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Abstract
In system reliability, practitioners may be interested in testing the homogeneity of 
the component lifetime distributions based on system lifetimes from multiple data 
sources for various reasons, such as identifying the component supplier that provides 
the most reliable components. In this paper, we develop distribution-free hypoth-
esis testing procedures for the homogeneity of the component lifetime distributions 
based on system lifetime data when the system structures are known. Several non-
parametric testing statistics based on the empirical likelihood method are proposed 
for testing the homogeneity of two or more component lifetime distributions. The 
computational approaches to obtain the critical values of the proposed test proce-
dures are provided. The performances of the proposed empirical likelihood ratio test 
procedures are evaluated and compared to the nonparametric Mann–Whitney U test 
and some parametric test procedures. The simulation results show that the proposed 
test procedures provide comparable power performance under different sample sizes 
and underlying component lifetime distributions, and they are powerful in detecting 
changes in the shape of the distributions.

Keywords Distribution-free · Nonparametric estimation · System signatures · 
Weibull distribution

1 Introduction

In reliability studies involving systems, practitioners may be interested in compar-
ing the lifetime characteristics of different systems and the lifetime characteristics 
of the components that make up those systems. For example, one wants to compare 
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the lifetime characteristics of single-cell cylindrical dry batteries (i.e., components) 
when they are used in different devices (i.e., systems). The problem of comparing 
the lifetime characteristics of the components that make up the systems becomes 
challenging when the system structures are different, especially when the compari-
sons can only be made based on system lifetime data. For instance, the lifetimes of 
single-cell cylindrical dry batteries can be very different when used in high-drain 
devices (e.g., digital cameras and radio-controlled toys) compared to those used 
in low-drain devices (e.g., clocks and remote controls). In this case, the life testing 
experiments can be done only when the batteries are used in the devices. Therefore, 
if researchers want to obtain information about the lifetime of the cylindrical dry 
batteries, the only accessible data is the system lifetime data. Another example is 
when the life test involves fielded systems where data are gathered when systems are 
deployed to the field after the prototype stage. The information on which component 
leads to the system failure cannot usually be accessed because the experimenters 
often do not have the need or capability to measure the failed components one by 
one or the whole system may be discarded after failure. In this paper, the problem 
of interest is that, given the system structure and system lifetime data, we test if the 
components from different systems follow the same distribution. The lack of homo-
geneity of the component lifetime distributions in two different systems could be a 
consequence of the working conditions in both systems (i.e., the components can be 
identically distributed a prior, but they are not identically distributed when they are 
placed in systems with different structures).

Our study is of practical interest, as it will apply directly to the many situations in 
which the i.i.d. assumption is deemed reasonable, and the notion of system signature 
proposed by Samaniego (1985) can be applied. Statistical inference for the lifetime 
distribution of components based on system lifetimes is of interest and has been 
developed in the past decades. Early literature on this topic is based on “masked 
data”, which assumes that only partial information is available on the component 
failures that lead to the system’s failure. Under this framework, Meilijson (1981) 
and Bueno (1988) identified the component lifetime distribution estimation based 
on system failure times together with autopsy statistics on the components in the 
system. Miyakawa (1984) discussed parametric and nonparametric estimation meth-
ods for component reliability in the 2-component series system under competing 
risks with incomplete data. Boyles and Samaniego (1987) derived the nonparametric 
maximum likelihood estimate (MLE) of component reliability based on nomination 
sampling in parallel systems. Usher and Hodgson (1988) explored a general method 
for estimating component reliabilities from a J-component series system lifetime 
data. Guess et  al. (1991) extended Miyakawa’s work and treated a broader class 
of estimation problems based on masked data. Given the coherent systems with 
known system structures described by signature, numerous papers were published 
for component lifetime distributions based on complete system lifetime data. More 
recent work includes the paper by Bhattacharya and Samaniego (2010) in which the 
authors estimated the component reliability from system failure data. Eryilmaz et al. 
(2011) discussed reliability properties of m-consecutive-k-out-of-n: F systems with 
exchangeable components. Balakrishnan et al. (2011a, b) developed the exact non-
parametric method to measure characteristics of the component lifetime distribution 



3009

1 3

Empirical likelihood ratio tests for homogeneity of component…

based on the lifetimes of coherent systems with known signatures for complete and 
censored data, respectively. Navarro et  al. (2012) developed a general method for 
inference on the scale parameter of the component lifetime distribution from the 
system lifetimes. Ng et al. (2012) discussed parametric statistical inference for the 
component lifetime distributions when they follow a proportional hazard rate model 
and the system signature is known. Chahkandi et al. (2014) constructed prediction 
intervals for the lifetime of a coherent system with known signature. In contrast, 
while most existing works dealt with system lifetimes from systems with the same 
signature, Hall et al. (2015) developed a novel nonparametric estimator of compo-
nent reliability function by maximizing the combined system likelihood function 
when the systems have different system signatures. Then, Jin et al. (2017) extended 
the work by Hall et al. (2015) to the case that the system signatures are unknown. 
For testing the homogeneity of the component lifetime distributions based on system 
lifetime data, Zhang et al. (2015) developed a nonparametric test and several para-
metric tests under the exponential distribution and studied the power performance of 
these test procedures.

In this paper, we develop the nonparametric test procedures for testing the homo-
geneity of component lifetime distributions using the empirical likelihood ratio. 
The empirical likelihood was first proposed by Owen (1988). It is known that the 
empirical likelihood ratio behaves like an ordinary parametric likelihood ratio 
(Wilks 1938), such as the asymptotic chi-square distribution for the empirical likeli-
hood ratio test statistic, and it has advantages over other nonparametric methods. 
The book by Owen (2001) on empirical likelihood provides an excellent theoreti-
cal background on empirical likelihood and its application. The idea of empirical 
likelihood has been applied to different areas of statistics such as time series anal-
ysis (Nordman and Lahiri 2014), survival analysis (Zhou 2019), longitudinal data 
analysis (Nadarajah et al. 2014), and regression analysis (Chen and Keilegom 2009). 
Zhang (2002) proposed a new parameterization approach to construct goodness-of-
fit tests based on empirical likelihood ratio and showed that the proposed tests are 
more powerful than the Kolmogorov–Smirnov, the Cramér–von Mises, and Ander-
son–Darling tests. Later on, Zhang (2006) proposed a more powerful nonparametric 
statistic for testing the homogeneity of statistical distributions based on empirical 
likelihood ratio. In addition to empirical likelihood ratio tests, another nonparamet-
ric statistic for testing the homogeneity of distributions can be considered is the 
rank-based Mann–Whitney-type statistic (which is also known as U statistic) based 
on the work by Mann and Whitney (1947) and Wilcoxon (1992). The hypothesis 
testing using U statistic is a rank-sum test, and it can be used for comparing two 
unpaired groups of data.

