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Abstract
Meta-analysis is an important statistical technique for synthesizing the results of 
multiple studies regarding the same or closely related research question. So-called 
meta-regression extends meta-analysis models by accounting for study-level covari-
ates. Mixed-effects meta-regression models provide a powerful tool for evidence 
synthesis, by appropriately accounting for between-study heterogeneity. In fact, 
modelling the study effect in terms of random effects and moderators not only 
allows to examine the impact of the moderators, but often leads to more accurate 
estimates of the involved parameters. Nevertheless, due to the often small number of 
studies on a specific research topic, interactions are often neglected in meta-regres-
sion. In this work we consider the research questions (i) how moderator interactions 
influence inference in mixed-effects meta-regression models and (ii) whether some 
inference methods are more reliable than others. Here we review robust methods 
for confidence intervals in meta-regression models including interaction effects. 
These methods are based on the application of robust sandwich estimators of Har-
tung-Knapp-Sidik-Jonkman (HKSJ) or heteroscedasticity-consistent (HC)-type 
for estimating the variance-covariance matrix of the vector of model coefficients. 
Furthermore, we compare different versions of these robust estimators in an exten-
sive simulation study. We thereby investigate coverage and width of seven differ-
ent confidence intervals under varying conditions. Our simulation study shows that 
the coverage rates as well as the interval widths of the parameter estimates are only 
slightly affected by adjustment of the parameters. It also turned out that using the 
Satterthwaite approximation for the degrees of freedom seems to be advantageous 
for accurate coverage rates. In addition, different to previous analyses for simpler 
models, the HKSJ-estimator shows a worse performance in this more complex set-
ting compared to some of the HC-estimators.
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1 Introduction

Meta-analysis is a statistical technique that combines the results of multiple stud-
ies to arrive at a single, more precise estimate of the effect size of a particular 
intervention or treatment. It aims to provide a comprehensive and quantitative 
summary of the available evidence on a particular topic, taking into account the 
heterogeneity of the studies and the sample sizes. By pooling the data from mul-
tiple studies, meta-analysis can increase the statistical power and accuracy of the 
results, and provide a more robust understanding of the effects of an interven-
tion. This statistical technique is routinely applied in different areas of research, 
such as biology, medicine or psychology. In meta-regression, study-level covari-
ates or moderators, which may influence the observed outcome in the respective 
study, are accounted for. A meta-regression combines the advantages of a linear 
regression model and a meta-analysis. On the one hand information from differ-
ent studies is taken into account. On the other hand one is able to test not only for 
an overall effect, which is the case for most meta analyses, but also on effects of 
relevant study characteristics. The characteristics are used as study-level covar-
iates and often called moderators. In contrast to a usual regression model, the 
mixed-effects model assumes that the estimated treatment effect is influenced by 
two different types of uncertainty: First, the estimated effect of a single study is 
assumed to be different from the studies’ true effect by a random error. Second, 
the analyzed studies are assumed to have different true effects caused by differ-
ences between the studies, the so called between-study heterogeneity. Therefore, 
the treatment effects of the studies differ from the treatment effect for the entire 
population. It is important to account for this additional variation when confi-
dence intervals (CIs) of moderators are calculated (Raudenbush 2009).

A simulation study by Viechtbauer et al. (2015) showed that the type I error 
rate could be adequately controlled by using the Hartung-Knapp-Sidik-Jonkmann 
( HKSJ ) method and permutation tests. Due to their computational extensive-
ness and the focus on CIs in this study, permutation tests are not considered here. 
However, Viechtbauer et al. (2015) also showed that when heterogeneity is pre-
sent, the choice of estimator for the covariance of the vector of model coefficients 
has a large impact on test results. More specifically, in a model with only one 
moderator large differences in Type 1 error rates and the power of t-type tests 
were determined. Amongst others, tests based on a heteroscedasticity consist-
ent ( HC ) estimate of the covariance matrix introduced by White (1980) and a 
modified covariance matrix estimate ( HKSJ ) introduced by Knapp and Hartung 
(2003) (and also Sidik and Jonkman (2005b)) were considered. The HC estimate 
is an established approach in econometrics, but not commonly applied in meta-
analysis, in particular when used in medical research. Because of its structure, 
it is also known as a sandwich estimator and is used for robust inference. The 
HKSJ estimate is common in meta-analyses applied in medicine. It performed 
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well in a meta-analytic context in previous research (Viechtbauer et  al. 2015; 
Welz and Pauly 2020; Welz et  al. 2022; Sidik and Jonkman 2005a, 2006). In 
Viechtbauer et  al. (2015) simulation study, tests based on HC estimators ( HC0 
and HC1 ) turned out to be too liberal. In contrast, the test based on the HKSJ 
estimate performed the best among all considered tests. Since their results are 
limited to special settings, Viechtbauer et al. (2015) suggested additional future 
simulation studies that consider, e.g., non-normal random effects, multiple covar-
iates with multicollinearity and coverage probability of coefficients’ CIs. Welz 
and Pauly (2020) extended their research by comparing tests on the significance 
of the moderator based on six different versions of White’s covariance matrix 
estimator and the Hartung-Knapp-Sidik-Jonkman variance-covariance matrix 
estimator for several random effect distributions. The six heteroscedasticity con-
sistent covariance estimators are known as HC0,… ,HC5 . The main difference 
between these different versions is how they transform the model residuals by 
discounting the observations’ leverages (Cribari-Neto et al. 2007; Welz and Pauly 
2020). In regression, leverage is a measure for how far away the covariate values 
of an observation are from those of the other observations. The newer HC esti-
mators discount the leverages more strongly than earlier version. In a simulation 
study Welz and Pauly (2020) also found the HKSJ based tests to perform the 
best compared to the HC estimators. Amongst the HC estimators the HC3 −HC5 
based tests controlled the nominal significance level well and had power close to 
the HKSJ based tests for larger number of studies. The distribution of the random 
effect turned out to have almost no effect on the results (Welz and Pauly 2020). 
The HKSJ was already compared to the HC2 in simulation studies, e.g. by Sidik 
and Jonkman (2005a, 2006). The results were in accordance with the findings of 
Welz and Pauly (2020).

