intervals of conditional ERC. Since the finite mixtures of two 
IG distributions are used to model data sets robustly, we study classification into 
mixture of two IG populations.

The paper is arranged as follows. Sect. 2 introduces IG distributions having an 
equal mean. In Sect. 3.1, we derive noninformative prior for the ratio of scale-like 
parameters through the orthogonal parametrization. In Sect. 3.2, Bayes estimation 
of parametric functions of these distributions is obtained. In Sect.  4.1, we derive 
the credible intervals and generalized variable-based CIs besides other CIs of condi-
tional error rate. Section 4.2 considers classification of observations into a mixture 
of IG distributions. Sect. 5 presents a thorough simulation study together with real-
world instances. Finally, some conclusions are made in Sect. 6.

2 � Preliminaries

Consider two independent inverse Gaussian populations �1 and �2 having an equal 
mean � and scale-like parameters �1 and �2 respectively. The probability density 
function (pdf) corresponding to the population �i is
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for i = 1, 2. Suppose Xi1,Xi2,… ,Xini
(ni ≥ 2) represent a random sample from the 

population �i . Denote X̄i = ni
−1

∑ni
j=1

Xij and S−1
i

= ni
−1
∑ni

j=1
(X−1

ij
− X̄i

−1
) for i = 1, 2. 

Note that (X̄1, X̄2, S1, S2) is a minimal sufficient statistic for the parameter (�, �1, �2) 
of the distributions. [Chhikara and Folks (1989)]. The statistics S1 and S2 are also the 
MLEs of �1 and �2 , respectively.

3 � Bayes estimation

3.1 � Noninformative priors for the ratio of scale‑like parameters

In Bayesian inference, a noninformative prior is used when limited or negligible infor-
mation available about the data. To estimate a parameter of interest with some nuisance 
parameters, the orthogonality among them with respect to the expected Fisher informa-
tion matrix plays an important role. A parameter �1 is said to be totally orthogonal to a 
set of parameters, say, (�2, �3,… , �k) if the information matrix is diagonal. The orthog-
onalization process and numerical simplification ensure that the corresponding rules 
are asymptotically independent. Noninformative priors help to achieve coverage error 
of function of parameters up to a particular order in the frequentist sense. Suppose the 
random samples x

∼
= (x1,… , xn1 ) and y

∼
= (y1,… , yn2 ) are drawn from IG(�, �1) and 

IG(�, �2) respectively. The log-likelihood function is

Consider a prior distribution � to estimate the parameter �1 = �2∕�1 . Let ��
1
(�;x) 

denotes the (1 − �) th percentile of the posterior distribution of �1 , that is,
P�[�1 ≤ ��

1
(�; x)|x] = 1 − �, where �1 is the parameter of interest. We want to find 

the priors � for which P�
[
�1 ≤ ��

1
(�;x)|x] = 1 − � + o(n−1) and make the prior a sec-

ond-order matching prior. To find such priors, we consider the orthogonal parametriza-
tion techniques (Cox and Reid 1987; Tibshirani 1989). We find the orthogonal parame-
ters �1, �2 and �3 . Denote �

∼
= (�1, �2, �3) . Under the transformations 

�1 → �1, �2 → �1� , � → �2, the expression (2) becomes

(1)fi(x) =

√
𝜆i

2𝜋x3
exp

{
−
𝜆i(x − 𝜇)2

2𝜇2x

}
, x > 0,𝜇 > 0, 𝜆i > 0

(2)

l(�, �1, �2|x
∼
, y
∼
) = −

n1 + n2

2
ln(2�) −

3

2

(
n1∑
i=1

ln xi +

n2∑
j=1

ln yj

)
+

n1

2
ln �1 +

n2

2
ln �2

−

n1∑
i=1

�1(xi − �)2

2�2xi
−

n2∑
j=1

�2(yj − �)2

2�2yj
.
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The orthogonal equations to find �1,�2,� and subsequently the value of �2, �3 are 
provided in the supplementary material. Using orthogonal parametrization of the 
original parameters, we get �1 = �2∕�1, �2 = �

n1
1
�
n2
2
, �3 = � which can be written 

as �1 = �
−n2∕(n1+n2)

1
�
1∕(n1+n2)

2
, �2 = �

n1∕(n1+n2)

1
�
1∕(n1+n2)

2
, � = �3. Then the log-likeli-

hood function (2) is written in the form of �1, �2 and �3 as

From Eq. (3), the elements of the information matrix are obtained as

Since �1 is orthogonal to �2 and �3 , Tibshirani (1989) defines the class of first-order 
probability matching (FOPM) prior as

where d(�2, �3) is an arbitrary differentiable function.

Theorem  1  The second-order probability matching (SOPM) priors are given by 
�(2)(�

∼
) = �−1

1
�−1
2
d(�3), where d(�3) is any smooth function of �3.

Proof  The proof of the theorem is provided in the supplementary material. 	�  ◻

l(�1,�2,�|x
∼
, y
∼
) = −

n1 + n2

2
ln(2�) −

3

2

(
n1∑
i=1

ln xi +

n2∑
j=1

ln yj

)

+
n1 + n2

2
ln�1 +

n2

2
ln� −

n1∑
i=1

�1(xi − �2)
2

2�2
2
xi

−

n2∑
j=1

�1�(yj − �2)
2

2�2
2
yj

.

(3)

l(�
∼
|x
∼
, y
∼
) =

ln �2

2
− �

−n2∕(n1+n2)

1
�
1∕(n1+n2)

2

n1∑
i=1

(xi − �3)
2

2�2
3
xi

− �
n1∕(n1+n2)

1
�
1∕(n1+n2)

2

n2∑
j=1

(yj − �3)
2

2�2
3
yj

+ c.

I11 = −E

[
�2l

��2
1

]
=

n1n2�
−2
1

2(n1 + n2)
, I22 = −E

[
�2l

��2
2

]
=

�−2
2

2(n1 + n2)
,

I33 = − E

[
�2l

��2
3

]
= �

1∕(n1+n2)

2
�−3
3

(
n1�

−n2∕(n1+n2)

1
+ n2�

n1∕(n1+n2)

1

)
,

I12 = − E

[
�2l

��1��2

]
= 0, I13 = −E

[
�2l

��1��3

]
= 0, I23 = −E

[
�2l

��2��3

]
= 0.