In this paper, based on the empirical likelihood ratio, we propose two nonpara-
metric test procedures for testing the homogeneity of components’ lifetime distribu-
tions given the system lifetimes and the system signatures. The rest of the paper is 
organized as follows. In Sect. 2, we introduce the mathematical notations and formu-
late the homogeneity test as a statistical hypothesis testing problem. We also review 
the existing parametric and nonparametric testing procedures for the homogeneity 
of component lifetime distributions based on system-level data. In Sect. 3, we intro-
duce the two proposed test procedures based on the empirical likelihood ratio. Then, 
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the computational approach to obtain the null distributions of the nonparametric test 
statistics by means of the Monte Carlo method is described in Sect. 4. In Sect. 5, a 
numerical example is used to illustrate the methodologies proposed in this paper. 
Monte Carlo simulation studies are used to evaluate the performances of those par-
ametric and nonparametric test procedures in Sect. 6. Finally, concluding remarks 
and future research directions are provided in Sect. 7.

2  Tests for homogeneity based on system lifetime data

In this section, we introduce the mathematical notations and formulate the homoge-
neity test as a statistical hypothesis testing problem. Then, we review several exist-
ing parametric and nonparametric test procedures.

Suppose there are two different coherent systems, System 1 and System 2, with 
n1 and n2 i.i.d. components following the same absolutely continuous lifetime dis-
tribution, respectively. The system lifetime data are obtained by putting M1 System 
1 and M2 System 2 on a life test. We denote the system lifetimes for System i as 
Ti = (Ti1, Ti2,… , TiMi

) , and the lifetimes of the ni components in the j-th system 
of System i (i.e., the system with lifetime Tij ) as Xij = (Xij1,Xij2,… ,Xijni

) , i = 1, 2 , 
j = 1, 2,… ,Mi . The cumulative distribution function (CDF), survival function (SF), 
and probability density function (PDF) of the lifetimes of System i (i.e., Tij ) are 
denoted by FTi

 , F̄Ti
 , and fTi , for i = 1, 2 , and the CDF, SF, and PDF of the lifetimes 

of the components in System i (i.e., Xijk ) are denoted by FXi
 , F̄Xi

 , and fXi
 , for i = 1, 2.

To describe the structure of a coherent system, we consider the system signature 
introduced by Samaniego (1985). The signature si = (si1,… , sini ) of the coherent 
system i ( i = 1, 2 ) is defined as

where sik , k = 1, 2,… , ni , are non-negative real numbers in [0, 1] that do not depend 
on the component lifetime distribution FXi

 with 
∑ni

k=1
sik = 1. From Kochar et  al. 

(1999) (see also, Samaniego 2007), the SF of the system lifetime Ti can be written in 
terms of the SF of the component lifetime Xijk as

where pi(t) = F̄Xi
(t) and hi(⋅) is a polynomial function that can be obtained from the 

system signature or the minimal signature. We further denote the inverse function of 
hi(⋅) as

(1)
sik = Pr(system ifails upon the failure of the k-th component)

= Pr(Ti = Xk∶ni
),

(2)
F̄Ti

(t) =

ni∑
k=1

sik

k−1∑
�=0

(
ni
�

)
[1 − F̄Xi

(t)]�[F̄Xi
(t)]ni−�

Δ
= hi(pi(t)),

h−1
i
(qi(t)) = pi(t),
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where qi(t) = F̄Ti
(t). Navarro et al. (2011) stated that the polynomial h(p) is strictly 

increasing for p ∈ (0, 1) , with h(0) = 0 and h(1) = 1 , hence, its inverse function h−1 
in (0, 1) exists and is also strictly increasing in (0, 1) with h−1(0) = 0 and h−1(1) = 1 . 
Moreover, the PDF of the system lifetime Tj can be expressed in terms of fXi

(t) and 
pi(t) = F̄Xi

(t) as

In addition to the system signatures, Navarro et al. (2007) noted that the SF of the 
system lifetime Ti can be expressed in terms of the SF of k-component series system 
lifetimes, Xi,1∶k = min(Xi1,Xi2,… ,Xik) , k = 1, 2,… , ni:

where F̄k
Xi
(t) is the SF of a k-component series system lifetime, for some non-nega-

tive and negative integers ai1, ai2,… , aini , that do not depend on the component life-
time distribution with 

∑ni
k=1

aik = 1 (see also, Ng et  al. 2012). The vector 
ai = (ai1, ai2,… , aini ) is called the minimal signature of System i. The values of the 
minimal signature are the coefficients of the polynomial function hi(⋅) defined in 
Eq. (2) (see, for example, Navarro 2022; Navarro and Rubio 2009).

Based on the system lifetime data Ti , i = 1, 2 , we are interested in testing the 
homogeneity of the component lifetime distributions, which can be formulated as a 
hypothesis testing problem as testing

2.1  Parametric test procedures

For comparative purposes, we consider two parametric tests—an asymptotic test 
under the assumption of exponentially distributed component lifetimes and a para-
metric likelihood ratio test—for testing the hypotheses in Eq. (4) based on system 
lifetime data Ti , i = 1, 2.

2.1.1  Asymptotic tests under exponentially distributed component lifetimes 
assumption

We consider the asymptotic parametric test developed in Zhang et al. (2015) based 
on the assumption that the underlying lifetimes of components follow an exponential 
distribution. Specifically, we assume that the lifetimes of components from System i 

(3)fTi(t) =

ni∑
k=1

sik

(
ni
k

)
kfXi

(t)[1 − pi(t)]
k−1[pi(t)]

ni−k.

F̄Ti
(t) =

ni∑
k=1

aikF̄
k
Xi
(t),

(4)
H0 ∶ FX1

(t) = FX2
(t), for all t ∈ (0,∞)

versus H1 ∶ FX1
(t) ≠ FX2

(t), for some t ∈ (0,∞).
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(i = 1, 2) follow an exponential distribution with scale parameter 𝜃i > 0 (denoted as 
Exp(�i)) with PDF

To estimate the scale parameter �i using the system lifetime data Ti , i = 1, 2 , we use 
the method of moments estimator (MME) (Ng et al. 2012) defined as

where Tij is the j-th system lifetime of System i and Δi =
∑ni

k=1
(aik∕k) . Ng et  al. 

