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Abstract
Kriging metamodeling (also called Gaussian Process regression) is a popular 
approach to predict the output of a function based on few observations. The Krig-
ing method involves length-scale hyperparameters whose optimization is essential 
to obtain an accurate model and is typically performed using maximum likelihood 
estimation (MLE). However, for high-dimensional problems, the hyperparameter 
optimization is problematic and often fails to provide correct values. This is espe-
cially true for Kriging-based design optimization where the dimension is often quite 
high. In this article, we propose a method for building high-dimensional surrogate 
models which avoids the hyperparameter optimization by combining Kriging sub-
models with randomly chosen length-scales. Contrarily to other approaches, it does 
not rely on dimension reduction techniques and it provides a closed-form expression 
for the model. We present a recipe to determine a suitable range for the sub-models 
length-scales. We also compare different approaches to compute the weights in the 
combination. We show for a high-dimensional test problem and a real-world appli-
cation that our combination is more accurate than the classical Kriging approach 
using MLE.

Keywords  Kriging · Gaussian process regression · High dimension · 
Hyperparameter optimization · Length-scales bounds · Model aggregation

1  Introduction

Kriging models (Cressie 1993; Stein 1999) are non-parametric statistical mod-
els which have been used in many different fields to infer the output of a function 
y based on a few observations. Applications include geostatistics (Krige 1951; 
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Matheron 1963), the approximation of numerical experiments (Sacks et  al 1989; 
Santner et al 2003), machine learning where the method is known as Gaussian pro-
cess (GP) regression (Rasmussen and Williams 2006).

One of the main drawbacks of the Kriging method is that it scales poorly for large-
scale problems: it suffers from the curse of dimensionality (Bellman 1966) when 
the dimension of the input is large. This issue is especially prevalent in engineer-
ing design optimization (Sobester et  al 2008) as industrial designs are commonly 
parametrized by more than 50 shape parameters (Shan and Wang 2010; Gaudrie 
et al 2020). In this context, Kriging surrogate models are used to approximate the 
response of a computationally expensive numerical experiment based on a limited 
number of observations. The sample plan is usually built using a sequential strategy 
where an initial design of experiments is completed with new samples obtained by 
maximizing an acquisition criterion on the surrogate at each iteration (Jones et  al 
1998). It is therefore important that the surrogate is accurate, even with few observa-
tions as in the first iterations, since it will directly impact the number of additional 
samples needed for the optimization to converge (and thus the convergence speed).

The main challenge for building high-dimensional Kriging models resides in 
the hyperparameter optimization. Most Kriging models consider one length-scale 
hyperparameter per dimension which all need to be optimized simultaneously and 
this multidimensional optimization problem can be difficult to solve. Typically, the 
optimization is either performed by maximizing the likelihood of the model (Jones 
2001) or by minimizing the leave-one-out cross-validation (LOOCV) error (Bachoc 
2013). However, both methods involve the inversion of the covariance matrix with 
cost in O(n3) (where n is the number of sample points). In design optimization, the 
number of samples is usually limited due to the cost of obtaining each of them, 
and thus the inversion is manageable. Yet, the optimization requires many of these 
inversions, especially in high-dimension as the size of the search space grows expo-
nentially with the number of hyperparameters. As such, due to the large number of 
iterations needed to converge, the hyperparameter optimization can be prohibitively 
expensive even for a limited number of samples. One way to reduce the cost of the 
optimization is to use an approximation of the covariance matrix inverse such as 
those developed for Kriging models with large number of observations where the 
cost of an inversion is prohibitive (see Liu et  al (2020) for a review). For exam-
ple, in Quinonero-Candela and Rasmussen (2005), Titsias (2009) and Hensman et al 
(2013), the authors use a low-rank approximation of the covariance matrix to reduce 
the computational cost of the inversion. However, most of those methods are only 
designed for a large number of samples.

Besides the cost of the hyperparameter optimization, in high-dimension the input 
space training data is often sparse since the design space grows exponentially with 
the dimension. This, along with the large number of hyperparameters, can cause the 
usual criterion for the optimization to over-fit the training data leading to a poor 
estimation of the hyperparameters even when the optimization has converged (Gins-
bourger et al 2009; Mohammed and Cawley 2017). Reducing the dimension of the 
problem is a way to solve these issues (see Binois and Wycoff (2021) for a review), 
but, because y is computationally expensive, classical sensibility analysis (Saltelli 
et al 2008) cannot be performed beforehand for variable selection. Some methods 
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reduce the dimension by embedding the design space into a lower-dimension space 
(Constantine 2015; Bouhlel et al 2016). Additive Kriging (Durrande et al 2012) is 
another approach where y is decomposed into a sum of one dimensional compo-
nents, enabling a sequential optimization of the length-scale hyperparameters.

In this paper, we propose a new method to tackle the challenging hyperparameter 
optimization for high-dimensional problems. Our approach avoids this optimization 
by combining Kriging sub-models with random length-scales. It replaces the chal-
lenging inner optimization of the length-scales by an optimization of the combina-
tion weights which is much simpler and whose solution can be obtained in closed-
form. It also avoids reducing the dimension of the design space and preserves the 
correlation between all the input variables. This article starts by briefly recalling 
the main concepts in Kriging and introduces the employed notations in Sect. 2. Our 
combined Kriging method is detailed in Sect. 3. Finally, results of our method on 
numerical test problems are presented and discussed in Sect. 4.