(4)�(1)(�
∼
) ∝ �−1

1
d(�2, �3),
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If the following set of differential equations are satisfied, under orthogonal par-
ametrization, a SOMP prior agrees with alternative CPs up to the second-order 
(Mukerjee and Reid 1999). The equations are

Under this setup,

After incorporating the expressions of L111, L1,11, L2,11, L3,11 , the above equations 
hold.

Note 1  It can be verified that I−3∕2
11

L111 is independent of �1 . Hence the SOMPs 
proposed here are highest posterior density (HPD) matching priors up to the 
second-order.

First, we established that the parameters �1, �2, �3 are orthogonal. Then, the refer-
ence priors for various groups of the ordering of the parameters �1, �2, �3 are derived by 
following the work of Datta and Ghosh (1995).

Group ordering: {(�1, �2, �3)} ∶ The reference prior is of the form

{�1, �2, �3}, {(�1, �2), �3} ∶ The form of the reference prior is given by

{�1, (�2, �3)} ∶ The reference prior is of the form

{(�1, �3), �2)} ∶ The form of the reference prior is given below.

�

��2

{
L112I

22I
−1∕2

11
d
(
�2, �3

)}
+

�

��3

{
L113I

33I
−1∕2

11
d
(
�2, �3

)}
= 0,

�

��2

{
L2,11I

22I
−1∕2

11
d
(
�2, �3

)}
+

�

��3

{
L3,11I

33I
−1∕2

11
d
(
�2, �3

)}
= 0,

�

��1

{
I
−

3

2

11
L111

}
= 0 and

�

��1

{
I
−

3

2

11
L1,11

}
= 0.

L111 =E

[
�3l

��3
1

]
=

n1n2
(
n1 + 2n2

)
(
n1 + n2

)2 �−3
1
, L1,11 = E

[
�l

��1

�2l

��2
1

]
= −

n1n
2
2(

n1 + n2
)2 �−31 ,

L2,11 =E

[
�l

��2

�2l

��2
1

]
=

n1n2(n1 + n2 + 1)

4
(
n1 + n2

)2 �−2
1
�−1
2

and L3,11 = E

[
�l

��3

�2l

��2
1

]
= 0.

�1(�
∼
) ∝ �

−
2(n1+n2)−1

2(n1+n2)

2
�
−3∕2

3

(
n1�

−
2n1+3n2
2(n1+n2)

1
+ n2�

−
n1+2n2
2(n1+n2)

1

)
.

�2(�
∼
) ∝ (�1�2)

−1�
−3∕2

3
.

�3(�
∼
) ∝ �−1

1
�
−

2(n1+n2)−1

2(n1+n2)

2
�
−3∕2

3
.
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Note 2  Note that the proposed reference priors �2(�
∼
) and �3(�

∼
) are the FOPMs. The 

prior �2(�
∼
) is the SOPM prior.

In Sect. 4.1, we obtain credible interval of ERC using the reference prior of the 
form �2(�

∼
).

3.2 � Bayes estimators of function of parameters

Let X be IG(�, �) distributed with the pdf of the form (1). The gamma family is a 
conjugate prior to the IG distribution with a known mean. However, when � and � 
are unknown, the conjugate prior is unknown for the IG distribution. We have con-
sidered two IG distributions having an equal mean but different �i s where finding a 
conjugate prior distribution is a real challenge. The coefficient of variation of X is √
�∕� . Considering the reparametrization of � = �� , the pdf is written as

Let x1, x2,… , xn be a random sample from the IG(�,�) distribution. The likelihood 
function based on x1, x2,… , xn is

where x̄ = n−1
∑n

i=1
xi and x̄r = n−1

∑n

i=1
x−1
i

 . Assume the prior information about � 
and � is summarized in the density �(�,�) = �(�|�)�(�) , where

Hence

The joint probability density function of x1, x2,… , xn,�,� is

�4(�
∼
) ∝ �−1

2
�
−3∕2

3

(
n1�

−
2n1+3n2
2(n1+n2)

1
+ n2�

−
n1+2n2
2(n1+n2)

1

)
.

(5)f (x;𝜇,𝜙) =

√
𝜇𝜙

2𝜋x3
exp

{
−
𝜙(x − 𝜇)2

2𝜇x

}
, x > 0,𝜇 > 0,𝜙 > 0.

l(𝜇,𝜙|x
∼
) =

(
𝜇𝜙

2𝜋

)n∕2 n∏
i=1

x
−3∕2

i
exp(n𝜙) exp

{
𝜙n

2

(
x̄

𝜇
+ 𝜇x̄r

)}
,

𝜋(𝜇|𝜙) =
(
𝜂𝜙𝜔

2𝜋

)1∕2

𝜇−3∕2 exp(𝜙𝜔) exp

{
−
𝜙𝜔

2

(
𝜂

𝜇
+

𝜇

𝜂

)}
and

𝜋(𝜙) =
a𝛾

𝛤 (𝛾)
𝜙𝛾−1e−a𝜙, 𝜙 > 0.

𝜋(𝜇,𝜙) =
(
𝜂𝜔

2𝜋

)1∕2

𝜙𝛾−1∕2e𝜙(𝜔−a)𝜇−3∕2 a𝛾

𝛤 (𝛾)
exp

{
−
𝜙𝜔

2

(
𝜂

𝜇
+

𝜇

𝜂

)}
, 𝜇,𝜙 > 0.
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Now the joint posterior density function of (�,�) is given by

where c is the normalizing constant. The posterior density of � is

where Kn is the Bessel function of third kind with index n. Next, we consider two IG 
distributions IG(�,�1) and IG(�,�2) . The ratio of the coefficient of variation 
becomes ratio of �i s of the distributions. We find an estimator of �1∕�2 . Since two 
populations are independent, the joint density of (�1,�2) given the data is 
�(�1,�2|x

∼
, y
∼
) = �(�1|x

∼
)�(�2|y

∼
). The Bayes estimator of �1∕�2 is

Next, we consider estimation of � . The joint density function of �,�1 and �2 is

Then the likelihood function is

The posterior density of � is

√
𝜂𝜔

(2𝜋)n+1
a𝛾

𝛤 (𝛾)

n∏
i=1

x
−3∕2

i
𝜇

n−3

2 𝜙
𝛾+

n−1

2 exp{𝜙(n + 𝜔 − a)}

× exp

{
−
𝜙

2

(
nx̄

𝜇
+ n𝜇x̄r +

𝜂𝜔

𝜇
+

𝜇𝜔

𝜂

)}
.

