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Abstract
This paper deals with the challenging themes of the way sporting teams and athletes 
are ranked in sports competitions. Starting from the paradigmatic case of soccer, 
we advance a new method for ranking teams in the official national championships 
through computational statistics methods based on Kendall correlations and radar 
charts. In detail, we consider the goals for and against the teams in the individual 
matches as a further source of score assignment beyond the usual win-tie-lose tri-
chotomy. Our approach overcomes some biases in the scoring rules that are cur-
rently employed. The methodological proposal is tested over the relevant case of the 
Italian “Serie A” championships played during 1930–2023.

Keywords  Ranking · Sport statistics · Radar charts · Football

1  Introduction

Sports competitions are often structured in official championships, where individual 
athletes or sporting teams compete to win. In such championships, one has a list 
of matches where the same teams/players play different games under a plethora of 
rules to be respected. In some cases, the team/player losing a match is eliminated 
from the competition—like in Grand Slam tennis tournaments, such as Wimbledon, 
the US Open, the Australian Open, and the French Open, where the winning cup is 

 *	 Raffaele Mattera 
	 raffaele.mattera@uniroma1.it

	 Roy Cerqueti 
	 roy.cerqueti@uniroma1.it

	 Valerio Ficcadenti 
	 ficcadv2@lsbu.ac.uk

1	 Department of Social and Economic Sciences, Sapienza University of Rome, Rome, Italy
2	 GRANEM, University of Angers, Angers, France
3	 School of Business, London South Bank University, London, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s00180-024-01542-w&domain=pdf
http://orcid.org/0000-0001-8770-7049


	 R. Cerqueti et al.

assigned at the final game to one of the last two surviving players. In other cases, all 
the teams/players play the same number of matches, and the winner comes out from 
the outcomes of all the matches—this is the case of football, with the official cham-
pionships of European countries like Serie A in Italy, Premier League in the UK, 
Ligue 1 in France and Campeonato Nacional de Liga de Primera División in Spain. 
In the former case, there is no real need to quantify the performance of the players 
to identify the winner and the other positions in the final ranking—the winner is the 
player who wins the final match, while her/his competitor takes a “silver medal”. In 
the latter case, one has to state some rules that assign a score to the playing teams 
at the end of each match. The analysis of the existing scoring rules and the proposal 
of new criteria—more reasonable, from different perspectives—offers room to carry 
out scientific research at a methodological level but also in the context of applica-
tions, see Sziklai et al. (2022) for an overview on tournaments’ efficacy.

In general, sports statistics is a widely acknowledged field of science (see, e.g. 
Albert and Koning 2007). One of the most famous papers in sports statistics is Reep 
and Benjamin (1968), where the authors analysed more than 2500 football matches 
and found that fewer passes are associated with a higher probability of a goal. This 
paper is the root of the football philosophy of the so-called “long ball system”, 
for which the ball should be kicked over long distances to avoid a high number of 
passes. There was (and still is) a long debate on Reep and Benjamin’s results regard-
ing the presence of some biases in the analysis. From our point of view, debating the 
outcomes of the analysis does not affect the universal validity of Reep and Benja-
min’s research question. Intuitively, statistics in sports might be efficiently exploited 
to advance methods to predict the outcomes of different matches. On this, Baker 
and Scarf (2006) face the case of 20 annual sporting contexts by including the het-
erogeneity of the prediction criteria in their investigation. More recently, Mattera 
(2023) provides a forecasting exercise of football outcomes by employing score-
driven models. Still, in the context of football, Heuer et al. (2010) advance a Poisson 
Process-based model for predicting the outcomes of football matches.

One can deal with the players’ scores and performance from a perspective still 
related to the outcomes. In this respect, Volf (2009) provides a view of the scores 
in sports matches as the realizations of a point process based on the plethora of 
elements surrounding matches and players. Along the same line, Gabel and Red-
ner (2012) deal with the scoring procedure of basketball games and elaborate on a 
random walk-type stochastic process behind the evolution of such a procedure over 
time. According to Volf (2009), Higham et al. (2014) identify the performance indi-
cators for the case of rugby by highlighting their roles in the formation of the scores 
of the teams. Also, Boys and Philipson (2019) discuss the ranking procedures of 
sportsmen in the special context of cricket. A relevant contribution is Sandri et al. 
(2020), where the authors explore game performance variability through Markov 
switching models. In Ausloos (2024), the author offers a new perspective on the way 
the final ranking of cyclist rides should be carried out. The interested reader is also 
signposted to, e.g., Strauss and Arnold (1987), Merritt and Clauset (2014), Miglio-
rati et al. (2023) and references therein contained.