(2012) showed that the MME 𝜃i is an unbiased estimator and they derived the vari-
ance of 𝜃i as

where Δ(2)

i
=
∑ni

k=1
(aik∕k

2). For other properties of the MME 𝜃i and its exact distri-
bution, one can refer to Ng et al. (2012) and Zhang et al. (2015). Under the assump-
tion of exponentially distributed component lifetimes, testing the hypotheses of 
homogeneity in Eq. (4) is equivalent to testing

To test the hypotheses in Eq. (7), Zhang et al. (2015) developed different test pro-
cedures based on the MME 𝜃i , i = 1, 2 and they recommend the test using the loga-
rithm transformation of R = 𝜃1∕𝜃2 based on the power performance in a simulation 
study. Therefore, we consider the test statistic

where Var(ln 𝜃i) can be approximated by the delta method as (see, for example, Sec-
tion C.2. of Meeker et al. 2022)

for i = 1, 2 . Note that the approximated Var(ln 𝜃) can also be obtained using the delta 
method for approximating moments described in Theorem 5.3.1 and Corollary 5.3.2 
of Bickel and Doksum (2001) by considering the system lifetime Tij with PDF

(5)fXi
(t) =

1

�i
exp

(
−

t

�i

)
, for t ≥ 0.

𝜃i =

∑Mi

j=1
Tij

MiΔi

,

(6)Var(𝜃i) =
𝜃2
i

Mi

(
2Δ

(2)

i

Δ2
i

− 1

)
,

(7)H∗
0
∶ �1∕�2 = 1 versus H∗

1
∶ �1∕�2 ≠ 1.

ZL =
lnR√

Var(lnR)
=

ln 𝜃1 − ln 𝜃2√
Var(ln 𝜃1) + Var(ln 𝜃2)

,

(8)Var(ln 𝜃i) ≈
Var(𝜃i)

𝜃2
i

=
1

Mi

(
2Δ

(2)

i

Δ2
i

− 1

)
,

fTi(t) =

ni∑
k=1

aik
k

𝜃i
exp

(
−
k

𝜃i
t

)
, t > 0, i = 1, 2,
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and the function of the sample mean T̄i =
∑Mi

j=1
Tij as

The details of the approximation based on the results in Bickel and Doksum (2001) 
are provided in the Supplementary Materials.

Under the null hypothesis H∗
0
 in Eq. (7), the test statistic ZL is asymptotically stand-

ard normally distributed. Therefore, the p-value of the asymptotic test based on test 
statistic ZL can be calculated as 2(1 − Φ(|ZL|) where Φ(⋅) is the CDF of the standard 
normal distribution.

2.1.2  Parametric likelihood ratio test

Suppose that the component lifetime distributions for the components in System 1 and 
System 2 follow the same parametric family of distributions with PDF fXi

(t;�i) i = 1, 2 
with parameter vector �1 and �2 , then testing the hypotheses of homogeneity in Eq. (4) 
is equivalent to testing

From Eq. (3), the likelihood function based on System i lifetime data 
Ti = (Ti1, Ti2,… , TiMi

) , i = 1, 2 , is

The MLE of �i based on Ti = (Ti1, Ti2,… , TiMi
) alone, denoted as �̂�i , can be obtained 

by maximizing Li(�i ∣ Ti) with respect to �i.
Under the null hypothesis H∗∗

0
∶ �1 = �2 = � in Eq.  (9), the likelihood function 

based on (T1,T2) can be expressed as

and the MLE of � based on the pooled data (T1,T2) , denoted as �̂� , can be obtained 
by maximizing L12(� ∣ T1,T2) with respect to � . The parametric likelihood ratio sta-
tistic is defined as

g(T̄i) = ln

(
T̄i

Δi

)
= 𝜃i, i = 1, 2.

(9)H∗∗
0

∶ �1 = �2 versus H∗∗
1

∶ �1 ≠ �2.

Li(�i ∣ Ti) =

Mi∏
j=1

fTi(Tij;�i)

=

Mi∏
j=1

ni∑
k=1

sik

(
ni
k

)
kfXi

(Tij;�i)[FXi
(Tij;�i)]

k−1[F̄Xi
(Tij;�i)]

ni−k.

L12(� ∣ T1,T2) = L1(� ∣ T1)L2(� ∣ T2)

�LR = −2 ln

[
supH∗∗

0
L12(𝜽 ∣ T1,T2)

supH∗∗
1
L1(𝜽1 ∣ T1)L2(𝜽2 ∣ T2)

]

= −2 ln

[
L12(�̂� ∣ T1,T2)

L1(�̂�1 ∣ T1)L2(�̂�2 ∣ T2)

]
.
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By the Wilk’s theorem (Wilks 1938), the asymptotic distribution of the likeli-
hood ratio statistic �LR under null hypothesis is chi-square with degrees of freedom 
� , where � is the difference in dimensionality of � and (�1,�2) . The p-value of the 
parametric likelihood ratio test based on test statistic �LR can be approximated as 
Pr(𝜒2

𝜈
> 𝜆LR) where �2

�
 is a random variable following the chi-square distribution 

with degrees of freedom �.

2.2  Nonparametric Mann–Whitney U Statistic

To test the hypotheses in Eq. (4), Zhang et al. (2015) proposed a nonparametric test 
procedure based on the Mann–Whitney U test, also called the Mann–Whitney-Wil-
coxon test (Mann and Whitney 1947; Wilcoxon 1992), which is a nonparametric test 
for comparing two component lifetime distributions. Based on the system lifetime 
data from System 1 and System 2, we define the indicator function between the two 
systems as

for j1 = 1, 2,… ,M1 and j2 = 1, 2,… ,M2 . The U statistic for testing the homogene-
ity of component lifetime distributions is defined as

where Rj is the number of ordered observations from sample T1 which are in 
between the (j − 1)-th and j-th order statistics from sample T2 . The support of the 
statistic U is {0, 1,… ,M1M2} and the null hypothesis in Eq. (4) is rejected if U is 
too large or too small. Here, we reject the null hypothesis in Eq.  (4) at � level if 
U ≤ cU1 or U ≥ cU2 , where cU1 and cU2 are critical values and can be determined 
by Pr(U ≤ cU1 ∣ H0) ≤ �∕2 and Pr(U ≥ cU2 ∣ H0) ≤ �∕2 , respectively. The exact 
p-value can be calculated as presented in Zhang et al. (2015). Since the computation 
of the exact p-value requires the numerical evaluation of integration which can be 
computationally intensive, we consider using the Monte Carlo method to obtain the 
null distribution of U under different scenarios in this paper. The procedure to get 
the simulated null distribution of U is described in Sect. 4 below.