𝜋(𝜇,𝜙|x
∼
) = c𝜇(n−3)∕2

⋅ 𝜙(𝛾 �−1)∕2 exp

{
−𝜙

(
𝜈1

2𝜇
− 𝜈2 +

𝜈3𝜇

2

)}
, 𝜇 > 0,𝜙 > 0,

�(��x
∼
) = c�(� �−1)∕2

⋅ exp(��2)

∞

∫
0

�
n−3

2 exp

�
−
�

2

�
�1

�
+ �3�

��

= 2c�
��−1

2

�
�1

�3

� n−1

4

exp(��2)Kn−1

2

(�
√
�1�3),

∞

∫
0

∞

∫
0

4c1c2�
(� �

1
+1)∕2

1
�
(� �

2
−3)∕2

2

�
�11

�31

� n1−1

4
�
�12

�32

� n2−1

4

exp(�1�21 + �2�22)

× Kn1−1

2

(�1

√
�11�31)Kn2−1

2

(�2

√
�12�32) d�1 d�2.

�(�,�1,�2) =
��

2�

{
2∏
i=1

�
�−1∕2

i

}
�−3

(
a�

� (�)

)2

exp

{
2∑
i=1

�i

(
� − a −

�

2

(
�

�
+

�

�

))}
.

L(�,�1,�2|x
∼1
, x
∼2
) =

2∏
i=1

{(
�i�

2�

)ni∕2 ni∏
j=1

x
−3∕2

ij

}
exp

[
2∑
i=1

�i

{
ni −

1

2

(
xij

�
+

�

xij

)}]
.

𝜋(𝜇|𝜙1,𝜙2) =
L̃(𝜇,𝜙1,𝜙2)

∞∫
0

L̃(𝜇,𝜙1,𝜙2) d𝜇

,
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where L̃(𝜇,𝜙1,𝜙2) = L(𝜇,𝜙1,𝜙2|x
∼1
, x
∼2
)𝜋(𝜇,𝜙1,𝜙2). The Bayes estimator of � is

The estimator 𝜇̂ is used to estimate the classification function and compare error 
rates in the next section.

4 � Application to classification problem

The present section deals with applications of the considered IG distributions to the 
classification problem. Suppose P(i|j) is the probability of misclassification of an 
observation from �j to �i and C(i|j) is the coressponding cost of misclassification 
i ≠ j(= 1, 2) . Given a new observation z, the following classification regions

are obtained by minimizing the expected misclassification cost, where qi represents 
the prior probability of belonging an observation into the population �i, i = 1, 2 . 

The expected probability of correct classification (EPC) is defined as 
∑2

i=1
qiP(i�i). 

Assume that C(1|2) = C(2|1) and q1 = q2 . Following (Anderson 2003), the Bayes 
classification rule (R) for assigning a new observation z is: classify z into �1 if 
W > 0 , otherwise classify it to �2 , where

4.1 � Confidence intervals of ERC

We want to estimate the ERC for two such IG populations. Suppose 
𝛾 = (P1 + P2)∕2 = (P[W < 0|z ∈ 𝛱1] + P[W > 0|z ∈ 𝛱2])∕2 , denotes the uncondi-
tional error rate. Since �, �1, �2 are unknown, we use their estimates to get the con-
ditional error rate �∗ = (P∗

1
+ P∗

2
)∕2, where P∗

1
= P(W < 0|x̄1, x̄2, S1, S2;z ∈ 𝛱1) and 

P∗
2
= P(W ≥ 0|x̄1, x̄2, S1, S2;z ∈ 𝛱1). Then

𝜇̂ =

∞

∫
0

𝜇
n1+n2

2
−2 exp

[
−

2∑
i=1

𝜙i

2

{
𝜔

(
𝜂

𝜇
+

𝜇

𝜂

)
+

ni∑
j=1

(
xij

𝜇
+

𝜇

xij

)}]
d𝜇

∞

∫
0

𝜇
n1+n2

2
−3 exp

[
−

2∑
i=1

𝜙i

2

{
𝜔

(
𝜂

𝜇
+

𝜇

𝜂

)
+

ni∑
j=1

(
xij

𝜇
+

𝜇

xij

)}]
d𝜇

.

S1 =

{
z ∶

f1(z)

f2(z)
≥ C(1|2)q2

C(2|1)q1
}

and S2 =

{
z ∶

f1(z)

f2(z)
<

C(1|2)q2
C(2|1)q1

}
,

W =
(z − �)2

�2z
(�2 − �1) + ln �1 − ln �2.

𝛾∗ =

{
[g(𝜆̂2𝜆̂

∗) − g(𝜆̂1𝜆̂
∗) + 1]∕2, if𝜆̂1 > 𝜆̂2

[g(𝜆̂1𝜆̂
∗) − g(𝜆̂2𝜆̂

∗) + 1]∕2, if𝜆̂1 < 𝜆̂2,
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where 𝜆̂i is an estimator of �i , g(⋅) is the cumulative distribution function of �2
1
 and 

𝜆̂∗ = (ln 𝜆̂1 − ln 𝜆̂2)∕(𝜆̂1 − 𝜆̂2).
An estimator 𝛾̂∗ of �∗ is obtained from a set of random samples from the popula-

tions and the corresponding B estimators 𝛾̂∗
1
,… , 𝛾̂∗

B
 of �∗ is calculated from B boot-

strap samples. Let s2
�
 denote the sample variance of �∗

i
 ’s and 𝛾̂∗

(i)
 is the ordered esti-

mates of �∗
i
’s. Four types of 100(1 − 2�)% CIs are presented below: 

