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Abstract
This article focuses on the practical issue of a recent theoretical method proposed 
for trend estimation in high dimensional time series. This method falls within the 
scope of the low-rank matrix factorization methods in which the temporal structure 
is taken into account. It consists of minimizing a penalized criterion, theoretically 
efficient but which depends on two constants to be chosen in practice. We propose a 
two-step strategy to solve this question based on two different known heuristics. The 
performance and a comparison of the strategies are studied through an important 
simulation study in various scenarios. In order to make the estimation method with 
the best strategy available to the community, we implemented the method in an R 
package TrendTM which is presented and used here. Finally, we give a geometric 
interpretation of the results by linking it to PCA and use the results to solve a high-
dimensional curve clustering problem. The package is available on CRAN.
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1  Introduction

Since the 1970’s, it is usual to model a one-dimensional time series by a process (Xt)t∈ℤ 
satisfying

where p, q ∈ ℕ , � = (�t)t∈ℤ is a second order stationary process, often a white noise, 
and F = (F�)�∈Θ is a family of continuous maps from ℝ2(p+q+1) into ℝ indexed in a 
set Θ . For instance, ARMA models, GARCH models, and all their extensions are 
defined this way. An advantage of Model (1) is that F  can be chosen in order to take 
into account properties known on the dynamics of the modeled phenomenon regard-
less to the data. However, except in simple cases, Model (1) is difficult to extend 
to the high-dimensional framework. For instance, the vector autoregressive (VAR) 
and vector autoregressive moving average (VARMA) models have been intensively 
investigated on the theoretical side and in applications (see Lütkepohl 2005). How-
ever, in the high-dimensional framework, these models cannot be applied directly. 
Indeed, as mentioned in Gao and Tsay (2022), VARMA models often suffer the dif-
ficulties of over-parametrization and lack of identifiability. To bypass such difficul-
ties, some authors have studied extensions of the VAR models: the LASSO regu-
larization of the VAR models (see Shojaie and Michailidis 2010), the sparse VAR 
models (see Davis et al. 2016), the VAR models with low-rank transition matrix (see 
Alquier et al. 2020), the factor models (see Lam and Yao 2012a, Gao and Tsay 2022, 
etc.). Note that the VAR models and their extensions are tailor-maid to take into 
account a (linear) relationship between the Xt’s, but not a sophisticated high-dimen-
sional trend component as in Model (2) presented below and considered throughout 
our paper. Finally, note that it is also difficult to bypass the stationary condition on � 
(for a good reference on the classic time series models, see Gourieroux and Monfort 
1997).

Independently, for almost two decades, in particular thanks to the Netflix chal-
lenge on movies recommendations, the low rank matrix factorization for the denois-
ing (also for the completion) of high-dimensional matrices with i.i.d. entries has been 
deeply investigated on the theoretical side (see Cai and Zhang 2015; Klopp et al. 2017, 
2019; Koltchinskii et al. 2011; Moridomi et al. 2018). Indeed, high-dimensional time 
series often have strong correlation, and it is thus natural to assume that the matrix 
that contains such a series is low rank (exactly, or approximately). Let denote by X the 
observed d × n matrix which rows are d time series with length n and assume that both 
d and n are high. Matrix factorization consists in approximating X by a matrix M of 
low rank k ∈ ℕ∗ (i.e. k ≪ d ∧ n ), which can therefore be written as the product UV of 
two matrix U ∈ Md,k(ℝ) and V ∈ Mk,n(ℝ) where Md,k(ℝ) is the set of the matrices 
of size d × k with coefficients in ℝ . Formally, let us consider the model

The matrix M is usually estimated by using a contrast minimization approach, the 
most popular being the least squares contrast associated to the Frobenius norm: the 
best rank-k approximation of X is

(1)F�(Xt+q,… ,Xt−q, �t+p,… , �t−p) = 0 ; t ∈ ℤ,

(2)X = M + �
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where ‖.‖F  is the Frobenius norm (for a matrix A , ‖A‖F ∶= trace(AA∗)1∕2 ). Then, 
the choice of the rank k can be viewed as a model selection issue. In the matrix fac-
torization framework, several approaches have been proposed in the literature (see 
for instance Candes et al. 2013; Ulfarsson and Solo 2008; Lam and Yao 2012b for 
criteria based on the estimated eigenvalue study, Seghouane and Cichocki (2007); 
Lopes and West (2004) for the classical BIC criterion or dos S. Dias, C. T. and 
Krzanowski, W. J. (2003) for a cross-validation strategy).

When dealing with time series, the matrix X , besides being of low rank, can 
have a temporal structure, a structure in time, as periodicity, smoothness, etc. It is 
likely that the temporal properties of the data can be exploited to obtain an accu-
rate factorization. Recently, Alquier and Marie (2019) has extended the latter fac-
torization method in order to take into account the time series trends properties. 
To this aim, they assume that the matrix M is structured as follows:

where M is a d × � matrix of low rank k (thus with 𝜏 > k ) and � is a known � × n 
full rank matrix reflecting the temporal structure of the data. To estimate M , they 
developed a penalized least squares criterion (based on the Frobenius norm) and 
shown that, on the theoretical side, to take into account trends properties in the 
definition of the denoising estimator allowed to improve existing risk bounds. The 
penalization aims to choose two parameters: the rank k of the matrix and the param-
eter � related to the temporal structure. This penalty function depends also on the 
noise structure and involves an unknown constant.