In a recent meta-analysis, including meta-regression analyses, Kimmoun et  al. 
(2021) analyzed mortality and readmission to hospital after acute heart failure. They 
found a statistically significant decline of death rates over calendar time. However, 
the median year of recruitment was correlated with the average age of the patients. 
This suggests that the observed trend might be explained by a neglected interaction 
of those variables. In fact, Knop et al. (2023) showed in a re-analysis of the above 
mentioned data that it is vitally important to account for confounding and interaction 
effects, when making inference based on meta-regression with multiple modera-
tors. Note that the importance of investigating interactions in meta-regression was 
already acknowledged by Li et al. (2017).

Motivated by this meta-analysis, the current paper extends the research of Welz 
and Pauly (2020) in two directions. Firstly, two moderators and, based on the impor-
tant findings in Knop et al. (2023), their interaction term are modelled. Modelling 
interactions is required in  situations where not only the influence of a moderator 
itself is of interest but its influence in the presence of other factors. Interactions 
are also helpful to assess the circumstances under which the influences of certain 
moderators on the estimated effect size are stronger or weaker (Aiken et al. 1991). 
Although modelling interaction terms is useful in providing additional insights, they 
are often neglected in meta-regression. However, neglecting existing interactions 
may dramatically alter conclusions drawn from quantitative research synthesis, as 
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seen in a recent data analysis from acute heart failure research (Knop et al. 2023). 
Secondly, CIs are considered instead of hypothesis tests, since CIs can be interpreted 
more easily, as they also state the involved estimation uncertainty. The equivalence 
theorem between statistical tests and CIs ensures that the results of this study have 
direct implications on the behaviour of corresponding two-sided t-tests. In addition, 
focusing on CIs is also in line with the ICH E9 guidelines that specifically propagate 
the use of confidence intervals (“Estimates of treatment effects should be accompa-
nied by confidence intervals, whenever possible [...]”, see Section 5.5. therein).

The methodological aim of this work is to determine the performance of confi-
dence intervals based on the seven covariance estimators HC0 −HC5 and HKSJ 
in extensive simulations. On the one hand, it is investigated whether the confidence 
intervals of a single moderator’s coefficient perform different in presence of an inter-
action. On the other hand, confidence intervals for the interaction coefficient itself 
are considered. For these more complex models it is of interest whether the estima-
tors have the same properties as in the univariate model. Furthermore, we check 
how introducing non-normal distributions for the random effects influences results, 
similar to Welz and Pauly (2020).

In Sect.  2 we introduce the relevant methods, starting with the mixed-effects 
meta-regression model in Sect. 2.1, followed by weighted least squares (WLS) esti-
mation in Sect. 2.2 and different estimators for the variance-covariance matrix of the 
estimated vector of coefficients in Sect. 2.3. In Sect. 3 we describe the design and 
results of our extensive simulation study and provide recommendations for practical 
applications. Finally, we close with a discussion and an outlook for future research 
in Sect. 4.

2  Statistical methods

2.1  The mixed‑effects meta‑regression model

The study characteristics which are used as covariates in the meta-regression model 
are called moderators and are denoted with xj = (xj1,… , xjk)

� , where k is the number 
of studies and j ∈ {0, 1,… ,m}, with m as the number of moderators. Functions of 
other moderators such as interactions of the form x3i = x1ix2i could be moderators 
themselves. The true outcome of an individual study i ∈ {1,… , k} is denoted with 
�i . The model equation for the true outcome of study i is

The parameters �1,… , �m are the regression coefficients of the associated modera-
tors. We generally assume that the number of studies is greater than the number of 
study-level moderators, i.e. k > m . The deviation of the ith studies’ true outcome �i is 
modelled by the random effect ui . The random effect ui is usually assumed to be nor-
mally distributed with ui ∼ N(0, �2) . Furthermore, the observed outcome for study i 
is modelled as

(1)�i = �0 + �1x1i +…+ �mxmi + ui.
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with model errors �i ∼ N(0, �2
i
) . The model errors �i and random effects ui are 

assumed to be independent. Together this yields what is also known as a normal-
normal hierarchical model (NNHM) (Friede et al. 2017). It is also possible to con-
sider a more general semiparametric setting with the moment assumptions �(ui) = 0 
and Var (ui) = �2 without other distributional restrictions on the random effects, as 
in Welz and Pauly (2020). In matrix notation the model can be rewritten as

where

The design matrix X is assumed to have full rank. Under the assump-
tion that u and � are independent, the variance-covariance matrix of y is 
Var (y) = V = diag (�2

1
+ �2,… , �2

k
+ �2).

2.2  Weighted‑least‑squares estimation

The weighted least squares estimate for the model coefficients � is given by

with the weight matrix Ŵ typically (but not always) defined as the inverse variance 
matrix. For Model (3) it is given by Ŵ = diag

(

(𝜎2
1
+ 𝜏2)−1,… , (𝜎2

k
+ 𝜏2)−1

)

 . It 
should be noted that the sampling variances �i , i = 1,… , k are assumed as known, 
although they are in fact estimated from the data. This is done for mathemati-
cal convenience and is common practice in meta-analysis (DerSimonian and Laird 
1986). Various estimators are available for the between-study variance �2 (Veroniki 
et  al. 2016). The recommendation for meta-analysis is to use either the restricted 
maximum likelihood (REML) or the Paule-Mandel estimator, both of which are 
iterative (Veroniki et al. 2016). We denote the variance-covariance matrix of �̂ by 
� = Cov (�̂) . It was shown that, given certain regularity conditions, �̂

a.s.
⟶ � as 

k ⟶ ∞ and �̂ asymptotically follows a normal distribution (Hedges et al. 2010).
Given a consistent estimator �̂ for the variance-covariance matrix of 𝜷 , an approxi-

mate (1 − �), � ∈ (0, 1) confidence interval (CI) for a coefficient �j , j ∈ {0, 1,… ,m} , 
is given by

(2)yi = �i + �i,

(3)y = X� + u + �,

(4)y =

⎛

⎜

⎜

⎝

y1
⋮

yk

⎞

⎟

⎟

⎠

∈ ℝ
k, X =

⎛

⎜

⎜

⎝

1 … x1m
⋮ ⋮

1 … xkm

⎞

⎟

⎟

⎠

∈ ℝ
k×(m+1),

(5)u =

⎛

⎜

⎜

⎝

u1
⋮

uk

⎞

⎟

⎟

⎠

∈ ℝ
k and � =

⎛

⎜

⎜

⎝

�1
⋮

�k

⎞

⎟

⎟

⎠

∈ ℝ
k.