(a)	 The conditional CI of �∗ using the symmetric method is (𝛾̂∗ − z𝜂s𝛾 , 𝛾̂∗ + z𝜂s𝛾 ).
(b)	 The conditional CI using the percentile method is given by (𝛾̂∗

(r)
, 𝛾̂∗

(s)
) . [Jana and 

Chakraborty (2023)].
(c)	 Suppose q denotes the number of bootstrap estimates of �∗ that are smaller than 

𝛾̂∗ . Define z0 = �−1(q∕B) , �BL = �(2z0 − z�) and �BR = �(2z0 + z�) , where 
�(z�) = 1 − � and � is the standard normal distribution function. The condi-
tional CI using the bias-corrected percentile method is given by (𝛾̂∗

(j)
, 𝛾̂∗

(k)
) , where 

j = (B + 1)�BL and k = (B + 1)�BR . The conditional error rate using the acceler-
ated bias-corrected percentile (Abcp) method is given by (𝛾̂∗

(u)
, 𝛾̂∗

(v)
) , where 

u = (B + 1)�AL and v = (B + 1)�AR . We refer to Jana and Chakraborty (2023) for 
details.

(d)	 We use the jackknife resampling method to create the following confidence 
interval (CI) for the conditional error rate. [see Jana and Chakraborty (2023)] 

Next, the pivotal quantities for the parameters proposed by Ye et  al. (2010) are 
used to obtain the CI. Suppose T(X, x, �1, �2) is a generalized pivot quantity for the 
parameter of interest �1 , where x denotes the observed value of the random variable 
X and �2 is the nuisance parameter. Then T(X, x, �1, �2) must satisfy the following 
conditions: 

1.	 The distribution function of T(X, x, �1, �2) is free from the unknown parameters.
2.	 The observed value T(x, x, �1, �2) of the pivot quantity T(X, x, �1, �2) is free from 

the parameter �2.

Suppose x̄i and si are the observed values of X̄i and Si , respectively. A generalized 
pivot quantity for �i is defined as

⎧⎪⎪⎨⎪⎪⎩

𝛾̂∗∗ − tn−1,𝛼∕2

������
n∑
i=1

(𝛾̂∗∗
i

− 𝛾̂∗∗)2

n(n − 1)
, 𝛾̂∗∗ + tn−1,𝛼∕2

������
n∑
i=1

(𝛾̂∗∗
i

− 𝛾̂∗∗)2

n(n − 1)

⎫
⎪⎪⎬⎪⎪⎭

,

Ti =
ni�iSi

nisi
∼

�2
ni−1

nisi
, i = 1, 2.
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Define T =
(n1 − 1)n2S2

(n2 − 1)n1S1
 . Note that T follows a F-distribution with degrees of free-

dom with (n1 − 1), (n2 − 1) and T is a generalized variable for the parameter �1∕�2 . 
We propose the following Algorithm for deriving CI of error rate.

Algorithm 1
Step 1. Generate x1, x2,… , xn1 ∼IG(�, �1) and y1, y2,… , yn2 ∼IG(�, �2).
Step 2. Find x̄, ȳ, S1 and S2.
Step 3. Generate a random sample from F(n1 − 1, n2 − 1).
Step 4. Let T∗ = log T∕(T − 1) . Consider T∗ as an estimate of �∗.
Step 5. Calculate �∗.
Step 6. Repeat Steps 3 to 5, B times.
Step 7. Find the order statistic corresponding to the �∗ s. The 100(1 − �)% CI of �∗ 

is (�∗
(1)
, �∗

[(1−�)∗B]
).

In Sect.  5.1, we perform a detailed simulation study to compare the CIs using 
the proposed methods for two IG populations having an equal mean. Comparisons 
of the CIs for three populations using bootstrap and jackknife techniques are also 
studied.

In addition, we propose to use Bayesian credible intervals to estimate the classifi-
cation error rate. The HPD credible intervals are the shortest credible intervals that 
contain the true error rate with a certain probability. All points within the HPD 
interval have a higher posterior probability than any points outside the interval. The 
technique to compute such intervals was introduced by Chen and Shao (1999), 
involving the utilization of samples generated from the posterior density through the 
Markov chain Monte Carlo method. Assume that x1, x2,… , xn1 and y1, y2,… , yn2 are 
random samples originating from IG(�, �1) and IG(�, �2) distributions, respectively. 
The joint density function of x

∼
 and y

∼
 , as per the reparameterization detailed in 

Sect. 3.1, is expressed as

where n = n1 + n2 . Given the second-order matching prior of the form 

�2(�
∼
) ∝ �−1

1
�−1
2
�
−3∕2

3
 , we derive the posterior density of �1 as follows:

To generate samples from the posterior density, we use the estimates of �2 and �3 as

f (x
∼
, y
∼
��
∼
) =

�
1

2

2

(2�)
n

2

n1∏
i=1

x
3

2

i

n2∏
j=1

y
3

2

j

exp

⎡
⎢⎢⎢⎣
−
�

1

n

2

2�2
3

⎧
⎪⎨⎪⎩

n1�
i=1

�
−

n2

n

1
(xi − �3)

2

xi
+

n2�
j=1

�

n1

n

1
(yj − �3)

2

yj

⎫
⎪⎬⎪⎭

⎤
⎥⎥⎥⎦
,

�(�1�x
∼
, y
∼
, �2, �3) =

�−1
1

exp

�
−

�
1
n
2

2�2
3

�
n1∑
i=1

�
−
n2
n

1
(xi−�3)

2

xi
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n2∑
j=1

�
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1
(yj−�3)
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��

∫ ∞
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�−1
1
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�
−

�
1
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2�2
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�
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i=1

�
−
n2
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1
(xi−�3)

2

xi
+

n2∑
j=1

�

n1
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1
(yj−�3)

2

yj

��
d�1

.
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respectively. Note that the error rate �∗ is a function of �1 only and is written as

where g(⋅) is the cumulative distribution function of �2
1
 . Due to the complexity of 

the posterior density, we use the algorithm proposed by Chen and Shao (1999) to 
generate random samples from this density and subsequently find the credible inter-
val for �∗ . Given random samples x

∼
 and y

∼
 , the following procedure outlines the nec-

essary steps to compute a 100(1 − �)% credible interval for �∗.
Algorithm 2
Step 1. Define a current value �(0)

1
 from the target density function.

