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Abstract
In this work, we present a methodology to estimate the strength of handball teams. 
We propose the use of the Conway-Maxwell-Poisson distribution to model the num-
ber of goals scored by a team as a flexible discrete distribution which can handle 
situations of non equi-dispersion. From its parameters, we derive a mathematical 
formula to determine the strength of a team. We propose a ranking based on the 
estimated strengths to compare teams across different championships. Applied to 
female handball club data from European competitions over the 2022/2023 season, 
we show that our new proposed ranking can have an echo in real sports events and is 
linked to recent results from European competitions.
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1 Introduction

Handball is a popular sport with growing interest across the world. To date, there 
does not exist any official ranking tool to compare clubs performances. The only 
quantitative metrics available are coefficient ranks that compare countries (based on 
championships) provided by the European and International Handball Federations 
(EHF and IHF respectively) or player’s performance index available in some coun-
tries (Liqui Moly HBL 2024). Handball also suffers from a lack of literature (Saave-
dra 2018), especially in the predictive or analytical fields. In this work, we aim to 
establish a methodology to estimate the strength of teams.

Estimating the strength of a team has long been discussed in the literature, and 
is typically seen in sports such as football. Rating methods often assume some 
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probability distributions to represent the distribution of the outcome of a match. 
Some methods are based on the Thurstone-Mosteller model (Thurstone 1927) or the 
Bradley–Terry model (Bradley and Terry, 1952) to model the outcome of a match 
based on a probability distribution where the location parameter corresponds to the 
strengths of the modeled teams. These popular techniques, however, assume that the 
underlying probability distribution is continuous. This is by nature contrary to the 
structure of the majority of scoring-based team sports data (e.g. football, handball, 
basketball, rugby, etc).

Another topic of controversy is the choice of the underlying probability distribu-
tion representing the number of goals scored by a team. Reep et  al. (1971) dem-
onstrated that the Negative Binomial distribution is suitable for modeling scores 
in several ball games. Maher (1982) however argued that tests for goodness-of-fit 
plead in favor of the independent Poisson distribution to model football scores. Ley 
et al. (2019) further investigated the idea of Poisson distributions and after a broad 
comparison of models, suggested the bivariate Poisson model (Karlis and Ntzoufras, 
2003) to best represent the outcome of football games. From the estimated param-
eter � obtained via Maximum Likelihood Estimation, they assume a structure from 
that parameter for team i with opponent team j as

where �0 ∈ ℝ is a common intercept and h > 0 is the effect of playing at home. The 
parameters ri ∈ ℝ and rj ∈ ℝ represent the abilities of team i and j that are used as 
estimation of team strengths.

In the context of handball, Groll et  al. (2020) analyzed historical international 
games to determine the best probability distribution to model the number of goals 
scored in handball matches. Given the level of under-dispersion observed, they con-
cluded that the standard Poisson distribution cannot be used and a Gaussian distri-
bution with low variance is the most appropriate.

In this article, we propose a method to derive a ranking based on handball teams 
strengths. These strengths are obtained using the estimated parameters of an appro-
priate discrete probability distribution by means of maximum likelihood. We define 
formulae to transform such statistical estimates into sports abilities and observe how 
mathematical expressions can translate into sports facts. To illustrate our results, we 
apply our method to historical European female matches from the 2022/2023 season 
and obtain a ranking which is linked to the end of season standings.

Our work is organized as follows. In Sect. 2, we compare distributions from the 
existing literature with the Conway-Maxwell-Poisson distribution. After motivating 
the use of this flexible discrete probability distribution, we will generate a metric 
representing the strength of a team. In Sect. 3, we will illustrate the results of the 
proposed methodology on female club data and propose a ranking of the best per-
forming teams based on statistical findings. Finally, we discuss next steps and future 
considerations in Sect. 4 and conclude in Sect. 5.

(1)log(�i) = �0 + (ri − rj) + h ⋅ 1(team i playing at home)
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2  Methodology

In this section, we review the methodology used for modeling handball data to rep-
resent the strength of a team. First, we explain why the classical Poisson distribution 
cannot be used as the underlying probability distribution. We then propose the Con-
way-Maxwell-Poisson distribution as a flexible probability distribution from which 
we estimate, using its parameters, the strength of a team.