In practice, this joint model selection issue is not standard. In addition to a 
penalty constant to be chosen, parameters from the distribution of the noise need 
to be estimated in advance. In this paper, we propose an automatic way to deal 
with these two problems. First, the parameters of the noise distribution are com-
bined with the penalty constant to get a penalty function involving a single con-
stant. This avoids having to estimate the parameters beforehand. Then, we pro-
pose a two-stage strategy, as in Devijver et  al. (2017); Collilieux et  al. (2019), 
combined with the use of a heuristic for the constant calibration problem. Several 
heuristics have been considered here, now well-known for the penalty constant 
calibration in model selection frameworks (Lavielle 2005; Birgé and Massart 
2001). We demonstrate the performances of our procedure and compare the con-
sidered heuristics in the case of independent Gaussian noises through simulation 
experiments. The robustness to an autoregressive noise and a nonnormality distri-
bution are also studied.

The method has been implemented in the R package TrendTM, for Trend of 
High-Dimensional Time Series Matrix Estimation, which is available on the CRAN 
and presented here. When the factorization problem is solved using the Singular 
Value Decomposition (svd) method, we can make a link to the Principal Component 
Analysis (PCA) and give an geometrical interpretation of the factorization results. 
Moreover, we show that, based on this interpretation, a simple clustering method of 

(3)M̂k ∈ arg min
U∈Md,k ,V∈Mk,n(ℝ)

‖X − UV‖2
F
,

(4)M = M�,
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multiple time series can be derived. It is illustrated on a benchmark dataset of such 
statistical purpose (see the review and the comparison in Jacques and Preda 2014).

The paper is organized as follows. Section 2 recalls the estimation procedure pro-
posed in Alquier and Marie (2019). Section 3 presents the proposed two-stage heu-
ristic for the joint selection of the rank and the trend parameter whose performances 
are studied in Sect. 4 on simulated data. Section 5 gives some details and guidelines 
on the proposed method in the TrendTM package and shows an application on real 
data. In Sect. 6, we give a geometrical interpretation of our results and present the 
clustering method we proposed.

2 � Recall of the trend estimation method proposed by Alquier 
and Marie (2019)

In this section, we present the method they proposed for estimating M in model (3) 
when M ∶= M� (see (4)) and when the noise � has Gaussian i.i.d. rows of covari-
ance matrix �� . The general idea of the proposed inference is to estimate first M 
from the data X (with X ∶= X� ) by solving the optimization problem (3) on this 
new dataset and then to come back to the estimation of M.

First, the two temporal structures they considered are the following:

•	 periodicity: if the trend of X is �-periodic, then � = (I� ∣ ⋯ ∣ I�) where I� is the 
identity matrix in M�,� (ℝ),

•	 smoothness: if the form of the trend is t ∈ {1,… , n} ↦ f (t∕n) with 
f ∈ 𝕃2([0, 1];ℝd) , then 

 where � is odd and (�1,… ,�� ) is the �-dimensional trigonometric basis defined 
by 

 for every x ∈ [0, 1] and m ∈ {1,… , (� − 1)∕2}.
So, the estimation procedure consists in two steps:

Step 1: Estimation of M for k and � being fixed. They define the following auxil-
iary model 

 where X ∶= X�
+ , � ∶= ��+ and �+ = �

∗(��∗)−1 is the Moore-Penrose inverse 
of � . This model doesn’t embed some trend’s property anymore. The least 
squares estimator of the matrix M is thus classical: 

� =
(
�
�

(
t

n

))
(�,t)∈{1,…,�}×{1,…,n}

,

�
�
(x) ∶=

⎧⎪⎨⎪⎩

1 if � = 1√
2 cos(2�mx) if � = 2m√
2 sin(2�mx) if � = 2m + 1

(5)X = M + �,
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 where Sk,� = {UV ; U ∈ Md,k(ℝ) and V ∈ Mk,� (ℝ)} . So, a natural estimator of 
M is given by 

Step 2: Choice of k and � . For a fixed s > 0 , the final estimator of M is 
M̂s ∶= M̂

k̂(s),�̂(s)
 where 

 with K = {1,… , d ∧ n} , T = {1,… , n} , and 

 where �pen > 0 is a deterministic constant and ‖.‖op is the operator norm on 
Mn,n(ℝ) ( ‖A‖op ∶= sup‖x‖=1 ‖Ax‖ with ‖.‖ the Euclidean norm on ℝn ). They 
establish an oracle-type inequality on the resulting estimator (see Alquier and 
Marie 2019 (Theorem  4.1)): for every � ∈ (0, 1) , with probability larger than 
1 − 2e−s , 

The parameter s in the penalty is linked to the confidence level in the risk bound for a 
fixed k and � . Making the penalty depend on s is necessary to establish a risk bound on 
the adaptive estimator. This is a technical condition in fact, which we could also get rid 
of if we only selected � for a fixed k (see Theorem 4.1 and Remark 4.2 in Alquier and 
Marie (2019)). The penalty is also proportional to the number of series d as in multiple 
serie estimation framework (see for example Collilieux et al. 2019) since the estimation 
cost increases naturally with d.

Finally, note that through the penalty defined by (7), the right-hand side of inequal-
ity (8) depends on ‖Σ�‖op because of the concentration inequality for random matrices 
with i.i.d. (sub-)Gaussian rows (see Vershynin 2012, Theorem 5.39 and Remark 5.40.
(2)) used to control the variance term in the proof of Alquier and Marie 2019, Theo-
rem 3.2 (and then Theorem 4.1). This is one of the reasons why we consider the quad-
ratic loss and why the second order moment Σ� of the rows of � appears in the risk 
bound (8).