2 � Kriging model

2.1 � Kriging predictions

This section briefly recalls the Kriging method and introduces the notations 
used throughout this paper. We denote by y ∶ x ∈ X ⊂ ℝ

d
→ y(x) ∈ ℝ the d

-dimensional black-box function that we want to approximate. We suppose y 
is known on an ensemble of n sample points X =

(
x1,… , xn

)T and we denote 
Y =

(
y(x1),… , y(xn)

)T the observed values at these locations. The Kriging method 
approximates y as the realization of a Gaussian process on X :

Without loss of generality, we can assume that the GP is centered ( � = 0 ). 
k� ∶ X × X → [−1, 1] is the positive definite correlation function indexed by the 
hyperparameters � ∈ ℝ

d , the correlation length-scales vector (also called range or 
scale parameters) with one length-scale value per dimension of the input space. 
Finally, �2k� is the covariance function (also called kernel) with �2 ∈ ℝ

+ the vari-
ance of the GP. A stationary GP with a Matérn-class covariance function is often 
recommended (Stein 1999; Rasmussen and Williams 2006). Throughout this paper, 
we use the radial Matérn 5/2 correlation defined as:

where ‖‖‖
x−x�

�

‖‖‖ is the scaled distance between two points x, x� ∈ X  using component-

wise division: ���
x−x�

�

���
2

∶=
∑d

i=1

�
x(i)−x�

(i)

�(i)

�2

. This is a typical choice for design opti-
mization (Roustant et  al 2012), and even when the covariance is misspecified, a 

Y(.) ∼ GP
(
�, �2k�(., .)

)
.

(1)k�(x, x
�) ∶=

�
1 +

√
5
����
x − x�

�

����
+

5

3

����
x − x�

�

����

2
�
exp

�
−
√
5
����
x − x�

�

����

�
,
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proper estimation of the hyperparameters can still yield a model with good predic-
tive capacities (Bachoc 2013). Other covariances could be used if a priori knowl-
edge about the unknown function is available.

The Simple Kriging (SK) predictor is a linear combination of the observations 
which is obtained by conditioning the Gaussian process Y over D = (X,Y):

where k�(x,X) is the vector of correlations between the prediction point x and the 
sample points X , and k�(X,X) is the correlation matrix of the model, i.e. the n × n 
matrix of correlations between the components of X . Note that this predictor does 
not depend on �2 . The predictive variance of the model can also be obtained as:

In the following, we will simply denote the correlation matrix as K� ∶= k�(X,X).

2.2 � Hyperparameter estimation

The covariance hyperparameters must be chosen appropriately to obtain an accurate 
model. Usually, they are set using the maximum likelihood estimation (MLE) (Jones 
2001), which consists on maximizing the marginal likelihood of the model:

This is equivalent to minimizing −log(L(�,�)) . For a fixed � , the MLE estimator for 
�2 is:

After substituting (5) into the log-likelihood, we obtain the length-scales � by 
solving:

An alternative to MLE is to minimize the leave-one-out cross-validation (LOOCV) 
error (Bachoc 2013) of the model:

where M�−k is the simple Kriging model built by removing the k th sample point xk . 
For Kriging models, the LOOCV error can be computed easily (Ginsbourger and 
Schärer 2021) without having to build n models using the formula:

(2)M(x) ∶= E(Y(x)|D) = k�(x,X)k�(X,X)
−1
Y,

(3)ŝ2(x) ∶= Var(Y(x)|D) = 𝜎2
(
k�(x, x) − k�(x,X)k�(X,X)

−1k�(X, x)
)
.

(4)L(�,�) ∶=
1

(2�)d∕2(�2)d∕2 det(K�)
1∕2

exp
(
−

1

2�2
Y
T
K

−1
�
Y

)
.

(5)𝜎̂2
MLE

=
Y
T
K�

−1
Y

n
,

(6)�MLE = argmin
�

−
1

2
log

(
𝜎̂2
MLE

)
−

1

2
log

(
det(K�)

)
.

(7)eLOOCV (�) ∶=
1

n

n∑

k=1

(
M�−k(xk) − y(xk)

)2
,
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Finally, the LOOCV estimation of the length-scales is obtained as:

In practice, both optimization problems (6) and (9) can be difficult to solve numeri-
cally due to their multi-modality, to flat areas of the objectives, and to the fact that 
the objective evaluations can be expensive (cost in O(n3) for both objectives and 
their gradients). This is particularly true for high-dimensional problems since � has 
dimension d . Equations (6) and (9) are typically solved using gradient-based method 
(e.g BFGS) with multi-start, or using evolutionary algorithms (Roustant et al 2012). 
However, as we will show in Sect.  4, these methods can fail to produce suitable 
values of the hyperparameters in high-dimensional problems, when the data is rela-
tively sparse.

In the next section, we propose an alternative method for building a Kriging-
based surrogate model which avoids this challenging optimization of the length-
scale hyperparameters.

3 � Combined Kriging with fixed length‑scales

3.1 � Description of the method

Combining different surrogate models using weights has been explored by many 
authors in the past years. The proposed methods differ in the purpose of the com-
bination, in the type of the surrogate models employed, and in the way the weights 
are computed. For example, Bayesian model averaging (Gelman et al 1995; Hoeting 
et al 1999; Burnham et al 2011) combines different models using different param-
eters to perform a multimodel inference while accounting for the uncertainty in the 
choice of the model. In Goel et al (2007), Acar and Rais-Rohani (2009) and Viana 
et al (2009), different metamodels build on the same data set are combined to obtain 
an ensemble of surrogates whose accuracy is better than the one of the best meta-
model. To circumvent the difficulties of Kriging metamodels in the presence of large 
datasets, several methods combining local Kriging sub-models optimized on sub-
set of points have also been proposed with different weighting schemes (Rasmus-
sen and Ghahramani 2001; Cao and Fleet 2014; Deisenroth and Ng 2015; Rullière 
et al 2018). In the context of Bayesian optimization, Ginsbourger et al (2008) pre-
sent a method to combine Kriging sub-models with various covariance functions, 
or with different hyperparameter optimization criteria. The combination of Kriging 
sub-models for selecting the covariance function is further explored in Palar and 
Shimoyama (2018), and Pronzato and Rendas (2017) combine several local Kriging 
sub-models with different covariance functions in a fully Bayesian manner to build a 
non-stationary model.