3  Proposed test procedures based on empirical likelihood ratio

In this section, we develop test procedures based on empirical likelihood ratio to test 
the hypotheses in Eq. (4) nonparametrically. From Hall et al. (2015), the empirical 
likelihood function for System i based on Ti only ( i = 1, 2 ) can be expressed as

Dj1,j2
=

{
1, if T1j1 < T2j2 ,

0, otherwise,

U =

M1∑
j1=1

M2∑
j2=1

Dj1,j2
=

M2∑
j=1

(M2 − j + 1)Rj,
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where Yi(t) =
∑Mi

j=1
I(t,∞)(Tij), i = 1, 2 , and I(t,∞)(Tij) is the indicator function defined 

as

The empirical likelihood function LTi(t) in Eq.  (10) is maximized with respect to 
pi(t) ∈ (0, 1) at

where F̂Ti
(t) is the empirical CDF of FTi

(t) defined as

That is, based on Ti,

Under the null hypothesis that FX1
(t) = FX2

(t) (or equivalently p1(t) = p2(t) = p(t) ), 
we can pool the samples from System 1 and System 2 into an ordered sample of size 
M = M1 +M2 , denoted as T∗ = (T∗

(1)
< T

∗
(2)

< ⋯ < T
∗
(M)

) . Following Hall et  al. 
(2015), the empirical likelihood function based on the pooled data is

The nonparametric MLE of p(t), denoted as p̂(t) , can be obtained by maximizing 
L∗
Ti
(t) with respect to p(t) ∈ (0, 1) , i.e.,

Due to the inversion of the function h(p) may not be explicit, a closed-form solution 
p̂(t) may not be obtained, and the maximization can be approximated by numerical 
methods such as the Newton–Raphson method. The nonparametric MLE p̂(t) can be 
written as

(10)LTi(t) =

(
Mi

Yi(t)

)
hi(pi(t))

Yi(t)[1 − hi(pi(t))]
Mi−Yi(t),

IA(b) =

{
1, if b ∈ A,

0, otherwise.

(11)p̂i(t) = h−1
i
(1 − F̂Ti

(t)),

(12)F̂Ti
(t) = 1 −

1

Mi

Mi∑
j=1

I(t,∞)(Tij).

sup{LTi(t)} =

(
Mi

Yi(t)

)
hi(p̂i(t))

Yi(t)[1 − hi(p̂i(t))]
Mi−Yi(t).

(13)L∗
T
(t) =

∏
i=1,2

(
Mi

Yi(t)

)
hi(p(t))

Yi(t)[1 − hi(p(t))]
Mi−Yi(t).

sup{L∗
T
(t)} =

∏
i=1,2

(
Mi

Yi(t)

)
hi(p̂(t))

Yi(t)[1 − hi(p̂(t))]
Mi−Yi(t).
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where qj maximizes the likelihood function in Eq.  (13) for t in [T∗
(j)
, T∗

(j+1)
) , 

j = 1, 2,… ,M − 1 . For the initial values of qj (denoted as q(0)
j

 ) of the iterative maxi-
mization algorithm  and t ∈ [T∗

(j)
, T∗

(j+1)
) , we consider a weighted function of p̂i(t) , 

i = 1, 2 , in Eq. (11)

The empirical likelihood ratio at time t is

Then, we obtain the log empirical likelihood ratio as

Based on the log empirical likelihood ratio, we define

which is a function of time t. We consider two functions based on G2
t
:

p̂(t) =

⎧
⎪⎪⎨⎪⎪⎩

1, t < T∗
(1)
;

qj, t ∈ [T∗
(j)
, T∗

(j+1)
);

0, t ≥ T∗
(M)

.

q
(0)

j
=

M1p̂1(t) +M2p̂2(t)

M
, j = 1, 2,… ,M − 1.

RT (t) =
sup{L∗

T
(t) ∶ p1(t) = p2(t)}

sup{LT1 (t)} sup{LT2 (t)}
.

lnRT (t) = ln

�
sup{L∗

T
(t) ∶ p1(t) = p2(t)}

sup{LT1 (t)} sup{LT2 (t)}

�

= ln

⎧⎪⎪⎨⎪⎪⎩

∏
i=1,2

�
Mi

Yi(t)

�
hi(p̂(t))

Yi(t)[1 − hi(p̂(t))]
Mi−Yi(t)

∏
i=1,2

�
Mi

Yi(t)

�
hi(p̂i(t))

Yi(t)[1 − hi(p̂i(t))]
Mi−Yi(t)

⎫⎪⎪⎬⎪⎪⎭

=

2�
i=1

�
Yi(t) ln

�
hi(p̂(t))

hi(p̂i(t))

�
+ (Mi − Yi(t)) ln

�
1 − hi(p̂(t))

1 − hi(p̂i(t))

��
.

G2
t
= 2 lnRT (t)

= 2

2∑
i=1

{
Yi(t) ln

[
hi(p̂(t))

hi(p̂i(t))

]
+ (Mi − Yi(t)) ln

[
1 − hi(p̂(t))

1 − hi(p̂i(t))

]}
,

(14)Z∗ = sup
t∈(0,∞)

[G2
t
× w(t)],
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where w(t) is a weight function. Following Zhang (2006), we propose two test statis-
tics for testing the hypotheses in Eq. (4) with different weight functions: 

1. Take w(t) = 1 in Eq. (14), we obtain the test statistic 

2. We denote the maximum likelihood estimator of component CDF for the pooled 
data as F̂X(t) and define F̂X(T

∗
(0)
) = 0 . Then, F̂X(t) = 1 − p̂(t) . In Eq. (15), take the 

weight function 

 Then, the test statistic can be written as 

Large values of ZK and ZA support the alternative hypothesis in Eq. (4), which leads 
to the rejection of the null hypothesis in Eq. (4).

