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Abstract
This paper presents a discrete counterpart of the mixture exponential distribution, 
namely discrete mixture exponential distribution, by utilizing the survival discretiza-
tion method. The moment generating function and associated moment measures are 
discussed. The distribution’s hazard rate function can assume increasing or decreas-
ing forms, making it adaptable for diverse fields requiring count data modeling. 
The paper delves into two parameter estimation methods and evaluates their perfor-
mance through a Monte Carlo simulation study. The applicability of this distribution 
extends to time series analysis, particularly within the framework of the first-order 
integer-valued autoregressive process. Consequently, an INAR(1) process with dis-
crete mixture exponential innovations is proposed, outlining its fundamental proper-
ties, and the performance of conditional maximum likelihood and conditional least 
squares estimation methods is evaluated through a simulation study. Real data analy-
sis showcases the proposed model’s superior performance compared to alternative 
models. Additionally, the paper explores quality control applications, addressing 
serial dependence challenges in count data encountered in production and market 
management. As a result, the INAR(1)DME process is employed to explore control 
charts for monitoring autocorrelated count data. The performance of two distinct 
control charts, the cumulative sum chart and the exponentially weighted moving 
average chart, are evaluated for their effectiveness in detecting shifts in the process 
mean across various designs. A bivariate Markov chain approach is used to esti-
mate the average run length and their deviations for these charts, providing valuable 
insights for practical implementation. The nature of design parameters to improve 
the robustness of process monitoring under the considered charts is examined 
through a simulation study. The practical superiority of the proposed charts is dem-
onstrated through effective modeling with real data, surpassing competing models.
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1  Introduction

Statistical quality control involves applying statistical methods to monitor and con-
trol processes, with the primary objective of ensuring consistency and compliance 
with predefined criteria. This underscores the critical importance of count data mod-
eling in ensuring the accuracy and effectiveness of quality control measures. The 
serial dependence inherent in count data enables the effective use of integer-valued 
autoregressive time series models. Consequently, there is a growing recognition of 
the necessity for more flexible discrete models.

Time series models serve as indispensable tools for capturing distinct data fea-
tures, especially when dealing with count data over time. The first-order integer-
valued autoregressive (INAR(1)) process is a significant statistical model for study-
ing autocorrelated count data, excelling in accurately representing counts when 
compared to Poisson and negative binomial models. Consequently, Al-Osh and 
Alzaid (1987) introduced the INAR(1) process with binomial thinning having Pois-
son marginals. Subsequently, other variations, such as the INAR(1) process with 
Poisson-transmuted exponential innovations proposed by Altun and Khan (2022), 
INAR(1) process with Poisson-extended exponential innovations presented by Maya 
et al. (2022), and INAR(1) process with new discrete Bilal innovations discussed by 
Ahsan-ul Haq et al. (2023), have emerged. Researchers are exploring these INAR(1) 
models to enhance their ability to fit real datasets optimally. This diverse collection 
of INAR(1) models has garnered substantial interest among researchers, undergoing 
in-depth exploration and contributing to the evolving landscape of time series mod-
eling, particularly in fields like quality control.

Statistical quality control primarily focuses on count data, and the introduction 
of control charts has revolutionized this field, making them the primary method for 
process monitoring. Control charts are designed to maintain process stability and 
swiftly detect parameter shifts, classifying a process as “in control” if it adheres to 
a specified model. Consequently, efficient monitoring is essential to identify shifts 
in the mean promptly. The cumulative sum (CUSUM) and exponentially weighted 
moving average (EWMA) control charts are recognized for their ability to retain 
information over time and detect these changes. The frequently used conventional 
control charts often assume independent observations, a premise that may not con-
sistently align with real-world scenarios. This necessitates the utilization of control 
charts in integer-valued time series models. As a result, Weiß and Testik (2011) 
proposed a CUSUM chart for monitoring the mean of the INAR(1) process with 
Poisson marginals. Some of the notable works include Li et  al. (2022), Kim and 
Lee (2017) and Rakitzis et al. (2017). To enhance monitoring capabilities, EWMA 
charts have been introduced and compared with CUSUM charts. Following the 
CUSUM chart, Weiß (2011) discussed the corresponding EWMA chart. Some other 
works include Li et al. (2016, 2019) and Zhang et al. (2014).

Building on this foundation, our study delves into assessing the effectiveness 
of control charts in monitoring an INAR(1) process. Within this context, the 
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associated discrete distributions are crucial in modeling the data. Although count 
data modeling has traditionally relied on Poisson and negative binomial distri-
butions, the widespread occurrence of over-dispersion and notable skewness or 
kurtosis in real-world datasets has emphasized the necessity to create new mod-
els. Hence, we introduce a new discrete distribution and its associated INAR(1) 
process, incorporating it as innovations. Researchers have responded by introduc-
ing innovative discrete distributions through various methodologies. Here, we uti-
lize survival discretization technique, and for a random variable (rv) X having a 
survival function F̄(x) = P(X > x) , the corresponding probability mass function 
(pmf) is given by,

This method retains the shape of the hazard rate function (hrf) of the base model. 
Some of the works based on the above model include Krishna and Pundir (2009), 
El-Morshedy et al. (2020) and Altun et al. (2022).

Motivated by the aforementioned works, this study introduces a novel discrete 
mixture exponential (DME) distribution by utilizing survival discretization tech-
nique to the mixture exponential (ME) distribution proposed by Mirhossaini and 
Dolati (2008). The distribution’s statistical characteristics are examined, and the 
performance of parameter estimation approaches is assessed through a simula-
tion study. The superior performance of the DME distribution in real data analy-
sis allows us to explore the INAR(1) process with DME distributed innovation, 
denoted as the INAR(1)DME process. The superior performance of the INAR(1)
DME process in real data analysis further enables us to utilize it in the field of 
quality control

In the context of quality control, to monitor the mean of the INAR(1)DME 
process, CUSUM and EWMA control charts are developed, and their statistical 
design and performance in detecting increasing shifts in process mean levels are 
investigated. The analysis encompasses the evaluation of control chart properties, 
particularly their average run length (ARL), which indicates their sensitivity in 
detecting mean changes within the process. A comparative assessment of both 
monitoring approaches is also undertaken, providing insights into their perfor-
mance. The effectiveness of the control chart under the INAR(1)DME process in 
detecting shifts in the process mean is assessed by utilizing real data.

The paper is structured as follows: Sect. 2 provides an overview of the construc-
tion and characteristics of the DME distribution. Section 3 introduces the associated 
statistical properties, including the moment generating function (mgf), moments, 
skewness, and kurtosis. Section  4 delves into the discussion of parameter estima-
tion methods and assessing their performance using a Monte Carlo simulation study. 
Section 5 evaluates the performance of the proposed distribution using a real data 
set. Section 6 introduces the INAR(1) process with DME innovations and discusses 
its properties, including estimation, simulation, and real data analysis. Section  7 
focuses on the statistical process control procedure for INAR(1)DME processes, uti-
lizing the CUSUM and EWMA approaches to detect mean increases, accompanied 
by numerical simulation and real data analysis. The study is concluded in Sect. 8.

(1.1)P(X = x) = F̄(x) − F̄(x + 1), x = 0, 1, 2, 3,… .
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2 � The discrete mixture exponential distribution

Let X be a rv following the ME distribution. The probability density function and 
cumulative distribution function (cdf) of the ME distribution are given by,

and

where 𝜃 > 0, −1 ≤ 𝛼 ≤ 1.
Applying (1.1) to (2.1), along with the reparameterization � = e−� , yields the 

DME distribution, as outlined in the following proposition.

Proposition 2.1  Let X ∼ DME(�, �) , then the pmf is given by,

where 0 < 𝜆 < 1 and −1 ≤ � ≤ 1.

The corresponding cdf is given by,

The pmf of the DME distribution always decreases for −0.3 < 𝛼 < 1 since,

Figure  1 displays the pmf plots of the DME distribution. It can be seen that the 
DME distribution is rightly skewed and unimodal.

3 � Statistical properties

This section discusses the DME distribution’s hrf, mgf, moments, skewness, and 
kurtosis. The hrf of the DME distribution is obtained as,

Figure 2 showcases the DME distribution’s hrf, illustrating its ability to exhibit 
increasing (−1 ≤ 𝛼 < 0) , decreasing (0 < 𝛼 < 1) and constant ( � = 0 ) behaviors.

The mgf of the DME distribution is given by,

g(x;𝛼, 𝜃) = 𝜃e−𝜃x
{
1 + 𝛼

(
2e−𝜃x − 1

)}
, x > 0,

(2.1)G(x;𝛼, 𝜃) =
(
1 − e−𝜃x

)(
1 + 𝛼e−𝜃x

)
, x > 0,

(2.2)P(X = x) = �x (1 − �) (1 − �) + � �2x (1 − �2), x = 0, 1, 2, ...,

F(x) =
(
1 − �(1+x)

)(
1 + ��(1+x)

)
.

p
�

(x) = (1 − 𝛼) (1 − 𝜆) 𝜆x log(𝜆) + 2 𝛼 𝜆2x (1 − 𝜆2) log(𝜆) < 0.

h(x) =
(1 − �)(1 + �(�x + �(1+x) − 1))

� − �� + ��(2+x)
.
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Fig. 1   Pmfs of the DME distribution for different parameter values
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Fig. 2   Hazard rate function of the DME distribution for different parameter values
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The r th moment about the origin of X is given by,

Then, the mean and variance of the DME distribution are given by,

Using (3.1), the dispersion index (DI) of the DME distribution, which quantifies 
variability, is given by,

The shape and characteristics of the DME distribution are analyzed using the 
moment measures of skewness and kurtosis, which are given by,

See  “Appendix” for more details.
From the 3D plot of DI given in Fig. 3, it is clear that DI is greater than 1. The 3D 

plots in Fig. 4 illustrate the graphical representation of skewness and kurtosis, indi-
cating the right-skewed leptokurtic behavior of the DME distribution. Table 1 illus-
trates the variation in mean, variance, DI, skewness, and kurtosis with respect to the 
values of � and � . The mean, variance and DI consistently increase, while skewness 

MX(t) =

∞∑

x=0

etx {𝜆x(1 − 𝜆)(1 − 𝛼) + 𝛼𝜆2x(1 − 𝜆2)}

=
(1 − 𝜆)(1 − 𝛼)

1 − 𝜆et
+

𝛼(1 − 𝜆2)

1 − 𝜆2et

=
(1 − 𝜆)((et − 1)𝛼𝜆 + et𝜆2 − 1)

((1 − et𝜆)(et𝜆2 − 1))
, 𝜆et < 1.