(8)eLOOCV (�) =
1

n

n∑

k=1

(
[K−1

�
Y]k

[K−1
�
]k,k

)2

.

(9)�̂LOOCV = argmin
�

eLOOCV (�).
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Contrarily to the combinations of Kriging sub-models presented above, in the 
method we propose, the length-scale hyperparameters are not optimized but ran-
domly chosen. It avoids the expensive and difficult optimization of these hyperpa-
rameters for high dimensional problems by emphasizing the appropriate random 
length-scales through their weights in the combination, which are obtained in 
closed-form.

The combined model writes as:

where Mtot is the combined model, p is the number of sub-models, and wi , 
i = 1,… , p, are the weights of each sub-model. The sub-models Mi are simple Krig-
ing models with random length-scales, hence:

where �i is the random length-scale vector and Di = (Xi,Yi) the training data set of 
the i th sub-model. We also have access to the variance of each sub-model:

The proposed method enables the construction of a Kriging model for high dimen-
sional problems without reducing the dimension. It both preserves the correlation 
between all input variables and avoids a loss of information due to a truncated 
design space. Moreover, this method is very flexible since each sub-model can for 
instance be constructed on different subsets of points, can take into account different 
design variables, or can have different covariance functions. Sub-models with very 
different behaviors sweeping through a wide range of length-scales can therefore be 
combined. The interest in this paper is for high-dimensional problems with typical 
dimension d > 20 . The number of sub-models is limited to p < d ≪ n , and we will 
show empirically in Sect. 4 that for our test problem with dimension d = 50 , a small 
number of sub-models is sufficient as adding more no longer improves the combina-
tions. Finally, we consider a moderate number of, at most, few thousands samples so 
that, albeit slightly expensive, the inverse of the covariance matrix can be computed 
for the p sub-models. Thus, the complexity of the combination is O(pn3) which is 
generally less than the cost of an ordinary Kriging model in O(�itern3) where �iter is 
the number of matrix inversions (i.e. the number of iterations, typically of the order 
of 100) in the optimization of the d hyperparameters. To fully define the combina-
tion, the first step is to define the sub-models which is detailed in Sect. 3.2. Then, 
the choice of the weights for the combination is discussed in Sect. 3.3.

3.2 � Choice of the sub‑models

In this paper, all Kriging sub-models are constructed with all sample points and all 
design variables: Di = D = (X,Y) , i = 1,… , p so that the length-scales are the unique 

(10)Mtot(x) ∶=

p∑

i=1

wi(x)Mi(x),

(11)Mi(x) ∶= E(Y�i(x)|Di) = k�i(x,Xi)k�i(Xi,Xi)
−1
Yi,

(12)ŝ2
i
(x) ∶= 𝜎2

(
k�i (x, x) − k�i(x,Xi)k�i(Xi,Xi)

−1k�i (Xi, x)
)
.
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source of difference between the Mi’s. An appropriate choice of the length-scales is 
essential to obtain a combined Kriging model with a good accuracy. In particular, vari-
ety among the sub-models is crucial so that the combined model can select the most 
well-suited behaviors through the weights in the combination. Since no prior knowl-
edge is available for the length-scales, we choose them randomly in a bounded interval:

where �(�)
min

 and �(�)
max

 are lower and upper bounds for the � th component �(�) of � . 
To the best of our knowledge, only few works in the literature deal with length-
scale bounds. Mohammadi et  al (2016, 2018) deal with these bounds in an opti-
mization context, but it is common practice to assume pre-specified bounds. In the 
DiceKriging R package (Roustant et al 2012), by default, �(�)

min
= 10−10 and �(�)

max
 

is twice the observed range in the � th dimension. Obrezanova et al (2007) fix the 
length-scales based on the standard deviation of the data. Issues related to flat likeli-
hood landscapes may occur for too small length-scales and a suitable lower bound 
for maximum likelihood estimation is proposed in Richet (2018).

Intuitively, the choice of the length-scales range depends both on the design and on 
the covariance function family. We study hereafter both factors separately, although it 
would be possible to study them jointly.

3.2.1 � Design impact

If the length-scales are large compared to most observed pairwise distances, then the 
correlations will tend to one. If they are smaller than most distances, trajectories with 
higher frequencies than observed in the given samples are implicitly considered. There-
fore, length-scales should be of the order of most of the observed pairwise distances.

Let us investigate the distribution of observed distances between design points. 
Assume that design points are distributed as a random vector X = (X(1),… ,X(d)) , with 
respective standard deviations �(1),… , �(d) . As we do not consider here the cross influ-
ence of joint length-scales, we investigate the impact of length-scales variations along 
the curve:

Now denote by ‖‖‖
R

�

‖‖‖ the scaled random distance between two distinct independent 
points X and �′ of the design, using component-wise division. When � ∈ C , this dis-
tance can be expressed as a function of �(�):

Assuming the finiteness of the first four moments, when all components of X and �′ 
are mutually independent with common kurtosis �,

(13)�(�) ∈
[
�
(�)

min
, �(�)

max

]
, � = 1,… , d,

C ∶=
{
� = �(�(1),… , �(d)), � ∈ ℝ

+
}
.

‖‖‖‖
R

�

‖‖‖‖

2

∶=

d∑

i=1

(
X(i) − X�(i)

�(i)

)2

=

(
�(�)

�(�)

)2 d∑

i=1

(
X(i) − X�(i)

�i

)2

.
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Along the direction � , using a simplified model, for d large enough, typical values 
of the unscaled distance ‖�(�) R

�
‖ are given by the root of a Gaussian 95% confi-

dence interval (for a Gaussian design, one should use the confidence interval of a � 
distribution):

This interval corresponds to typically observed unscaled distances in the dimension 
� . Notice that it grows as 

√
d and that it is built around an average distance �(�)

√
2d 

along this axis. For uniform random variables, the kurtosis is � = 9∕5 , for Gaussian 
ones, it is � = 3.