Step 2. Generate a random sample z∗ from a proposed density 
h(x|�(j)

1
), j = 0, 1, 2,… . Find the acceptance probability

Step 3. Generate a random sample u from U(0, 1) distribution. If u < 𝜅(𝜃
(j)

1
, z∗) , set 

�
(j+1)

1
= z∗ ; otherwise, set �(j+1)

1
= �

(j)

1
.

Step 4. Obtain the error rate �∗ by putting �1 = �
(j)

1
.

Step 5. Set j = j + 1.
Step 6. Repeat steps 2-5, M times.
Step 7. From the �∗ values, obtain the order statistics �∗

(1)
, �∗

(2)
,… , �∗

(M)
.

Then the 100(1 − �)% HPD credible interval for �∗ is given by (�∗
([

�

2
M])

, �∗
([(1−

�

2
)M])

) . 
In Sect. 5.1, we apply this algorithm to compute the credible intervals for �∗.

4.2 � Classification into mixture of IG distributions

In this section, we study estimation of the parameters of a mixture of two inverse 
Gaussian (MTIG) distributions and the corresponding discriminant function. The 
density of the MTIG distribution having an equal mean parameter is

𝜃̂2 =

{
1

n1

n1∑
i=1

(
1

xi
−

1

x̄

)}−n1
{

1

n2

n2∑
j=1

(
1

yj
−

1

ȳ

)}−n2

and 𝜃̂3 =
1

n1 + n2

(
n1∑
i=1

xi +

n2∑
j=1

yj

)
,

𝛾∗ =

⎧
⎪⎨⎪⎩

�
g
�

ln 𝜃1

𝜃1−1

�
− g

�
𝜃1 ln 𝜃1

𝜃1−1

�
+ 1

�
∕2, if 𝜃1 ≥ 1

�
g
�

𝜃1 ln 𝜃1

𝜃1−1

�
− g

�
ln 𝜃1

𝜃1−1

�
+ 1

�
∕2, if 𝜃1 < 1,

�(�
(j)

1
, z∗) = min

{
1,

�(z∗)h(�
(j)

1
|z∗)

�(�
(j)

1
)h(z∗|�(j)1 )

}
.

(6)f (x;�) =

2∑
j=1

pjfj(x;�j), p1 + p2 = 1,
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where � = (p1,�,�1,�2),�j = (�,�j), j = 1, 2 and fj(x;�j) is the pdf of the jth uni-
variate IG distribution as given in (5). Suppose x1, x2,… , xn is a random sample 
drawn from the MTIG distribution with density (6). The likelihood function based 
on the random sample is L(�) =

∏n

i=1

�
(�∕(2�x3

i
))Qi, where

The log-likelihood function is l(�) = −
∑n

i=1
{ln(2�x3

i
)}∕2 +

∑n

i=1
lnQi. The likeli-

hood equations are given by

Finding estimates of the parameters from the above equations is not always pos-
sible due to the computational complexity. So, we use the EM algorithm to find the 
MLEs of the parameters � = (p1,�,�1,�2) . Let x = (x1,… , xn) be an observed 
sample from the mixture distribution f (x;�) . Assume the component from which 
xi originates is unknown. This missing data is labeled as yij , where yij signifies xi 
derived from the jth component for j = 1, 2 . The log-likelihood function based on 
the observed data is

The complete data log-likelihood satisfies

In EM algorithm, we apply two steps namely an expectation step (E-step) and a 
maximization step (M-step) alternately to get the sequence {(p(k)

1
,�(k),�

(k)

1
,�

(k)

2
)}k∈ℕ 

of estimators. We continue to generate the terms of the sequence till it converges and 
maximizes the likelihood function. Dempster et al. (1977) proved the convergence 
of the EM algorithm to a local maxima. Let wij be the conditional probability that 
xi arises from the mixture component indexed j, having density fj(⋅|�,�j) , given the 
sample data x . Using Bayes rule, for each i and j, we have

Qi =

2∑
j=1

pj

√
�j exp

{
−
�j(xi − �)2

2�xi

}
.

n�
i=1

1

Qi

�√
�1 exp

�
−
�1(xi − �)2

2�xi

�
−
√
�2 exp

�
−
�2(xi − �)2

2�xi

��
= 0,

n�
i=1

(x2
i
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xiQi

�
p1�

3∕2

1
exp

�
−
�1(xi − �)2

2�xi

�
+ p2�

3∕2

2
exp

�
−
�2(xi − �)2

2�xi

��
+ n� = 0,

n�
i=1

p1

Qi

�
exp

�
−
�1(xi − �)2

2�xi

��
1 −

�1(xi − �)2

�xi

��
= 0,

n�
i=1
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�
exp

�
−
�2(xi − �)2

2�xi

��
1 −

�2(xi − �)2

�xi

��
= 0.

l(p1,�,�1,�2|x) =
n∑
i=1

log

2∑
j=1

pjfj(xi|�,�j).

lc(p1,�,�1,�2|x, y) =
n∑
i=1

2∑
j=1

yij

{
log pj +

1

2
log (��j) −

1

2
log (2�x3

i
) −

�j(xi − �)2

2�xi

}
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We mention the kth iteration scheme for the E-step and M-step of the EM algorithm.
E-step: For i = 1, 2,… , n and j = 1, 2 , evaluate

M-step: By replacing yij with wij , we need to maximize the log likelihood of the 
complete data.

To find the estimator (p̂1, 𝜇̂, 𝜙̂1, 𝜙̂2) of � = (p1,�,�1,�2) , we choose 
�(0) = (p

(0)

1
,�(0), �(0)

1
,�

(0)

2
) as an initial value based on the sample and repeat the 

E-step and M-step simultaneously until it converges. After the convergence, last 
iteration values are considered as the estimates (p̂1, 𝜇̂, 𝜙̂1, 𝜙̂2) . Using the relation 
�j = ��j, j = 1, 2 , we obtain the estimates (𝜆̂1, 𝜆̂2) of the parameters (�1, �2) . In 
Sect. 5.2, we consider several parameter combinations for the MTIG distributions 
and computed their estimates. These estimates are used as plug-in estimate in find-
ing estimated EPC.