�
�

r
=

∞∑

x=0

xr�x(1 − �)(1 − �) + ��2x(1 − �2), r = 1, 2, 3, ..

(3.1)E(X) =
�(1 − � + �)

(1 − �2)
and Var(X) =

�((1 + �)2 − �2� − �(1 + �2))

(1 − �2)2
.

DI(X) =
Var(X)

E(X)
=

�2� − (1 + �)2 + �(1 + �2)

(� − 1)(1 + �)(1 − � + �)
.

S(X) =

[
E(X − E(X))3

]2

[Var(X)]3

=
((1 + �)3(−1 − 3� + 4�2) + �2�(1 + 6� + 11�2) + �(1 + 4� + 2�2 − 16�3 − 9�4))2

�((1 + �)2 − �2� − �(1 + �2))3
,

K(X) =
E(X − E(X))4

[Var(X)]2

=
(1 + �)4(1 + 7� + �2) − 3�4�3 − 6�3(�2 + �4) − 2�2�(2 + 3� + 14�2 + 3�3 + 2�4)

�(�2 � − (1 + �)2 + �(1 + �2))2

−
�(1 + 6� + 23�2 + 12�3 + 23�4 + 6�5 + �6)

�(�2 � − (1 + �)2 + �(1 + �2))2
.
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and kurtosis decrease with the rise in � for a fixed � ∈ [−1, 1] and � ∈ (−0.3, 1] , 
respectively.

4 � Estimation

This section discusses the maximum likelihood (ML) and least squares (LS) param-
eter estimation for the DME distribution.

4.1 � Maximum likelihood estimation

Let x = (x1, x2, ..., xn) be a sample of size n from the DME distribution. Then, the 
log-likelihood function is given by,

Since � log L(�,�)
��

= 0 and � log L(�,�)
��

= 0 failed to give explicit solutions, the maximum 

likelihood estimates (MLEs) 𝛼̂ and 𝜆̂ of � and � are obtained by direct maximization 

(4.1)log L(�, �) =

n∑

i=1

log{�xi (1 − �)(1 − �) + ��2xi (1 − �2)}.

Fig. 3   DI of the DME distribu-
tion for different parameter 
values

Fig. 4   Skewness (a) and kurtosis (b) of the DME distribution for different parameter values
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of (4.1) using numerical methods. To this end, one can use the optim function in R 
software.

The observed Fisher information matrix of 𝛼̂ and 𝜆̂ is given by,

Table 1   The mean, variance, DI, skewness and kurtosis of the DME distribution

� = −1 � = −0.7

� E(X) Var(X) DI S(X) K(X) � E(X) Var(X) DI S(X) K(X)

 0.2 0.46 0.49 1.08 5.77 6.99 0.2 0.40 0.45 1.13 6.69 7.93
 0.5 1.67 2.67 1.60 0.51 6.88 0.5 1.47 2.56 1.75 1.38 7.22
 0.7 3.71 9.90 2.67 0.63 7.01 0.7 3.29 9.66 2.93 0.00 7.22
 0.8 6.22 25.19 4.05 2.55 7.05 0.8 5.56 24.67 4.44 0.42 7.22
 0.9 13.74 112.69 8.20 5.81 7.07 0.9 12.32 110.59 8.98 1.70 7.23

� = −0.4 � = 0

� E(X) Var(X) DI S(X) K(X) � E(X) Var(X) DI S(X) K(X)

 0.2 0.33 0.40 1.19 7.91 9.28 0.2 0.25 0.31 1.25 10.37 12.20
 0.5 1.27 2.37 1.87 2.52 7.89 0.5 1.00 2.00 2.00 4.50 9.50
 0.7 2.88 9.08 3.15 0.40 7.75 0.7 2.33 7.78 3.33 1.86 9.13
 0.8 4.89 23.26 4.76 0.01 7.72 0.8 4.00 20.00 5.00 0.88 9.05
 0.9 10.89 104.46 9.59 0.19 7.71 0.9 9.00 90.00 10.00 0.24 9.01

� = 0.1 � = 0.4

� E(X) Var(X) DI S(X) K(X) � E(X) Var(X) DI S(X) K(X)

 0.2 0.23 0.29 1.26 11.23 13.26 0.2 0.17 0.22 1.29 14.96 17.97
 0.5 0.93 1.88 2.02 5.11 10.09 0.5 0.73 1.48 2.02 7.39 12.59
 0.7 2.20 7.36 3.35 2.36 9.65 0.7 1.78 5.87 3.29 4.25 11.81
 0.8 3.78 18.94 5.01 1.28 9.55 0.8 3.11 15.16 4.87 2.85 11.65
 0.9 8.53 85.26 10.00 0.48 9.50 0.9 7.11 68.36 9.62 1.62 11.57

� = 0.7 � = 1

� E(X) Var(X) DI S(X) K(X) � E(X) Var(X) DI S(X) K(X)

 0.2 0.10 0.13 1.28 22.18 27.39 0.2 0.04 0.04 1.04 31.00 32.04
 0.5 0.33 0.54 1.62 12.82 18.22 0.5 0.33 0.44 1.33 9.00 11.25
 0.7 1.37 4.05 2.95 6.64 15.16 0.7 0.96 1.88 1.96 4.65 9.53
 0.8 2.44 10.49 4.29 4.80 14.85 0.8 1.78 4.94 2.78 2.57 9.20
 0.9 5.68 47.42 8.34 3.05 14.70 0.9 4.26 22.44 5.26 0.80 9.04
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Hence, the variance-covariance matrix is obtained as

4.2 � Least squares estimation

Let xi∶n be the ith order statistic of the sample x = (x1, x2, .., xn) . The  LS estimates 
(LSEs) of the parameters are obtained by minimizing the following equation:

To this end, one can use the optim function in R software. 

4.3 � Simulation

The performance of the estimation methods is assessed through a simulation study. 
The simulation is conducted with N = 1000 replications for sample sizes n of 100, 
200, 300, 400, and 500, encompassing various parameter values. The following 
quantities are computed. 

1.	 Average bias (Bias), Bias(â)=1

N

∑N

i=1
(âi − a), where âi is the i th estimate of the 

parameter a, a ∈ {�, �} , for i = 1, 2,… ,N.

2.	 Root mean square error (RMSE), RMSE(â) =
�

1

N

∑N

i=1
(âi − a)2.

Table 2 lists the Bias and RMSE for the MLEs and LSEs of the parameters � and � . 
As n increases, both Bias and RMSE decrease for the ML and LS methods. Addi-
tionally, a significant decrease in both Bias and RMSE is observed when comparing 
the ML method to the LS. Thus, ML estimation performs very well and is appropri-
ate for small and large sample sizes.

5 � Data analysis

The corn-borer data comprises 120 observations of European corn-borer larvae 
(Pyrausta) numbers in the field (Bodhisuwan and Sangpoom 2016), is considered 
to to evaluate how well the DME distribution fits the data. The Poisson distribution, 
the discrete Burr (DB) distribution (Krishna and Pundir 2009), the discrete Gum-
bel (DG) distribution (Chakraborty and Chakravarty 2014), the discrete log-logistic 
(DLL) distribution (Para and Jan 2016), the discrete Bilal (DBL) distribution (Altun 

Ĵn = −

[
𝜕2 log L(𝛼,𝜆)

𝜕𝛼2

𝜕2 log L(𝛼,𝜆)

𝜕𝛼𝜕𝜆
𝜕2 log L(𝛼,𝜆)

𝜕𝜆𝜕𝛼

𝜕2 log L(𝛼,𝜆)

𝜕𝜆2

]||||||(𝛼,𝜆)=(𝛼̂,𝜆̂)

Σ = Ĵ−1
n
.

LSE(�, �) =

n∑

i=1

[
{(1 − �(1+xi∶n))(1 + ��(1+xi∶n))} −

i

n + 1

]2
.
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et al. 2022), the discrete Pareto (DPR) distribution (Krishna and Pundir 2009), and 
the discrete Rayleigh (DR) distribution (Roy 2004), are chosen for comparison.

The unknown parameters are obtained using the ML method, along with the stand-
ard error (SE) and 95% confidence interval (CI) for the considered models. Model per-
formance is assessed using some widely accepted information criteria and goodness-
of-fit statistics. Smaller values of the Akaike information criterion (AIC) and Bayesian 
information criterion (BIC), as well as larger log-likelihood (logL) values, indicate the 
adequacy of the model. Furthermore, the goodness-of-fit for each fitted distribution is 
assessed using the chi-square test, where a small �2 value and a large p-value indicate 
a good fit.

Table 3 makes it abundantly clear that the DME distribution is the best of the com-
petitive models under consideration because it has the lowest AIC and BIC, the highest 
logL, and p-value, respectively.