2.1  Non equi‑dispersion of handball data

When analyzing historical data from female handball matches, one can observe 
situations with non equi-dispersion. We define the dispersion index DI as the ratio 
between the expectation �(X) and the variance � (X) of a random variable X:

When DI < 1 , we are in the situation of over-dispersion, since the variance is larger 
than the expectation. When DI > 1 , the variance is lower than the average which 
indicates under-dispersion. The final situation where DI = 1 leads to equi-dispersion.

To measure such index for handball data, we analyzed games over the 2022/2023 
season of the European championships and performed a statistical test to assess 
whether the data are equi-dispersed or not. De Oliveira (1963) proposed a dispersion 
test to compare the mean to the standard deviation of a discrete distribution. Böhn-
ing (1994) later proposed an update of the test, correcting the computation of the 
asymptotic standard deviation. Under the null hypothesis H0 ∶ X ∼ P(�) , one can 
assess whether a variable X follows a Poisson distribution with parameter � given 
that the distribution fulfills the property �(X) = � (X) = � . The alternative hypoth-
esis is H1 ∶ �(X) ≠ � (X) highlighting non equi-dispersion. The test statistic is thus 
defined as

where Xi ∈ ℕ records the number of goals scored in past matches (e.g. ongoing sea-
son). The location parameter is approximated by the empirical mean X̄ =

∑n

i=1
Xi . 

Under H0 , the test statistic T follows a �2 distribution with n − 1 degrees of freedom 
(Hoel, 1943).

We present in Table 1 the results of the tests performed over 819 European clubs 
(323 being female and 496 male). We could not reject H0 (at level 5%) for only 
47 clubs (5.7%), all others either show over- or under-dispersion. As an illustration, 
the female team of Metz Handball (France) scored on average 32.25 goals over the 
2022/2023 season with a variance of 21.23. Performing the test yields a test statistic 

(2)DI =
�(X)

� (X)
.

(3)T =

1

n − 1

∑n

i=1
(Xi − X̄)2 − X̄

�
2

n − 1
X̄
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of −1.53 with a p-value < 0.001 , indicating under-dispersion. Therefore, aligned 
with conclusions from Groll et al. (2020), we do not determine that equi-dispersed 
Poisson distribution is suitable to model scored goals during handball matches.

2.2  Modelling handball games with Conway‑Maxwell‑Poisson

As an alternative to the standard Poisson distribution, we consider the Conway-Max-
well-Poisson (CMP) distribution (Sellers, 2022). It is a generalization of the com-
mon Poisson distribution, but with the ability to handle under- and over-dispersion. 
Its probability mass function is defined by

The parameter � ≥ 0 represents the level of dispersion. When � = 1 , this indicates an 
equi-dispersed Poisson distribution. When 𝜈 < 1 , we are in the situation of over-dis-
persion while 𝜈 > 1 represents under-dispersion. Though it does not have an explicit 
interpretation, � ∈ ℝ

+
∗
 can be seen as a location parameter whose value gets closer 

to the mean as � → 1 . Other special cases of the Conway-Maxwell-Poisson distribu-
tion include the Bernoulli distribution with parameter �∕(1 + �) as � → ∞ and the 
geometric distribution with probability of success 1 − � when 𝜆 < 1 and � = 0 . The 
CMP distribution can also be a good alternative to the classical Poisson distribution 
given its flexibility to handle different levels of dispersion.

To evaluate the goodness of fit of the distribution on handball data, we compare 
the CMP with the Gaussian and Negative Binomial distributions as mentioned in 
Groll et al. (2020). In Table 2, we report the estimated log-likelihood ( ̂L ) and the 
associated Akaike Information Criterion (AIC) for the club of Metz Handball over 
the 2022/2023 season. We observe from Table 2 that, although the three distributions 
seem to similarly fit the data, the Conway-Maxwell-Poisson distribution exhibits the 

(4)
ℙ(X = x��, �) = �x

(x!)�
1

∑∞

j=0

�j

(j!)�

.