5 � Numerical results

5.1 � Interval estimation of conditional ERC

In this section, a detailed simulation study has been performed to compute the CI of 
the conditional ERC into one of two independent IG distributions having an equal 
mean but different �i s. We generate random samples with sizes n1 and n2 from popu-
lations �1 and �2 , respectively. Using the methods mentioned in Sect. 4.1, we cal-
culate the CIs for sample sizes (n1, n2) = (5, 5), (10, 10), (20, 20) . The AUL and ALL 
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values are computed using Monte Carlo simulations with 20,000 replications. The 
expected length of the CI is the difference between AUL and ALL. Since the ERC 
and the corresponding CI depend on the ratio �1∕�2 but are independent of the mean 
parameter, we calculate the CIs by varying �1∕�2 from 0.1 to 0.9. The CIs using dif-
ferent methods are compared in terms of average lengths and CPs.
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Fig. 1   Estimated conditional error rate and the CI for (n1, n2) = (5, 5), (10, 10), (20, 20)
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Fig. 2   Coverage probability of the interval of conditional error rate for (n1, n2) = (5, 5), (10, 10), (20, 20)
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Fig. 3   Average length of the interval of conditional error rate for (n1, n2) = (5, 5), (10, 10), (20, 20)
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From Figs.   1, 2 and 3, it follows that the generalized variable-based CI 
produces better CPs than other CIs. For (n1, n2) = (5, 5), the CI using symmet-
ric method marginally dominates the generalized interval in terms of CP when 
𝜆1∕𝜆2 > 0.3 . As the sample size increases, CI using the generalized variable 
approach outperforms other methods. However, the average length of the CI 
using the generalized variable approach is longer than other methods. For all the 
methods described, the length of the CI decreases as the sample size increases. 
The bias-corrected percentile and Abcp methods perform poorly in terms of CP. 
But the bias-corrected percentile and Abcp CIs become more efficient than other 
CIs as the ratio �1∕�2 approaches one in terms of interval length.

Tables 1 and 2 refer to the estimated ERC for three populations. It also suggests 
that the symmetric and percentile methods perform better than other methods. We 
have analyzed the computational time required to derive CIs for error rates. Table 3 
presents the execution time, measured in seconds, necessary for the bootstrap 
method, jackknife method, and generalized variable approach to compute CIs for 
error rates across various sample sizes. Each entry reflects the time for a single itera-
tion. The bootstrap method requires more computational time compared to the other 
two methods. Conversely, the jackknife method consistently demonstrates the least 
computational time across all parameter combinations and sample sizes. Although 
the computational time for these methods is generally reasonable, the generalized 
variable approach balances efficiency and performance. It consumes slightly more 
time than the jackknife method but delivers comparable or even better CP than the 
bootstrap method.

Next, Algorithm  2 is used to compute 90% and 95% credible intervals for 
the error rate considering N (�(j)

1
, 1) as the proposed density when sample size 

(n1, n2) = (20, 20), (25, 25) . Credible intervals are calculated for �1∕�2 values rang-
ing from 0.1 to 0.9. As the error rate remains unaffected by � , � is set as one during 
the simulation. Monte Carlo samples are generated using 20,000 replications and 
setting M = 1000.

Figs.  4 and 5 visualize the error rates and the corresponding credible interval 
bands. Note that the average length of credible intervals is the smallest among all 
intervals explored in this study. With increasing sample sizes, the average interval 
length decreases while the CP increases. As the ratio �1∕�2 approaches one, both 
CPs and average lengths exhibit a consistent increment. It is evident that the CPs of 
the credible intervals are nearly equivalent to those obtained from other methods. 
However, the distinctive feature lies in shorter interval lengths compared to alterna-
tive approaches. It is worth noting that this method may perform poorly for small 
samples. When the sample size from each population is greater than twenty, the 
HPD credible interval is recommended in estimating the ERC.

5.2 � Estimates of the parameters using EM algorithm

As discussed in Sect. 4.2, we use EM algorithm to find the MLEs of � = (p1,�,�1,�2) 
for different values of the parameters p1(= 0.1, 0.3), �1(= 0.3, 0.7), �2(= 1, 3) . Since 
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the exact value of � does not affect the estimates of other parameters, we assume 
� as five throughout the simulation study. For each parameter combination, we 
consider sample of sizes n = 40, 50, 60, 70, 80, 90, 100 to find the estimates of 
� = (p1,�,�1,�2) . The algorithm is repeated until the computed difference between 
two successive iterations is ≤ 10−3 . For every parameter combination, 5000 replica-
tions are used, and the average of the estimates are taken as the estimated value. 
Next, 100 new samples are generated from the MTIG distribution. Using the estima-
tors as plug-in estimators in the classification function, we obtain the probability of 
correct classification. Repeating this procedure 100 times and taking the average, we 
finally get the EPC values. The following observations are made from Table 4.

As the sample size increases, EPC increases in every case. For the parame-
ter combination, when p1 is 0.1, the EPC values are higher than the EPC values 
obtained for p1 = 0.3 . The MSEs of the estimators for the parameters decrease as 
the sample size increases. The EPC value is higher if the difference between �1 and 
�2 is higher.
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Fig. 4   Credible intervals of the conditional error rate with the CPs for (n1, n2) = (20, 20)
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5.3 � Illustrative examples

We consider the following examples as applications of the considered model. We 
use goft package (González-Estrada and Villaseñor 2017) in R programming lan-
guage to fit the IG distribution to the data. To check the equality of the means, we 
use the algorithm proposed by Shi and Lv (2012). The significance of the IG distri-
bution can be illustrated by its application to real-world data with positive skewness. 
While the Gamma distribution is commonly used for many data appearing in real-
world situations, the IG distribution is an alternative for fitting such data. For exam-
ple, Watson and Smith (1985) studied the breaking strengths of single carbon fibers 
with varying lengths. Consider the data set pertaining to the breaking strength of 
10 mm long single carbon fibers. The R2 value is 98.68% when the data is fitted with 
the Gamma distribution, and the R2 value is 98.75% when using the IG distribution. 
This demonstrates that both the gamma and IG distribution can be used to fit such a 
data set. (see Fig. 6).