The observed and expected frequencies of corn-borer data under various distribu-
tions are displayed in Fig.  5. The expected frequencies align more closely with the 
theoretical values under the DME distribution than the other considered distributions. 
Hence, the DME distribution performs better than the considered alternatives in mod-
eling the data.

6 � INAR(1) process with discrete mixture exponential innovations

In this section, the INAR(1) process with innovations following the DME distribution 
is developed. For this purpose, the INAR(1) model with a binomial thinning operator 
that employs independent Bernoulli counting series rvs is utilized.

Definition 6.1  The binomial thinning operator is defined as,

where X is a non-negative integer-valued rv and {Bi} is a sequence of independent 
and identically distributed (iid) rvs with Bernoulli (p) distribution and is independ-
ent of X.

6.1 � INAR(1)DME process

The INAR(1)DME process is given by,

p◦X =

X∑

i=1

Bi, p ∈ (0, 1),

Xt = p◦Xt−1 + �t, t ≥ 2,
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Fig. 5   Observed and expected frequencies of the corn-borer data under various distributions
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where “◦ ” is the binomial thinning operator, {�t} is a sequence of iid rvs from 
DME(�, � ) and �t is independent of Bernoulli counting process {Bi} and Xm for all 
m ≤ t.

The one-step transition probability of the INAR(1) process is given by,

Then, the one-step transition probability of the INAR(1)DME process is given by,

Also, the stationary marginal density of {Xt} is given by,

From Weiß (2018), the mean and variance of {Xt} can be computed using (3.1) as,

Then, the DI of {Xt} is given by,

Table 4 provides the DI of {Xt} across different parameter configurations, indi-
cating the model’s ability to accommodate over-dispersed data. The one-step-ahead 
conditional mean and variance of the INAR(1)DME process are given by,

P
(
Xt = k ∣ Xt−1 = l

)
=

min(k,l)∑

i=0

(
l

i

)
pi(1 − p)l−iP

(
�t = k − i

)
, k, l ≥ 0.

(6.1)

P
(
Xt = k ∣ Xt−1 = l

)
=

min(k−l)∑

i=0

(
l

i

)
pi(1 − p)l−i {�k−i(1 − �)(1 − �) + ��2k−i(1 − �2)}.

(6.2)

P
(
Xt = k

)
=

∞∑

l=0

P
(
Xt = k ∣ Xt−1 = l

)
P
(
Xt−1 = l

)

=

∞∑

l=0

min(k−l)∑

i=0

(
l

i

)
pi(1 − p)l−i {�k−i(1 − �)(1 − �) + ��2k−i(1 − �2)}.

(6.3)E(Xt) = �X =
(1 − � + �)�

(1 − �2)(1 − p)
,

(6.4)Var(Xt) =
�([(1 + p(1 − �))(1 + �)2] − �2� − �(1 + p + �2 − p �2))

(1 − p2)(1 − �2)2
.

(6.5)DI(Xt) =
[(1 + p(1 − �))(1 + �)2] − �2� − �(1 + p + �2 − p �2)

(1 + p)(1 − �2)(1 − � + �)
.

(6.6)E(Xt|Xt−1) = p Xt−1 +
(1 − � + �)�

(1 − �2)
,

(6.7)Var(Xt|Xt−1) = p (1 − p) Xt−1 +
�((1 + �)2 − �2� − �(1 + �2))

(1 − �2)2
.
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6.2 � Estimation

This section discusses the conditional maximum likelihood (CML) and conditional 
least squares (CLS) parameter estimation for the INAR(1)DME process.

6.2.1 � Conditional maximum likelihood

The knowledge of the transition probabilities is sufficient for the creation of the 
likelihood function in the CML technique. For a given sample x1, x2, ..., xn from the 
INAR(1)DME process, the conditional log-likelihood function is given by,

where x1 is fixed, and P
(
Xt = xt ∣ Xt−1 = xt−1

)
 is given by (6.1). The CML estimates 

(CMLEs) of the parameters p, � and � are obtained by maximizing (6.8) using the 
optim function in R software.

(6.8)l(p, �, �) =

n∑

t=2

log[P
(
Xt = xt ∣ Xt−1 = xt−1

)
],

Table 4   DI of {Xt} for various parameter values

p = 0.4

�

� − 0.1 − 0.5 − 0.9 0.9 0.7 0.3 0.1

 0.1 1.0734 1.0478 1.0209 1.0794 1.1046 1.0956 1.0851
 0.2 1.1683 1.1217 1.0702 1.1339 1.1994 1.2034 1.1880
 0.3 1.2927 1.2276 1.1520 1.2002 1.3061 1.3344 1.3179
 0.4 1.4603 1.3777 1.2765 1.2925 1.4422 1.5040 1.4893
 0.5 1.6964 1.5952 1.4643 1.4286 1.6310 1.7381 1.7279
 0.6 2.0517 1.9279 1.7580 1.6409 1.9152 2.0869 2.0848
 0.7 2.6449 2.4884 2.2594 2.0049 2.3922 2.6667 2.6789
 0.8 3.8321 3.6156 3.2751 2.7460 3.3521 3.8254 3.8665
 0.9 7.3947 7.0056 6.3410 4.9925 6.2444 7.3017 7.4286

p = 0.7

�

� − 0.1 − 0.5 − 0.9 0.9 0.7 0.3 0.1

 0.1 1.0604 1.0394 1.0172 1.0654 1.0862 1.0787 1.0701
 0.2 1.1386 1.1002 1.0578 1.1103 1.1642 1.1675 1.1549
 0.3 1.2410 1.1875 1.1252 1.1648 1.2521 1.2754 1.2618
 0.4 1.3791 1.3111 1.2277 1.2409 1.3641 1.4151 1.4029
 0.5 1.5735 1.4902 1.3824 1.3529 1.5196 1.6078 1.5994
 0.6 1.8661 1.7642 1.6243 1.5278 1.7537 1.8951 1.8934
 0.7 2.3546 2.2258 2.0372 1.8276 2.1465 2.3725 2.3826
 0.8 3.3323 3.1540 2.8736 2.4379 2.9370 3.3268 3.3606
 0.9 6.2663 5.9458 5.3985 4.2879 5.3189 6.1896 6.2941
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6.2.2 � Conditional least squares estimation

The CLS estimates (CLSEs) of parameters p, � and � are obtained by minimizing 
the following equation,

To this end, one can use the optim function in R software.

6.3 � Simulation

A simulation study was performed to assess the performance of the CML and 
CLS estimation methods under the INAR(1)DME process. The simulation is car-
ried out by taking N = 1000 replications for samples of sizes n = 50, 100, 150, 
200, and 250 with different parameter values. The Bias and RMSE are computed 
accordingly.

Table 5 shows that as n increases, Bias and RMSE decrease for both methods. 
The CMLEs exhibit lower Bias and RMSE compared to the CLSEs. Hence, the 
CML estimation method performs very well and is suitable for both small and large 
sample sizes.

6.4 � Empirical study

Here, an example is presented to demonstrate the application of the INAR(1)DME 
process in fitting a real-world data set.

6.4.1 � Methodology

Utilizing model adequacy criteria, the introduced INAR(1)DME process is com-
pared with some existing models. To that end, the existing INAR(1) process with 
some well-known discrete innovations are used. The following are considered:

•	 INAR(1) process with Poisson marginals, (Al-Osh and Alzaid 1987) (INARP(1))
•	 INAR(1) process with negative binomial marginals, (McKenzie 1986) 

(INARNB(1))
•	 quasi-binomial INAR(1) process with generalized Poisson marginals, (Alzaid 

and Al-Osh 1993) ( QINARGP(1))
•	 random coefficient INAR(1) process with negative binomial marginals, (Weiß 

2008) (RCINARNB(1))
•	 iterated INAR(1) process with negative binomial marginals, (Al-Osh and Aly 

1992) (IINARNB(1))

L(p, �, �) =

n∑

t=2

(xt − E(Xt|Xt−1 = xt−1))
2.
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Table 5   Simulation results of INAR(1)DME process

CML

n p � �

Estimate Bias RMSE Estimate Bias RMSE Estimate Bias RMSE

p = 0.3, � = 0.8, � = 0.6

 50 0.2871 0.0846 0.1052 0.7722 0.2279 0.2653 0.5865 0.0663 0.0828
 100 0.2904 0.0588 0.0747 0.7692 0.2010 0.2414 0.5910 0.0554 0.0680
 150 0.2942 0.0492 0.0611 0.7772 0.1899 0.2259 0.5935 0.0517 0.0632
 200 0.2967 0.0410 0.0510 0.7781 0.1822 0.2193 0.5942 0.0496 0.0603
 250 0.2924 0.0382 0.0477 0.7664 0.1834 0.2214 0.5939 0.0494 0.0599
p = 0.5, � = 0.2, � = 0.3

 50 0.4758 0.0915 0.1172 0.2044 0.2371 0.2690 0.3047 0.0650 0.0813
 100 0.4884 0.0637 0.0814 0.2299 0.2385 0.2797 0.3089 0.0572 0.0735
 150 0.4918 0.0513 0.0644 0.2329 0.2333 0.2797 0.3114 0.0536 0.0692
 200 0.4953 0.0432 0.0544 0.2506 0.2312 0.2805 0.3159 0.0524 0.0683
 250 0.4940 0.0393 0.0495 0.2448 0.2232 0.2726 0.3149 0.0498 0.0662
p = 0.2, � = −0.6, � = 0.4

 50 0.1953 0.0974 0.1180 − 0.5697 0.3821 0.4713 0.4088 0.0625 0.0798
 100 0.1936 0.0716 0.0890 − 0.5881 0.3054 0.3810 0.4044 0.0438 0.0583
 150 0.1958 0.0597 0.0738 − 0.6102 0.2715 0.3307 0.4017 0.0376 0.0486
 200 0.1996 0.0516 0.0642 − 0.6115 0.2352 0.2993 0.4013 0.0336 0.0454
 250 0.1931 0.0470 0.0586 − 0.6213 0.2088 0.2525 0.4005 0.0284 0.0357
p = 0.3, � = −0.4, � = 0.7