Table 1  Count and share of 
teams by gender per type 
of dispersion, assessed by 
dispersion test on the number of 
goals scored

Women (%) Men (%)

Under-dispersion 208 (64%) 410 (83%)
Equi-dispersion 18 (6%) 29 (6%)
Over-dispersion 97 (30%) 57 (11%)
Total 323 496

Table 2  Comparison of log-
likelihood and AIC evaluated on 
scored goals by Metz Handball 
over season 2022/2023

Distribution Log-likelihood AIC

Conway-Maxwell-Poisson −127.36 258.72
Gaussian −127.39 258.78
Negative Binomial −127.66 259.32
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maximum log-likelihood. However, the AIC aims to penalize complex distributions 
with numerous parameters to estimate. Given that k = 2 for all three distributions, 
minimizing the AIC or maximizing the log-likelihood leads to the same conclusion.

Furthermore, when fitting and comparing the three distributions for 819 Euro-
pean male and female clubs (reported in Table  3), the Conway-Maxwell-Poisson 
distribution is the most suitable in the majority of the cases (382 team out of 819, 
46,6%). Although the Gaussian distribution is also appropriate for 36% of the teams, 
the log-likelihood for the three distributions remain very close to each other. There-
fore, considering the flexibility of the distribution, which can handle under-, equi- 
and over-dispersion situations, the Conway-Maxwell-Poisson distribution would be 
the most appropriate choice for modeling handball data.

We represent in Fig. 1 the relation between the empirical mean from a CMP dis-
tribution and its associated parameters � and � . We notice a logarithmic relationship 
between the parameter � and the empirical mean. This relation will be of particular 
interest in the next Sect. 2.3 when defining the team’s strength.

2.3  Estimation of team strengths

As with most competitive sports, the strength of a team can be expressed by its abil-
ity to perform both the areas of attack and defense. We thus introduce different for-
mulae to represent defense and attack strengths of a team. We then define the overall 

Table 3  Comparison of 
distributions, counting the 
number of teams for which the 
distribution is most suited

Distribution Nb preferred (%)

Women Men Total

Conway-Maxwell-Poisson 120 (37%) 262 (53%) 382 (47%)
Gaussian 116 (36%) 176 (35%) 292 (36%)
Negative Binomial 87 (27%) 58 (12%) 145 (17%)
Total 323 496 819

Fig. 1  Relation between CMP 
parameters � and � and the 
empirical mean X̄ (from simu-
lated data)
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strength of a team, creating a combination of attack and defense abilities. In this sec-
tion, we will refer to a difficulty parameter � defined as

This parameter corresponds to the average difficulty of the n ∈ ℕ matches played 
by a team over a fixed period of time. Each match is assigned a level of difficulty 
�i ∈ [0, 1] which is a function of the competition. It is based on the European Hand-
ball Federation’s (EHF) place distribution of competitiveness of leagues. Some tun-
ing is performed to find a realistic value to represent the competitivity of the leagues. 
Our experiments suggested to scale the values, using min-max normalization, of the 
place distribution between 0.9 for the least competitive countries (i.e. Luxembourg 
or Belgium for women and Moldova for men) and 1 for the EHF Champions League. 
These results, validated with sport professionals, indicate that a lower bound of 0.9 
for � allows to not devalue competitions while still being realistic about their com-
petitivity. Values lower than 0.9 tend to severely penalize some teams and lead to 
unrealistic rankings, the scaling method allows to keep the amplitude of the place 
distribution and protect potential gaps between countries.1 The parameter serves as a 
penalty to highlight teams playing in more competitive championships.