(6)M̂
k,�

∈ arg min
A∈Sk,�

‖X − A‖2
F
,

M̂k,� ∶= M̂
k,�
�.

(̂k(s), �̂(s)) ∈ arg min
(k,�)∈K×T

{‖X − M̂k,�‖2F + pens(k, �)}

(7)pens(k, �) ∶= �pen‖��‖opk(d + � + s) ;∀(k, �) ∈ K × T,

(8)

‖M̂s −M‖

2
 ⩽ min

(k,�)∈×
min
A∈k,�

{

(1 + �
1 − �

)2
‖A� −M‖

2
 + 4

�(1 − �)2
pens(k, �)

}

.
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3 � The proposed two‑stage heuristic for the model selection issue 
in practice

Discussion on the penalty function. The penalty function given by (7) depends 
of some constants s and �pen that must be chosen or calibrated in practice. It also 
depends on the parameters of the noise distribution through ‖��‖op that must be esti-
mated thus in advance: we explicit just below this norm in two cases that are consid-
ered in the simulation study (Sect. 4):

•	 when the errors are uncorrelated ( cov(�1,t, �1,t� ) = �2�t≠t� ), then 

•	 when (�1,t)t is a zero-mean stationary AR(1) Gaussian process (defined as the 
solution of �1,t = ��1,t−1 + �1,t where � ∈ (−1, 1) and (�1,t)t is a white noise of 
standard deviation � ), we can show that 

 Indeed, the covariance matrix of a row noise (�0,… , �n−1) is 

 Then, for every x ∈ ℝn such that ‖x‖ = 1 , 

 Since �� is a symmetric matrix, 

Two-stage heursitic. We set �cal = �pen‖��‖op , representing a global penalty con-
stant that we propose to calibrate using the data. So, this allows us to avoid the esti-
mation of the noise distribution parameters, which turns out to be a difficult task. 
The penalty function is thus reduced to

and the resulting adaptive estimator is denoted by M̂s ∶= M̂
k̂,�̂

.

‖��‖op = �2,

(9)‖��‖op ⩾ �2(1 + �) =∶ f (�).

�� ∶= (�2�|i−j|)i,j.

x∗�𝜀x =

n�
i,j=1

xixj[�𝜀]i,j = 𝜎2

�
‖x‖2 +�

i≠j

xixj𝜌
�i−j�

�

=𝜎2

�
1 + 2

�
i>j

xixj𝜌
i−j

�
.

‖��‖op = sup
‖x‖=1

�x∗��x� ⩾ �x∗��x� with x =
1√
2
(1, 1, 0,… , 0)

⩾x∗��x = �2

�
1 + 2 ⋅

1√
2
⋅

1√
2
⋅ �2−1

�
= �2(1 + �).

pen(k, �) ∶= �calk(d + � + s);∀(k, �) ∈ K × T,
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If the constant s can be easily chosen, this is not the case for the penalty constant 
�cal . Several heuristics have been proposed in the literature for this purpose in model 
selection frameworks, but for a one-dimensional parameter only (see Lavielle 2005; 
Birgé and Massart 2001). First, in practice, we could take s = − log((1 − �)∕2) with 
� fixed to 99% , 95% or 90% . Here we choose to fix s = 4 . Then, for the selection of 
both k and � , we follow the same strategy than in Devijver et al. (2017), that is a 
two-stage heuristic. We first recall some heuristics for the selection of one param-
eter, and then we present the two-stage heuristic for the joint selection of (k, �).

Up to our knowledge, there exit the three following heuristics dedicated to the 
constant calibration question in the model selection frameworks of one parameter:

•	 the one proposed in Lavielle (2005), denoted here ML, that involves a threshold 
S which is fixed to S = 0.75 as suggested by the author, and

•	 the two proposed in Birgé and Massart (2001) (see the more recent version of 
Arlot and Massart (2009) and the huge survey paper of Arlot (2019)) that are two 
versions of the well-known slope heuristic: the ’dimension jump’ and the ’slope’, 
denoted here BJ and Slope respectively. The both heuristics have been imple-
mented in the R package capushe described in Baudry et al. (2012).

A brief description of these heuristics is given in Appendix 8. For the joint selection 
of (k, �) , the two-stage heuristic is the following: first, we choose the best � for each 
k ∈ K via the criterion

where the penalty constant �cal,τ is calibrated using one of the previous heuristics, 
and then we select the best k among them via the criterion

where the penalty constant �cal,k is calibrated using the same heuristic to be con-
sistant, and �̂ = �̂ (̂k).

Note that in practice K = {1,… , kmax} and T = {k + 1,… , �max} , where kmax is 
the maximal rank and �max is the maximal value of � . These two quantities need to 
be specified. Moreover, we propose this strategy and not the opposite because on 
the one hand k < 𝜏 theoretically and on the other hand the slope heuristic requires 
having a minimum point. Using the proposed strategy allows to visit clearly more 
dimensions (k, �).

4 � Simulation study

In this study, we conduct different simulations studies to both evaluate the perfor-
mance of the proposed method and compare the three different heuristics:

•	 Study 1: we consider the model selection issue for k and � separatly,

�̂(k) ∈ argmin
�∈T

{‖X − M̂k,�‖2F + �cal,τk(d + � + s)},

k̂ ∈ argmin
k∈K

{‖X − M̂k,�̂(k)‖2F + �cal,kk(d + �̂(k) + s)},
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•	 Study 2: we illustrate the importance to take into account the trend in the estimation 
procedure when it exits,

•	 Study 3: we consider the model selection issue for both k and �.