 50 0.2832 0.0751 0.0937 − 0.4408 0.4310 0.5110 0.6982 0.0421 0.0543
 100 0.2903 0.0539 0.0680 − 0.4046 0.3253 0.4119 0.7022 0.0320 0.0416
 150 0.2894 0.0456 0.0569 − 0.4420 0.2746 0.3495 0.6987 0.0265 0.0343
 200 0.2948 0.0395 0.0501 − 0.4028 0.2448 0.3157 0.7006 0.0230 0.0309
 250 0.2949 0.0358 0.0460 − 0.4116 0.2150 0.2809 0.7004 0.0203 0.0272

CLS

n p � �

Estimate Bias RMSE Estimate Bias RMSE Estimate Bias RMSE

p = 0.3, � = 0.8, � = 0.6

 50 0.2634 0.1172 0.1441 0.8146 0.0293 0.0441 0.5345 0.0829 0.1056
 100 0.2775 0.0853 0.1050 0.8197 0.0228 0.0293 0.5361 0.0709 0.0884
 150 0.2888 0.0701 0.0868 0.8211 0.0225 0.0269 0.5322 0.0717 0.0848
 200 0.2902 0.0603 0.0753 0.8213 0.0219 0.0260 0.5330 0.0692 0.0810
 250 0.2911 0.0557 0.0696 0.8208 0.0212 0.0248 0.5341 0.0673 0.0779
p = 0.5, � = 0.2, � = 0.3

 50 0.4367 0.1233 0.1559 0.3668 0.1681 0.2312 0.2416 0.0879 0.1074
 100 0.4643 0.0888 0.1107 0.3308 0.1309 0.1637 0.2187 0.0899 0.1059
 150 0.4779 0.0697 0.0885 0.3188 0.1189 0.1349 0.2094 0.0932 0.1056
 200 0.4872 0.0584 0.0736 0.3115 0.1115 0.1185 0.2040 0.0970 0.1063
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•	 negative binomial thinning-based INAR(1) process with geometric marginals, 
(Ristić et al. 2009) (NBINARG(1))

•	 INAR(1) process with geometric marginals, (Alzaid and Al-Osh 1988) 
(INARG(1))

•	 dependent counting INAR(1) process with geometric marginals, (Ristić et  al. 
2013) (DCINARG(1))

•	 INAR(1) process with zero-inflated Poisson innovations, (Jazi et  al. 2012b) 
(INAR(1)ZP)

•	 INAR(1) process with geometric innovations, (Jazi et al. 2012a) (INAR(1)G)
•	 INAR(1) process with Katz family innovations, (Kim and Lee 2017) (INAR(1)

KF)

The CML method is employed for parameter estimation. Subsequently, logL, AIC, 
BIC, and RMSE∗ for all the models described above are computed.. The RMSE∗ 
measures the differences between true values and one-step conditional expectation 
and is given by,

where x̂n, n = 1, 2,… ,N, is the predicted value, which is the realization of X̂t and 
are given by,

RMSE∗ =

√√√√ 1

N

N∑

n=1

(
xn − x̂n

)2
,

Table 5   (continued)

CLS

n p � �

Estimate Bias RMSE Estimate Bias RMSE Estimate Bias RMSE

 250 0.4858 0.0560 0.0703 0.3121 0.1121 0.1175 0.2048 0.0961 0.1051
p = 0.2, � = −0.6, � = 0.4

 50 0.1769 0.1096 0.1312 − 0.4702 0.1469 0.1861 0.3708 0.0613 0.0769
 100 0.1851 0.0861 0.1048 − 0.4690 0.1376 0.1646 0.3663 0.0519 0.0645
 150 0.1901 0.0679 0.0849 − 0.4698 0.1348 0.1541 0.3654 0.0458 0.0565
 200 0.1949 0.0591 0.0740 − 0.4717 0.1299 0.1469 0.3639 0.0436 0.0534
 250 0.1905 0.0555 0.0696 − 0.4734 0.1277 0.1423 0.3657 0.0407 0.0499
p = 0.3, � = −0.4, � = 0.7

 50 0.2579 0.1103 0.1367 − 0.2817 0.1197 0.1484 0.6446 0.0757 0.0981
 100 0.2824 0.0789 0.0981 − 0.2804 0.1199 0.1360 0.6367 0.0702 0.0872
 150 0.2871 0.0616 0.0762 − 0.2819 0.1182 0.1285 0.6360 0.0666 0.0794
 200 0.2924 0.0591 0.0739 − 0.2785 0.1215 0.1309 0.6329 0.0689 0.0815
 250 0.2932 0.0509 0.0640 − 0.2809 0.1191 0.1263 0.6338 0.0672 0.0773
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where 𝜃̂CML is the CMLE of the parameter vector (p, �, �) . A model exhibiting a 
large logL along with small AIC and BIC values offers the optimal fit to the data. 
Additionally, it holds the potential for good forecasts if its RMSE∗ is the minimum 
among the models under consideration.

Further, the standardized Pearson residuals are used to check whether the 
INAR(1)DME process is a good fit for the data set. They are calculated using the 
following formula:

where E(Xt|Xt−1) and Var(Xt|Xt−1) are given in (6.6) and (6.7), respectively. If the 
INAR(1) process is well-fitted, then the Pearson residuals are uncorrelated and have 
zero mean and unit variance (Harvey and Fernandes 1989). The residuals autocor-
relation function (ACF) is plotted to see if they are uncorrelated.

6.4.2 � Burglary data set

The burglary data from the Forecasting Principles site
(http://​www.​forec​astin​gprin​ciples.​com), which was used to fit the INAR(1)KF 

process introduced by Kim and Lee (2017) is considered here for demonstrating 
the capability of the introduced model. The data set contains 144 observations 
from January 1990 to December 2001, and it provides monthly counts of burgla-
ries in the 65th police car beat in Pittsburgh. The mean and variance of this data 
set are 5.9583 and 17.8304, respectively.

Figure 6 depicts the burglary data set’s time series plot. The ACF and partial 
ACF (PACF) plots are displayed in Fig. 7. Here, only the first lag is significant 
in the PACF plot, and the ACF plot displays an exponential decay, facilitating to 
model the data as an INAR(1) process.

Table  6 lists the CMLEs, logL, AIC, BIC and RMSE∗ , for different pro-
cesses. The maximum value of logL and minimum values of AIC and BIC for 
the INAR(1)DME process prove that it provides a better fit than the contending 
models. Also, it can provide a good forecast since the RMSE∗ value is the low-
est among the considered models. Hence, it is convincing that the INAR(1)DME 
process effectively explains the data set’s characteristics.

To check whether the fitted INAR(1)DME process is statistically accurate, 
residual analysis is done with the Pearson residuals. The ACF of the Pearson 
residuals is displayed in Fig. 8, showing no autocorrelation for the Pearson residu-
als. To ensure this, the Ljung-Box test for the presence of autocorrelation is done 
with degrees of freedom 10 and has the p-value = 0.0771 > 0.05. It indicates that 
the residuals are uncorrelated. Also, the mean and variance of Pearson residuals 

X̂1 = E
(
Xt

)
𝜃̂CML

,

X̂t = E
(
Xt ∣ Xt−1

)
𝜃̂CML

, t = 2,… , n,

rt =
xt − E

(
xt ∣ Xt−1 = xt−1

)

V
(
xt ∣ Xt−1 = xt−1

)1∕2 ,

http://www.forecastingprinciples.com
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are 0.00183 and 1.1235, close to the preferred values 0 and 1, respectively, vali-
dating a good fit. Hence, the INAR(1)DME process fits the burglary data set.

The INAR(1)DME model for the burglary data set is given by,

where �t ∼ DME(−0.9999, 0.7368).
The predicted values can be obtained by

Xt = 0.2551 ◦Xt−1 + �t, t ≥ 2,

Table 6   The CMLEs, logL, AIC, BIC and RMSE∗ of the considered processes for the burglary data set

Model Parameter CMLE logL AIC BIC RMSE∗

INAR(1)DME p 0.2551 − 369.7776 745.5551 754.4646 4.0669
� − 0.9999
� 0.7368

INARG(1) � 0.204 − 379.245 762.49 768.43 4.092
� 0.3629

NGINAR(1) � 5.3233 − 392.275 788.55 794.49 4.343
� 0.6165

GINAR(1) p 0.1787 − 403.185 810.37 816.31 4.178
� 0.3605

PINAR(1) � 4.9021 − 421.135 846.27 852.21 4.081
� 0.1794

NBINAR(1) n 4.0768 − 375.76 757.52 766.43 4.067
p 0.4058
� 0.256

GPQINAR(1) � 3.7243 − 374.56 755.12 764.03 4.085
� 0.3944
� 0.3448

NBRCINAR(1) n 3.7878 − 375.755 757.51 766.41 4.081
p 0.3825
� 0.3339

NBIINAR(1) n 3.9045 − 375.94 757.88 766.72 4.071
� 0.9346
� 0.3024

DCGINAR(1) � 4.9605 − 399.295 804.59 813.5 4.177
� 0.4447
� 0.436

ZINAR(1) � 4.961 − 411.905 829.81 838.72 4.091
� 0.2276
� 0.3628

INARKF(1) �1 1.4834 − 374.45 754.9 763.81 4.067
�2 0.6634
� 0.2585
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7 � Control charts for monitoring mean of the INAR(1)DME process

This section explores an efficient control chart for monitoring the mean of the 
INAR(1)DME process. In INAR(1) processes, upward shifts in the process mean 
indicate a collective rise in associated factors for entities, such as unemployment 
rate, defect percentage, and disease spread. Identification and timely reporting of 
such shifts are typically vital. Therefore, focusing on practical applications, this ses-
sion investigates the mean upward shift within the INAR(1)DME process.