3.2.2 � Covariance family impact

The impact of a change in the length-scales depends on the covariance function: 
for instance, the covariance varies slowly at short distances for Gaussian kernels, 
whereas it varies rapidly for exponential ones. This has to be taken into account 
when choosing length-scales bounds.

Let k(‖‖‖
r

�

‖‖‖) be the covariance between two design points x and �′ , where ‖‖‖
r

�

‖‖‖ is 
the scaled distance between the points and k(.) is the covariance function of an iso-
tropic stationary Gaussian Process. When � ∈ C , ‖‖‖

r

�

‖‖‖ can be expressed using only 
�(�) . The influence of �(�) on the covariance can be measured by the following nor-
malized derivative:

The derivative with respect to the length-scale can be obtained easily by direct cal-
culation for the usual covariance functions. Along the axis � , at a scaled distance 
‖‖‖
r

�

‖‖‖ =
r

�(�)
 , a length-scale �(�) is considered influential enough if it belongs to:

where � ∈ (0, 1) is a user-defined threshold that we set to � = 1∕10 in the following.
For r ∈

[
r
(�)

min
, r(�)

max

]
∶= �(�)[rmin, rmax] , length-scales bounds are chosen as:

E

(‖‖‖‖
R

�

‖‖‖‖

2
)

= 2d

(
�(�)

�(�)

)2

and Var

(‖‖‖‖
R

�

‖‖‖‖

2
)

= 2d

(
�(�)

�(�)

)4

(� + 1) .

�(�)[rmin, rmax] = �(�)

��
2d − 1.96

√
2(� + 1)d,

�
2d + 1.96

√
2(� + 1)d

�
.

(14)I(�)
(‖‖‖‖

r

�

‖‖‖‖
, �(�)

)
∶=

|||||

�

��(�)
k(
‖‖‖
r

�

‖‖‖)

max
�(�),�∈C

�

��(�)
k(
‖‖‖
r

�

‖‖‖)

|||||
.

Θ
(�)

adm
(r) ∶=

{
� ∶ I(�)

(
r

�
, �
)
≥ �

}
,

�
(�)

min
∶= inf

⋃

r∈
[
r
(�)

min
,r
(�)
max

]
Θ

(�)

adm
(r) and �(�)

max
∶= sup

⋃

r∈
[
r
(�)

min
,r
(�)
max

]
Θ

(�)

adm
(r) .
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Note that multiplying distances by a scale factor 𝛼 > 0 changes the set of admissible 
length-scales by the same factor, Θ(�)

adm
(�r) = �Θ

(�)

adm
(r) . Therefore, one only has to 

solve for r = 1 in �:

We denote respectively as �−(k) and �+(k) the smallest and largest roots of (15), 
which depend only on the chosen covariance function k(.). The influence index and 
its roots are illustrated in Fig. 1 for the exponential and Gaussian kernels. The roots 
do not depend on the component number � , and we finally get:

Notice that rmin , rmax depend only on the design kurtosis � and on the dimen-
sion d . Examples of obtained bounds for uniformly sampled designs are given in 
Table  1. When d tends to infinity, the length-scale range becomes equivalent to 
�(�)

√
2d[�−(k), �+(k)] , and only depends on the design distribution through �(�) . 

The surprising result of distance concentration in high dimension ( rmin and rmax both 
equivalent to 

√
2d as d increases, see last lines in Table 1) is also discussed in the 

literature, see e.g. Aggarwal et al (2001).

3.2.3 � Sampled bounds

The length-scales of the sub-models are sampled randomly in their correspond-
ing interval. Different sampling strategies can be considered (i.e. space-filling 
designs, sample plans biased towards the center of the length-scale space). In this 
paper we use a uniform sampling scheme: �(�) ∼ U(�

(�)

min
, �(�)

max
), � = 1,… , d .

(15)I(�)
(
1

�
, �
)
= � .

(16)�
(�)

min
= �(�) rmin �

−(k) and �(�)
max

= �(�) rmax �
+(k) .

Fig. 1   Influence index 
I(�)(r∕�, �) as a function of � , 
for Gaussian (red) and exponen-
tial (blue) covariance functions, 
r = 1 . Threshold � = 1∕10 
(black horizontal line). Large 
length-scales have more impact 
with an exponential kernel than 
with a Gaussian one
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3.3 � Choice of the weighting method

As detailed in Sect.  3.1, the literature on model combination is vast and many 
weighting methods have been developed. Five of those are investigated in this paper 
in order to compute the weights of the sub-models in (10). This Section briefly 
describes the resulting five weighting schemes, more details on each method can be 
found in Appendix A. Their performances are then compared on numerical experi-
ments in Sect. 4.

3.3.1 � PoE approach

The first approach to obtain the weights is based on Product of Experts (PoE) (Hin-
ton 2002). The PoE weights are given by:

where ŝ2
i
(x) is the variance of the i th sub-model given in Eq. (12). Note that these 

weights depend only on the position of the sample points and not on the observed 
values. When the Kriging sub-models are all built with the same sample points, 
this method will emphasize the sub-models with large length-scales because these 
are the ones with smallest predicted variance. Thus, we expect this method to favor 
large length-scales and to fail in selecting the correct sub-models.