We also performed additional separate simulations:

•	 Study 4: we assume that for each series there exists a temporal dependency 
which is modelled through an AR process,

•	 Study 5: we study the robustness of the proposed method to nonnormality errors.

4.1 � Simulation design and quality criteria

4.1.1 � Simulation design

We’ve simulated datasets with d = 100 and n = 600 as follows: 

(1)	 we generate a matrix M = UV by simulating U ∈ Md,k(ℝ) and V ∈ Mk,� (ℝ) 
for which the entries of U and V are assumed to be i.i.d. and follows a centered 
Gaussian distribution with same standard deviation �uv fixed to 0.5;

(2)	 two cases are considered according to the presence or not of a trend in the simu-
lated series: if there is no trend, then � = n and M = M , and otherwise M = M� 
with the matrix � of the smooth case. To distinguish between these two cases in 
the sequel, we call them datasetNoTrend and datasetTrend respectively;

(3)	 the rows of the error matrix � are assumed to be i.i.d. and follow a centered 
Gaussian distribution of variance �2 (i.e. �� = �2In ) for Studies 1, 2 and 3; the 
rows of the error matrix � are assumed to be i.i.d. stationary AR(1) Gaussian 
processes with a white noise of standard deviation 𝜎 > 0 and an autocorrelation 
parameter � ∈ (−1, 1) for Study 4.

We take k = 3 and � = 25 . We consider different values for the residual standard 
deviation � in order to have different levels of difficulty for the estimation prob-
lem. First, according to the previous considerations, var(Mij) = k�4

uv
 for data-

setNoTrend and var(Mij) = �k�4
uv

 for datasetTrend . For Studies 1, 2 and 3, let us consider 
sv ∈ {0.1, 0.5, 1.5, 2} . In order to have the same estimation difficulty (same ratio 
between � and the standard deviation of Mij ) for the two datasets, we set � = sv for 
datasetNoTrend and � =

√
�sv for datasetTrend . The obtained four cases are judged as 

‘Easy’, ‘Medium’, ‘Difficult’ and ‘Hard’ respectively. Study 4 is the same as Study 3 
but with a noise modeled by an autoregressive process. More precisely, we consider 
two values for the standard deviation of the noise sv ∈ {0.1, 1.5} and an autocorre-
lation parameter � ∈ {−0.8,−0.3, 0, 0.3, 0.8} . For each combination of parameters, 
we’ve simulated 200 datasets.

Let us precise that when the trend is not considered in the estimation procedure, 
the resulting estimator is

M̂
k or k̂,n

(if k is selected or not),
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and when it is considered the resulting estimator is

For Study 5, we consider the same simulation design as in Study 3 but by consid-
ering a heavy-tailed distribution for the errors {�t}t , namely, a Student distribution 
with degrees of freedom � = 50, 10, 3 ( � = 50 being the closest Gaussian case).

4.1.2 � Quality criteria

The performance of our procedure is assessed via:

•	 the estimated k and/or � ; and
•	 the squared Frobenius distance between M and its estimate M̂

k̂,�̂
.

Moreover, we also consider the Frobenius distance between M and

•	 the estimator of M for the true k and/or � , that is M̂k,� ; and
•	 the trajectorial oracle, that is M̂

k̃,�̃  where 

 when both k and � are selected, M̂k,�̃  where 

 when k is fixed, and M̂
k̃,n where 

 when no trend is considered.

4.2 � Study 1: behavior of the three heuristics for the selection of k or �

We first study the selection of k for datasetNoTrend when no trend is considered in 
the estimation procedure. We consider two different values of the maximal rank 
kmax ∈ {15, 35} . The results are presented in Fig. 1. When the noise is small, i.e. the 
estimation problem is easy (cases ‘Easy’ and ‘Medium’), all the heuristics recover 
the true rank, and therefore the obtained estimators perform as well as M̂k,n (the 
estimator of M for k fixed to its true value). When the estimation problem gets more 
difficult (cases ‘Difficult’ and ‘Hard’), the heuristics tend to underestimate the rank. 
This underestimation behavior seems to be logical and even desirable in the particu-
lar ‘Hard’ case. Indeed, we observe that in terms of Frobenius norm, the obtained 
estimators perform better compared to the one with the true rank. Moreover, they 
have performance close to the oracle. Comparing the three heuristics, the Slope 
heuristic shows better performances compared to the two other heuristics. This 

M̂
k or k̂,� or �̂

(if both k and � are selected or one of them or none).

(̃k, �̃) = arg min
(k,�)∈K×T

‖M − M̂k,�‖2F

�̃ = argmin
�∈T

‖M − M̂k,�‖2F

k̃ = argmin
k∈K

‖M − M̂k,n‖2F
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is particularly marked for the ‘Medium’ case and kmax = 15 . We can note that the 
behavior of the three heuristics can be affected by the choice of kmax . This problem 
is well-known for both the BJ and Slope heuristics (see Arlot 2019 for more expla-
nations in the case univariate series analysis).

Then, we study the selection of � for datasetTrend for k fixed to the true value. We 
fix �max = 55 . The results are presented in Fig. 2. Except with BJ that is more unsta-
ble, the heuristics retrieve the true value of � whatever the estimation difficulty with 
same performance as the oracle.

From this study, we choose the Slope heuristic for the model selection issue for 
both k and � in the sequel and in the developed package.