Example 1  Feigl and Zelen (1965) observed the white blood cell (WBC) counts for 
33 patients. These patients were divided into two groups, AG positive and AG nega-
tive. They were formed based on whether Auer rods and/or significant granulature 
of leukemic cells were present in the bone marrow at the time of diagnosis. They 
find that the survival probability depends on the WBC count for AG positive group, 
whereas it does not depend on the WBC count for AG negative group. The WBC 
data for both groups are presented below after dividing by 1000.

AG positive: 2.3,.75, 4.3, 2.6, 6, 10.5, 10, 17, 5.4, 7, 9.4, 32, 35, 100, 100, 52, 
100; AG negative: 4.4, 3, 4, 1.5, 9, 5.3, 10, 19, 27, 28, 31, 26, 21, 79, 100, 100.

For testing the IG distribution fit to the data, the p values for the groups are 
0.6058 and 0.5962, respectively. This implies that the null hypothesis is not rejected 
based on the data and the data for each patient group follows IG distribution. The 
p-value to check the equality of mean parameters for the two groups is 0.995. Thus, 
we do not reject the null hypothesis and conclude that the group means are equal. 
Fig. 7 represents the density and CDF plots of the empirical distribution and IG dis-
tribution. Within the IG framework, the scale-like parameter ( � ) reflects the variabil-
ity of WBC counts. A higher � value indicates a wider range of WBC counts within 
a group. This ratio of �i s between two groups indicates the relative variability in 

Fig. 6   Density plot for breaking 
strength of single carbon fiber

Breaking strength of single carbon fiber
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WBC counts between the groups. In Table 5, we have presented CIs of conditional 
ERC into either of two groups using the proposed methods.

Example 2  Shapiro et al. (1987) recorded numbers of T4 cells (per mm3 ) in the blood 
of 40 patients, where 20 people were affected with Hodgkin’s disease, and the rest 
were not diagnosed with the disease. The number of T4 cells for both the groups are 
available in Krishnamoorthy and Tian (2008). Chhikara and Folks (1989) showed 
that the data sets for both groups follow the IG distribution. We consider the data 
sets of two groups for studying the two-class classification problem where each 
class density is IG. First, the model assumptions need to be checked. To fit the IG 
distribution for both groups, the p-values are 0.6494 and 0.4099, respectively. The 
p-value to test the equality of means of both the groups is 0.058. Thus both groups 
follow IG distributions with an equal mean. The sample mean for the groups are 
0.8232 and 0.5221, respectively and (s1, s2) = (0.7105, 0.8663) . Figure 8 represents 
the density and CDF plots of the empirical distribution and IG distribution for the 
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Fig. 7   Density and CDF plots for the data sets considered in Example 1

Table 5   95% CIs of conditional error rate for WBC counts data

aGV: Generalized variable based method

Method Method Methoda

Sym (0.3195, 0.5271) Per (0.3043, 0.4950) Bcp (0.3274, 0.4974)
Abcp (0.3271, 0.4974) Jack (0.3291, 0.5472) GV (0.3203, 0.5677)
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datasets. In Table 6, we compute the CIs of the conditional ERC using the proposed 
methods. The 90% and 95% credible intervals for the error rate are (0.3942, 0.5639) 
and (0.3804, 0.5775), respectively.

Example 3  Balakrishnan et  al. (2009) discussed several aspects of MIG distri-
bution for fitting positively skewed data. They analyzed different data sets from 
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Fig. 8   Density and CDF plots for the data sets considered in Example 2

Table 6   95% CIs for Hodgkins disease data

Method Method Method

Sym (0.3807, 0.5226) Per (0.3672, 0.4985) Bcp (0.4169, 0.4997)
Abcp (0.4163, 0.4997) Jack (0.4097, 0.5639) GV (0.3679, 0.5858)

Empirical and theoretical density plot
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Fig. 9   Density and CDF plots for the data sets considered in Example 3
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actuarial science, engineering, and toxicology. In a monitoring station in San-
tiago, hourly SO2 concentrations (in ppm) are recorded as a part of an environ-
mental air pollution data set. The frequency of each value is mentioned in the 
respective parentheses. The mean, median, and mode of the data set are 2.9261, 
2, and 2, respectively. The figure and relation among mean, median, and mode 
suggest that the data follows a positively skewed distribution. The R2 value 
for fitting an IG distribution to the data is 88.67% , whereas R2 value for fitting 
MIG distribution with the common mean is 89.37% . The ig_test function from 
goft package in R indicates that an IG distribution is not a good fit since the 
p value is nearly zero. The estimates of the parameters for IG distribution are 
𝜇̂ = 2.9261, 𝜆̂ = 9.0213 . For MIG distribution with an equal mean, estimates of 
the parameters using EM algorithm are p̂ = 0.5638, 𝜇̂ = 2.8465, 𝜆̂1 = 6.1731 and 
𝜆̂2 = 22.0625 . Figure 9 shows that a mixture of IG distributions having an equal 
mean provides a better fit than an IG distribution for the dataset.

6 � Conclusions

We have studied the estimation of the function of parameters for two IG populations 
having an equal mean. We have derived CIs of the conditional ERC using the boot-
strap, jackknife, and generalized variable approaches. The CI based on the general-
ized variable estimator performs better than other intervals in terms of CP. A nonin-
formative probability matching prior is used to obtain HPD credible intervals for the 
conditional error rate. Opting for credible intervals is advised to estimate the error 
rate, as these intervals tend to have shorter lengths than other CIs with the same CP. 
Using the EM algorithm, we have derived estimators of the parameters for a mixture 
of IG distributions. The estimators are used to find the EPCs. For illustration pur-
poses, two datasets are used to find the CIs of the conditional ERC. The third dataset 
is an example where a mixture of IG distributions with an equal mean fit better than 
a single IG distribution. Based on mixtures of Gaussian distributions, model-based 
classification methods are useful for various practical problems. As an extension, 
multivariate normal IG distribution can be used for model-based classification. A 
copy of R code will be shared with interested researchers upon request.
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Acknowledgements  We thank the editor, associate editor, and reviewers for their constructive sugges-
tions, which considerably enhanced the manuscript. We are thankful to the editor for suggesting to incor-
porate credible intervals. The second author gratefully acknowledges the financial support under MAT-
RICS project (No. MTR/2022/000535) received from SERB, Department of Science and Technology, 
India.