(6)𝜷 = (X� �WX)−1X� �Wy,
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where tdf ,1−�∕2 is the (1 − �∕2) quantile of the t-distribution with df degrees of free-
dom and �̂jj is the jth diagonal element of �̂ (Sterchi and Wolf 2017). In the fol-
lowing we discuss various possibilities for estimating � . A typical choice for the 
degrees of freedom is df = k − m − 1 . However, Tipton (2015), Tipton and Puste-
jovsky (2015) showed that using the Satterthwaite approximation for the degrees 
of freedom improves the properties of the confidence interval in meta-regression. 
Therefore, this approach is used here to approximate the degrees of freedom.

2.3  Estimators for the variance‑covariance matrix of  ̂̌

There are several ways to estimate the variance-covariance matrix of 𝜷  . In the fol-
lowing section we introduce HC0, HC1, HC2 according to MacKinnon and White 
(1985), HC3, HC4 according to Cribari-Neto (2004) and HC5 according to Cribari-
Neto et al. (2007) if not stated otherwise.

The HC estimators are all based on HC0 which was originally introduced by 
White (1980) for an ordinary least squares (OLS) estimator. For the meta-regression 
model in (3) and the estimator 𝜷  given in (6) the estimator HC0 can be written as

where ��0 = diag (ê2
1
,… , ê2

n
) is a matrix containing the squared residuals 

êi = yi − xi𝜷  on its diagonal (Welz and Pauly 2020).
How the formula for HC0 in (8) can be derived from the representation in 

MacKinnon and White (1985) is shown in Section A of the Supplement. The for-
mulas for HC1 −HC5 can be derived analogously. Because the usual residu-
als tend to be too small (MacKinnon 2013), HC0 tends to underestimate the var-
iance of the components of 𝜷  . A simple adjustment of this estimator is given by 
��� = k(k − m − 1)−1���, which takes the models’ degrees of freedom (k − m − 1) 
into account.

Another approach to fix this problem of HC0 is to modify the residuals them-
selves. One possible modification is to take the leverage scores hii into account. 
The hii denotes the ith diagonal element of the hat matrix H = X(X⊤ŴX)−1X⊤Ŵ . 
By using ẽi = êi∕

√

1 − hii instead of êi there is more weight on residu-
als with higher leverage scores. A representation of HC2 is given by (8) using 
��2 = diag ((1 − hii)

−1 ⋅ ê2
i
) instead of �̂0.

An estimator of similar form is HC3 . It can be written by using 
��3 = diag ((1 − hii)

−2 ⋅ ê2
i
) in place of �̂0 in (8). The estimator HC3 introduced here 

is a close approximation of Efrons’ jackknife estimator (Efron 1982). A property of 
this estimator is that it takes the leverage scores stronger into account than HC2.

(7)
[

𝛽j ± tdf,1−𝛼∕2

√

�̂jj

]

,

(8)HC0 = (X⊤ŴX)−1X⊤Ŵ��0ŴX(X⊤ŴX)−1,
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The following estimator, HC4 , also differs from the former estimator in the way that 
it incorporates the leverage scores. The idea is to weight the residuals stronger, when 
the leverage score hii of a residual is relatively high compared to the average leverage 
score h̄ = k−1

∑k

i=1
hii . This is done by using some �i as exponent for (1 − hii) , where 

𝛿i = min
{

4, hii∕h̄
}

. In this way the exponent hii∕h̄ is truncated at �i = 4 . The resulting 
estimator HC4 is given by (8) with ��4 = diag ((1 − hii)

−𝛿i ⋅ ê2
i
) instead of �̂0 , see Zim-

mermann et al. (2020) for a similar estimator for multivariate analysis of covariance 
(MANCOVA).

Finally, HC5 is defined similar to HC4 but uses the exponents
𝛼i = min

{

hii∕h̄, max
{

4, 𝜂 ⋅ hmax∕h̄
}}

 instead of �i . Here, hmax = max{h11, … , hkk} 
and � ∈ (0, 1) is a predefined constant used as a tuning parameter. The simulation 
study of Cribari-Neto et al. (2007) suggests � = 0.7 as a reliable choice for finite sam-
ples; we follow this recommendation here. Notably �i is only different from �i when 
(𝜂 ⋅ hmax)∕h̄ > 4 . In this situation �i is not truncated at �i = 4 but at 𝛼i = (𝜂 ⋅ hmax)∕h̄ . 
A representation of HC5 is given by (8) plugging in ��5 = diag ((1 − hii)

−𝛼i ⋅ ê2
i
) for 

�̂0 . The Hartung-Knapp-Sidik-Jonkman estimator for the mixed-effects meta-regres-
sion model was independently introduced by Knapp and Hartung (2003) and Sidik and 
Jonkman (2005b). It can be derived as follows. Let P = I − X(X⊤ŴX)−1X⊤Ŵ and 
s2 = (k − m − 1)−1(y⊤P⊤ŴPy) = (k − m − 1)−1(y⊤ŴPy). Then the HKSJ estimator 
for Cov(𝜷 ) is given as

3  Simulation study

3.1  Simulation design

The simulation was conducted using the open source software package R. Relevant 
packages that were used for the analyses are metafor, MASS and mvtnorm. Visu-
alizations, such as boxplots, were created using the ggplot2, reshape2, grid and 
gridExtra packages. The simulation setup expands upon the one by Welz and Pauly 
(2020). The Satterthwaite approximation for the degrees of freedom is available in the 
robust function of the metafor package (version 3.4 or later) by specifying the 
clubSandwich argument as TRUE.