(17)wPoEi
(x) =

ŝ−2
i
(x)

∑p

j=1
ŝ−2
j
(x)

,

Table 1   Table illustrating some values of the different terms in Eq. (16) for usual kernels, for a uniform 
design plan ( � = 9∕5 ), and for a standard deviation �(�) = 1∕

√
12 corresponding to a uniform designs in 

[0, 1]d . The chosen kernel influence threshold is � = 1∕10

Design influence Kernel influence Resulting bounds

 d Kernel k �(�) rmin rmax �−(k) �+(k) �
(�)

min
�(�)
max

10 Exponential 1√
12

2.31 5.89 0.15 3.76 0.10 6.39

Matérn 3/2 0.21 2.74 0.14 4.66
Matérn 5/2 0.23 2.44 0.15 4.15
Gaussian 0.29 1.96 0.19 3.33

50 Exponential 1√
12

8.20 11.5 0.15 3.76 0.36 12.5

Matérn 3/2 0.21 2.74 0.50 9.10
Matérn 5/2 0.23 2.44 0.54 8.10
Gaussian 0.29 1.96 0.69 6.51

d → ∞ Exponential 1√
12

√
2d

√
2d 0.15 3.76 0.061

√
d 1.54

√
d

Matérn 3/2 0.21 2.74 0.086
√
d 1.12

√
d

Matérn 5/2 0.23 2.44 0.094
√
d 1.00

√
d

Gaussian 0.29 1.96 0.12
√
d 0.80

√
d
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3.3.2 � gPoE approach

The second approach is based on generalized Product of Experts (gPoE) (Cao and 
Fleet 2014; Deisenroth and Ng 2015). The gPoE weights are:

In this paper, we use the gPoE approach to adjust the PoE weights in order to account 
for the observed values at the sample points. To this aim, the internal weights �∗ are 
optimized numerically to minimize the LOOCV error of the combined model given 
by Eq. (7). However, a closed-form expression of the weights is no longer available 
because of this inner optimization.

3.3.3 � LOOCV and LOOCV diag approaches

The third approach is to directly minimize the LOOCV error of the combination 
in Eq. (7) (Viana et al 2009) giving the LOOCV weights:

where the components of the matrix C ∈ ℝ
p×p are cij =

1

n
e
T
i
ej, i = 1,… , p,

j = 1,… , p, with ei the LOOCV vector for the i th sub-model: ei = (e
(1)

i
,… , e

(n)

i
) . 

Using (8), these elements can be expressed easily as: e(k)
i

= [K�i
Y]k∕[K�i

]k,k . Contra-
rily to the two previous approaches, these weights are constant and do not depend on 
x . We also note that this method might lead to negative or greater than one weights. 
As we will discuss in Sect. 4, negative weights can raise some issues for the combi-
nation. Thus, following the suggestion of Viana et al , we propose the fourth weight 
definition enforcing wi ∈ [0, 1] by keeping only the diagonal elements of the matrix 
C in Eq. (19):

3.3.4 � MoE approach

The fifth approach based on Mixture of Experts (MoE) (Yuksel et al 2012) gives 
the MoE weights:

(18)wgPoEi
(x) =

𝛽∗
i
ŝ−2
i
(x)

∑p

j=1
𝛽∗
j
ŝ−2
j
(x)

.

(19)wLOOCV =
C
−1
1

1
T
C
−1
1

.

(20)wLOOCVdiag
=

C
−1
diag

1

1
T
C
−1
diag

1

⟺ wLOOCVdiagi
=

eLOOCV (Mi)
−1

∑p

j=1
eLOOCV (Mj)

−1
.

(21)wMoEi
=

L(�i)∑p

j=1
L(�j)

.
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Here, L(�i) is the marginal likelihood of the i th sub-model. One drawback of MoE 
is that the likelihood of different sub-models can vary by several orders of magni-
tude. Thus this method may emphasize one single sub-model with the best likeli-
hood instead of combining different sub-models.

4 � Numerical results

4.1 � Experiment setup

We compare the performances of the different combined models described in Sect. 3 
with the simple Kriging method on simulated data and on a real-world application. 
To build the sub-models and the simple Kriging model, ntrain = 500 random train-
ing points x1,… , xntrain ∈ [0, 1]d are uniformly sampled. We use the Matérn 5/2 
covariance function defined in Eq. (1). For the random sub-models, we follow the 
methodology detailed in Sect. 3.2, where we take a threshold � = 1∕10 , a kurtosis 
corresponding to a uniform distribution � = 9∕5 , and the empirical standard devia-
tion of the design along each direction. The weights of the combinations are com-
puted according to Eqs.  (17, 18, 19, 20) and (21). The performances of the five 
combined models are compared with the accuracy of a simple Kriging model with 
hyperparameters optimized by MLE (the optimization is performed using the pack-
age DiceKriging in the R language Roustant et  al (2012) with 300 maximum 
iterations). The experiments are repeated for 10 different random seeds, with differ-
ent random length-scales for the sub-models as well.

4.2 � Simulated data

For the simulated data, the functions to surrogate are random samples of a high 
dimensional ( d = 50 ) centered Gaussian process Y using a Matérn 5/2 covariance 
function with known isotropic length-scales �true = 2 . Since in this case the true 
length-scales are known, we also compare the combinations and the simple Kriging 
to a Kriging model with the true hyperparameters �true as a reference.

In a first experiment, we consider a combination of p = 10 sub-models where, 
only this time, the length-scales are fixed to isotropic values ranging from 1 to 10. 
The purpose of this experiment is to observe how the different weights behave in a 
case where we know how close to the true function each sub-model is. In a second 
experiment, we build a set of p = 40 Kriging sub-models M = {M1,… ,Mp} , this 
time with random length-scales. The combined models are then constructed by 
aggregating a gradually increasing number of these sub-models (from 5 to all 40), 
using the 5 different methods for computing the weights. Additionally, to investigate 
the robustness of the combinations to “wrong” sub-models, we also add 5 sub-mod-
els with fixed isotropic large length-scales � = 10 . The quality of each prediction 
Mtot is assessed by the mean-square error (MSE) computed on a test set of ntest = 
5000 random test point x(t)

1
,… , x(t)

ntest
∈ [0, 1]d:
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In order to further interpret the results, the LOOCV error of each model is also 
computed:

The results of the first experiment are presented in the Figs.  2 and 3. The first 
result to note is the weak performance of the SK model with estimated hyperpa-
rameters (KrgMLE). Since the model is well specified (the underlying function we 
try to approximate is a GP sample with the same covariance structure), we would 
expect the MLE method to recover the true hyperparameters (see Bachoc (2013)). 
Moreover, as the high-dimensional optimization can be difficult, we use multi-start 
along with a large number of iterations (300 iterations) to ensure convergence. How-
ever, the maximum likelihood optimization still results in a wrong estimation of the 
length-scales �MLE , far from the truth �true . This is because with the small number 
of observations available, the maximum likelihood criterion over-fits the training 
data as highlighted in Fig.  2b by the LOOCV error of the model with estimated 
hyperparameters which is much smaller than that of the reference model. Because 
of the poor estimation of the length-scales, the MSE error of this model is also 
much worse than the MSE of the model with the true hyperparameters as shown in 
Fig. 2a. The PoE method clearly performs the worst among the combined models 
because it gives almost all the weight to the subs-models with large length-scales. 

MSE(Mtot) ∶=
1

ntest

ntest∑

k=1

(
Mtot(x

(t)

k
) − Y(x

(t)

k
)
)2

.

eLOOCV (Mtot) ∶=
1

ntrain

ntrain∑

k=1

(
Mtot−k

(xk) − Y(xk)
)2
.

Fig. 2   MSE and LOOCV error (the lower the better) for the combinations of isotropic sub-models for 
the approximation of an isotropic Gaussian process sample. The 5 five first boxes (blue) correspond to 
the 5 weighting methods, the second to last box (red) to the simple Kriging model with hyperparameters 
estimated by MLE, the last box (green) to a simple Kriging model with � = �true (colour figure online)
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The gPoE method avoids this issue thanks its internal weights as shown in Fig. 3a, 
and this method performs similarly to the three others. The different weighting strat-
egies of each method are shown in Fig. 3. For the LOOCV method, the weights are 
fluctuating and hard to interpret, since their values are not in the [0,1] interval. The 
LOOCV diag method gives weights which are distributed quite uniformly among all 
sub-models though sub-models with �i ≈ �true are highlighted, while the gPoE and 
MoE methods focus on the two more accurate sub-models.

The results of the second experiment are given in Fig. 4. First, we can note that 
the SK model with estimated hyperparameters still overfits the data which results 
in a high MSE. Contrarily to the first experiment, the PoE method performs well 
as seen in Fig.  4a and f. This is because, in this experiment, the sub-models are 
no longer isotropic and are all composed of both small and large length-scales. As 

Fig. 3   Weights of the isotropic sub-models for the first experiment. The x-axis values represent the iso-
tropic length-scale of each sub-model, � . For the gPoE method, the weights are the � internal weights in 
Eq. 18, for the 3 other methods the weights are the constant weights used for the combination
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such, the PoE which discriminates against small length-scales leads to a good MSE 
since small length-scales often result in a Kriging model with large variations, and 
thus potentially large MSE values, while large length-scales give flatter models with 
moderate MSEs. However, for the same reason, PoE is not robust to the addition of 
“wrong” sub-models with large length-scales. Figure 4c shows that the accuracy of 
the combined model using the LOOCV method steadily decreases when too many 
sub-models are aggregated (more than 10). This is in contrast to the Fig. 4h where 
the LOOCV error of this method keeps decreasing when more sub-models are 
added, which is to be expected as the weights in this method are designed to mini-
mize this very error. This, again, can be explained by the fact that this combination 
starts to overfit the data with too many sub-models. However, this issue does not 
occur for the LOOCV diag method in Fig. 4d and i where the MSE always decreases 
with p and converges to a threshold at about 15 sub-models in the combination. Fig-
ure 4e and j show that in this experiment the MoE method produces poor results. 
This is because, in this 50-dimensional example, the likelihoods of the sub-models 
are very small and differ by several order of magnitudes. This results in an MoE 
weight of almost one for the sub-model with the best likelihood, hence the method 
is almost equivalent to choosing only the best sub-model, thus using only one sin-
gle pre-specified covariance. We also note that, for the methods which give the best 
accuracy (PoE, gPoE and LOOCV diag), the combined model is generally better 

MSEMSE

(a) PoE(a) PoE (b) gPoE(b) gPoE (c) LOOCV(c) LOOCV (d) LOOCV diag(d) LOOCV diag (e) MoE(e) MoE

eeLOOCVLOOCV

(f) PoE(f) PoE (g) gPoE(g) gPoE (h) LOOCV(h) LOOCV (i) LOOCV diag(i) LOOCV diag (j) MoE(j) MoE

Fig. 4   Results of the second experiment for an initial GP sample with isotropic length-scales � = 2 . The 
top row shows the MSE results for the 5 combination methods, and the bottom row the LOOCV error 
results (the lower the better). In each boxplot, the first box gives the accuracy of the best sub-model Sub 
(yellow), the next 8 boxes (blue) give the accuracy of the combined model with an increasing number of 
sub-models (from 5 to 40), the third to last +Bad (purple) gives the accuracy when the combination is 
perturbed by the addition of 5 bad sub-models with large length-scales ( � = 10 ), the second to last box 
MLE (red) gives the performance of a simple Kriging model with hyperparameters estimated by MLE, 
the last box True (green) gives the precision of a simple Kriging model using the same length-scale as 
the initial GP sample (colour figure online)
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than the best sub-model with as few as five sub-models in the combination. This 
shows well that the combination strategy is more effective compared to choosing the 
best sub-model among random samples.