This paper adds and contributes to the literature on scoring procedures with an 
application to the relevant case of football championships. Specifically, we propose 
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a novel method for assigning a score to the teams to identify the winner and the final 
ranking of every season of the considered championship. In doing so, we are close 
to several studies dealing with the analysis of the performance and the scoring pro-
cedures in football matches. We mention Ausloos et al. (2014), where the authors 
deal with the analysis of the structure of the ranking when considering UEFA and 
FIFA championships at a country level. Ausloos (2014) provides a view of the 
football rankings as unified frameworks through a rank-size analysis, with specific 
attention to the illustrative power of the Lavalette law. Ribeiro et al. (2010) build a 
model based on random walks for describing the scores of the soccer leagues. More 
recently and on the same line, Vernon-Carter et al. (2023) present soccer leagues as 
competitive complex systems where competitiveness can be measured through the 
scoring of individual soccer teams. We refer the interested reader also to Glickman 
and Stern (2005), Mendes et al. (2007), Thakkar and Shah (2021), Ficcadenti et al. 
(2023), Cefis and Carpita (2024). The methodological proposal is tested on the para-
digmatic case of all the seasons of the Italian championship, Serie A.

Our starting point is the disappointing evidence that the current rule for Serie A 
admits the existence of special circumstances leading to the mathematical assign-
ment of the winner’s cup to a specific team, disregarding some matches to be played 
to officially end the season. That happens because of simple arithmetic consequences 
in the rule set. Indeed, the rigidity of the score on the basis of the trichotomy win-
tie-lose makes recoveries be impossible when the distance in scores is large enough. 
This often implies a deteriorated level of game qualities in the matches played 
toward the end of the season, when the team that is mathematically the winner of the 
championship season starts losing matches against low-level teams. An example can 
be taken from the 2018–2019 championship. Juventus won the Serie A title with five 
games to spare. They clinched the title on April 20, 2019, after a 2–1 victory over 
Fiorentina, which put them 20 points clear of their closest challengers at the time, 
Napoli, with only 15 points left to play for. This significant points gap made it math-
ematically impossible for any other team to catch up with Juventus in the season’s 
remaining fixtures.

Following this victory, the matches that Juventus played for the rest of the sea-
son lacked the same competitive edge, at least from their perspective, as the title 
was already secured. They tied against Internazionale, Torino and Atalanta and lost 
against Roma first and Sampdoria later. This situation illustrates the potential down-
side of having a team win the league so early: the intensity and competitive nature 
of their remaining matches can diminish, potentially affecting the overall quality of 
the league’s competition towards the end of the season. While Juventus continued to 
compete professionally, the urgency and high stakes associated with their matches 
were notably reduced, aligning with the concerns expressed about the impact of 
early championship wins on the quality of the game.

We hypothesize a novel scoring rule for which scored and conceded goals play 
a relevant role in determining the final ranking of the considered championship 
season. In so doing, we are not far from Cerqueti et  al. (2022), where there is an 
application on football data to rank teams according to their goals. The following 
approach is of data science-computational type. We consider the sample of all the 
Italian Serie A championship seasons, from 1929–1930 to 2022–2023, with specific 
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reference to the official final rankings of the teams. We then implement a four-step 
procedure based on a combination of Kendall � and radar charts. The procedure 
leads to what we call New Rankings of the seasons, which are grounded on a differ-
ent way to assign the scores to the teams also including the goals—hence, removing 
or reducing the cases of mathematical certainty of being the winner well-before the 
end of the championship. The approach is quite close to Gorgi et al. (2023), where 
the authors advance a pair of comparison methods for reconstructing the rankings 
of the football championships in the presence of forced interruption. This is par-
ticularly relevant in that there has been evidence of different cases of interrupted 
championship—the most recent one being linked to the COVID-19 pandemic. How-
ever, the quoted paper uses Kendall � only to test the proposed framework’s validity. 
Differently, we here base the analysis on such a statistical correlation measure along 
with a radar chart-based evaluation of the multidimensional performance of specific 
entities—the seasons of the considered championship, in our case.

The paper is organized as follows. Section  2 describes the considered dataset. 
Section  3 presents the methodology used for dealing with the data, outlining the 
four-steps procedure used to obtain the New Rankings. Section 4 collects the main 
results of the analysis, along with some related discussions. The last section offers 
some conclusive remarks and traces lines of future research.

2 � Data

This study utilises a comprehensive dataset encompassing the outcomes of foot-
ball matches from the Italian Serie A championship, spanning from its inception, 
1929–1930, to the present day, amounting to M = 90 seasons.1 For brevity, we 
refer to the seasons by mentioning only the related last year, so that e.g. 1929–1930 
becomes 1930 for us.