We start with a description of relevant effect measures for the simulation study. We 
consider the standardized mean difference (SMD), estimates of which are therefore the 
dependent variable in our meta-regression models. In many applications, �i is consid-
ered as the true SMD between the means of an experimental and a control group in the 
ith study. An unbiased estimator yi for �i can be derived via a modification of Hedges’ 
g. We describe the effect measure in the following, according to Hedges (1981). An 
unbiased estimator for the SMD is given by (Lin and Aloe 2021)

HKSJ = s2(X⊤ŴX)−1.
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with n = nT + nC − 2 , where nT and nC refer to the treatment and control group 
sizes. The regular Hedges’ g is defined as d = (x̄T − x̄C)∕s , where s is the pooled 

standard deviation with s =
√

(nT−1)s
2
T
+(nC−1)s

2
C

nT+nC−2
 and s2

T
, s2

C
 refer to the variances in the 

treatment and control groups respectively. The sampling variance of g can be 
approximated by (Hedges and Olkin 1985)

A mixed-effects meta-regression model with two covariates and their interaction is 
considered. The yi are assumed to be influenced by two covariates and their interac-
tion. The interaction is modelled as xi12 ∶= xi1xi2 . Thus the model equation is given 
as

The dependent variable yi is assumed to be the estimated SMD between an experi-
mental and a control group in the ith study for i = 1,… , k . There are four choices 
for the number of studies, k ∈ {6, 10, 20, 50} . We note that test runs with k = 5 
frequently resulted in either a rank-deficient design matrix X or extremely wide 
confidence intervals. Therefore it cannot be recommended to use only k = 5 stud-
ies for a model with two covariates and interaction. We assume balanced study 
designs, i.e. nT ,i = nC,i =∶ ni for each study. For each choice of k ∈ {6, 10, 20, 50} 
three different vectors of group sizes are considered. In the situation k = 6 , 
five studies contain the group sizes according to the following three vectors: 
n15 = (6, 8, 9, 10, 42)�, n25 = (16, 18, 19, 20, 52)� or n50 = (41, 43, 44, 45, 77)� . The 
size of the sixth study is set to the mean n̄ of the corresponding vector, either 15, 25 
or 50. For k ∈ {10, 20, 50} the vectors are repeated k/5 times and the resulting vector 
is used as the vector of study sizes. With this choice for the number of participants 
the study size vectors all have the same variance for a fixed k.

The covariates xi1 and xi2 are sampled from a joint normal distribution

where � is the correlation between xi1 and xi2 . We examined the settings of no cor-
relation ( � = 0 ), small correlation ( � = 0.2 ), large correlation ( � = 0.5 ) and large 
negative correlation ( � = −0.5 ). Possible adjustments for �1 , �2 and �12 are 0, 0.2 and 
0.5. Additionally, the situation �12 = −0.5 is considered in order to check whether 
the estimates differ for a negative coefficient.

The random effects ui are chosen as ui = �qi , where �2 ∈ {0.10, 0.15,… , 0.40} 
(see, e.g., Linden and Hönekopp (2021) for a motivation of the �2 range) and the 
qi ’s are independently sampled from either a standard normal- or a standardized 

(9)g ∶=
Γ(n∕2)

√

n∕2Γ((n − 1)∕2)
d

(10)v =
1

nT
+

1

nC
+

g2

2(nT + nC)
.

(11)yi = �1xi1 + �2xi2 + �12xi12 + ui + �i.

(

xi1
xi2

)

∼ N

(

1 �
� 1

)

,
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exponential-, Laplace-, log-normal- or t3-distribution. Here t3 denotes the t dis-
tribution with three degrees of freedom. If qi is drawn from a standardized expo-
nential distribution, then qi ∶= ai − 1 where ai ∼ exp(1) . The qi ’s following a 
standardized Laplace distribution, are generated via qi = (ai − bi)∕

√

2 where 
ai, bi ∼ exp(1) are sampled independently. For the qi ’s following a standardized 
log-normal distribution, qi is set to

where zi ∼ N(0, 1) . Finally, qi ’s following a standardized t3 distribution are set as 
qi = ti∕

√

3 with ti ∼ t3 . The standardization of the qi ’s ensures that the correspond-
ing ui ’s all have expectation �(ui) = 0 and variance Var (ui) = �2 . Note, that if ui is 
not normally distributed, the yi are not normally distributed and the t-quantile used 
in (7) is not correct. However, results by Kontopantelis and Reeves (2012) suggest 
that the distribution of the study outcomes has almost no impact on the resulting 
confidence intervals. Therefore the quantile of the t-distribution is used for this sim-
ulation as well.

The estimated effects (Hedges’ g) yi are generated according to

where �i ∼ N(�i, 2∕ni) and Xi ∼ �2
(2ni−2)

 are sampled. The sampling variance �2
i
 of yi 

is estimated using (10). In total there are 
77, 760 = 3(n̄) × 4(k) × 9(𝜏2) × 3(𝛽1) × 3(𝛽2) × 4(𝛽12) × 5(ui) × 4(𝜚) different com-
binations of simulation parameters. For each combination the model is generated 
N = 10, 000 times. The confidence level is chosen as 1 − � = 0.95 . For this choice 
of N and � the expected Monte Carlo standard error of empirical coverage is approx-
imately equal to 

√

�(1 − �)∕N = 0.22% (Morris et  al. 2019). For each model the 
estimators HC0–HC5 and HKSJ are calculated and �2 is estimated using the REML 
estimator, with a maximum of 5,  000 iterations and a default step length of 0.5. 
Based on each estimator a (1 − �) confidence interval is estimated for the coefficient 
�1 of a single moderator and for the coefficient �12 of the interaction term. Since x1 
and x2 have the same distribution, intervals for �2 are not considered. The proportion 
of estimated confidence intervals that cover the true coefficient is used as an esti-
mate of the coverage probability. As an estimate of the interval width the 
10 %-trimmed mean of the widths of the estimated intervals is calculated in order to 
robustify the results. For comparability reasons, the same parameter ranges as in 
Welz and Pauly (2020) were used, except for the values for �2.