Here, the upper-sided control chart is constructed by exclusively focusing on 
detecting upward shifts in �X , as they are directly linked to process deterioration. 
The primary purpose is to detect quickly and accurately a change in the �X . It is 
more intuitive to directly monitor the process {Xt} while accounting for the impact 
of autocorrelation. A process is considered in control when it adheres to a specified 
model. Conversely, a process is deemed out of control when the parameters within 
the model change rather than the model itself changing. When the process is in con-
trol, the parameter values of the INAR(1)DME process will be denoted as p0 , �0 , 
and �0 . An increasing shift in �X may occur if one of the parameters p, � and � have 
changed appropriately.

It is clearly seen in Table  7 that �X is affected by variations in the parameters 
within the INAR(1)DME process. Also, with a rise in p and � , there is an increase 
in the value of �X , and with a rise in � in the intervals [−0.9,−0.1] and [0.1, 0.9], 

x̂1 = 5.9223.

x̂t = 0.2551 x̂t−1 + 4.4118, t = 2, 3,… , 144.
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Fig. 8   The ACF plot of the Pearson residuals
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there is a decrease in the values of �X . So, to effectively monitor INAR(1) processes, 
CUSUM and EWMA control charts are employed and their efficiency is assessed.

7.1 � The CUSUM chart

Initially proposed by Page (1961), the CUSUM chart operates on the fundamental 
principle of the sequential probability ratio test. Its primary objective is to gather 
and accumulate information from sample data, thus magnifying the impact of minor 
process deviations. Numerous studies have extensively demonstrated the effective-
ness of the CUSUM chart in monitoring time series comprising integer values, 
including Poisson INAR(1) by Weiß and Testik (2009) and Weiß and Testik (2011), 
geometrically inflated Poisson INAR(1) by Li et al. (2022), and zero-inflated Pois-
son INAR(1) by Rakitzis et al. (2017).

Here, the CUSUM control chart is devised due to their sensitivity in detecting 
small shifts. Furthermore, CUSUM charts also have known optimality properties 
when detecting a sustained shift from a known in control distribution to a specified 
out of control distribution (Weiß and Testik 2009).

From Weiß and Testik (2009), let C0 = c0, c0 ∈ N0 . A CUSUM statistic with ref-
erence value k is obtained as,

Table 7   Mean of {Xt} of INAR(1)DME process

� �

− 0.1 − 0.3 − 0.5 − 0.7 − 0.9 0.9 0.7 0.5 0.3 0.1

p = 0.4

 0.1 0.202 0.236 0.269 0.303 0.337 0.034 0.067 0.101 0.135 0.168
 0.2 0.451 0.521 0.59 0.66 0.729 0.104 0.174 0.243 0.312 0.382
 0.3 0.769 0.879 0.989 1.099 1.209 0.22 0.33 0.44 0.549 0.659
 0.4 1.19 1.349 1.508 1.667 1.825 0.397 0.556 0.714 0.873 1.032
 0.5 1.778 2 2.222 2.444 2.667 0.667 0.889 1.111 1.333 1.556
 0.6 2.656 2.969 3.281 3.594 3.906 1.094 1.406 1.719 2.031 2.344
 0.7 4.118 4.575 5.033 5.49 5.948 1.83 2.288 2.745 3.203 3.66
 0.8 7.037 7.778 8.519 9.259 10 3.333 4.074 4.815 5.556 6.296
 0.9 15.789 17.368 18.947 20.526 22.105 7.895 9.474 11.053 12.632 14.211
p = 0.7

 0.1 0.404 0.471 0.539 0.606 0.673 0.067 0.135 0.202 0.269 0.337
 0.2 0.903 1.042 1.181 1.319 1.458 0.208 0.347 0.486 0.625 0.764
 0.3 1.538 1.758 1.978 2.198 2.418 0.44 0.659 0.879 1.099 1.319
 0.4 2.381 2.698 3.016 3.333 3.651 0.794 1.111 1.429 1.746 2.063
 0.5 3.556 4 4.444 4.889 5.333 1.333 1.778 2.222 2.667 3.111
 0.6 5.312 5.937 6.562 7.187 7.812 2.187 2.812 3.437 4.062 4.687
 0.7 8.235 9.15 10.065 10.98 11.895 3.66 4.575 5.49 6.405 7.32
 0.8 14.074 15.556 17.037 18.519 20 6.667 8.148 9.63 11.111 12.593
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Here co ≥ 0 is the starting value. For 𝜇X < k < h , the monitoring statistics {Ct} are 
plotted on a CUSUM chart with control region [0, h], where h is the upper control 
limit. The INAR(1)DME process is considered as being in control unless Ct > h . 
The reference value k prevents the chart from drifting towards control limits during 
in control processes and offers the ability to fine-tune chart sensitivity to specific 
shifts in the process mean.

7.2 � The EWMA chart

Initially proposed by Roberts (2000), the EWMA chart operates on the fundamental 
principle of giving the highest weight to the nearest samples in the time series while 
previous samples contribute minimally. The EWMA chart is useful for detecting 
persistent shifts for INAR processes (Weiß 2009).

From Weiß (2011), let Q0 = q0, q0 ∈ {0, 1, ..., u − 1} and � ∈ (0, 1] . An EWMA 
statistic of the INAR(1) process is given by,

where round(x) = z if and only if the integer z ∈ (x − 1∕2, x + 1∕2] . Let u ∈ N with 
u > 1 . The statistics Qt are plotted on an EWMA chart with control region [1, u], 
where u is the upper control limit. The process is considered in control unless an out 
of control signal Qt ≥ u is triggered.

7.3 � Performance of the INAR(1)DME control charts

The ARL is a commonly used measure to evaluate the effectiveness of a con-
trol chart in statistical process control. It represents the expected number of data 
points plotted on the control chart before it signals an out of control condition. 
Two specific types of ARL are considered: ARL0 , also known as in control ARL, 
measures the number of data points plotted from the beginning of monitoring 
until a false alarm is triggered. On the other hand, ARL1 , referred to as out of 
control ARL, quantifies the number of data points plotted from the start of a pro-
cess shift until the chart detects that shift. To have an effective control chart, a 
high ARL0 combined with a small ARL1 is essential.

7.3.1 � ARL of CUSUM chart

For a given C0 = c0 , the values of (k,  h) are chosen to ensure that the ARL0 
closely matches a specified value. As {Xt, Ct} of the INAR(1)DME process forms 
a bivariate Markov chain, the Markov chain approach introduced in Weiß and 
Testik (2009) is used here for computing ARL. To offer a comprehensive over-
view, the computational approach is briefly outlined as follows.

Ct = max(0,Xt − k + Ct−1), t = 1, 2,…

Qt = round(� Xt + (1 − �) Qt−1), t ∈ N0,
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Let us consider the case where h, k, c0 ∈ N0 . Whenever Xt > k + h , it leads to 
an out of control signal since Ct exceeds h if and only if Xt − k + Ct−1 ≥ h . Hence, 
the attainable in control range of (Xt, Ct) needs to be restricted. From Weiß and 
Testik (2009), under the CUSUM chart, the set of attainable in control values for 
the bivariate Markov process {Xt, Ct} is given by,

which is of size

The above arguments can also be extended if h, k and c0 are permitted to assume 
values from the set {r∕s|r ∈ ℕ0} , where the common denominator s ∈ ℕ, s > 1.

From Li et al. (2022), the transition probability matrix of (Xt, Ct) is expressed 
as,

where

The initial probabilities are,

where �x,y denotes the Kronecker delta, P
(
Xt = i ∣ Xt−1 = j

)
 and P

(
X1 = m

)
 are given 

by (6.1) and (6.2) respectively.
Also, the conditional probability that the run length of 

{
Xt,Qt

}
 equals r is given 

by,

where (m, i) ∈ CR.
Let the vector �(l) denote the l th factorial moments, given by,

where,

CR = {(x, i) | 0 ≤ i ≤ h − 1, max(0, i + k − h + 1) ≤ x ≤ i + k},

(7.1)|CR| = 1

2
(h − k)(h + k + 1) + hk.

Q⊤ ≜ (p(n, j|m, i))(n,j),(m,i) ∈ CR,

p(n, j ∣ m, i) ≜ P
(
Xt = n,Ct = j ∣ Xt−1 = m,Ct−1 = i

)

= P
(
Ct = j ∣ Xt = n,Xt−1 = m,Ct−1 = i

)
P
(
Xt = n ∣ Xt−1 = m,Ct−1 = i

)

= �j,max(0,n−k+i) P
(
Xt = n ∣ Xt−1 = m

)
.

p
(
m, i ∣ c0

)
≜ P

(
X1 = m,C1 = i ∣ C0 = c0

)

= P
(
C1 = i ∣ X1 = m,C0 = c0

)
P
(
X1 = m ∣ C0 = c0

)

= �i,max (0,m−k+c0) P
(
X1 = m

)
,

pm,i(r) ≜ P
((
Xr+1,Cr+1

)
∉ CR,

(
Xr,Cr

)
,… ,

(
X2,C2

)
∈ CR ∣

(
X1,C1

)
= (m, i)

)
,

�(l)m,i
≜

∞∑

r=1

r⋯ (r − l + 1) pm,i(r), l ≥ 1,
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Then,

That is, �(1) is the solution of the linear equation (I − Q)�(1) = 1 . The dimension of 
Q and � is determined by (7.1). Hence, the ARL depending on the initial choice 
C0 = c0 , is defined as,

7.3.2 � ARL of EWMA chart

For a given Q0 = q0 , the values of (�, u) are chosen to ensure that the ARL0 closely 
matches a specified value. Subsequently, the ARL values are calculated using the 
model parameters and EWMA chart designs. As {Xt, Qt} of the INAR(1)DME pro-
cess forms a bivariate Markov chain, the Markov chain approach introduced in Weiß 
(2011) is used here for computing ARL. To offer a comprehensive overview, the 
computational approach is briefly outlined as follows.