4  Null distributions of Z
K

 , Z
A
 , and U based on Monte Carlo method

Since the distributions of ZK and ZA are intractable theoretically in general, even 
under the null hypothesis, we rely on the Monte Carlo method to obtain the null 
distributions of ZK and ZA . We simulate the lifetimes of M1 systems for System 
1 and the lifetimes of the M2 systems for System 2 from any component lifetime 

(15)Z = ∫
∞

0

G2
t
dw(t),

ZK
Δ
= sup

t∈(0,∞)

[G2
t
]

= max
1≤k≤M

{
2

2∑
i=1

Yi(T
∗
(k)
) ln

[
hi(p̂i(T

∗
(k)
))

hi(p̂(T
∗
(k)
))

]

+(Mi − Yi(T
∗
(k)
)) ln

[
1 − hi(p̂i(T

∗
(k)
))

1 − hi(p̂(T
∗
(k)
))

]}
.

dw(t) =
1

F̂X(t)(1 − F̂X(t))
dF̂X(t).

ZA
Δ
= ∫

∞

0

G2
t

1

F̂X(t)(1 − F̂X(t))
dF̂X(t)

= 2

M∑
k=1

p̂(T∗
(k)
) − p̂(T∗

(k−1)
)

p̂(T∗
(k)
)(1 − p̂(T∗

(k)
))

×

{
2∑
i=1

[
Yi(T

∗
(k)
) ln

hi(p̂i(T
∗
(k)
))

hi(p̂(T
∗
(k)
))

+ (Mi − Yi(T
∗
(k)
)) ln

1 − hi(p̂i(T
∗
(k)
))

1 − hi(p̂(T
∗
(k)
))

]}
.
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distribution FX with FX1
= FX2

= FX for given n1 , n2 , M1 , M2 , and system signatures 
s1 and s2 . The statistics ZK and ZA are computed from the simulated lifetimes.

In practice, we can simulate the null distributions of ZK , ZA , and U by choosing 
FX as a distribution that is easy to simulate (e.g., standard exponential distribution, 
Exp(1) ) with a large number of Monte Carlo simulations (say, 1,000,000 times). 
For example, the simulated 90-th, 95-th, and 99-th percentage points for ZK and ZA 
with s1 = (0, 0, 0, 1) (i.e., n1 = 4 , with minimal signature a1 = (4,−6, 4,−1) ) and 
s2 = (1, 0, 0) (i.e., n2 = 3 , with minimal signature a2 = (0, 0, 1) ) based on 1,000,000 
simulations with FX ∼ Exp(1) are presented in Table 1.

For the null distribution of the Mann–Whitney U statistic, since U is discrete 
and the number of possible values of U can be small when the sample sizes M1 
and M2 are small, the actual percentage when U equals to or less than the critical 
value might be much larger than the nominal significance level. Therefore, instead 
of using the exact distribution presented in Zhang et al. (2015), we propose to use 
a Monte Carlo simulation method to obtain the approximated percentage points 
of the null distribution and use a randomization procedure to obtain a test proce-
dure based on U with the required significance level. To illustrate the procedure for 
obtaining the critical values, we consider the following example in which System 
1 is a 4-component parallel system, and System 2 is a 3-component series system 
with system signatures s1 = (0, 0, 0, 1) and s2 = (1, 0, 0) , respectively. In Table 2, we 
present the critical values of the Mann–Whitney statistic U and the corresponding 
simulated probability that U is more extreme than or equal to the critical value for 
different significance levels and sample sizes. The values in Table 2 are generated 
based on 1,000,000 simulations. For illustrative purposes, we consider the case of 
M1 = M2 = 10 to demonstrate how to conduct the hypothesis test at 5% significance 
level.

From Table 2, for � = 0.05 , the critical values are cU1 = 0 and cU2 = 12 and we 
have the following probability

If we use the critical values cU1 = 0 and cU2 = 12 directly, the significance level will 
be 0.3254 + 0.0252 = 0.3506 , which is much higher than the 5% level. Therefore, 
we use the simulated null distribution with a randomization procedure to control 

Pr(U ≤ 0) = 0.3254, Pr(U ≥ 12) = 0.02520.

Table 1  Simulated 90-th, 95-th, and 99-th percentage points of the null distributions of Z
K

 and Z
A
 with 

s
1
= (0, 0, 0, 1) (i.e., n

1
= 4 ) and s

2
= (1, 0, 0) (i.e., n

2
= 3 ) for different sample sizes of M

1
= M

2

Sample sizes Z
K

Z
A

90% 95% 99% 90% 95% 99%

M
1
= M

2
= 10 4.2826 6.2433 10.0858 4.2609 6.6789 13.4692

M
1
= M

2
= 15 5.7377 6.6794 10.2433 4.7174 7.0945 13.4382

M
1
= M

2
= 20 7.6502 7.6502 10.7033 5.1977 7.1561 13.2830

M
1
= M

2
= 30 6.9730 7.7890 11.4753 5.9456 7.6422 13.4232

M
1
= M

2
= 50 7.1904 8.7383 11.8581 6.5791 8.3773 13.6362
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the significance level of the test based on U. For example, to control Pr( reject H0 
when U is too small ∣ H0) ≤ 0.025 , we do not reject H0 if the observed value of U 
is greater than 0 and less than 12. If the observed value of U is 0, we reject H0 with 
probability 0.025/0.3254, i.e.,

Similarly, to control Pr( reject H0 when U is too large ∣ H0) ≤ 0.025 , we do not reject 
H0 if the observed value of U is less than 12 and reject H0 if the observed value of 
U is larger than 12. If the observed value of U is 12, we reject H0 with probability 
(0.025 − Pr(U > 12)∕Pr(U = 12) = (0.025 − (Pr(U ≥ 12) − Pr(U = 12))∕Pr(U = 12) = 0.9737  , 
i.e.,

Obviously, when Pr(U ≤ cU1) = 0.025 and Pr(U ≥ cU2) = 0.025 , no randomization 
procedure is needed. Following this procedure, we can control the significance level 
of the two-sided U test under H0 for � = 0.01, 0.05, 0.1 using the critical values cU1 

Pr( reject H0 when U is too small ∣ H0) = Pr(U ≤ 0 ∣ H0)(0.025∕0.3254)

= 0.025.