3.2  Simulation results

In confidence interval estimation two properties are relevant, namely coverage and 
interval width. The actual coverage of the interval should be at least equal to the 

qi =
exp(zi) − exp(1∕2)
√

exp(1)(exp(1) − 1)
,

(12)gi =
�i

√

Xi∕(2ni − 2)
,
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nominal confidence level (1 − �) . Second, we want to determine the interval, where 
the true parameter is included in with probability (1 − �) ⋅ 100% , as precisely as pos-
sible. This means of the intervals that have sufficient coverage, we choose the nar-
rowest one. Therefore, the coverage and widths of the simulated intervals for �1 (and 
�2 ) as well as �12 are compared in respect of the covariance estimators they are based 
on. Due to the high number of parameter adjustments not every adjustment is con-
sidered separately. Hence, the coverage and interval widths of different settings are 
summarized by boxplots. That is, e.g., the boxplots in Sect.  3.2.1 based upon the 
results for every adjustment of �1, �2, �12, �, �2 , ui and n̄ and thus consider the overall 
performance of the estimators. The aim of this section is to investigate, whether one 
estimator has a better overall performance compared to all other estimators. It is 
also of interest, whether there are any estimators that are outperformed by at least 
one other estimator in each situation. Because the intervals for �1 and �12 performed 
similarly for the most estimators and parameter adjustments, only the results for the 
confidence intervals of �1 are shown in detail. The differences to the intervals for �12 
are highlighted in Sect. 3.2.1, the full results for the intervals for �12 are shown in 
Section B the Supplement.

Since the number of studies k strongly affects the coverage and interval widths 
(Sect. 3.2.2), the results are compared separately for each k. How the adjustments 
of other simulation parameters affect the coverage and interval width is discussed 
in Sect. 3.2.2. There it is of interest, whether the performance of a certain estimator 
differs from its overall performance for a special adjustment. For example, it is ana-
lyzed whether there is an estimator whose intervals have the best performance but 
only for large correlations. For ease of presentation “confidence interval” is abbrevi-
ated with CI in this section. The CIs based on HC0 are abbreviated with HC0-CI, the 
CIs based on other estimators in an analogous manner.

3.2.1  Overall performance of the estimators

Confidence intervals for �1 – Coverage Probability. In Fig. 1 the coverages of the 
CIs for �1 are summarized using boxplots. Each plot reflects the results for a certain 
number of studies k ∈ {6, 10, 20, 50} . The individual boxplots contain the coverage 
of all intervals based on the respective estimator and k. In addition, each of the plots 
contains one boxplot with a reference distribution for the coverage. The values for 
the reference plot were calculated by sampling 15, 120 values from a binomial dis-
tribution ( B(10000, 0.95) ) and dividing the values by 10, 000. These values show 
the distribution of coverage rates that can be expected within a simulation and can 
be used to better interpret the results for the different estimators.

The coverage of the HC0-CIs ranges from 0.8640 to 0.8904 in case of k = 6 . For 
k = 50 the coverage ranges from 0.9142 to 0.9569. But only for 2.37% of the adjust-
ments with k = 50 the coverage is above the nominal confidence level. Thus, HC0 
is too liberal and an inappropriate choice of estimators regarding their CI coverage.

The HC1-CIs have higher median coverages than the HC0-CIs for all k. For HC1 , 
the median coverage is above the nominal level for k = 6 , k = 10 and k = 20 . For 
k = 50 it is slightly lower (0.9487). But still for 38.16% of the adjustments, the 
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coverages are above the nominal confidence level. In summary, the coverage of the 
HC1-CI for �1 is quite accurate.

HC2 based CIs are more conservative compared to HC1 based CIs. Their median 
coverage is above the nominal level for all values of k. The coverage decreases with 
increasing k. For k = 50 , the coverage is below 0.95 for 16.12% of the adjustments.

HC3 −HC5 based CIs also exhibit a conservative behaviour with a median 
coverage larger than 0.95 for all number of studies k. For k = 6 the HC3-CIs are 
the most conservative with coverages ranging from 0.9923 to 0.9984. However, 
the coverage of the HC3-CI is decreasing in k, but is above the nominal level for 
all of the adjustments. The coverages of the HC4-CIs and HC5-CIs range from 
0.9752 to 0.9868, and differ only slightly in respect of the number of studies.

The CIs based on the HKSJ have median coverages that are slightly lower than 
for HC4 and HC5 for almost all considered values for k. For k = 50 , the coverages 
are below the nominal level for only 0.01% of the adjustments.

Among all estimators HC1-CIs show the closest coverages compared to the 
nominal confidence level 0.95. The coverage tends to be slightly lower for larger 

Fig. 1  Coverage probabilities of the confidence intervals for the regression parameter �
1
 based on the 

estimators HC
0
−HC

5
 and HKSJ for different numbers of studies k. In addition, a boxplot with a refer-

ence distribution for the coverage is included in the plots
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number of studies k. For k = 6 the median coverage of the HC1-CI is almost 
equivalent to the nominal confidence level and the distribution seems to be simi-
lar to the reference distribution. The HC2-based CIs are slightly more conserva-
tive than the intervals based on HC1 . The intervals based on HC3-HC5 are most 
conservative, having coverages above 0.95 for all adjustments. For the HKSJ , the 
coverages are above the nominal level for almost all k. For k = 50 , only for 0.01% 
of the adjustments, the coverage is below 0.95.

Confidence intervals for �1 – Width. Boxplots of the corresponding interval 
widths are shown in Fig. 2.

The interval widths of all estimators are monotonically decreasing in the num-
ber of studies k.

Widths of the HKSJ-CIs range from 3.02 to 8.47 for k = 6 and from 0.22 to 
0.57 for k = 50 . Thereby, they are narrower compared to the HC4 - and HC5-CIs 
for all considered number of studies k. Except for k = 50 , where the widths of the 
HC5-CIs tend to be slightly larger, the widths of the HC4 - and HC5-CIs behave 
almost identically.