2.3.1  Defense strength

Adopting the selected Conway-Maxwell-Poisson distribution, we use its parameters 
to represent the defensive strength of a team. The distribution of goals conceded 
by a team, denoted by Yd , is assumed to follow a CMP(�d, �d) , where the parameter 
𝜆d > 0 can act as a location parameter and �d ≥ 0 as the dispersion parameter. We 
then define the defense strength as

The strength of a team’s defense is inversely proportional to the goals they concede. 
This is reflected in Eq. (6) in the sense that the higher the average number of con-
ceded goals are (i.e. the higher �d ) the lower the strength sd will be. We notice the 
logarithmic transformation log(�d) to account for the relation with the empirical 
mean as mentioned and illustrated in Fig. 1. On the other hand, we want to penalize 
for inconsistencies of a team, therefore we want the parameter �d to be as large as 
possible corresponding to under-dispersion. The penalty � ∈ [0, 1] then makes sure 
that highly competitive matches are put forward in the strength. We can thus inter-
pret formula (6) as follows: a team is a strong defender if it constantly concedes few 
goals during matches.

(5)� =
1

n

n∑

i=1

�i ∈ [0, 1].

(6)sd =

(
�d

log(�d)

)�

.

1 E.g. In female competitions, Hungary has the highest weight ( � = 0.999 ) followed by France 
( � = 0.992 ) and Norway ( � = 0.989).
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2.3.2  Attack strength

We also assume that the distribution of scored goals follows a CMP distribution, 
Ya ∼ CMP(�a, �a) . A team is considered strong in attack if the average number of 
scored goals is large. The logic can therefore be considered as the inverse from Eq. (6). 
We define the attack strength of a team as

where the location parameter �a is used as the numerator to show that a high number 
of goals scored on average increases the attack strength. The dispersion parameter 
�a is used as the denominator, behaving like a penalty as we expect teams to have 
consistent performances over the season. We finally include the weight � ∈ [0, 1] , as 
defined in Eq. (5), to penalize for the difficulty of the matches played.

2.3.3  Global strength

A team is considered strong when it can perform well in attack and defense. We define 
the overall strength of a team as the combination of attack and defense strengths by

We observe that a high score for overall strength can be driven by two factors. On 
the one hand, the team should have a high average of scored goals while demonstrat-
ing consistent defensive performances over time. On the other hand, a team should 
be able to adapt its attack strategies to teams and be able to take their opponent by 
surprise by scoring more than expected. They should also be able to prevent con-
ceding too many goals and have a scoring capacity. In other words, the goal differ-
ence in the competition’s ranking should be as large as possible. This can usually 
be verified in different competitions where leading teams tend to have a high dif-
ference (+229 goals for Metz Handball in the French female championship at end 
of 2022/2023 season or +257 for Vipers Kristiansand in Norway) while teams at 
the bottom of the season standings have highly negative goal differences (-107 for 
Toulon Métropole Var Handball in France for the same season or -170 for Volda in 
Norway).

We can now note the importance of the nonlinear transformation for �a and �d . 
Given the logarithmic rate of these parameters, a team may have to record a much 
higher average of scored goals to distinguish itself from other teams. First, the slope 
of the strength s with respect to the scored goals �a is

As the team gets stronger, �a increases (everything else being equal) and differentia-
tors with other teams become marginal since lim�a→∞(

�s

��a
) = 0.

(7)sa =

(
log(�a)

�a

)�

(8)s = sa ⋅ sd =

(
log(�a) ⋅ �d

�a ⋅ log(�d)

)�

.

(9)𝜕s

𝜕𝜆a
=

𝜔 log𝜔−1(𝜆a)

𝜆a

(
𝜈d

𝜈a log(𝜆d)

)𝜔

> 0.
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Second, the derivative of the strength s with respect to conceded goals �d is

This suggests that any reduction of conceded goals leads to improvements in the 
overall strength. These statements have an actual echo in sports terms. It is common 
knowledge for handball players and coaches that the best way to improve a team’s 
performance is to start by improving their defense.