Let [x] denote the smallest integer value greater than or equal to x. From Weiß 
(2011), under the EWMA chart, the set of attainable in control values for the bivari-
ate Markov process {Xt, Qt} is given by,

The transition probabilities of {Xt, Qt} is given by,

where

The initial probabilities are,

where IA denote the indicator function.

pm,i(r) =
∑

(n,j)∈CR

pn,j(r − 1) p(n, j ∣ m, i).

�(1)m,i
= 1 +

∑

(n,j)∈CR

p(n, j ∣ m, i) �(1)n,j
.

ARL
(
c0
)
= 1 +

∑

(m,i)∈CR

�(1)m,i
p
(
m, i ∣ c0

)
.

(7.2)
I(u, �) =

{
(n, q) ∈

{
0,… ,

[
1

�

(
u −

1

2

)
− 1

]}
× {0,… , u − 1} ∣

[
1

�

(
q −

1

2
− (1 − �)(u − 1)

)]
≤ n ≤

[
1

�

(
q +

1

2

)
− 1

]}
.

(7.3)Q⊤ ≜ (p(n, j|m, i))(n,j),(m,i) ∈ I(u,𝜃)

p(n, j ∣ m, i) ≜ P
(
Xt = n,Qt = j ∣ Xt−1 = m,Qt−1 = i

)

= I[j−1∕2;j+1∕2) (� n + (1 − �) i) P
(
Xt = n ∣ Xt−1 = m

)
.

p
(
m, i ∣ q0

)
≜ P

(
X1 = m,Q1 = i ∣ Q0 = q0

)

= I[j−1∕2;j+1∕2) (� n + (1 − �) q0) P
(
X1 = m

)
,
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Also, the conditional probability that the run length of 
{
Xt,Qt

}
 equals r is given 

by,

where (m, i) ∈ I(u, �).
Then, the l th factorial moment is given by,

where

Then,

That is, �(1) is the solution of the linear equation (I − Q)�(1) = 1.
Hence, the ARL depending on the initial choice Q0 = q0 , is defined as,

7.4 � Numerical simulation

Here, the performance of both CUSUM and EWMA in detecting changes in the pro-
cess mean is assessed by employing a simulation study. The primary objective is to 
recognize the effect of parameters leading to changes in �X . Table 8 presents a com-
prehensive depiction of the variability observed in �X across various values of the 
parameter � with respect to �0 = −0.1 and 0.9.

The deviations are calculated according to,

where �0 is the mean associated with the parameters p0, �0 and �0.
Table 8 shows that if the value of � is decreased by 0.2, there is more than a 10% 

increase in �X under the considered �0.
The control chart designs are determined in such a way that the desired in control 

ARL value, ARL0 , is 300. Due to the complexity of (6.2), the marginal probabili-
ties are empirically obtained through a simulated process of desirable size at given 
(p, �, �) . Besides ARL as a performance measure for the control charts, the usual 

pm,i(r) ≜ P
((
Xr+1,Qr+1

)
∉ I(u, �),

(
Xr,Qr

)
,… ,

(
X2,Q2

)
∈ I(u, �) ∣

(
X1,Q1

)
= (m, i)

)
,

(7.4)�(l)m,i
≜

∞∑

r=1

r⋯ (r − l + 1) pm,i(r), l ≥ 1,

pm,i(r) =
∑

(n,j) ∈I(u,�)

pn,j(r − 1) p(n, j ∣ m, i).

�(1)m,i
= 1 +

∑

(n,j)∈I(u,�)

p(n, j ∣ m, i) �(1)n,j
.

ARL
(
q0
)
= 1 +

∑

(m,i)∈I(u,�)

�(1)m,i
p
(
m, i ∣ q0

)
.

dev%
�
= 100% ×

(�X − �0)

�0

,
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relative deviation (RD) of the ARL from Weiß and Testik (2011) is also incorpo-
rated to assess and evaluate the efficacy and performance of the chart. It is given by,

Under the CUSUM chart, for a given C0 = c0 , the focus revolves around possible 
integer h and k pairs, such that the desired in control ARL is close to ARL0 . For the 
EWMA chart, the design parameters are obtained as follows:

•	 Choose u ∈ N such that a corresponding one-sided C chart would have an in 
control ARL below the desired value ARL0.

•	 Decrease � ∈ (0, 1] to adjust the in control ARL close to the desired value ARL0 . 
Subsequently, l = 0 in the combined EWMA chart is calculated accordingly as 
l =

⌊
1

2�

⌋
 , to keep an upper-sided design minimal.

•	 Use q0 ∈ {0, ..., u − 1} for a fine-tuning of the in control ARL.

Subsequently, the ARL values are calculated using the model parameters and chart 
designs.

In Tables 9 and 10, the performance of ARL under CUSUM chart is examined 
with �0 = (−0.1, 0.9) with various values of � respectively. The results show the 
high efficacy of the CUSUM chart in detecting upward shifts in �X . For example, 
with a 13.36% and 39.92% increase in �X ( �0 = 0.4 ), the ARL decreases by approxi-
mately around 37.80% and 64.87%, respectively, signifying a notable decline as �X 
rises. Furthermore, it is important to note that the decline in ARL is significantly 
greater than the corresponding rise in the magnitude of the shift in �X . Hence, it 
can be concluded that the CUSUM control chart demonstrates effective performance 
when applied to the INAR(1)DME process. The chart’s ability to efficiently detect 
upward shifts in �X makes it a suitable and beneficial tool for monitoring and con-
trolling the INAR(1)DME process.

In Tables 11 and 12, the performance of ARL under EWMA chart is examined 
with

�0 = (−0.1, 0.9) against various values of � , respectively. The results show the 
high efficacy of the EWMA chart in detecting upward shifts in �X . For example, 
with a 13.36% and 39.92% increase in �X ( �0 = 0.4 ), the ARL decreases by approxi-
mately 26.05% and 63.11%, respectively, signifying a notable decline as �X rises. 
Furthermore, it is important to note that the decline in ARL is significantly greater 
than the corresponding rise in the magnitude of the shift in �X . Hence, it can be 
concluded that the EWMA control chart demonstrates effective performance when 
applied to the INAR(1)DME process. The chart’s ability to efficiently detect upward 
shifts in �X makes it a suitable and beneficial tool for monitoring and controlling the 
INAR(1)DME process.

Table 13 provides a comparative analysis of CUSUM and EWMA charts within 
the context of the INAR(1)DME process, considering specific values of �0 . Bolded 
entries indicate instances where the RD is maximized between the two charts 

RD = 100% ×
(ARL − ARL0)

ARL0

.
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sharing the same model parameters. It becomes evident that both charts exhibit a 
more significant reduction in ARL as �x increases. When comparing the RD between 
CUSUM and EWMA charts (e.g., ( −38.48%, −34.29%), ( −39.50%, −35.83%)), 

Table 9   ARL with deviation (in parenthesis) for the CUSUM charts with p0 = 0.4 and �0 = −0.1

�0 k h c0 � �

− 0.1 − 0.3 − 0.5 − 0.7 − 0.9

0.4 2 10 0 0.4 308.03 191.61 125.81 86.53 62.01
(− 37.80%) (− 59.16%) (− 71.91%) (− 79.87%)

2 10 0 0.49 60.99 42.36 31.12 23.92 19.1
(− 80.20%) (− 86.25%) (− 89.90%) (− 92.23%) (− 93.80%)

2 10 0 0.6 16.83 13.36 11.02 9.35 8.11
(− 94.54%) (− 95.66%) (− 96.42%) (− 96.96%) (− 97.37%)

3 5 0 0.4 294.83 208.65 153 115.41 89.09
(− 29.23%) (− 48.11%) (− 60.85%) (− 69.78%)

3 5 0 0.49 67.89 50.25 38.51 30.34 24.46
(− 76.97%) (− 82.96%) (− 86.94%) (− 89.71%) (− 91.70%)

3 5 0 0.6 17.97 14.26 11.65 9.76 8.33
(− 93.90%) (− 95.16%) (− 96.05%) (− 96.69%) (− 97.17%)

2 10 4 0.4 300.25 184.7 119.6 80.89 56.85
(− 38.48%) (− 60.17%) (− 73.06%) (− 81.07%)

2 10 4 0.49 56.71 38.5 27.61 20.71 16.13
(− 81.11%) (− 87.18%) (− 90.80%) (− 93.10%) (− 94.63%)

2 10 4 0.6 14.53 11.27 9.1 7.58 6.46
(− 95.16%) (− 96.25%) (− 96.97%) (− 97.48%) (− 97.85%)

0.65 5 20 0 0.65 288.72 174.69 111.65 74.87 52.46
(− 39.50%) (− 61.33%) (− 74.07%) (− 81.83%)

5 20 0 0.77 19.5 15.05 12.13 10.1 8.63
(− 93.25%) (− 94.79%) (− 95.80%) (− 96.50%) (− 97.01%)

5 20 0 0.9 3.96 3.55 3.22 2.95 2.73
(− 98.63%) (− 98.77%) (− 98.88%) (− 98.98%) (− 99.05%)

7 11 0 0.65 309.75 215.68 155.5 115.27 87.42
(− 30.37%) (− 49.80%) (− 62.79%) (− 71.78%)

7 11 0 0.77 22.56 17.46 13.96 11.46 9.61
(− 92.72%) (− 94.36%) (− 95.49%) (− 96.30%) (− 96.90%)

7 11 0 0.9 3.58 3.17 2.85 2.58 2.37
(− 98.84%) (− 98.98%) (− 99.08%) (− 99.17%) (− 99.23%)

7 11 4 0.65 307.21 213.37 153.39 113.33 85.62
(− 30.55%) (− 50.07%) (− 63.11%) (− 72.13%)

7 11 4 0.77 21.61 16.57 13.13 10.66 8.85
(− 92.97%) (− 94.61%) (− 95.73%) (− 96.53%) (− 97.12%)

7 11 4 0.9 3.25 2.85 2.54 2.29 2.08
(− 98.94%) (− 99.07%) (− 99.17%) (− 99.25%) (− 99.32%)
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CUSUM exhibits approximately a 5% higher value than EWMA. Hence, when mon-
itoring data from the INAR(1)DME process and accounting for various shift sizes, 
the CUSUM chart is the preferred choice for maintaining process control.