Fig. 2  Widths of the confidence intervals for the regression parameter �
1
 based on the estimators 

HC
0
−HC

5
 and HKSJ for different numbers of studies k without outliers
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For k = 6 the median width of the HKSJ-CIs is equal to 5.6, whereas it is equal 
to 8.12 for the HC4 - and HC5-CIs. In the situation of k = 50 the median interval 
width of HKSJ-CIs is 0.39, which is smaller than the HC4-CIs with 0.43 and the 
HC5-CIs with 0.46.

The HC1-CIs are in median narrower than the other CIs that control the nomi-
nal confidence level. The HC2-CIs show a tendency of being slightly larger than 
the HC1-CIs but are still narrower than the HKSJ-CIs.

Widths of the HC3-CIs are highly inflated for k = 6 . The lower quartile is equal 
to 16.93 and the upper quartile’s value is 22.45. For k = 6 and k = 10 the HC4 - and 
HC5-CIs are narrower in the median than the HC3-CIs, for the other values of k they 
are larger. The HC0 based CIs tend to be narrower than the other CIs for all k but 
were the most liberal regarding the coverage.

In comparison of all estimators whose intervals have a suitable coverage, the 
HC1-CIs are the narrowest and therefore preferable. Since their CIs are just slightly 
larger for all values of k, HC2 has the second best performance. The interval width 
of HKSJ-CIs are just minimally larger.

Fig. 3  Coverage probabilities of the confidence intervals for �
12

 based on the estimators HC
0
−HC

5
 and 

HKSJ for different numbers of studies k. In addition, a boxplot with a reference distribution for the cov-
erage is included in the plots
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Performance of the intervals for �12 . Compared to the intervals for �1 the inter-
vals for �12 tend to be wider for most estimators and adjustments of k.

Regarding the coverage rate, the HC0-CIs perform better compared to their coun-
terpart for �1 , see Fig.  3. For k = 50 in 3.44% of the adjustments, the coverage is 
above the nominal level but still too liberal for all k. For the HC1 estimator, the cov-
erage of the CIs increases with an increasing k. For k = 6 , the median coverage is 
0.9436 and only for 0.62% of the adjustments, the coverage is above the nominal 
level of 0.95. Whereas for k = 50 , the median coverage is 0.9478 and for 34.71% of 
the adjustments, the coverage is higher than 0.95. Moreover the coverage is larger 
than 0.93 in almost all of the cases ( 99.81%).

The estimators HC2-HC5 lead to the most conservative CIs. For coverages for 
none of the corresponding CIs show coverages below 0.95. For HC2 , HC4 and 
HC5 the coverages of the CIs first increase until k = 20 and then slightly decrease 
for k = 50 , while for HC3 the coverages decrease for increasing k. The HKSJ-CIs 
show lower median coverages than the CIs based on HC2-HC5 but still are quite 
conservative. The median coverage of the HKSJ-based CIs and k = 6 is 0.971.

Fig. 4  Widths of the confidence intervals for �
12

 based on the estimators HC
0
−HC

5
 and HKSJ for dif-

ferent numbers of studies k without outliers
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All estimators perform worse for intervals for �12 compared to intervals for �1 
in terms of their CI widths, see Fig. 4. Again, HC0 led to the smallest widths but 
also was very liberal.

As for �1 , HC1 should prefarably be used, especially for k = 50 . The HKSJ 
shows the next best performance, which is different to the results for �1 , where 
HC2 performed slightly better than HKSJ . HC2 now shows the worst perfor-
mance for k = 50 and the CIs based upon this estimator are very wide compared 
to the other estimators.

Summary of the overall performance. Summing up, the results are different 
compared to the ones observed for a model with one covariate (Viechtbauer et al. 
2015; Welz and Pauly 2020). Among all considered estimators the HC1 estimator 
is the most appropriate for a model with an interaction term since it performed 
the best for the coefficient of the single moderator and was only slightly liberal 
for the interaction term in case of k = 6 . Focusing on the other estimators, HC2 
was found to be the second best choice for constructing CIs for �1 and HKSJ for 
�12 , respectively. If you aim for a rather secure conservative coverage, they can 
even be viewed as best choice. Overall, HC0 shows the worst performance with 
very liberal CIs. HC4 and HC5 perform bad in terms of interval widths. HC3 per-
forms even worse for small numbers of studies k but is better than HC4 and HC5 
(and HC2 for �12 intervals) for k ≥ 20 . Therefore, HC0 and HC3-HC5 are not rec-
ommendable for estimating �1 and �12.

Importance of the Satterthwaite approximation. We also run comparative 
simulations for the ’classical’ t-type intervals that use df = k − 4 degrees of freedom 
in (7). As the performance was worse compared to the Satterthwaite approximation, 
we decided to only present the detailed results in Appendix D. There, you can see 
that using k − 4 degrees of freedom leads to more liberal CIs (for both, �1 and �12 ) 
with similar interval widths. For that reason we focus on the Satterthwaite approxi-
mation for the degrees of freedom in the paper.

3.2.2  Effects of parameter adjustments

This section will summarize how the coverages and interval widths are affected by 
the adjustments of the flexible parameters. Since both coefficients are effected simi-
lar by most parameters they are considered together. We highlight the most impor-
tant results and refer to Section C of the Supplement for complete results.

Adjustments of the number of studies k . Considered numbers of studies are 6, 
10, 20 and 50. The widths of both coefficients intervals are monotonically decreas-
ing in the number of studies k. The effect of the number of studies on coverage is not 
constant and depends on the considered covariance estimator. In general coverage 
tends towards the nominal level 1 − � for increasing k. Therefore, for all estimators a 
large number of studies is preferable. For the HC1-based CIs also smaller number of 
studies lead to good coverage rates.

Adjustments of study size. Small ( ̄n = 15 ), medium ( ̄n = 25 ) and large ( ̄n = 50 ) 
group sizes are compared. For most covariance estimators the median coverage for 
�1 is slightly increasing in the study size.
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For �12 , most of the coverage rates are decreasing (towards the nominal level) 
with increasing study sizes.

The corresponding interval widths are decreasing as the study sizes increase for 
all k and estimators. This trend may be caused by the impact of ni on vi in Equation 
(10), which leads to decreasing standard errors in equation (7). Thus, overall larger 
studies lead to better confidence intervals, since both coverages and interval widths 
are improved for larger study sizes.