3  Illustrative applications

As illustrated in Sect. 2.2, the CMP distribution seems to be the most appropriate 
choice to model goals scored during a handball match. We plot in Fig. 2 the histo-
gram of scored goals over the 2022/2023 season for the female club of Metz Hand-
ball (France) and compare with the fitted theoretical CMP distribution. The fitted 
distribution smooths the empirical histogram which highlights two distinct scor-
ing regimes. The situation when x ≤ 32 mostly corresponds to Champions League 
matches with aggressive defensive teams (average scored goals = 30.4). On the 
other hand, when x > 32 we mostly have matches from the French championship 
with teams being substantially weaker (average scored goals = 33.6). To account 
for these differences, we will need to use a penalty for the competitiveness as intro-
duced in Sect. 2.3.

Furthermore, we estimate the strength parameters for all European female clubs 
and display the ranking in Table 4. The estimations are derived from all matches 
over the 2022/2023 season that were played in female first division competitions 
(ranging from friendly games to the regular championships and Champions League).

(10)
𝜕s

𝜕𝜆d
= −

𝜔

𝜆d log
𝜔+1(𝜆d)

(
log(𝜆a)𝜈d

𝜈a

)𝜔

< 0.

Fig. 2  Histogram of goals scored by Metz Handball over season 2022/2023 vs. theoretical CMP distribu-
tion estimated via Maximum Likelihood
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We can observe from the top clubs  that Győri Audi ETO KC, Vipers Kris-
tiansand, Team Esbjerg and FTC Rail-Cargo Hungaria were the participants 
of the EHF final four in June 2023, representing the final stage of the tough-
est European competition. Vipers Kristiansand finally won the competition for 
the third year in a row. All other clubs are leading their championships in their 
respective countries and were members of the EHF Champions League in season 
2023/2024. As handball does not have any official ranking, we asked feedback 
from sports professionals as the only way to validate our results. They could 
confirm that our results make sense and are in line with the performance of 
European teams.

We also notice in Table 4 that, even though the ranking is sorted by the over-
all estimated strength, the average number of scored and conceded goals seem to 
follow some sort of hierarchy. To be ranked toward the top, teams have to show 
a high average of scored goals and a relatively lower number of conceded goals. 
The exceptions (e.g. MKS Zaglebie Lubin) find a justification in the consistency 
of their performance. Indeed, such teams exhibit a lower value for �a or higher 
value for �d suggesting consistencies in attack or defense and boosting their final 
strength ranking. This justifies the requirement for the use of formulae (6) and 
(7) instead of purely relying on average scored goals.

4  Discussion

Our proposal offers an estimation of attack and defense strengths to rank teams 
and generate features that can be informative and meaningful in subsequent 
modelling tasks. Provided that one has access to such data, the presented exer-
cise can be extended to other objectives such as estimation of player abilities or 
be generalized to other sports.

Table 4  Top 10 strongest female teams in Europe for the 2022/2023 season

Team Avg. scored Avg. conceded � s
a

s
d

s

MKS Zaglebie Lubin 28.93 23.41 91.10% 3.13 3.53 11.06
Győri Audi ETO KC 33.71 23.70 99.93% 3.48 3.13 10.92
Vipers Kristiansand 33.88 25.51 98.95% 3.52 3.09 10.89
Team Esbjerg 31.01 25.54 98.82% 3.44 3.15 10.85
Metz handball 31.26 24.79 99.21% 3.43 3.15 10.81
FTC Rail-Cargo Hungaria 31.11 24.97 99.93% 3.44 3.11 10.73
SG BBM Bietigheim 32.43 25.74 95.20% 3.35 3.19 10.71
IK Sävehof 29.17 24.97 90.00% 3.03 3.52 10.69
CSM Bucuresti 29.81 24.57 97.64% 3.37 3.14 10.56
DVSC Schaeffler 29.72 25.32 99.92% 3.37 3.13 10.55
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4.1  From team strengths to player abilities

Using more granular data (not publicly available) on player performances for 
each game and over several seasons, one can also estimate the attack strength of a 
player. Considering that the data will most likely also suffer from under- or over-
dispersion, the CMP distribution seems to be a good choice to fit the number of 
scored goals by a player. Using formula (7), we can therefore estimate the attack 
strength of an individual player. Not focusing only on goals scored, playing abil-
ity could also include components such as passing ability and combine scoring 
and passing abilities as a global attack strength. Accessing data such as intercep-
tion, successful blocks (e.g. faults with no penalty such as yellow card, 2  min 
penalty, etc.), the defense ability can be modeled in a similar fashion so that one 
can derive a defensive ability at player level.