The summary statistics of the dataset in Table A1 offers a glimpse into the vol-
ume and nature of the data analysed. These statistics encompass various metrics to 
understand football dynamics, including the number of goals scored by home and 
away teams (“Goals For” identified with GF and “Goals Against” with GA), points 
accumulated throughout the season, and the number of wins, draws, and losses. The 
dataset comprises records from the 1930 season of Serie A, totalling 34 matches, to 
the 2023 season, with 38 matches played. For each match, the dataset records the 
date, the teams involved, the goals scored by each team, and the final result (win, 
draw, or loss), allowing for a detailed examination of team performances at the sea-
son level and the evolution of the championship over time.

In addition to the standard metrics, we have developed rankings based on GF and 
GA each season, identified by the variables GFr and GAr , respectively. These rank-
ings provide an alternative perspective on team performance at the end of the season, 
emphasizing, for example, offensive and defensive capabilities beyond the traditional 
league standings.

1  A simple counting of the years between 1929 and 2023 (last ended season) would not work because of 
the Championship suspensions occurred during the second world war and the COVID-19 pandemic.
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In preparing the data for analysis, several preprocessing steps were undertaken 
to ensure the dataset was fit for purpose. These steps included verifying and cor-
recting match outcomes, normalising team names to account for historical changes, 
and identifying and treating any missing or incomplete records. Finally, only official 
rankings (including penalties applied by authorities), GF and GA were employed to 
serve as the primary basis for our analysis. Developing rankings based on GF and 
GA for each season involved taking the total number of goals scored by and against 
each team, allowing us to derive GFr and GAr . This approach offers a nuanced view 
of team strategy and performance, fitting the objective of our study and comple-
menting the official league standings with metrics highlighting each team’s offen-
sive and defensive strengths.

3 � Methodology

This section illustrates the four steps of the procedure for achieving the New Rank-
ings for the Italian Serie A championship seasons. First, we consider the unofficial 
rankings with teams ordered on the basis of the scored goals or, simply, Goals For 
(in decreasing order, so that rank=1 is associated with the team with the highest 
number of scored goals in the championship season) and conceded goals or, simply, 
Goals Against (in increasing order, so that rank=1 is assigned to the team with the 
lowest number of conceded goals). Thus, we have three rankings for each season 
on the same set of teams. Second, we compute the Kendall � of all the possible 
couples of rankings, hence obtaining three values of the Kendall � for each season. 
Third, we build a radar chart for each season, whose axes are associated with the 
three Kendall values. Therefore, a triangle describes each championship season. We 
compute the area of the obtained triangles, and then we suitably normalise it so that 
the areas range from 0 (case of all Kendall � equals − 1) to 1 (case of all Kendall � 
equals + 1). The areas of the triangles represent the target (normalised) Kendall � . 
Fourth, we detect rankings with a target Kendall � correlation with the official one. 
The obtained rankings are the New Rankings. As we will see soon, the New Rank-
ings are often far from the official ones.

We enter the details.

3.1 � Kendall � correlation analysis

The association between official team rankings and goal metrics (GF and GA) is 
achieved through Kendall � correlation analysis. The � correlation coefficient meas-
ures the strength and direction of the association between two ranked variables. It is 
defined as:

where n is the number of observations, xi and xj are the ranks of the i-th and j-th 
observations for the first variable, and yi and yj are the ranks of i and j for the second 

(1)𝜏 =
2

n(n − 1)

∑

i<j

sign(xi − xj) ⋅ sign(yi − yj)
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variable. The sign function, sign(⋅) , returns −1 , 0, or 1 depending on the sign of its 
argument.

In our case, we use the �b variant, Kendall (1945). Such a coefficient is a measure 
of association based on the ranks of the data and is adjusted for ties. We point out 
that ties occur when two or more items have the same rank. The formula defines it:

being P and Q the number of concordant and discordant pairs, respectively and T 
and U the number of ties only in x and y, respectively. If a tie is registered for the 
same couple in x and y, such a tie is not considered for the value of T and U.

The �b coefficient accounts for ties by adjusting the denominator to reflect the 
number of tied ranks, which can affect the distribution of concordant and discord-
ant pairs. This adjustment makes �b a more accurate reflection of the association 
between two variables when ties are present in the data. In datasets where ties are 
common—as in our case2—�b offers a more reliable correlation estimate than the 
standard Kendall � coefficient, which does not adjust for ties.