4.3 � Study 2: accounting for the smooth structure in the trend

We compare the performance of the procedure on the datasetTrend when the trend is 
considered ( � = �̂  ) or not ( � = n ) for k fixed to the true value. We choose �max = 55 . 
The results are represented in Fig. 3. Whatever the difficulty of the estimation prob-
lem (different values of � ), accounting for the trend increases the precision of the 

Fig. 1   Comparison of the three heuristics for the selection of k for datasetNoTrend (Study 1). Left: boxplot 
of estimated number of the rank k. Right: boxplot of ‖M − M̂

k̂,n
‖F  for two values of kmax = 15 (first line) 

and kmax = 35 (second line), and different values of � . On each graph and for each value of � , from left to 
right, we have the result from ML, BJ, Slope ( ̂k ), the true rank (k) and the oracle ( ̃k)
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estimation. This is more marked for high values of � . Note that, similarly as Study 1, 
the estimation naturally degrades with the increasing of �.

Fig. 2   Comparison of the three heuristics for the selection of � for datasetTrend when k is fixed to the truth 
( k = 3 ) for different values of � (Study 1). Left: boxplot of estimated � . Right: boxplot of ‖M − M̂

k,�̂‖F  . 
In each graph and each value of � , from left to right, we have the result from ML, BJ, Slope ( ̂�  ), the true 
value ( � ) and the oracle ( ̃� )

Fig. 3   Boxplot of ‖M − M̂
k,�‖F  with � = �̂  ( select_tau ) and � = n ( tau = n ) for different values of � 

(Study 2)
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4.4 � Study 3: selection of k and �

Table 1 shows that the joint heuristic retrieves the true values of k and � whatever the 
difficulty of the estimation problem, except very few times. Thus, the performance 
of the estimator of M is comparable to the one of the estimator Mk,� and moreover it 
has performance close to the oracle (see Fig. 4). Compared to Study 1 where � = n , 
here for difficult estimation problems, k is not underestimated. 

4.5 � Study 4: robustness to autocorrelated noise

Whatever the dependence and the noise variance, the joint heuristic retrieves the 
true values of k and � (see Tables 2 and 3), except for a large variance ( sv = 1.5 ) 
and a high positive autocorrelation ( � = 0.8 ) where it underestimates k and the 

Table 1   Estimated k and � , (k̂, 𝜏) , and the oracle (k̃, 𝜏) for different values of � (Study 3)

The true values are (k, �) = (3, 25)

(k̂, 𝜏) Easy Medium Difficult Hard

Mean (3.01, 25.26) (3.035, 25.18) (3.045, 25.14) (3.05, 25.29)
Sd (0.099, 0.926) (0.209, 0.728) (0.231, 0.618) (0.267, 1.159)

(k̃, 𝜏) Easy Medium Difficult Hard

Mean (3, 25) (3,25) (3,25) (3,25)
Sd (0, 0) (0, 0) (0, 0) (0, 0)

Fig. 4   Boxplot of ‖M − M̂
k,�‖F  with (k, �) = (̂k, �̂) the selected k and � , (k, �) = (k, �) the true values and 

(k, �) = (̃k, �̃) the oracle for different values of � (Study 3)
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Table 2   Estimated k and � , (k̂, 𝜏) , and the oracle (k̃, 𝜏) for different values of � and for the standard devia-
tion s

v
= 0.1 (Study 4)

The true values are (k, �) = (3, 25)

(k̂, 𝜏) −0.8 −0.3 0 0.3 0.8

Mean (3, 25.24) (3.015, 25.3) (3.025, 25.25) (3.005, 25.16) (3.01, 26.01)
Sd (0, 0.973) (0.157, 1.075) (0.186, 0.895) (0.071, 0.760) (0.099, 2.242)

(k̃, 𝜏) −0.8 −0.3 0 0.3 0.8

Mean (3, 25) (3, 25) (3, 25) (3, 25) (3, 25)
Sd (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

Table 3   Estimated k and � , (k̂, 𝜏) , and the oracle (k̃, 𝜏) for different values of � and for the standard devia-
tion s

v
= 1.5 (Study 4)

The true values are (k, �) = (3, 25)

(k̂, 𝜏) −0.8 −0.3 0 0.3 0.8

Mean (3.05, 25.29) (3.025, 25.28) (3.015, 25.25) (3.025, 25.27) (1.4, 25.67)
Sd (0.279, 1.030) (0.157, 0.962) (0.158, 0.825) (0.157, 0.936) (0.783, 5.081)

(k̃, 𝜏) −0.8 −0.3 0 0.3 0.8

Mean (3, 25) (3, 25) (3, 25) (3, 25) (1, 17.5)
Sd (0, 0) (0, 0) (0, 0) (0, 0) (0, 9.152)

Fig. 5   Boxplot of ‖M − M̂
k,�‖F  with (k, �) = (̂k, �̂) the selected k and � , (k, �) = (k, �) the true values and 

(k, �) = (̃k, �̃) the oracle for different values of � and for the standard deviation s
v
= 0.1 (Study 4)
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selection of � is more variable. For all noise cases, the method leads to estima-
tors that have close performance compared to the oracle (see Figs. 5 and 6) and 
with better performance than the one with the true values for the excepted case.