Therefore, combining attack and defense abilities as defined by Eq. (8), one 
can estimate the individual abilities and derive a ranking. Such ranking can 
help subsequent modelling exercises by adding informative variables regarding 
the strength of the individual players and not only the global strength of a team. 
Additionally, the individual ranking can be used as a new source of information 
for team managers to assess the potential abilities of a player when recruiting. 
Indeed, one can obtain a time dependent ranking and observe the evolution of a 
player over several seasons. This can further lead to forecasting exercises to iden-
tify players with high potential to be added to the squad.

4.2  Generalization to other sports from Conway‑Maxwell‑Poisson distribution

Modelling sports requires the reliance on discrete distributions though the issue 
of over- or under-dispersion is a recurrent problem (Karlis and Ntzoufras, 2008; 
Van Bommel et al., 2021). Given the similar constraints as we have seen in the 
present work, one can replicate the discussed logic on other sports’ data. The 
methodology from Ley et al. (2019) can be merged with our proposed methodol-
ogy to obtain football team abilities based on a distribution that can handle the 
problem of under-dispersion. One can thus define new rankings and generate new 
informative features to include in predictive Machine Learning models. Using a 
similar methodology as Groll et al. (2019), one can include such generated fea-
tures in the feature set to improve the predictive model.

5  Conclusion

Handball is a fast-paced sport of which goals cannot be analyzed via standard 
count distributions due to the problem of under- or over-dispersion. We showed 
that, using an appropriate probability distribution, one can define meaningful 
statistical estimates that approximate the strengths of a team. The choice of the 
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Conway-Maxwell-Poisson distribution can therefore be a suitable option to model 
not only handball games but any scoring-based team sports.

The proposed methodology allows the generation of very informative con-
text about the performance of a team. In a future work, this will allow to gener-
ate new covariates that can be included in predictive models in the spirit of Groll 
et  al. (2019). They can also offer the possibility to consider data-driven analyses 
of a team’s performance to later support team managers in their personal strategies 
and tactical motivations. With access to more granular data, this methodology can 
be adapted to the estimation of player abilities and offer tools to allow coaches take 
data-driven decisions in their recruitment processes.

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s00180- 024- 01522-0.

Acknowledgements The author would like to thank Emmanuel Mayonnade, Head Coach of Metz Hand-
ball (France) for his insightful feedback to validate and help improve the methodology.

References

Böhning D (1994) A note on a test for Poisson overdispersion. Biometrika 81(2):418–419. https:// doi. org/ 
10. 1093/ biomet/ 81.2. 418

Bradley RA, Terry ME (1952) Rank analysis of incomplete block designs: I. The method of paired com-
parisons. Biometrika 39(3/4):324. https:// doi. org/ 10. 2307/ 23340 29. (Accessed 2023-07-01)

De Oliveira T (1963) Some Elementary Tests for Mixtures of Discrete Distribution. Columbia University, 
New York

Groll A, Ley C, Schauberger G, Van Eetvelde H (2019) A hybrid random forest to predict soccer 
matches in international tournaments. J Quant Anal Sports 15(4):271–287. https:// doi. org/ 10. 1515/ 
jqas- 2018- 0060

Groll A, Heiner J, Schauberger G, Uhrmeister J (2020) Prediction of the 2019 IHF World men’s handball 
championship - a sparse gaussian approximation model. J Sports Anal 6(3):187–197. https:// doi. org/ 
10. 3233/ JSA- 200384

Hoel PG (1943) On indices of dispersion. Ann Math Stat 14(2):155–162. https:// doi. org/ 10. 1214/ aoms/ 
11777 31457

Karlis D, Ntzoufras I (2003) Analysis of sports data by using bivariate Poisson models. J Royal Stat Soc: 
Series D (The Statistician) 52(3):381–393. https:// doi. org/ 10. 1111/ 1467- 9884. 00366