Pr( reject H0 when U is too large ∣ H0)

= Pr(U > 12 ∣ H0) + Pr(U = 12 ∣ H0)

[
0.025 − Pr(U > 12 ∣ H0)

Pr(U = 12 ∣ H0)

]

= (Pr(U ≥ 12 ∣ H0) − Pr(U = 12 ∣ H0)) + Pr(U = 12 ∣ H0) × 0.9737

= 0.025.

Table 2  Simulated 0.5-th, 95-th, and 99-th percentage points of the null distributions of U with 
s
1
= (0, 0, 0, 1) (i.e., n

1
= 4 ) and s

2
= (1, 0, 0) (i.e., n

2
= 3 ) for different sample sizes M

1
= M

2

Sample 
size

Percentage

0.5% 2.5% 5%

M
1
= M

2
c
U1

Pr (U = c
U1
) Pr (U ≤ c

U1
) c

U1
Pr (U = c

U1
) Pr (U ≤ c

U1
) c

U1
Pr (U = c

U1
) Pr (U ≤ c

U1
)

10 0 0.3254 0.3254 0 0.3254 0.3254 0 0.3254 0.3254
15 0 0.1483 0.1483 0 0.1483 0.1483 0 0.1483 0.1483
20 0 0.0648 0.0648 0 0.0648 0.0648 0 0.0648 0.0648
30 0 0.0114 0.0114 2 0.0110 0.0301 4 0.0149 0.0571
50 8 0.0013 0.0062 17 0.0034 0.0280 23 0.0051 0.0548

Sample 
size

Percentage

0.5% 2.5% 5%

M
1
= M

2
c
U2

Pr (U = c
U2
) Pr (U ≥ c

U2
) c

U2
Pr (U = c

U2
) Pr (U ≥ c

U2
) c

U2
Pr (U = c

U2
)Pr (U ≥ c

U2
)

10 10 0.0148 0.05011 12 0.0076 0.02520 16 0.0019 0.005864
15 18 0.0106 0.05556 21 0.0057 0.02953 28 0.0013 0.006212
20 29 0.0068 0.05083 33 0.0039 0.02822 43 0.0009 0.005748
30 56 0.0042 0.05308 64 0.0023 0.02630 81 0.0005 0.005297
50 134 0.0022 0.052092 150 0.0012 0.02553 183 0.0003 0.005162
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and cU2 and the corresponding values of Pr(U ≤ cU1) and Pr(U ≥ cU2) when these 
probabilities are not equal to �∕2.

5  Illustrative example

To illustrate the test procedures developed in this paper, we analyze a data set based 
on the example presented in Yang et al. (2016) and Frenkel and Khvatskin (2006). 
The example given in Yang et al. (2016) and Frenkel and Khvatskin (2006) described 
the phosphor acid filter system as a real-life prototype of a consecutive 2-out-of-n 
system. For a consecutive 2-out-of-n system, the system fails when any two adjacent 
components fail. For illustrative purposes, we consider that System 1 is a consecu-
tive 2-out-of-8 system with system signature s1 = (0, 1∕4, 11∕28, 2∕7, 1∕14, 0, 0, 0) 
(minimal signature a1 = (0, 7,−6, 0, 0, 0, 0, 0) and component lifetimes follow a 
Birnbaum–Saunders distribution (Birnbaum and Saunders 1969) with CDF

where the shape parameter is a = 1 and scale parameter b = 1 and System 2 is a 
4-component with system signature s2 = (1∕4, 1∕4, 1∕2, 0) (minimal signature 
a2 = (0, 3,−3, 1) ) and component lifetimes follow a Weibull(3, 2) distribution. The 
system lifetime data for System 1 and System 2 with sample sizes M1 = M2 = 20 
are presented in Table 3. A hypothesis test is conducted to determine if the compo-
nents from two different systems follow the same lifetime distribution.

The nonparametric MLE of the SF of the component lifetime distribution FX1
 

based on T1 from Eq.  (12) (denoted as ̂̄FX1
 ), the nonparametric MLE of the SF of 

the component lifetime distribution FX2
 based on T2 from Eq. (12) (denoted as ̂̄FX2

 ), 
the average of ̂̄FX1

 and ̂̄FX2
 , and the nonparametric MLE of the component lifetime 

distribution based on the pooled data ( T1 , T2 ) under H0 ∶ FX1
= FX2

 by maximizing 
Eq. (13), are plotted in Fig. 1.

To test the hypotheses in Eq. (4) using the nonparametric Mann–Whitney U test 
and the two proposed empirical likelihood ratio tests at 1% level of significance 
for the data set in Table  3, we obtain the critical values based on the procedures 
described in Sect. 4 with 1,000,000 simulations. The critical values for the empiri-
cal likelihood ratio tests based on ZK and ZA are 12.6394 and 18.4978, respectively, 

FX(t; a, b) = Φ

[
1

a

((
t

b

)1∕2

−
(
b

t

)1∕2
)]

, t > 0,

Table 3  Simulated lifetime data from System 1 and System 2 with M
1
= M

2
= 20

j 1 2 3 4 5 6 7 8 9 10

T
1j 0.2598 0.2803 0.3329 0.4172 0.4532 0.459 0.5541 0.5769 0.5842 0.7784

T
2j 0.5890 0.6423 0.7774 0.9879 1.0754 1.1200 1.1685 1.2410 1.2412 1.2642

j 11 12 13 14 15 16 17 18 19 20

T
1j 0.7917 0.8565 0.8895 0.9186 0.9348 1.1130 1.2049 1.3938 1.4406 1.6351

T
2j 1.4164 1.4401 1.4924 1.5415 1.6912 2.0695 2.4374 2.5627 2.6197 2.7791
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and the 0.5 and 99.5 percentile of the Mann–Whitney U statistic are 172 and 314, 
respectively.

For the data presented in Table  3, we can compute the test statistics 
ZK = 13.5608 , ZA = 22.0917 , and U = 334 . We observe that all these test statistics 
are larger than their corresponding critical value at a 1% level of significance. 
Therefore, we reject the null hypothesis in Eq.  (4) at 1% level with p-value of 
2 × 10−6 based on test statistics ZA and ZK and p-value of 0.01 based on the test 
statistic U. These results agree with our expectation since the component life-
times in System 1 are simulated from a Birnbaum–Saunders distribution, and the 
component lifetimes in System 2 are simulated from a Weibull distribution.