This coefficient is computed for each season to analyse the relationships between 
the official rankings (Rank) and the rankings based on goals for ( GFr ) and goals 
against ( GAr ), as well as the relationship between GFr and GAr themselves. It is 
worth recalling that in our data, the ties can be met only in GFr and GAr , as the offi-
cial ranking is built on a set of rules that avoid the presence of ties. Table 1 reports a 
summary of the instances considered, and Fig. 1 shows correlations over time.

The Kendall correlation coefficients are computed using Python, leveraging the 
scipy.stats.kendalltau function for correlation analysis. As we will appre-
ciate when we introduce the radar charts, a normalization process is needed to use 
the correlations smoothly to form the areas. Such a normalization procedure adjusts 
the correlation values to a [0, 1] scale centred at 0.5, allowing for a consistent geo-
metric interpretation across different years. The normalisation formula applied to 
each tau correlation coefficient, denoted as �b , is defined as follows:

Here, �b;N represents the normalised correlation coefficient. By adding 1 to the origi-
nal correlation coefficient �b , the new range starts from 0 (previously −1 ) to 2 (pre-
viously 1). Dividing this result by 2 adjusts the scale to range from 0 to 1. If the 
quantity �b;N in (3) has a value of 0.5, then we do not have correlation; values closer 
to 1 indicate a strong positive correlation, while values closer to 0 suggest a strong 
negative correlation.

To facilitate the understanding of the steps, we report in Table 2 a snapshot of the 
1939 and 2023 cases, being chosen as explicative instances; in Table 3 one can see 
the rank correlations and their respective normalisation.

(2)�b =
P − Q

√
(P + Q + T)(P + Q + U)

(3)�b;N =
�b + 1

2

2  We use the Dense Ranking Method, namely elements with the score receive the same rank.
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3.2 � Mapping correlations into radar charts

In the analysis, the normalised correlation coefficients for each year are represented 
geometrically, forming triangles that encapsulate the relationship among differ-
ent performance metrics. The triangles are constructed as radar charts, by plotting 
points on axes that extend from a central point, with each axis representing one of 
the analysis types. The process is described as follows: 

1.	 For each year under analysis, the normalised correlation coefficients ( �b;N ) for 
the selected metrics are retrieved. These coefficients range from 0 to 1, and are 
centred at 0.5.

2.	 Angles for the vertices of the triangles are calculated to distribute the analysed 
couples of metrics around a centre evenly. This is achieved using the formula: 

(4)�h = 2�
h

n

Table 1   Summary of the pairwise rank-correlation analyses

Analysis pair Explanation

GF
r
 versus GA

r
Correlation between ranks based on goals for ( GF

r
 ) and goals against ( GA

r
)

Rank versus GF
r

Official rank correlation with ranks based on goals for ( GF
r
)

Rank versus GA
r

Official rank correlation with ranks based on goals against ( GA
r
)

Fig. 1   The different correlation analyses are reported over the seasons. We use the non normalised ver-
sion of the Kendall tau in formula (2). Rank is the official ranking, GAr is the ranking when “Goals 
Against” is considered, and GFr indicates the ranking when “Goals For” is considered
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 where �h represents the angle for the h-th vertex, n is the total number of analy-
sis types, and h ranges from 0 to n − 1 . In our context, the three angles in radi-
ants are 0, 2.09 and 4.18.

3.	 Each correlation coefficient is then used as a point on its respective axis, deter-
mined by the corresponding angle �h.

Table 2   Table of the values of 
the considered variables and 
rankings for the championship’s 
seasons ended in 1939 and 2023

Data Rank Team Pt GF GA GF
r

GA
r

2023 1 Napoli 90 77 28 1 1
2023 2 Lazio 74 60 30 5 2
2023 3 Inter 72 71 42 2 6
2023 4 Milan 70 64 43 4 7
2023 5 Atalanta 64 66 48 3 9
2023 6 Roma 63 50 38 8 4
2023 7 Juventus 62 56 33 6 3
2023 8 Fiorentina 56 53 43 7 7
2023 9 Bologna 54 53 49 7 10
2023 10 Torino 53 42 41 11 5
2023 11 Monza 52 48 52 9 11
2023 12 Udinese 46 47 48 10 9
2023 13 Sassuolo 45 47 61 10 13
2023 14 Empoli 43 37 49 12 10
2023 15 Salernitana 42 48 62 9 14
2023 16 Lecce 36 33 46 14 8
2023 17 Verona 31 31 59 15 12
2023 18 Spezia 31 31 62 15 14
2023 19 Cremonese 27 36 69 13 15
2023 20 Sampdoria 19 24 71 16 16
1939 1 Bologna 42 53 31 2 3
1939 2 Torino 38 45 34 3 5
1939 3 Inter 37 55 37 1 7
1939 4 Genova 35 53 30 2 2
1939 5 Roma 31 39 35 5 6
1939 6 Liguria 31 35 34 7 5
1939 7 Napoli 31 30 35 11 6
1939 8 Juventus 29 28 34 12 5
1939 9 Milano 28 36 34 6 5
1939 10 Lazio 28 33 40 8 8
1939 11 Bari 27 33 46 8 9
1939 12 Novara 26 27 32 13 4
1939 13 Modena 25 32 40 9 8
1939 14 Triestina 24 23 28 14 1
1939 15 Livorno 24 40 49 4 10
1939 16 Lucchese 24 31 54 10 11