Adjustments of �2 . Coverages of both coefficients intervals are increasing 
slightly in the heterogeneity parameter �2 for almost all estimators and k = 20 
and k = 50 . For k = 6 and k = 10 , almost no changes in the medium coverage 
rates can be observed for all of the estimators. For a larger number of studies, 
the effect is stronger. The increasing coverages in �2 show that the model used in 
the simulation is adequate to model a study effect. On the other hand the interval 
widths are increasing in �2 strongly. This result is explicable by the direct impact 
the value of �2 has on the variances of the coefficients and thus on the interval 
bounds.

Adjustments of �1 . Examined adjustments of �1 are 0, 0.2 and 0.5. The CIs for 
�12 were not affected by these adjustments of �1 , whereas the coverage of the CIs for 
�1 slightly decrease for an increasing �1 for k = 50 studies and all estimators. Adjust-
ments of �1 had no influence on the interval widths of the CIs for �1 and �12.

Adjustments of �2 . For �2 the adjustments 0, 0.2 and 0.5 were considered as 
well. None of the intervals was affected by the adjustment of �2 regarding the cover-
age or width.

Adjustments of �12 . Besides the adjustments 0, 0.2 and 0.5 for �12 the adjustment 
−0.5 was simulated as well, to check whether it differs from the 0.5 adjustment. This 
is neither the case for the interval widths nor for the coverages of the CIs for �1 and 
the CIs for �12 . However, the HC4 - and HC5-CIs for �1 have slightly lower coverage 
for a high absolute value of �12.

For k = 50 , the coverage rates for the CIs for �12 for all estimators tend to be 
slightly lower for an absolute value of |�| = 0.5 than for lower absolute values. This 
is also the case for the interval widths for the CIs for �12 which are slightly lower for 
higher absolute values of �12 for k = 20 and k = 50 and the estimators HC2,HC4 
and HC5 and slightly higher for the same values of k for the other estimators.

Altogether the true values of the considered parameters do not have a strong 
impact on the intervals of any estimator. Therefore, there is no coefficient for which 
an estimator performs better or worse compared to the other estimators than in the 
overall results.

Adjustments of the correlation � . Examined adjustments of � are 0, 0.2, 0.5 and 
−0.5.

The sign of the correlation affects neither the coverages nor the interval widths. 
Intervals for �1 that are based on HC3 −HC5 tend to have a lower coverage for higher 
absolute correlations, whereas CIs based on HC0 −HC2 tend to have higher cover-
ages for |�| = 0.5 . For HC2 and HC3 the respective effect is only marginal. Large 
correlations induce wider CIs for �1 for all number of studies and estimators. There 
is no consistent impact of the correlation on the CIs for �12 . The changes depend on 
both the estimator and number of studies k. However, these changes are only minor. 



Robust confidence intervals for meta‑regression with…

HC0 , HC1 , HC3 and HKSJ based CIs have narrower widths for larger values of |�| 
and all k. Intervals based on HC2 , HC4 and HC5 have marginally decreasing widths 
in |�| for k = 6 , slightly increasing widths for k ∈ {10, 20} and again marginally 
decreasing widths for k = 50 . It is also interesting to note, that most of the extreme 
outliers of HC5 occur for high correlations.

Adjustments of the random effect distribution. Simulated random effect distri-
butions are the standard normal distribution and standardized Laplace-, exponential, 
t3 - and log-normal-distributions. The results for the �12 CIs in case of k = 10 are 
presented in Figs. 5 (coverages) and 6 (widths), respectively, while all other results 
including the ones for the �1 CIs are given in the appendix and are summarized here.

In comparison with the other simulated distributions, the coverages of CIs for �1 
based on HC0 −HC5 are on average the lowest with normal distributed ui and high-
est with log-normal distributed random effects. The coverages do not differ much in 
respect of the other random effect distributions. The HKSJ-CIs for k ∈ {6, 10} have 
the highest coverage with normal distributed random effects and the lowest with 
log-normal random effects. Especially for k = 10 the coverages of the HKSJ-CIs 
with non-normal random effects tend to be lower. But in none of the adjustments 
with non-normal random effects the coverages of the HKSJ-CIs are below 0.95. For 
k = 20 the HKSJ-CIs show no observable differences between the random effect 
distributions, whereas for k = 50 the order of the median coverages is the same as 
for the other estimators. Thus, in this situation the coverages of the HKSJ-CIs for 
�12 are even less adequate than for the intervals for �1.

The coverage of the HC0 −HC5 CIs for �12 are all slightly better for non-normal 
random effect distribution compared to the normal case for all k ∈ {10, 20, 50}.

For k ∈ {6, 10, 20} the coverage of the HC1-CIs for �12 are on median between 
0.943 and 0.949 in the non-normal random effects setting.

The median widths of both coefficients CIs depends on the underlying distribu-
tion and can be ordered in the following way for all k and estimators: normal > 
Laplace > exponential > t3 > log-normal. Thus, for all approaches the confidence 
intervals have better properties, when the random effect distribution is different from 
a normal distribution. Therefore, the quantile used as critical value is suitable, even 
if the distribution of the ui is not normal. Thus, if a precise control of the nominal 
confidence level is required HC1 (for all k) may be most suitable.