https://doi.org/10.1007/s00180-024-01554-6
https://doi.org/10.1007/s00180-024-01554-6


Bayes estimation of ratio of scale‑like parameters for inverse…

References

Ahmad M, Chaubey Y, Sinha B (1991) Estimation of a common mean of several univariate inverse 
Gaussian populations. Ann Inst Stat Math 43(2):357–367

Amoh R (1985) Estimation of a discriminant function from a mixture of two inverse Gaussian distribu-
tions when sample size is small. J Stat Comput Simul 20(4):275–286

Anderson T (2003) An introduction to multivariate statistical analysis, 3rd edn. Wiley, New York
Balakrishnan N, Leiva V, Sanhueza A, Cabrera E (2009) Mixture inverse Gaussian distributions and its 

transformations, moments and applications. Statistics 43(1):91–104
Batsidis A, Zografos K (2006) Discrimination of observations into one of two elliptic populations based 

on monotone training samples. Metrika 64(2):221–241
Berger JO, Bernardo JM (1989) Estimating a product of means: Bayesian analysis with reference priors. J 

Am Stat Assoc 84(405):200–207
Bernardo JM (1979) Reference posterior distributions for Bayesian inference. J R Stat Soc Ser B Stat 

Methodol 41(2):113–128
Chen M-H, Shao Q-M (1999) Monte Carlo estimation of Bayesian credible and HPD intervals. J Comput 

Graph Stat 8(1):69–92
Chhikara R, Folks J (1989) The inverse Gaussian distribution: theory, methodology and application. Mar-

cel Dekker, New York
Chung H-C, Han C-P (2009) Conditional confidence intervals for classification error rate. Comput Stat 

Data Anal 53(12):4358–4369
Conde D, Fernández M, Salvador B (2005) A classification rule for ordered exponential populations. J 

Stat Plann Inference 135(2):339–356
Cox DR, Reid N (1987) Parameter orthogonality and approximate conditional inference. J R Stat Soc Ser 

B Stat Methodol 49(1):1–18
Datta GS, Ghosh M (1995) Some remarks on noninformative priors. J Am Stat Assoc 90(432):1357–1363
Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algo-

rithm. J R Stat Soc Ser B Stat Methodol 39(1):1–22
Feigl P, Zelen M (1965) Estimation of exponential survival probabilities with concomitant information. 

Biometrics 21(4):826
González-Estrada E, Villaseñor JA (2017) An R package for testing goodness of fit: goft. J Stat Comput 

Simul 88(4):726–751
Gupta RC, Akman HO (1995) Bayes estimation in a mixture inverse Gaussian model. Ann Inst Stat Math 

47(3):493–503
Jana N, Chakraborty A (2023) Estimating error rate of classification into several normal populations 

under equal mean restriction. Commun Stat Simul Comput. https://​doi.​org/​10.​1080/​03610​918.​2023.​
22405​49

Jana N, Kumar S (2019) Ordered classification rules for inverse Gaussian populations with unknown 
parameters. J Stat Comput Simul 89(14):2597–2620

Karlis D (2002) An EM type algorithm for maximum likelihood estimation of the normal–inverse Gauss-
ian distribution. Stat Probab Lett 57(1):43–52

Kim DH, Kang SG, Lee WD (2006) Noninformative priors for linear combinations of the normal means. 
Stat Pap 47(2):249–262

Krishnamoorthy K, Tian L (2008) Inferences on the difference and ratio of the means of two inverse 
Gaussian distributions. J Stat Plann Inference 138(7):2082–2089

Lehmann E, Casella G (2006) Theory of point estimation. Springer, Berlin
Mukerjee R, Reid N (1999) On a property of probability matching priors: matching the alternative cover-

age probabilities. Biometrika 86(2):333–340
Shapiro CM, Beckmann E, Christiansen N, Bitran JD, Kozloff M, Billings AA, Telfer MC (1987) Immu-

nologic status of patients in remission from Hodgkin’s disease and disseminated malignancies. Am 
J Med Sci 293(6):366–370

Shi J-H, Lv J-L (2012) A new generalized -value for testing equality of inverse Gaussian means under 
heterogeneity. Stat Probab Lett 82(1):96–102

Sindhu TN, Khan HM, Hussain Z, Al-Zahrani B (2018) Bayesian inference from the mixture of half-
normal distributions under censoring. J Natl Sci Found 46(4):587–600

https://doi.org/10.1080/03610918.2023.2240549
https://doi.org/10.1080/03610918.2023.2240549


	 A. Chakraborty, N. Jana 

Tian L, Wilding GE (2005) Confidence intervals of the ratio of means of two independent inverse Gauss-
ian distributions. J Stat Plann Inference 133(2):381–386

Tibshirani R (1989) Noninformative priors for one parameter of many. Biometrika 76(3):604–608
Watson AS, Smith RL (1985) An examination of statistical theories for fibrous materials in the light of 

experimental data. J Mater Sci 2(9):3260–3270
Ye R-D, Ma T-F, Wang S-G (2010) Inferences on the common mean of several inverse Gaussian popula-

tions. Comput Stat Data Anal 54(4):906–915

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of such publishing agreement and 
applicable law.


	Bayes estimation of ratio of scale-like parameters for inverse Gaussian distributions and applications to classification
	Abstract
	1 Introduction
	2 Preliminaries
	3 Bayes estimation
	3.1 Noninformative priors for the ratio of scale-like parameters
	3.2 Bayes estimators of function of parameters

	4 Application to classification problem
	4.1 Confidence intervals of ERC
	4.2 Classification into mixture of IG distributions

	5 Numerical results
	5.1 Interval estimation of conditional ERC
	5.2 Estimates of the parameters using EM algorithm
	5.3 Illustrative examples

	6 Conclusions
	Acknowledgements 
	References