Kendall correlations and radar charts to include goals for…

4.	 The points are connected in sequence, forming a closed shape that, in the context 
of this analysis, is a triangle; one gets three vertexes thanks to the three types of 
analyses considered. See Fig. 2, where the examples of 1939 and 2023 cases are 
reported on the basis of the data presented in Table 3.

3.3 � Area calculation from the resulting triangles and correlation target

The area of each triangle described above is calculated to quantify the combined 
strength of the correlations. Given the vertices positioned at angles �1 , �2 , and �3 
with their respective normalised correlation coefficients, the Cartesian coordinates 
for each vertex are determined by:

where �
(h)

b;N
 is the normalised correlation coefficient for vertex h, and 

shiftx = shifty = 10 and used to ensure all points are positioned in the positive quad-
rant to simplify the area calculation.

The area of a triangle formed by the three points representing the considered nor-
malised correlations is calculated, to provide a geometric representation of these 
correlations. Given the vertices coordinates (x1, y1) , (x2, y2) , and (x3, y3) , the area (A) 
of the triangle is given by:

The procedure of computing A is implemented to each of the M = 90 seasons con-
sidered in our dataset. An example of the calculations can be found in Table 4 for 
the cases 1930 and 2023.

A time series version of the calculated areas can be found in Fig. 3, where there is 
a clear view of the time-evolution of the considered areas.

We then hypothesise that the area of the triangles represents the (normalised) 
Kendall correlation targets of the New Rankings with the official ranks. So, consid-
ering goals for and against would give a ranking of the teams whose correlation with 
the official one is the area of the triangle of the related radar chart.

(5)xh = �
(h)

b;N
cos(�h) + shiftx

(6)yh = �
(h)

b;N
sin(�h) + shifty

(7)A =
1

2
|
|x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2)

|
|

Table 3   Table of the normalised 
and non-normalised correlations 
for the analysis of the 
championship’s seasons ended 
in 1939 and 2023

Year Analysis type �
b

�
b;N

1939 Rank versus GF
r

0.538 0.769
1939 Rank versus GA

r
0.345 0.673

1939 GF
r
 versus GA

r
−0.017 0.491

2023 Rank versus GF
r

0.809 0.904
2023 Rank versus GA

r
0.713 0.856

2023 GF
r
 versus GA

r
0.538 0.769
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Fig. 2   The vertices are suitably labelled, and the area of the triangle is shaded to visually represent the 
correlations’ magnitude. The radial grid lines are set at intervals of 0.1 to indicate the scale of the nor-
malised correlation (according to Formula 3), ranging from negative correlation (zero in the graph) to 
perfect positive correlation (one in the graph). The shaded areas, calculated from the triangles formed by 
these correlations, provide a quantitative measure of the combined correlation strength among attributes 
for each year, in the graph being 1939 and 2023

Table 4   Angles, normalised 
correlations, coordinates of the 
vertices of the triangles and 
resulting areas for the seasons 
1939 and 2023

1939 2023

�
1

0.000 0.000
�
2

2.094 2.094
�
3

4.189 4.189
GF

r
 versus GA

r
0.491 0.769

Rank versus GA
r

0.673 0.856
Rank versus GF

r
0.769 0.904

x1 10.491 10.769
x2 9.664 9.572
x3 9.616 9.548
y1 10.000 10.000
y2 10.582 10.742
y3 9.334 9.217
Area 0.531 0.921
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3.4 � Finding the new rankings

This section contains the computational strategy devised to discover alternative 
ranking systems that may more accurately reflect football championships’ dynamics 
and a performance-centric nature in the final rankings. The goal is to pinpoint per-
mutations of team rankings yielding Kendall �b correlations that match the geomet-
ric areas previously calculated with Eq. (7), suggesting a ranking better-representing 
team performance throughout the seasons.