Table 2 gives a summary of the different properties observed for the 5 weight-
ing methods in these numerical experiments. The only method without a closed-
form expression is gPoE because of the inner weights optimization (Eq. (A3)). As 
seen in the third experiment (Fig. 4b) PoE is not robust to “wrong” sub-models.Only 
PoE is not robust to “wrong” sub-models as seen in Fig. 4b. Figure 4c shows that 
LOOCV overfits when there are too many sub-models. Finally, both experiments 
(Figs. 2a and 4e) show that MoE does not suitably balance the weight between all 
sub-models.

4.3 � Real‑world application

To validate the method on a more realistic problem, we study a real-world appli-
cation corresponding to the design of an electrical machine. The shape of the 
machine is parameterized with d = 37 design variables. These variables repre-
sent the position and size of air holes and magnets, as well as the radius of the 
machine. The layout of the machine is illustrated in Fig. 5. We are interested in 
the performances measured by two objectives to minimize: the consumption and 
cost of the machine; subject to ten constraints which characterize the dynamic 

Table 2   Empirical properties of the five weighting methods

Method Closed-form Robust to wrong Robust to Well-balanced
Expression Sub-models Over-fitting Weights

PoE ✓ × ✓ ✓

gPoE × ✓ ✓ ✓

LOOCV ✓ ✓ × ✓

LOOCV diag ✓ ✓ ✓ ✓

MoE ✓ ✓ ✓ ×

Fig. 5   Layout of the electrical 
machine to be optimized. The 
37 design parameters are the 
size and position of the air holes 
(in white) and of the magnets 
(in black), as well as the radius 
of the machine (colour figure 
online)
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of the car (maximum speed, acceleration,...), the reducer dimensioning, and the 
dynamic of the machine (oscillations,...). These two objectives and ten constraints 
are obtained via numerical simulation. Thus, we build 12 surrogates (one for each 
objective and constraint).

For a fixed number of p = 20 random sub-models, we compare the accuracy of 
the combinations with that of simple Kriging. To measure the accuracy, as the 
scales and units of each objectives and constraints cannot be compared, instead of 
the MSE and LOOCV we use the Q2 coefficient computed on a test set of ntest = 
4500 random test point x(t)

1
,… , x(t)

ntest
∈ [0, 1]d:

The results for the 2 objective and 10 constraints of the electrical machine is sum-
marized in Fig. 6. Note that here the boxplots represent the result over the 12 surro-
gates (averaged over 10 different random seeds).

The results obtained confirm those for the simulated data. The accuracy using 
a combination of random sub-models is better than Kriging with hyperparameters 
optimized via maximum likelihood. Among the 5 methods for the weights, gPoE 

Q2 ∶= 1 −

∑ntest
k=1

�
Mtot(x

(t)

k
) − Y(x

(t)

k
)
�2

∑ntest
k=1

�
Y(x

(t)

k
) −

1

ntest

∑ntest
l=1

Y(x
(t)

l
)
�2

Fig. 6   Results of the real-world application. The boxplots represent the Q2 (the higher the better) over 
the 12 objectives and constraints. The leftmost box gives the accuracy of the best sub-model Best sub 
(yellow), the next 5 boxes (blue) give the accuracy of the 5 methods for the combination, the last box 
Krg MLE (red) gives the performance of a Kriging model with hyperparameters estimated by MLE 
(colour figure online)
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and LOOCV diag are to be preferred as the conclusion from the simulated data 
still applies here.

5 � Conclusion

In this paper, we have proposed a new method to construct a surrogate model as 
a combination of Kriging sub-models which avoids the cumbersome optimiza-
tion of the length-scales hyperparameters. The length-scales of the sub-models 
are pre-specified, for instance randomly, and the combined model emphasizes 
the important ones. We also provided a recipe for the choice of the length-
scale bounds, as well as a comparison of different methods for weighting the 
sub-models.

Compared to other approaches, our method provides a novel way to build a 
Kriging-based surrogate model for high dimensional problems without employ-
ing dimension reduction techniques. The accuracy of our surrogate model is 
improved in comparison to simple Kriging models where the length-scales are 
optimized by MLE and which performs poorly in high-dimension, especially 
when the number of observations is limited. Moreover, the computational cost of 
the model is reduced as only p matrix inversions are needed to build the p sub-
models, which, for a reasonable number of sub-models, is less expensive than 
the standard length-scale optimization which requires iterative covariance matrix 
inversions.

The numerical results for the 50 dimensional test problem and for the real-
world application show that our method performs significantly better than simple 
Kriging with hyperparameters optimized by MLE for this type of problems. In 
particular, both the gPoE and LOOCV diag stand out as the best approaches to 
combine the sub-models and give an accuracy close to that of the reference model 
with as few as 15 sub-models.

Several aspects still need to be explored in further research. First, we can 
think of combining different kinds of sub-models, for example for problems 
where the design variables can naturally be separated into different groups, or 
by varying the covariance function, to further diversify the sub-models instead 
of considering identical sub-models sharing the same points and design vari-
ables. We could also consider sub-models built with subsets of samples in order 
to handle cases where in addition to the high-dimension, the number of obser-
vations is also large enough that the cost of the covariance matrix inversion 
becomes prohibitive. Second, we could try to induce sparsity in the weights in 
order to improve the interpretability of the combination. Finally, the variance 
of the aggregated model, which is mandatory to apply our method to the EGO 
framework for Bayesian optimization, is currently available only for the MoE 
weighting. Extending the current method to obtain variance estimates for other 
weighting approaches and applying it to Bayesian optimization constitutes an 
interesting research direction.
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Appendix A more details on the weighting methods

PoE approach

Product of Experts (PoE) (Hinton 2002) arises from the hypothesis that the pos-
terior probability distribution of the combined model can factorize as a product 
of the posterior distribution of each sub-model (experts). Thus, it assumes inde-
pendence between each sub-model, which is not the case for the proposed method 
where the sub-models are correlated. The PoE can also be seen as the best convex 
combination in the case of independent sub-models, which minimizes the vari-
ance of the combined model. The PoE weights are given by:

where ŝ2
i
(x) is the variance of the i th sub-model given in Eq. (12).