6  Monte Carlo simulation studies

In this section, Monte Carlo simulation studies are used to evaluate the perfor-
mances of those parametric and nonparametric test procedures described in 
Sects. 2 and 3 for testing the hypotheses in Eq.  (4). In these simulation studies, 
we consider simulating the system lifetimes for the systems with component life-
times following the statistical distributions listed below: 

Fig. 1  The nonparametric MLE of the SF of the component lifetime distribution F
X
1

 based on T
1
 from 

Eq. (12) (denoted as ̂̄F
X
1

 ), the nonparametric MLE of the SF of the component lifetime distribution F
X
2

 
based on T

2
 from Eq. (12) (denoted as ̂̄F

X
2

 ), the average of ̂̄F
X
1

 and ̂̄F
X
2

 , and the nonparametric MLE of 
the component lifetime distribution based on the pooled data ( T

1
 , T

2
 ) under H

0
∶ F

X
1

= F
X
2

 by maximiz-
ing Eq. (13)
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1. Exponential distribution: Exponential distribution with mean � has PDF in Eq. 
(5), denoted as Exp(�).

2. Gamma distribution: Gamma distribution with shape parameter 𝛼 > 0 and rate 
parameter 𝛽 > 0 , denoted as Gamma(�, �) , has PDF 

 where Γ(�) = ∫ ∞

0
x� exp(−x)dx is the gamma function.

3. Weibull distribution: Weibull distribution with scale parameter 𝜆 > 0 and shape 
parameter 𝛾 > 0 , denoted as Weibull(�, �) , has PDF 

4. Lognormal distribution: Lognormal distribution with scale parameter exp(𝜇) > 0 
and shape parameter 𝜎 > 0 , denoted as Lognormal(�, �2) , has PDF 

In the first simulation study, we conduct the parametric tests to examine how the 
Type-I error rates vary when the underlying distributions are misspecified. We 
consider applying the asymptotic parametric test under exponentially distrib-
uted component lifetimes assumption presented in Sect. 2.1.1 to cases when the 
component lifetimes follow different statistical distributions described above. 
The PDFs of the distributions considered in the first simulation study are plotted 

(16)fX(t) =
��

Γ(�)
t�−1e−�t, for t ≥ 0,

(17)fX(t) =
𝛾

𝜆

(
t

𝜆

)𝛾−1

exp
[
−
(
t

𝜆

)𝛾]
for t > 0.

(18)fX(t) =
1

t𝜎
√
2𝜋

exp

�
−
(ln t − 𝜇)2

2𝜎2

�
, for t > 0.

Fig. 2  PDFs of the distributions considered in the Monte Carlo simulation studies
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in Fig. 2. We consider that System 1 is a 4-component parallel system and Sys-
tem 2 is a 3-component series system with system signatures s1 = (0, 0, 0, 1) and 
s2 = (1, 0, 0) , respectively, with different sample sizes M1 = M2 = 10 , 15, 20, 30, 
and 50. The simulated rejection rates of the asymptotic parametric test based on 
10,000 simulations under the null hypothesis that the components in System 1 
and System 2 have the same distribution with 5% level of significance are pre-
sented in Table 4.

Table  4 shows that the asymptotic parametric test developed under the exponen-
tial assumption inflates the simulated Type-I error rates when the underlying com-
ponent lifetime distributions deviate from the exponential, such as Gamma(5, 2) , 
Weibull(2.5, 5) , and Lognormal(1, 2) (see Fig.  2). On the other hand, the simulated 
Type-I error rates are close to the nominal level of 5% when the underlying component 
lifetime distributions are exponential or similar to the exponential distribution, such as 
Gamma(1.1, 1) , Weibull(1, 1.1) and Lognormal(0, 1) (see Fig. 2). These results indi-
cate that those parametric tests for homogeneity of component lifetime distributions 
may not be appropriate, especially when the underlying distribution is unknown.

In the second simulation study, we evaluate the power performances of the proposed 
empirical likelihood ratio tests ZK and ZA , and the Mann–Whitney U test and compare 
them with the parametric tests by assuming that the underlying distributions agree with 
the distributions the data are generated from.

For the parametric likelihood ratio test with a two-parameter distribution, we assume 
that both FX1

 and FX2
 are from the same class of distributions and the two parameters 

are unknown, but one of the parameters in FX1
 and FX2

 are the same under the alterna-
tive hypothesis. For example, in the simulation where the component lifetimes follow 
the Weibull distribution, FX1

 and FX2
 are Weibull(�1, �1) and Weibull(�2, �2) , respec-

tively, we use the hypotheses

Table 4  Simulated rejection rates of the asymptotic parametric test under the exponentially distributed 
component lifetimes assumption when the null hypothesis is true at 5% significant level for different 
underlying component lifetime distributions and different sample sizes

True Dist. Sample size

M
1
= M

2
= 10 M

1
= M

2
= 15 M

1
= M

2
= 20 M

1
= M

2
= 30 M

1
= M

2
= 50

Exp(1) 0.0531 0.0527 0.0491 0.0524 0.0482
Exp(0.1) 0.0531 0.0523 0.0499 0.0525 0.0492
Gamma(5, 2) 0.9707 0.9998 1.0000 1.0000 1.0000
Gamma(1.1, 1) 0.0465 0.0487 0.0546 0.0547 0.0617
Gamma(1.5, 1) 0.0949 0.1374 0.1918 0.2949 0.5014
Gamma(1.1, 2) 0.0465 0.0487 0.0546 0.0547 0.0617
Weibull(1, 1.1) 0.0474 0.0535 0.0639 0.0730 0.1058
Weibull(2.5, 1.5) 0.2466 0.4061 0.5563 0.7691 0.9621
Weibull(2.5, 5) 1.0000 1.0000 1.0000 1.0000 1.0000
Lognormal(0, 1) 0.0406 0.0437 0.0457 0.0461 0.0490
Lognormal(1, 2) 0.8821 0.9448 0.9740 0.9930 0.9993
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As shown in the first simulation study, the asymptotic parametric test developed 
under the exponentially distributed components assumption may not be appropriate 
for distributions other than exponential distribution; we only consider the asymp-
totic parametric test when the data are generated from an exponential distribution. In 
this simulation study, we consider the following settings for the system structures of 
System 1 and System 2 (Navarro et al. 2007): 

[S1]  System 1: 4-component parallel system with system signature s1 = (0, 0, 0, 1) 
(minimal signature a1 = (4,−6, 4,−1));

            System 2: 3-component series system with system signature s2 = (1, 0, 0) 
(minimal signature a2 = (0, 0, 1)).