3.4.1 � Generating permutations and calculating Kendall’s tau correlations

For a given number of teams, n , in the football championship (indicated in Table A1 
as “N. Teams”), we embark on a systematic generation of permutations to simulate 
the possible teams’ positions in the final ranking, therefore simulating various pos-
sible seasons’ outcomes. Owing to computational constraints and the n! increasing 
number of permutations with n , our exploration is confined to a select subset of per-
mutations. In this way, we can still show here to what extent the official rankings are 
affected by the partially missed account of “Goal For” and “Goal Against”. Specifi-
cally, we run the first 362,880 permutations for the 2023 case. Such a threshold is 
based on system capabilities and the aspiration to encompass a broad spectrum of 
potential rankings.

Within each permutation, we compute Kendall �b , with respect to the original 
ranking sequence using Eq. (2). As already said, Kendall’s tau is a measure used to 
ascertain the ordinal association between two quantities.

Fig. 3   The areas calculated with Eq. (7). Each point represents a season
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One should use the original sequence of numbers between 1 and n for each sea-
son against the permuted sequence of the same set of numbers. The permuted series 
should be ordered according to the lexicographic criterion to simplify the process. 
This computation yields a distribution of �b values formed by the correlations asso-
ciated with all the possible permutations. The target �b associated with a given per-
mutation illustrates the degree of correlation of such a permutation with the origi-
nal team ranking. Such a permutation of the original ranking can be viewed as the 
outcome of a championship where the teams are ranked according to the permuted 
ranking. To illustrate this statement, we refer to Fig. 4, where 362,880 permutations 
are evaluated with different values of n. This exemplifies the idea of having cham-
pionships of n teams whose rankings are shuffled and compared to the original one, 
which is assumed to be (1,… , n).

3.4.2 � Identifying the optimal permutations

At the heart of our analysis lies the quest for permutations that realise Kendall cor-
relation aligned with the target �b values stemming from the geometric correla-
tion analysis. For each season, we may have different n ∈ 16, 18, 20, 21 , as can be 
grasped from Table A1. The procedure is as follows: 

1.	 We extract the target �b values from the preceding geometric analysis for the year 
as the area of the triangle/radar chart. We transform the various As in a �bs.

2.	 We calculate the absolute difference between each �b target and the various � (j)
b

 
resulting from comparing each permutation with the target, where j is the index 
of permutation.

3.	 We isolate permutations whose � (j)
b

 values are nearest to the target �b , implement-
ing a tolerance threshold to facilitate a significant comparison. This tolerance is 
derived from the rounded (to the third decimal digit) interval between consecu-
tive lexicographically ordered permutations � (1)

b
− �

(2)

b
 values in our permutation 

analysis, accommodating the inherent variability in the dataset; in fact, in this 
way, it depends on the n! possible operations.

This methodology empowers us to single out some permutations (i.e., hypothetical 
rankings accounting for GA and GF) that most accurately conform to the theoreti-
cal ideals elucidated by our prior analysis. These optimal permutations shed light 
on alternative ranking methodologies that more faithfully mirror team performances 
and the competitive dynamics across the football season.

Fig. 4   Variations in Kendall’s �(j)
b

 correlation with permutation Index (j) for different sample sizes (n): 
This figure illustrates how the correlation coefficients change as a function of permutation index, when 
permutations are in lexicographic order, across various sample sizes. Each subplot represents a differ-
ent value of n, with red dashed lines marking factorial milestones to highlight significant permutations. 
Annotations indicate the factorial values of the first integers ( 362, 000 = 9! ), providing insights into cor-
relation trends and permutation complexity as n increases

▸
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3.4.3 � Implementation and challenges

The implementation was conducted using Python, with the assistance of libraries 
such as itertools for permutation generation, scipy for statistical computa-
tions, and pandas for data handling. This computational framework facilitated a 
thorough exploration of ranking permutations against predefined criteria, offering a 
fresh perspective on the assessment of football championships.

A significant challenge in this process is the identification of all the permutations 
that match Kendall �b target correlations, resulting in the target areas obtained from the 
triangle’s geometric analysis, driving the problem to something computationally chal-
lenging. In fact, to find the best permutations that meet the case of n = 21 , one has to 
explore potentially 21! possibilities, which are evidently complex and expensive.

4 � Results and discussion

This section elaborates on the outcomes derived from our methodological framework 
and discusses their implications within the realm of football analytics, specifically in 
the context of Serie A. The analysis provides insightful revelations about team per-
formance dynamics and proposes a novel perspective on ranking methodologies.