Moreover, we can observe that the more the autocorrelation parameter � 
increases (from −1 to 1), the more ‖M − M̂k,�‖F  increases also with a noticeable 
gap between � = 0.3 and � = 0.8 for both values of sv . First, the estimation is 

Fig. 6   Boxplot of ‖M − M̂
k,�‖F  with (k, �) = (̂k, �̂) the selected k and � , (k, �) = (k, �) the true values and 

(k, �) = (̃k, �̃) the oracle for different values of � and for the standard deviation s
v
= 1.5 (Study 4)

Fig. 7   Boxplot of ‖M − M̂
k,�‖F  with (k, �) = (̂k, �̂) the selected k and � , (k, �) = (k, �) the true values and 

(k, �) = (̃k, �̃) the oracle for different values of � (Study 5)
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better with high and negative autocorrelation. Then, the observed phenomenon 
on the norm can be explained. The variance term in the risk bound of the esti-
mator M̂

k̂,�̂
 (i.e. the penalty, see (8)) depends on ‖��‖op (see (7)). Using (9), we 

can show that this term is lower-bounded by

up to a multiplicative constant where f is increasing and nonnegative on [−1, 1].

4.6 � Study 5: robustness to nonnormality of the errors

Figure 7 and Table 4 display the results of the Student simulation. The joint heu-
ristic retrieves the true values of k and � in average, but with a slight overestima-
tion of k for the extreme case ( � = 3 ). However, we observe a slight degradation 
in the quality of the estimation of M , which is more marked as we move away 
from the Gaussian hypothesis.

5 � Using the TrendTM package

The version of the package is 2.0.19.

5.1 � Comments on the package

The package is organized around the main function TrendTM. In this section, we 
present the arguments used in a call of this function to a dataset named Data_Series

This function returns a list containing six elements:

f (�)
k(d + �)

dT

Table 4   Estimated k and � , (k̂, 𝜏) , and the oracle (k̃, 𝜏) for different values of � (Study 5)

The true values are (k, �) = (3, 25)

(k̂, 𝜏) 50 10 3

Mean (3.02, 25.2) (3.02, 25.3) (3.28, 25.4)
Sd (0.157, 0.807) (0.122, 1.29) (0.539, 0.998)

(k̃, 𝜏) 50 10 3

Mean (3, 25) (3, 25) (3, 25)
Sd (0, 0) (0, 0) (0, 0)
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•	 k_est, the estimated k or the true k when no selection is chosen;
•	 tau_est, the estimated � or the true � when no selection is chosen;
•	 M_est, the estimation of M (M_est = U_estV_est if no temporal structure 

is considered and M_est = U_estV_est � if a temporal structure is consid-
ered);

•	 U_est, the component U of the decomposition of M̂;
•	 V_est, the component V of the decomposition of M̂;
•	 contrast, the squared Frobenius norm of Data_Series - M_est. If k and 

� are fixed, the contrast is an unique value; if k is selected and � is fixed or if � is 
selected and k is fixed, the contrast is a vector containing the norms for each visit-
ing values of k or � respectively; and if k and � are selected, the contrast is a matrix 
with kmax rows and �max columns such that contrastk,� = ‖����_������ − M̂k,�‖2F .

5.1.1 � Model selection

The selection of k or/and � is requested using the options k_select or/and tau_
select that are booleans. When there is no selection, the option is set to FALSE 
and k_max = k or/and tau_max = � . Note that if no trend is considered in the esti-
mation procedure, � = n , otherwise tau_max must be a smaller than n and larger 
than �_��� + 2 in order to ensure that the rank of M is k.

5.1.2 � Taking the trend into account

Let us give more details about the different arguments of TrendTM that need to be 
specified when accounting for a temporal structure in the estimation procedure.

Two temporal structures are considered: periodic trend and smooth trend. This 
can be specified using the option struct_temp, struct_temp=“periodic” 
or struct_temp=“smooth” respectively. Recall that the selection of � is only 
possible when a smooth trend is considered. Thus, when

•	 struct_temp=“periodic”, then tau_select=FALSE and tau_
max= � . In this case, � must be such that n is a multiple of �;

•	 struct_temp=“smooth”, then tau_select is either FALSE or TRUE. 
Whatever this choice, tau_max must be an odd number.

When no trend is taken into account, struct_temp=“none” and ���_��� = n.

5.1.3 � Estimation of M , k and � being fixed (Step 1)

The least squares estimator M̂k,� of M , given by (6), is obtained by using the soft-
Impute function from the R package of the same name developed for matrix 
completion by Hastie and Mazumder (2015). In this package, two algorithms are 
implemented: ‘svd’ and ‘als’. In a simulation study, we observed that they have both 
provided the same accuracy of the estimator (results not shown). We decide to use 
the ‘als’ algorithm (als for Alternating Least Squares) by default but the choice is 
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left free to the user in our package TrendTM. In this package, this choice is speci-
fied using the option type_soft.

5.1.4 � The slope heuristic

Let us now focus on the selection problem of the rank k, and write the penalty as 
pen(k) = �cal,k�(k) . The Slope heuristic, proposed by Birgé and Massart (2001), 
consists in estimating the slope ŝ  of the contrast ‖X − M̂k,n‖2F  as a function of �(k) 
with k ‘large enough’ and defining �cal,k = −2̂s  . The implementation of this heuristic 
requires the choice of the dimensions on which to perform the regression, that can 
be difficult in practice. To deal with this problem, Baudry et al. (2012) proposed to 
make robust regressions for dimensions between k and kmax for k = 1, 2,… , result-
ing in different selected k̂ . The choice of the final dimension is the maximal value k̂ 
such that the length of successive same k̂ is greater than the option point of the func-
tion DDSE of their R package capushe. In order to avoid some implementation 
problems as such condition is not reached and no k is selected, we decide to take the 
value k̂ associated to the maximal length of successive same k̂.