Table 10   ARL with deviation (in parenthesis) for the CUSUM charts with p0 = 0.4 and �0 = 0.9

�0 k h c0 � �

0.9 0.7 0.5 0.3 0.1

0.4 1 5 0 0.4 320.07 112.44 60.28 38.46 27.12
(− 64.87%) (− 81.17%) (− 87.98%) (− 91.53%)

1 5 0 0.49 86.79 39.97 24.74 17.5 13.37
(− 72.88%) (− 87.51%) (− 92.27%) (− 94.53%) (− 95.82%)

1 5 0 0.6 24.1 15.05 10.92 8.57 7.06
(− 92.47%) (− 95.30%) (− 96.59%) (− 97.32%) (− 97.79%)

1 5 2 0.4 315.34 109.18 57.59 36.1 24.99
(− 65.38%) (− 81.74%) (− 88.55%) (− 92.08%)

1 5 2 0.49 83.67 37.72 22.86 15.84 11.88
(− 73.47%) (− 88.04%) (− 92.75%) (− 94.98%) (− 96.23%)

1 5 2 0.6 22.16 13.58 9.68 7.48 6.08
(− 92.97%) (− 95.69%) (− 96.93%) (− 97.63%) (− 98.07%)

1 5 4 0.4 297.06 98.92 50.15 30.23 20.17
(− 66.70%) (− 83.12%) (− 89.82%) (− 93.21%)

1 5 4 0.49 74.35 32.01 18.62 12.46 9.06
(− 74.97%) (− 89.22%) (− 93.73%) (− 95.81%) (− 96.95%)

1 5 4 0.6 17.85 10.63 7.41 5.63 4.51
(− 93.99%) (− 96.42%) (− 97.51%) (− 98.10%) (− 98.48%)

0.65 2 16 0 0.65 286.98 87.72 44.66 28.34 20.34
(− 69.43%) (− 84.44%) (− 90.12%) (− 92.91%)

2 16 0 0.77 23.6 15.37 11.46 9.18 7.68
(− 91.78%) (− 94.64%) (− 96.01%) (− 96.80%) (− 97.32%)

2 16 0 0.9 5.03 4.35 3.83 3.42 3.09
(− 98.25%) (− 98.48%) (− 98.67%) (− 98.81%) (− 98.92%)

3 9 0 0.65 292.12 99.56 53.06 33.69 23.63
(− 65.92%) (− 81.84%) (− 88.47%) (− 91.91%)

3 9 0 0.77 27.81 16.35 11.49 8.82 7.15
(− 90.48%) (− 94.40%) (− 96.07%) (− 96.98%) (− 97.55%)

3 9 0 0.9 4.41 3.77 3.29 2.92 2.62
(− 98.49%) (− 98.71%) (− 98.87%) (− 99.00%) (− 99.10%)

4 6 4 0.65 308.87 106.7 57.88 36.99 25.83
(− 65.46%) (− 81.26%) (− 88.02%) (− 91.64%)

4 6 4 0.77 30.44 16.67 11.17 8.24 6.44
(− 90.14%) (− 94.60%) (− 96.38%) (− 97.33%) (− 97.92%)

4 6 4 0.9 3.65 3.07 2.65 2.34 2.08
(− 98.82%) (− 99.01%) (− 99.14%) (− 99.24%) (− 99.33%)
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Table 11   ARL with deviation (in parenthesis) for the EWMA charts with p0 = 0.4 and �0 = −0.1 having 
C chart with u = (7,14)

�0 q0 � l u � �

− 0.1 − 0.3 − 0.5 − 0.7 − 0.9

0.4 4 0.74 0 5 0.4 310.93 229.93 176.13 138.68 111.66
(− 26.05%) (− 43.35%) (− 55.40%) (− 64.09%)

4 0.74 0 5 0.49 73.39 56.17 44.42 36.03 29.84
(− 76.40%) (− 81.93%) (− 85.71%) (− 88.41%) (− 90.40%)

4 0.74 0 5 0.6 19.02 15.26 12.6 10.63 9.12
(− 93.88%) (− 95.09%) (− 95.95%) (− 96.58%) (− 97.07%)

0 0.26 1 4 0.4 310.93 187.65 129.85 93.56 69.72
(− 34.29%) (− 54.53%) (− 67.24%) (− 75.58%)

0 0.26 1 4 0.49 43.91 31.07 23.12 17.92 14.37
(− 84.62%) (− 89.12%) (− 91.90%) (− 93.72%) (− 94.97%)

0 0.26 1 4 0.6 8.79 7 5.82 4.99 4.4
(− 96.92%) (− 97.55%) (− 97.96%) (− 98.25%) (− 98.46%)

2 0.24 2 3 0.4 370.34 258.84 188.07 140.9 108.22
(− 30.11%) (− 49.22%) (− 61.95%) (− 70.78%)

2 0.24 2 3 0.49 78.11 57.37 43.81 34.51 27.89
(− 78.91%) (− 84.51%) (− 88.17%) (− 90.68%) (− 92.47%)

2 0.24 2 3 0.6 19.59 15.55 12.75 10.72 9.2
(− 94.71%) (− 95.80%) (− 96.56%) (− 97.11%) (− 97.52%)

0.65 5 0.13 3 6 0.65 298.78 172.68 107.23 70.71 49.07
(− 42.20%) (− 64.11%) (− 76.33%) (− 83.58%)

5 0.13 3 6 0.77 17.71 13.31 10.48 8.55 7.17
(− 94.07%) (− 95.55%) (− 96.49%) (− 97.14%) (− 97.60%)

5 0.13 3 6 0.9 3.21 2.85 2.56 2.33 2.13
(− 98.93%) (− 99.05%) (− 99.14%) (− 99.22%) (− 99.29%)

6 0.32 1 8 0.65 299.98 192.51 130.51 92.44 67.87
(− 35.83%) (− 56.49%) (− 69.18%) (− 77.38%)

6 0.32 1 8 0.77 19.5 14.77 11.63 9.45 7.87
(− 93.50%) (− 95.08%) (− 96.12%) (− 96.85%) (− 97.38%)

6 0.32 1 8 0.9 3.06 2.69 2.4 2.17 1.97
(− 98.98%) (− 99.10%) (− 99.20%) (− 99.28%) (− 99.34%)

9 0.53 0 10 0.65 301.39 208.18 150.09 111.93 85.83
(− 30.93%) (− 50.20%) (− 62.86%) (− 71.52%)

9 0.53 0 10 0.77 21.19 16.28 12.93 10.56 8.8
(− 92.97%) (− 94.60%) (− 95.71%) (− 96.50%) (− 97.08%)

9 0.53 0 10 0.9 2.99 2.61 2.32 2.08 1.88
(− 99.01%) (− 99.13%) (− 99.23%) (− 99.31%) (− 99.38%)



	 M. R. Irshad et al.

1 3

7.5 � Real data analysis

The applicability of the CUSUM control chart is demonstrated by utilizing the dis-
orderly conduct data set obtained from the 44th police car beat in Pittsburgh, (http://​
www.​forec​astin​gprin​ciples.​com) which was used to fit the INAR(1)KF process 
introduced by Kim and Lee (2017), comprising of monthly observations from 1990 
to 2001. It was used to monitor the mean under the INAR(1)KF process by Kim and 
Lee (2017). Initially, the data from 1990 to 1996 is used to fit the INAR(1)DME 

Table 12   ARL with deviation (in parenthesis) for the EWMA charts with p0 = 0.4 and �0 = 0.9 having 
C chart with u = (4, 8)

�0 q0 � l u � �

0.9 0.7 0.5 0.3 0.1

0.4 1 0.87 0 3 0.4 310.2 114.43 65.11 43.51 31.73
(− 63.11%) (− 79.01%) (− 85.97%) (− 89.77%)

1 0.87 0 3 0.49 95.16 43.29 26.95 19.1 14.56
(− 69.32%) (− 86.04%) (− 91.31%) (− 93.84%) (− 95.31%)

1 0.87 0 3 0.6 27.38 16.03 11.2 8.54 6.86
(− 91.17%) (− 94.83%) (− 96.39%) (− 97.25%) (− 97.79%)

0 0.62 0 2 0.4 176.65 73.61 43.51 29.66 21.9
(− 58.33%) (− 75.37%) (− 83.21%) (− 87.60%)

0 0.62 0 2 0.49 59.8 30.58 19.94 14.52 11.28
(− 66.15%) (− 82.69%) (− 88.71%) (− 91.78%) (− 93.61%)