Karlis D, Ntzoufras I (2008) Bayesian modelling of football outcomes: using the Skellam’s distribution 
for the goal difference. IMA J Manag Math 20(2):133–145. https:// doi. org/ 10. 1093/ imaman/ dpn026

Ley C, Wiele T, Van Eetvelde H (2019) Ranking soccer teams on the basis of their current strength: a 
comparison of maximum likelihood approaches. Stat Model 19(1):55–73. https:// doi. org/ 10. 1177/ 
14710 82X18 817650

Liqui Moly HBL - Handball Performance Index: season overview. https:// www. liqui moly- hbl. de/ en/s/ 
handb all- perfo rmance- index/ widge ts/ liqui- moly- hbl- en/ Accessed 2024-04-20

Maher MJ (1982) Modelling association football scores. Stat Neerl 36(3):109–118. https:// doi. org/ 10. 
1111/j. 1467- 9574. 1982. tb007 82.x

Reep C, Pollard R, Benjamin B (1971) Skill and chance in ball games. J Royal Stat Soc. Series A (Gen-
eral) 134(4):623. https:// doi. org/ 10. 2307/ 23436 57

Saavedra JM (2018) Handball research: state of the art. J Hum Kinet 63(1):5–8. https:// doi. org/ 10. 2478/ 
hukin- 2018- 0001

Sellers KF (2022) The Conway-Maxwell-Poisson Distribution. Institute of Mathematical Statistics mono-
graphs. Cambridge University Press, Cambridge

Thurstone LL (1927) Psychophysical analysis. Am J Psychol 38(3):368. https:// doi. org/ 10. 2307/ 14150 06

https://doi.org/10.1007/s00180-024-01522-0
https://doi.org/10.1007/s00180-024-01522-0
https://doi.org/10.1093/biomet/81.2.418
https://doi.org/10.1093/biomet/81.2.418
https://doi.org/10.2307/2334029
https://doi.org/10.1515/jqas-2018-0060
https://doi.org/10.1515/jqas-2018-0060
https://doi.org/10.3233/JSA-200384
https://doi.org/10.3233/JSA-200384
https://doi.org/10.1214/aoms/1177731457
https://doi.org/10.1214/aoms/1177731457
https://doi.org/10.1111/1467-9884.00366
https://doi.org/10.1093/imaman/dpn026
https://doi.org/10.1177/1471082X18817650
https://doi.org/10.1177/1471082X18817650
https://www.liquimoly-hbl.de/en/s/handball-performance-index/widgets/liqui-moly-hbl-en/
https://www.liquimoly-hbl.de/en/s/handball-performance-index/widgets/liqui-moly-hbl-en/
https://doi.org/10.1111/j.1467-9574.1982.tb00782.x
https://doi.org/10.1111/j.1467-9574.1982.tb00782.x
https://doi.org/10.2307/2343657
https://doi.org/10.2478/hukin-2018-0001
https://doi.org/10.2478/hukin-2018-0001
https://doi.org/10.2307/1415006


 F. Felice 

1 3

Van Bommel M, Bornn L, Chow-White P, Gao C (2021) Home sweet home: quantifying home court 
advantages for NCAA basketball statistics. J Sports Anal 7(1):25–36. https:// doi. org/ 10. 3233/ 
JSA- 200450

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of such publishing agreement and 
applicable law.

https://doi.org/10.3233/JSA-200450
https://doi.org/10.3233/JSA-200450

	Ranking handball teams from statistical strength estimation
	Abstract
	1 Introduction
	2 Methodology
	2.1 Non equi-dispersion of handball data
	2.2 Modelling handball games with Conway-Maxwell-Poisson
	2.3 Estimation of team strengths
	2.3.1 Defense strength
	2.3.2 Attack strength
	2.3.3 Global strength


	3 Illustrative applications
	4 Discussion
	4.1 From team strengths to player abilities
	4.2 Generalization to other sports from Conway-Maxwell-Poisson distribution

	5 Conclusion
	Acknowledgements 
	References