5.2 � Application to pollution dataset

Let us use the package on a real dataset.1 The dataset contains:

•	 The date in the (DD/MM/YYYY) format,
•	 The time in the (HH.MM.SS) format,
•	 The hourly average concentration of 10 toxic gases in the air: CO, PT08.S1, 

NMHC, C6H6, PT08.S2, NOx, PT08.S3, NO2, PT08.S4 and PT08.S5,
•	 The temperature in ◦C,
•	 The relative humidity (RH) in %,
•	 The absolute humidity (AH).

The concentration of the 10 toxic gases, the temperature and the relative and abso-
lute humidity have been recorded n = 9357 times during one year. We do a first step 
of data imputation using the function complete of the package softImpute 
since missing values (coded with −200 ) exist in this dataset (see Alquier et al. 2022 
for more details on high-dimensional time series completion).

Our procedure selects k̂ = 7 and �̂ = 13 . Figure  8 shows the obtained trend 
estimation for the 13 toxic gases. The denoising process seems to have been well 
applied to the data.

1  Available at https://​archi​ve.​ics.​uci.​edu/​ml/​datas​ets/​Air+​quali​ty.

https://archive.ics.uci.edu/ml/datasets/Air+quality
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6 � Link to PCA and clustering

In this section, we give a geometrical interpretation of the results when the factori-
zation problem is solved via a svd using the link to PCA. We also propose a sim-
ple method for the clustering of high-dimensional time series based on their pro-
jections on the resulting subspace. This method is compared to different existing 
methods described and compared in Jacques and Preda (2014) on the benchmark 
ECG dataset.

The ECG dataset. The ECG dataset (taken from the UCR Time Series Classifica-
tion and Clustering website) consists in 200 electrocardiograms from 2 groups of 
patients sampled at 96 time instants in which 133 are classified as normal and 67 as 
abnormal based on medical considerations. The time series are plotted in Fig. 9.

Geometrical interpretation of the factorization results. Recall that the PCA 
problem is solved using a svd (Singular Value Decomposition) leading to a 
matrix factorization. The svd solution is unique and generates orthogonal fac-
tors allowing graphical representations. Our framework without considering the 

Fig. 8   Data (in grey) and trend estimation (in red) for the 13 toxic gases (red)
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temporal trend ( � = I ) and by solving the optimization problem (3) with svd is 
thus equivalent to a PCA, up to a centering of the matrix X . The rank-k svd solu-
tion provides Ûk and V̂k such that Ûk = XV̂

∗

k
 where V̂

∗

k
 is an othogonal matrix and 

the estimator of M with rank k, i.e. the solution of (3), is M̂k = ÛkV̂k . Conse-
quently, the d lines of the matrix Ûk contains the coordinates of the projection of 
the d series on the first k axes, i.e. in the basis given by the k lines of the matrix 
V̂k . When a temporal structure is taken into account, as for example a �-periodic, 
M is estimated via the estimation of M resulting from a PCA on the transformed 
data X = X�+ . Indeed, the estimator of M is M̂k,� = M̂

k,�
� where M̂

k,�
= ÛkV̂k,�� 

is the solution of (6) and thus the lines of Ûk contains the coordinates of the trans-
formed time series ( X ) in the basis defined by the lines of V̂k,�.

Some remarks:

•	 this interpretation is only possible if the factorization is solved by svd. For 
example, this is no longer the case when the other classical NMF (Non Nega-
tiv Matrix Factorization) method is used;

•	 our work provides a criterion, theoretically performant, for the choice of the 
rank k, i.e. for the number of axes in PCA, usually chosen using empirical cri-
teria;

•	 the svd requires the calculation of eigenvalues of a matrix which is numerically 
tedious when the dimension of the problem is very large as in our framework. In 
this case, the svd is performed using the R package softImpute;

•	 in a simple PCA, two projected time series are close if they share globally the 
same trend’s property. However, in a high-dimensional space (n high), the euclid-
ean distance used in PCA can lose its meaning and a local trend similarity could 
be preferred as by using the temporal structure of the series.

Fig. 9   The ECG dataset (black: normal, red: abnormal)
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Fig. 10   Top: PCA on X . Mid-
dle: PCA on X with a periodic 
trend ( � = 32 ). Bottom: Sparse 
PCA for the ECGs series
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To illustrate the effect of the trend reduction (using �+ on a period with length � ), 
the PCA on the raw ECGs series and on the transformed ECGs series are repre-
sented in Fig. 10, respectively. The representation is given only on the two first axes 
(thus with k = 2 ) and the series are colored according to the normal (black) and 
abnormal (red) status. For the transformed data, we considered that the temporal 
trend is periodic with period � = 32 . The PCA on the raw data, called the raw PCA, 
is very structured with respect to the time. Let us consider the 28th and the 121th 
time series. These series are represented in Fig. 11 on the left in their raw version 
and after the temporal transformation on the right (called the transformed PCA). As 
we can observed, the raw series differ quite strongly at the beginning and at the end 
of time, which explains why they are quite far away on the principal components of 
the raw PCA. This difference is largely attenuated by the smoothing carried out by 
the transformation and they are close in the transformed PCA. We also compared 
to a Sparse PCA using the function SPC of the R package PMA (see Fig. 10). The 
projection is different from the transformed PCA and in particular the two previous 
series are no longer close or as far away as in the raw PCA.

Clustering of the d times series.When dealing with high-dimensional data, a 
large category of methods proposed in the literature proceed in two steps: first we 
reduce the dimension of the data and second we perform the clustering (see Jacques 
and Preda 2014 for a review). Following this line, we propose here a very simple 
method which consists in applying a classical clustering method (that is here the 
well-known Hierarchical Agglomerative Clustering with the Ward’s linkage) to the 
projected series, i.e. on the rows of Ûk . We apply this strategy on the ECG dataset 
for a fixed number of groups to 2 since we want to compare our results to those 
given in Jacques and Preda (2014) with different considerations: (1) with and with-
out taking into account for a trend (here a periodic trend with � = 32 ) and (2) for 
k = 2 and for a selected number k.