gPoE approach

The generalized Product of Experts (gPoE) approach (Cao and Fleet 2014; Deisen-
roth and Ng 2015) was originally developed in the context of aggregating Kriging 
sub-models to alleviate some shortcomings of the PoE method, namely the fact that 
a single poor sub-model can cause a biased mean prediction and an overconfident 
variance. In gPoE, flexibility in the model is added by introducing internal weights 
�∗ to the contribution of each sub-model. This results in the following expression for 
the gPoE weights:

Cao and Fleet (2014) suggest to compute �∗ as the difference in entropy between 
the prior and posterior of each sub-model. In Deisenroth and Ng (2015), in order to 
recover the prior outside the data, the authors imposed the constraint 

∑p

i=1
�∗
i
= 1 

and proposed uniform weights �∗
i
= 1∕p.

In this paper, we use the gPoE approach to adjust the PoE weights in order to 
account for the observed values at the sample points. To this aim, the internal 
weights are optimized to minimize the LOOCV error of the combined model, with 
the constraint that their sum must be equal to one.

This is equivalent to optimizing the LOOCV error of a Kriging model whose preci-
sion matrix is the weighted sum of the precision matrices of each sub-models: 

(A1)wPoEi
(x) =

ŝ−2
i
(x)

∑p

j=1
ŝ−2
j
(x)

,

(A2)wgPoEi
(x) =

𝛽∗
i
ŝ−2
i
(x)

∑p

j=1
𝛽∗
j
ŝ−2
j
(x)

.

�∗ = argmin
�

eLOOCV

(
p∑

i=1

wgPoEi
(�)Mi

)
, subject to:

p∑

i=1

�i = 1.
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K
−1
tot
(�) =

∑p

i=1
�iK

−1
�i

∈ ℝ
n×n . Thus, using the LOOCV formula for Kriging models 

given in Eq. (8):

This inner optimization can be performed numerically, and since only the inverses 
of the covariance matrices of each sub-model are required, it is inexpensive to per-
form as these inverses are already computed to build the sub-models. Although it 
accounts for the observed values, a closed-form expression of the weights is no 
longer available because of the inner optimization.

LOOCV and LOOCV diag approaches

To combine different surrogates, Viana et  al (2009) proposed a method which 
minimizes the global mean-square error (MSE) of the combination given by 
E
[(
Mtot(X) − y(X)

)2] , where X is a random variable uniformly distributed over 
the design space. Since in practice we only dispose of a few observations, the 
global MSE is approximated using cross-validation. A discrete approximation of 
the global MSE using the LOOCV error can be obtained as:

where the components of the matrix C ∈ ℝ
p×p are cij =

1

n
e
T
i
ej, i = 1,… , p,

j = 1,… , p, with ei the LOOCV vector for the i th sub-model: ei = (e
(1)

i
,… , e

(n)

i
) . 

Using (8), these elements can be expressed easily as: e(k)
i

= [K�i
Y]k∕[K�i

]k,k.
The weights are obtained by minimizing (A4) with respect to w:

Using a Lagrange multiplier and setting the derivatives to zero, this gives the follow-
ing weights for the LOOCV approach:

We note that this method might lead to negative or greater than one weights. Thus, 
following the suggestion of Viana et  al , we propose a second weight definition 
enforcing wi ∈ [0, 1] by keeping only the diagonal elements of the matrix C in Eq. 
(19):

(A3)�∗ = argmin
�

n∑

k=1

(
[K−1

tot
(�)Y]k

[K−1
tot
(�)]k,k

)2

, subject to:

p∑

i=1

�i = 1.

(A4)eLOOCV (Mtot) =
1

n

n∑

k=1

(
p∑

i=1

wiMi−k
(xk) − y(xk)

)2

= w
T
Cw,

wLOOCV = argmin
w

w
T
Cw, subject to

p∑

i=1

wi = 1.

(A5)wLOOCV =
C
−1
1

1
T
C
−1
1

.



3069

1 3

Combination of optimization‑free kriging models for…

MoE approach

In Mixture of Experts (MoE) (Yuksel et  al 2012) predictions of each expert are 
weighted by their posterior probability. The posterior predictive distribution of the 
mixture at x∗ given the data D is:

where p(� = �i|D) is the posterior probability of the sub-model i (with length-scales 
�i ). Using Bayes formula, we can express this posterior probability as:

The prior for the i th sub-model, p(� = �i) is taken constant and p(D|� = �i) is the 
marginal likelihood L(�i) of the i th sub-model which is Gaussian and whose expres-
sion was given in Eq. (4).

From Eq. (A7), we can then obtain the predictive mean and variance of the 
combination:

where the weights wMoEi
 are obtained combining Eqs. (4) and (A8):
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(A6)wLOOCVdiag
=

C
−1
diag

1

1
T
C
−1
diag

1

⟺ wLOOCVdiagi
=

eLOOCV (Mi)
−1

∑p

j=1
eLOOCV (Mj)

−1
.

(A7)p(y∗|D, x∗) =

p∑

i=1

p(� = �i|D)p�i(y
∗|D, x∗),

(A8)p(� = �i�D) =
p(D�� = �i)p(� = �i)∑p

j=1
p(D�� = �j)p(� = �j)

.

Mtot(x) ∶= E(y∗|D, x∗) =

p∑

i=1

wMoEi
Mi(x),

ŝ2
tot
(x) ∶= Var(y∗|D, x∗)

=

p∑

i=1

wMoEi
ŝ2
i
(x) +

p∑

i=1

wMoEi

(
Mi(x) −Mtot(x)

)2
,

(A9)wMoEi
=

L(�i)∑p

j=1
L(�j)
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