Our geometric representation of team performances allows a different view of 
the Serie A history and is illustrated in Fig. 3. It unveils a trend where the last ten 
seasons exhibit a distinguishable pattern. This observation suggests a shift towards 
more balanced team strategies, aiming to optimise both offensive and defensive 
plays (see Okada and Takagi 2008, on the impact of various strategies on GA and 
GF). The gap between the calculated areas and the ideal scenario (Area = 1) quanti-
fies the extent to which the official rankings might overlook the intricate balance 
between goals scored (GF) and goals conceded (GA) when accounting for more 
granular teams’ performance in forming the final ranking.

The transformation of these areas into target Kendall �b coefficients provides a foun-
dation for empirical analysis. As depicted in Fig. 5, the majority of seasons align posi-
tively with the official rankings, indicating a generally robust system but not completely 
accounting for GA and GF. Anomalies identified in the negative range (1943, 1956, 
1957) call for a closer examination of those particular seasons and potentially underline 
the need for a refined ranking mechanism that better captures team performance nuances.

Our exploration into the New Rankings, facilitated by the examination of permu-
tations and Kendall �b correlations, highlights the potential for alternative standings 
that deviate significantly from the official rankings. As shown in Fig.  6 for 2023, 
incorporating goals scored and conceded into the rankings can result in substantial 
shifts in team positions. This variability underscores the impact of evaluating team 
performances beyond mere wins, draws, and losses, advocating for a more granu-
lar approach to ranking that acknowledges the multifaceted nature of football com-
petitions. The case presented in Fig.  6 is already meaningful even if the number 
of iterations tested stops at 362,880, and to complete the exercise, one should have 
gone to 20!, as 20 were the team competing. Another way to observe the impact of 
targeting a level of Kendall �b that ensures capturing a more comprehensive set of 
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features into the ranking is proved by Fig. 7. Such a figure contains the Kendall �b 
in the cases of inversion of the first f elements as well as of the l last elements of the 
rankings. We take n ranging from 10 to 30 to include the cases of interest for the 
analysed championships. For example, if f = 5 and n = 10 , we have the “reverted” 
ranking (5, 4, 3, 2, 1, 6, 7, 8, 9, 10) and when l = 5 and n = 10 , we have (1, 2, 3, 4, 
5, 10, 9, 8, 7, 6). One can notice that in the case of n = 16 teams playing in a cham-
pionship, the inversion of the ranking for the last l = 4 teams in the ranking means 
pursuing a target Kendall �b of 0.9, indicating that with very little variations on the 
ranking system, teams may or may not face a relegation. This explains the impact of 
the inversion well when GF and GA are taken into full consideration.

By arranging team permutations in lexicographical order, we systematically 
explore variations from the initial ranking, incrementally adjusting team positions. 
In Fig. 4, the permutation index j is plotted along the x-axis, and the corresponding 
Kendall’s tau correlation coefficient, � (j)

b
 , is plotted along the y-axis. This arrange-

ment reveals a pattern of regular fluctuations in � (j)
b

 values, manifesting as seasonal 
cycles across the permutation index. We argue that the number of solutions depends 
on the target correlation. The extreme cases of �b = −1 or �b = 1 are associated with 
singular solutions to the problem – for � = −1 being the complete reversion of the 
ranking, while for �b = 1 being the original series itself. More specifically, �b = 1 
is the perfect agreement with the official ranking, representing a scenario where 
the permutation does not alter the original team order, highlighting the unique case 
where the equivalence class contains only the official ranking itself. If one slightly 

Fig. 5   Histogram of the resulting �b obtained from mapping the areas back to the [− 1,1] correlation 
range along the Italian Serie A history, 1930–2023



	 R. Cerqueti et al.

modifies these two corner cases, the number of solutions that lead to the target case 
increases as one approaches a target �b = 0 for the definition of Kendall correlation.

The cycles presented in Fig. 4 reflect the comprehensive range of permutations 
explored, with the length of each cycle corresponding to the total number of teams 
involved; for instance, with 18 teams, the permutation space, and hence the cycle 
length, expands to 18!. Due to computational constraints, the analysis presented in 
the figure samples only a fraction of the total permutation space.

This cyclical pattern underscores that multiple permutations yield identical Ken-
dall �b correlations, indicating that multiple rankings could feasibly represent the 
data with equivalent statistical validity. Thus, as already said above, a specific �b 
value may correspond to a set of rankings rather than a single, unique order. This set 
forms an equivalence class, each member sharing the same Kendall �b correlation 
with the official ranking. The diversity within these classes illustrates the potential 
for alternative interpretations of team performance and rankings.