The Correct Classification Rates (CCR), that is the quality criterion used by the 
authors, according to the known partitions are given in Table 5. We also report the 
CCR obtained for the best method among those tested in Jacques and Preda (2014). 

Fig. 11   The 28th (dotted line) and the 121th (solid line) time series. Left: the raw series. Right: the trans-
formed series with a periodic trend ( � = 32)
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In addition, we indicate the time taken by the different methods on a laptop 1.6 GHz 
CPU. We observe that accounting for the trend improves significantly the clustering 
performances, which are the same compared to the best clustering method. How-
ever, our proposed strategy is clearly much more faster. We apply also the clustering 
on the sparse PCA result and obtained a CCR of 71 that is lower compared to both 
the raw and the transformed PCA.

Note that for the ECG dataset, when a trend is considered with � = 32 and k̂ = 6 , 
3 groups is prefered according to the NbClust R package (chosen by the majority of 
model selection methods included in this package). Note that, in Fig. 12, the series 
of the ECG dataset are plotted on the left and their projections, colored according to 
the 3 groups, are provided on the right.

Table 5   Correct classification rates (CCR) in percentage accounting or not for a trend on the ECG data-
set and with a selection or not for k 

Mean times in second obtained on 30 runs

procNoTrend procTrend Best method
periodic with � = 32 in Jacques and Preda (2014)

Funclust

CCR​ 74.5 ( k = 2) 83.5 ( k = 2) 84 (see Jacques and Preda 2014)
mean times 0.012 0.0033 19.2
in second
(on 30 runs)
CCR​ 75.5 ( ̂k = 4) 80.5 ( ̂k = 6)
mean times 0.16 0.0392
in second
(on 30 runs)

Fig. 12   Clustering of the ECG series with a periodic trend with � = 32 , k̂ = 6 and 3 groups. Left: the 
series and right: the PCA result, colored according to the groups



1 3

Trend of high dimensional time series estimation using low‑rank…

7 � Conclusion

The penalized criterion developed in Alquier and Marie (2019) for high-dimen-
sional time series analysis consists in selecting both the rank k of the matrix and 
the parameter � related to the temporal structure. The penalty function involves a 
constant to be calibrated and depends on the temporal structure through its asso-
ciated parameters to be estimated. For such minimization contrast estimation con-
text, it is well-known in the literature that despite the selection of both parameters 
issue that is not standard, the calibration of penalty constant is not an easy task 
and many heuristics have been proposed to this aim. We proposed in this paper a 
two-stage strategy based on a popular heuristic: the slope heuristic proposed by 
Birgé and Massart (2001) and used in many statistical problems. We conducted 
a large simulation study to compare different heuristics as well as to study the 
performance of the method. In particular, through these simulations, we show 
that the joint heuristic performs well: the true values of k and � are retrieved or 
underestimated when the estimation problem is more difficult, but with good rea-
sons (the estimation is better than with the true values in this case). Moreover, 
whatever all the tested cases, the performance of the final estimator is compa-
rable to that of the oracle. The method has been implemented in the R package 
TrendTM yet available on the CRAN and which is detailed in this paper. We also 
give a geometrical interpretation of the factorization results in the case of using a 
svd method for solving the optimization problem and propose a simple clustering 
method of multiple curves. On a benchmark dataset, we observed that this simple 
method works as well as the best ones proposed in the literature but is computa-
tionally much faster. Moreover, we show that accounting for the tendency in this 
dataset improve the clustering.

Our model assumes that the time series are independent. In some applications, 
this assumption is not realistic and a perpective of this work will be to take into 
account a between-series dependence.

Appendix

We give here details on the heuristics for the calibration of the penalty constant. 
Let us consider the model selection problem of selecting a parameter k in the set 
{1,… , kmax} by minimizing a general penalized contrast:

where � is the unknown penalty constant, C and pen are the contrast and penalty 
function, respectively. The two well known heuristics for the calibration of one pen-
alty constant are the following:

•	 the one proposed by Lavielle (2005), called ML in our paper. The idea of 
this heuristic is to select the dimension for which the curve C(k) w.r.t. pen(k) 

k̂(𝛽) ∈ argmin
k

C(k) + 𝛽 pen(k),
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ceases to decrease significantly, i.e. to look of a break in the slope of this 
curve. The author thus proposed the following automatic procedure: 

 where D(k) is the second derivative of the previous curve and S is a threshold to 
be fixed.

•	 the ‘slope heuristic’ proposed by Birgé and Massart (2001). The idea of this 
heuristic is based on two theoretical facts: first there exists a minimal penalty 
such that when the penalty is smaller then k̂ is huge leading to overfitting, but 
when the penalty is larger then k̂ is reasonable. Two data-driven algorithms 
have been proposed to search for this minimal penalty (see the huge paper 
dedicated to this heuristic Arlot and Massart 2009):

–	 Slope: this heuristic consists in estimating the slope �s of C(k) as a func-
tion of pen(k) for ‘large’ k and to consider k̂(𝛽) where 𝛽 = −2𝛽s.

–	 Biggest Jump (BJ): this heursitic consists in taking the constant �bg asso-
ciated to the biggest jump in the curve 𝛽 ↦ k̂(𝛽) and to consider k̂(𝛽) where 
𝛽 = 2𝛽bg.
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