0 0.62 0 2 0.6 19.66 12.6 9.22 7.25 5.95
(− 88.87%) (− 92.87%) (− 94.78%) (− 95.90%) (− 96.63%)

0.65 6 0.81 0 7 0.65 303.9 109.36 62.14 41.51 30.22
(− 64.01%) (− 79.55%) (− 86.34%) (− 90.06%)

6 0.81 0 7 0.77 34.74 18.93 12.78 9.54 7.55
(− 88.57%) (− 93.77%) (− 95.79%) (− 96.86%) (− 97.52%)

6 0.81 0 7 0.9 4.18 3.47 2.96 2.58 2.28
(− 98.62%) (− 98.86%) (− 99.03%) (− 99.15%) (− 99.25%)

2 0.64 0 6 0.65 300.19 106.53 59.2 38.81 27.84
(− 64.51%) (− 80.28%) (− 87.07%) (− 90.73%)

2 0.64 0 6 0.77 32.31 18.08 12.36 9.3 7.41
(− 89.24%) (− 93.98%) (− 95.88%) (− 96.90%) (− 97.53%)

2 0.64 0 6 0.9 4.26 3.57 3.08 2.7 2.41
(− 98.58%) (− 98.81%) (− 98.97%) (− 99.10%) (− 99.20%)

3 0.29 1 4 0.65 322 107.61 56.04 34.82 23.92
(− 66.58%) (− 82.60%) (− 89.19%) (− 92.57%)

3 0.29 1 4 0.77 28.34 16.13 11.01 8.25 6.54
(− 91.20%) (− 94.99%) (− 96.58%) (− 97.44%) (− 97.97%)

3 0.29 1 4 0.9 3.86 3.28 2.85 2.52 2.26
(− 98.80%) (− 98.98%) (− 99.11%) (− 99.22%) (− 99.30%)

http://www.forecastingprinciples.com
http://www.forecastingprinciples.com
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process. Subsequently, the CUSUM control chart is applied to the data from 1997 to 
detect the presence of any significant mean increase.

Figure  9 displays the time series plot of the disorderly conduct data set (the 
dashed line denotes December 1996). Based on the plot, detecting the mean shift 
after the dashed line is challenging. For the data from 1990 to 1996 (phase I 
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Fig. 9   The time series plot of the disorderly conduct data set
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Fig. 10   The ACF (a) and PACF (b) plot of the phase I data set
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data), the sample mean and variance are obtained as 3.9643 and 5.3602, respec-
tively. Figure  10 displays the ACF and PACF plots for the phase I data. Here, 
only the first lag is significant in the PACF plot, and the ACF plot displays an 
exponential decay, facilitating to model the data as an INAR(1) process. Hence, 
the data is modeled using the INAR(1)DME model and other competing models 
on the phase I data.

Table 14   The CMLEs, logL, AIC, BIC and RMSE* of the considered processes for the phase I data set

Model Parameters CMLE logL AIC BIC RMSE*

INAR(1)DME p 0.3789 − 174.874  355.747 363.040 2.270
� − 0.9999
� 0.5957

INAR(1)G � 0.32 − 183.025 370.05 374.91 2.215
� 0.50

NBINARG(1) � 4.31 − 192.195 388.39 393.25 2.497
� 0.80

INARG(1) p 0.26 − 196.05 396.1 400.96 2.264
� 0.52

INARP(1) � 3.13 − 181.365 366.73 371.59 2.12
� 0.22

INARNB(1) n 11.64 − 179.33 364.66 371.95 2.123
p 0.74
� 0.28

QINARGP(1) � 3.51 − 179.815 365.63 372.93 2.121
� 0.13
� 0.26

RCINARNB(1) n 13.32 − 179.845 365.69 372.98 2.121
p 0.77
� 0.26

IINARNB(1) n 5.20 − 259.255 524.51 531.8 6.154
� 0.54
� 2.3×10−6

DCINARG(1) � 3.06 − 195.435 396.87 404.16 2.256
� 0.53
� 0.30

INAR(1)ZP � 3.19 − 181.15 368.3 375.59 2.122
� 0.6×10−7

� 0.21
INAR(1)KF �1 2.21 − 179.145 364.29 371.58 2.119

�2 0.25
� 0.25
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Fig. 11   The ACF plot of the Pearson residuals of the phase I data set

Table 15   ARL values of CUSUM chart for disorderly conduct data with k = 4 under the considered 
models

h 34 35 36 37 38 39 40 41 42

INAR(1)DME 161.7 170.5 179.6 188.9 198.0 208.65 218.98 229.64 240.62
INAR(1)KF 205.4 217.1 229.1 241.5 254.3 267.5 281 295 309
INARP(1) 235.1 248 261.1 274.7 288.6 302.8 317.4 332.3 347.6
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Fig. 12   The CUSUM plot of the monthly counts of disorderly conduct data
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Table 14 lists the CMLEs, logL, AIC, BIC, and RMSE∗ for different processes. The 
maximum logL and minimum AIC and BIC values for the INAR(1)DME process show 
that it fits better than the contending models.

To check whether the fitted INAR(1)DME process is statistically accurate, residual 
analysis is done with the Pearson residuals. The ACF of the Pearson residuals is dis-
played in Fig. 11, showing no autocorrelation for the Pearson residuals. To ensure this, 
the Ljung-Box test for the presence of autocorrelation is done with degrees of freedom 
10 and has the p-value = 0.957 > 0.05. It indicates that they are uncorrelated. Also, the 
mean and variance of Pearson residuals are 0.00228 and 0.83, close to the preferred 
values of 0 and 1, respectively, validating a good fit. Hence, the INAR(1)DME process 
fits the phase I data well.

The INAR(1)DME model for the phase I data is given by,

where �t ∼ DME(−0.9999, 0.5957).
The predicted values can be obtained by,

Now, the CUSUM chart with reference value k = 4 (Kim and Lee 
2017) is considered based on the INAR(1)DME process with parameters 
( p = 0.3789, � = −0.9999, � = 0.5957 ) and a suitable limit value h is chosen.

Table  15 provides the ARL values of CUSUM chart with respect to INAR(1)
DME, INAR(1)KF and INARP(1) processes for k = 4 and c0 = 0 , respectively. Here, 
the ARL values with respect to the INAR(1)DME process are lower than those of the 
INAR(1)KF and INARP(1) processes. The lower ARL values indicate quicker identi-
fication of process deviation, leading to the conclusion that the CUSUM chart based 
on the INAR(1)DME process outperforms the others. Taking ARL0 = 200 , the upper 
control limit CUSUM chart under the INAR(1)DME process is obtained as h = 38.

The CUSUM chart for disorderly conduct data under INAR(1)DME process is given 
in Fig. 12, where the red horizontal dashed and vertical dashed lines respectively stand 
for h = 38 and December 1996.

From the plot, it is clearly seen that Ct ≥ h occurred in May 2000. The sample mean 
of the data from January 1997 to May 2000 is 4.7073, which is greater than that of the 
past observations. Identifying this phenomenon is challenging unless the CUSUM con-
trol scheme has been implemented.

8 � Conclusion

This paper presents a novel discrete analog of the mixture exponential distribution, 
namely the DME distribution, by utilizing the survival discretization technique. The 
statistical properties of the DME distribution are discussed, and the simulation study 
suggests that ML estimation outperforms LS methods. The performance of the DME 

(7.5)Xt = 0.3789 ◦Xt−1 + �t, t ≥ 2,

x̂1 = 3.8585,

x̂t = 0.3789 x̂t−1 + 2.3963, t = 2, 3,… , 84.
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distribution in modeling real data enables further exploration of its application in the 
field of time series. Consequently, an associated INAR(1) process with DME innova-
tions is introduced, accompanied by a comprehensive investigation into its statistical 
characteristics and performance through extensive simulation studies. The work also 
extends to the domain of process monitoring, where custom control charts are devel-
oped to track the process mean. In this context, CUSUM and EWMA control charts are 
developed to monitor the mean of the INAR(1)DME process, and their effectiveness in 
detecting shifts is meticulously analyzed, providing valuable insights through compara-
tive assessments. Additionally, the practical applicability of the INAR(1)DME process 
is confirmed through its use with real-world data under the CUSUM chart, showcasing 
its relevance in both statistical theory and real-world process monitoring and control 
applications.

Appendix: Moments

The mean of the DME distribution is obtained as,

The rest of the moments are given by,

Then, the central moments are obtained as,

�
�

1
=

∞∑

x=0

x{�x(1 − �)(1 − �) + ��2x(1 − �2)}

=
� (1 − �)(1 − �)

(1 − �)2
+

� (1 − �2)�2

(1 − �2)2

=
(1 − � + �)�

(1 − �2)
.

�
�

2
=

�((1 + �)3 − �(1 + 2� + 3�2))

(1 − �2)2
,

�
�

3
=

�((1 + �)3(1 + 4� + �2) − �(1 + 6� + 16�2 + 12�3 + 7�4))

(1 − �2)3
,

�
�

4
=

�((1 + �)5(1 + 10� + �2) − �(1 + 14� + 61�2 + 104�3 + 115�4 + 50�5 + 15�6))

(1 − �2)4
.

�2 =
�((1 + �)2 − �2� − �(1 + �2))

(1 − �2)2
,

�3 =
�((1 + �)3(1 + 3� − 4�2) − �2�(1 + 6� + 11�2) − �(1 + 4� + 2�2 − 16�3 − 9�4))

(1 − �2)3
,

�4 =
�((1 + �)4(1 + 7� + �2) − 3�4�3 − 6�3(�2 + �4) − 2�2�(2 + 3� + 14�2 + 3�3 + 2�4))

(1 − �2)4

−
�(�(1 + 6� + 23�2 + 12�3 + 23�4 + 6�5 + �6))

(1 − �2)4
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