5 � Concluding remarks

This study embarked on a novel exploration of Serie A football championship rank-
ings by introducing a comprehensive methodology that integrates geometric analysis 
with Kendall’s �b correlation coefficients. Through this approach, we scrutinised the 

Fig. 6   In this box plot, the results for the 2023 season are reported. The target correlation is 
�b = 0.842962 and the optimal correlation is � j

b
= 0.842105 with j taking some opportune values in the 

set {0,… , 362880} , being 362,880 the number of permutation tested in this case when the generated 
permutations are stored in lexicographic order. The whiskers of each box represent respectively min and 
max ranking obtained in the considered permutations to meet the target correlations. The vertical line 
that splits the box in two is the median obtained from the raking obtained for that position (y-axis) and 
the left and right sides of the box are the 25-th and 75-th percentile of ranks assigned to that ranking 
position. When there is a single bar, like for cases 1, … ,11, it means that no changes has been recorded. 
It is worth recalling that here 362880 permutations are considered over 20! that should have been 
explored to complete the plot
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alignment between official team rankings and those derived from goals scored and 
conceded, as well as with the official rankings, unveiling the potential for alternative 
rankings that might offer a deeper insight into team performance dynamics.

Our findings reveal that while the performance metrics-based rankings (here 
being Goals For and Against, GF and GA) broadly align with the official ranking 
system, there are distinct seasons where alternative ranking methodologies could 
provide a more nuanced understanding of team capabilities. Introducing a geomet-
ric representation to visualise the relationship between different ranking metrics 
not only enriches our analytical toolkit but also highlights the multifaceted nature 
of football competitions, where outcomes are influenced by a complex interplay of 
offensive and defensive strategies mirrored in the GA and GF-based rankings, here 
indicated with GAr and GFr respectively.

Furthermore, identifying equivalence classes among rankings underscores the 
notion that multiple valid perspectives can exist regarding team performance, chal-
lenging the singular narrative often presented by official standings. This observation 
invites a broader discussion on the criteria and metrics used to assess and compare 

Fig. 7   The x-axis has ticks indicating that the Kendal Tau correlation reported in the cells is calculated 
comparing the original series 1,2,...,n (y-axis) with the series where the first (‘f.’) or the last (’l’) k ele-
ments have been permuted, inverting their order. For example, when n = 10 , for “f. 2 inv.”, the value 0.96 
is obtained by applying Formula (2) to the series (1,2,3,4,5,6,7,8,9,10) and (2,1,3,4,5,6,7,8,9,10)
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teams, suggesting that there is room for innovation in ranking methodologies that 
more accurately reflect the competitive landscape of Serie A football.

5.1 � Implications for stakeholders

For stakeholders in the football community-ranging from team management and 
coaches to analysts and fans-our study offers a fresh lens through which to evalu-
ate team performance. By considering alternative rankings, stakeholders can bet-
ter understand a team’s strengths and weaknesses, guiding strategic decisions from 
player development to game tactics. That certainly does not come to question the 
official outcome of a season winner, but more to award different teams because of 
their outstanding defensive tactics or aggressive ones manifested in GA or GF, also 
addressing some challenges described in Sziklai et al. (2022).

5.2 � Limitations and future research

While our study contributes valuable insights into football ranking systems, it is not with-
out limitations. The computational complexity of analysing all possible permutations 
of team rankings poses a challenge, necessitating further methodological innovations to 
explore the full permutation space efficiently. In particular, the application of suitably 
defined heuristics for reducing the cardinality of the set of permutations as n grows is a 
possible way to let the problem be tractable, no doubt. This opens the gate to more opera-
tional research-oriented studies—that are out of the scope of the present paper.

Additionally, our focus on Serie A limits the generalizability of our findings. 
Future research could extend this methodology to other leagues and sports, examin-
ing the universality of our observations across different competitive contexts and 
combining it with existing methods such as Sum of Ranking Differences, presented 
in Sziklai and Héberger (2020).

Moreover, incorporating other performance metrics (in fact, the axis on the radar 
charts can be more than three), such as aggregated player statistics or situational 
variables (e.g., weather conditions during matches), could enhance the robustness 
and relevance of alternative ranking systems.

5.3 � Final thoughts

In conclusion, our study enlightens the potential for alternative perspectives in eval-
uating football team performances, inviting a reconsideration of conventional rank-
ing systems. As we continue to navigate the rich and evolving landscape of sports 
analytics, the pursuit of more sophisticated and representative methodologies for 
assessing team success remains a compelling and worthwhile endeavour.

Appendix

See Table A1.
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