In summary, the estimators are affected by most parameter adjustments in the 
same way or a similar manner. Only the number of studies k shows a strong vary-
ing effect on the coverage of some estimators. Besides the number of studies, the 
group size and the heterogeneity parameter �2 have impact on the interval widths. 
However, the trend is the same for all estimators and reducible to the direct impact 
of these parameters on components of the confidence interval in equation (7). The 
results of the different random effect distributions indicate that all estimators are 
robust against deviations from the normal distribution. In particular, the CIs were 
even slightly better compared to the normal setting. There is no situation where any 
estimator performs superior compared to its overall performance.
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Fig. 5  Coverages of the �
12

-intervals compared regarding the adjustments of u
i
 for the estimators 

��� −��� and HKSJ with k = 10
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Fig. 6  Widths of the �
12

-intervals compared regarding the adjustments of u
i
 for the estimators 

��� −��� and HKSJ with k = 10
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4  Discussion

Here we compared different confidence intervals for a mixed-effects meta-regression 
model with two moderators and an interaction term. The confidence intervals were 
based on one of the six different heteroscedasticity consistent covariance estimators 
HC0, ...,HC5 or the Hartung-Knapp-Sidik-Jonkman covariance estimator HKSJ . 
In a simulation study the confidence intervals based on these estimators were com-
pared regarding their coverage and widths for numerous combinations of simula-
tion parameters. The simulation settings varied in the number of studies, the study 
sizes, a heterogeneity parameter, the coefficients of the moderators, the correlation 
between the covariates and the distribution of the random effect. A total of 60, 480 
combinations was simulated 10, 000 times.

The coverage of the confidence intervals based on HC0 turned out to be below 
the nominal confidence level 0.95 for almost every setting and are therefore not ade-
quate. Contrary, the HC1-CIs were on median the most accurate wrt nominal confi-
dence level. Although the coverage of the confidence intervals based on HC2 ( HC2

-CIs) for �1 was suitable, HC2-CIs were the most conservative for �12 . The CIs based 
on the estimators HC3 −HC5 and HKSJ showed a conservative coverage for both 
parameters. Concerning the interval widths the HC1-CIs performed the best for all 
settings among all estimators with adequate coverage followed by HC2 (for �1 ) and 
HKSJ (for �12 ), respectively. For a small number of studies (k = 6) the widths of the 
HC3-CIs were highly inflated. For larger numbers of studies ( k ≥ 10 ) the widths of 
the HC3-CIs are narrower compared to the HC4 and HC5 intervals. Thus, for k ≥ 10 
HC3-CIs are preferable compared to HC4 - and HC5-CIs. However, HKSJ and HC1 - 
HC2 showed a better performance compared to HC0,HC3-HC5.

The results for single parameter adjustments differ only slightly from the overall 
results. The interval widths were shown to be increasing in the amount of hetero-
geneity �2 , whereas they were decreasing in the number of studies k and the mean 
study sizes n̄ for all estimators. Coverages were mostly increasing in n̄ and �2 . The 
confidence intervals were only slightly affected by the values of the true coefficients. 
Only high values of �1 and strong interactions ( |�12| = 0.5 ) slightly reduced the cov-
erage of some intervals.

For all different estimators for both CIs higher correlations � only slightly affected 
the coverages but the widths of the intervals for �1 were increasing in � . Concerning 
coverage and widths of the CIs for �12 no such trend was observable. The widths of 
the CIs even were smaller for increasing � . Surprisingly, all estimators performed 
slightly better for non-normal distributed random effects regarding their coverage 
and widths.

For small numbers of studies k ∈ {6, 10} the coverage of the HC1-CIs tend to be 
slightly below the nominal confidence level (1 − �) = 0.95 for �12 , but the coverage 
of the HC1-CIs are still close to 0.95. However, the HKSJ-CIs also show suitable 
coverage rates in these situations, though they are more conservative.

Altogether, the results of this work differ from the results of previous studies for 
a single moderator Viechtbauer et al. (2015); Welz and Pauly (2020). The superior 
performance of the HKSJ estimator and the behavior of the HC estimators observed 
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in the model with one moderator is different when studying the model with two 
covariates and an interaction. While the HKSJ-estimator performed best in their 
simulations, the HC1-estimator showed a better performance than the HKSJ-estima-
tor for estimating the parameter �1 for most of the adjustments in the present simula-
tion study for the more complex interaction model. Thus, we recommend HC1 in 
this setting. However, since the coverage rates are above the nominal level of 0.95 
in all of the adjustments when using the HKSJ-estimator, it still is a suitable choice 
here. For CIs for �1 or other not-interaction parameters (e.g., �2 ), HC2 is a suitable 
choice as well, since its intervals held the nominal confidence level for every k and 
were even narrower compared to the HKSJ CIs. In further research it may also be of 
interest to analyze the situations where highly inflated interval widths of the HC3 -, 
HC4 - and HC5-CIs occurred in detail, because they cannot be explained by the 
results of this work. Furthermore, using the Satterthwaite approximation to calcu-
late the degrees of freedom appears to be crucial for achieving appropriate coverage 
rates of the confidence intervals.

Limitations and future work. The presented simulation study, though very 
extensive, had several limitations. The mixed model examined in this work still 
has a simple structure with just two covariates and one interaction effect and 
focused on confidence intervals. Thus, our results do not generalize to other set-
tings. In further research it might be of interest to consider the performance of 
these and other inference methods (confidence ellipsoids, multivariate (Welz 
et  al. 2023) and multiple tests etc.) for more complex models. Interesting set-
tings are mixed regression interaction terms of higher order, other random effect 
and covariate distributions, more complex dependencies, other nominal levels 
(Johnson 2013; Benjamin et al. 2018; Noguchi et al. 2021) than � = 0.05 , more 
extreme coefficients, different parameter values or even more complex meta anal-
ysis models (e.g. network analyses (White 2015)). Moreover, a detailed analysis 
of the methods’ behaviour under model mis-specification would be of its own 
interest. For example, as pointed out by an expert referee, HC estimators are usu-
ally more robust to mis-specification of the random effects distribution compared 
to the HKSJ method. For instance, this might be the case in a random effects 
location scale model as considered in Viechtbauer and López-López (2022).

Another limitation of our research regarding the estimator HC5 is that we did 
not optimize the tuning parameter � , relying on the recommendation of � = 0.7 by 
Cribari-Neto et al. (2007). The question whether and how the optimal choice of � 
depends on a given context remains an open question for further research.

Concluding, meta-regression remains an important field of statistical research. 
CIs derived from the HKSJ estimator, which performed best in earlier studies 
with simpler models, performed worse than the CIs derived from HC1 estimator 
together with the Satterthwaite approximation in this situation and the HC2 for �1 . 
However, the CIs based upon the HKSJ estimator still perform better than most 
of the other HC based approaches in most of the settings.
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