[S2]  System 1: 3 components system with system signature s1 = (0, 2∕3, 1∕3) 
(minimal signature a1 = (1, 1,−1));
 System 2: 4 components system with system signature s2 = (1∕4, 1∕4, 1∕2, 0) 
(minimal signature a2 = (0, 3,−3, 1)).

[S3]  System 1: 3 components system with system signature s1 = (0, 2∕3, 1∕3) 
(minimal signature a1 = (1, 1,−1));
 System 2: 4 components system with system signature s2 = (0, 1∕2, 1∕4, 1∕4) 
(minimal signature a2 = (1, 0, 1,−1)).

 For comparative purposes, we also consider the nonparametric test procedures 
based on complete component-level data, i.e., all nkMk component lifetimes are 
observed for System k. This is equivalent to considering System 1 and System 2 be 
1-component systems such that the lifetime of the component is equal to the life-
time of the system. Since this is an ideal scenario with complete information on 
the component lifetimes, we denote this case as “Full data”. Note that the power 
performance of the test procedures based on complete component-level data can be 
served as a benchmark for the power comparisons since this is the case that all the 
n1M1 + n2M2 component lifetimes are observed. The critical values of nonparamet-
ric tests are obtained from the simulation mentioned in Sect. 4 based on 1,000,000 
simulations.

The component lifetimes are generated from the following distribution settings: 

[D1]  Exponential distributions with changes in the scale parameter: System 1: 
Exp(�1) with �1 = 1 (i.e., ln �1 = 0);
 System 2: Exp(�2) with ln �2 varies from −1.6 to 1.6 with increment 0.1 
(denoted by −1.6 (0.1) 1.6);

[D2]  Weibull distributions with changes in the shape parameter: System 1: 
Weibull(�1, �1) with �1 = 1 and �1 = 1;
 System 2: Weibull(�2, �2) with �2 = 1 and �2 varies from 0.5 to 1.5 with incre-
ment 0.1 (denoted by 0.5 (0.1) 1.5);

H∗∗
0

∶ �1 = �2 and �1 = �2

versus H∗∗
1

∶ �1 ≠ �2 and �1 = �2.
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[D3]  Lognormal distributions with changes in the standard deviation on the log-
scale (i.e., change in the shape parameter): System 1: Lognormal(�1, �1) with 
�1 = 0 and �1 = 2;
 System 2: Lognormal(�2, �2) with �2 = 0 and �2 varies from 1 to 3 with 
increment 0.1 (denoted by 1 (0.1) 3).

[D4]  Weibull distributions with changes in the scale parameter: System 1: 
Weibull(�1, �1) with �1 = 2.5 and �1 = 5;
 System 2: Weibull(�2, �2) with �2 varies from 1.5 to 3.5 with increment 0.1 
(denoted by 1.5 (0.1) 3.5) and �2 = 5;

[D5]  Gamma distribution with changes in the shape parameter: System 1: 
Gamma(�1, �1) with �1 = 5 and �1 = 2;
 System 2: Gamma(�2, �2) with �2 varies from 3 to 7 with increment 0.2 
(denoted by 3 (0.2) 7) and �2 = 2;

[D6]  Gamma distribution with changes in the rate parameter: System 1: 
Gamma(�1, �1) with �1 = 5 and �1 = 2;
 System 2: Gamma(�2, �2) with �2 = 5 and �2 varies from 1 to 3 with incre-
ment 0.1 (denoted by 1 (0.1) 3);

[D7]  Lognormal distributions with changes in the mean on the log-scale (i.e., 
change in the scale parameter): System 1: Lognormal(�1, �1) with �1 = 0 
and �1 = 1;
 System 2: Lognormal(�2, �2) with �2 varies from −1.6 to 1.6 with increment 
0.1 (denoted by −1.6 (0.1) 1.6) and �2 = 1.

The rejection rates with significance level 5% under different settings are esti-
mated based on 10,000 simulations. For the sake of saving space, we present here 
the simulated power curves for setting [D1] with [S1] in Figure 3, the simulated 
power curves for setting [D2] with [S1] in Figure 4, the simulated power curves 
for setting [D3] with [S1], and the simulated power curves for settings [D4] with 
[S1], [S2], and [S3] in Figures 6–8 in the Supplementary Materials, respectively. 
We present the simulated power curves for each figure under the sample sizes 
M1 = M2 = 10 , 15, 20, 30, and 50. The simulated power curves for other set-
tings, including [D5]–[D7] with system structures [S1]–[S3] are presented in Fig-
ures 11–25 in the Supplementary Materials.

The simulated power curves centered at the simulated rejection rates under the 
null hypothesis (i.e., FX1

= FX2
 ), which are expected to be close to the nominal sig-

nificance level of 5%. When the differences between the parameters increase (i.e., 
moving away from the center), we expect the simulated power values to increase. 
The closer the power values to one, the better the performance of the test proce-
dure. As mentioned above, the simulated power curves with “Full data” can serve 
as benchmarks for comparisons as the power values based on complete component-
level data are larger than those based on system-level data. Moreover, we expect that 
the power values for the parametric likelihood ratio tests under the correct model 
specification of underlying distributions are better than those of nonparametric tests.

From Figures 3 and 4 in the Supplementary Materials, we observe that for the 
extreme setting [S1] with System 1 being a parallel system and System 2 being a 
series system, when the sample sizes are small (say, M1 = M2 ≤ 20 ), the power 
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values are low when the mean lifetime of components in System 1 is smaller than 
the mean lifetime of components in System 2 (i.e., the left-hand side of the power 
curve) for the nonparametric tests. As pointed out by Zhang et al. (2015), it is due 
to the nature of the problem since we are comparing the worst component in one 
system to the best component in another system to determine if the lifetime charac-
teristics of the components are the same.

From Figures 3–8 in the Supplementary Materials, the power values of the non-
parametric tests with complete component-level data and the parametric tests under 
the correct specification of the underlying component lifetime distribution are larger 
than the power values of the nonparametric tests based on system-level data. We 
observe that the proposed empirical likelihood ratio tests provide comparative power 
performance in most cases compared to the Mann–Whitney U test. After consid-
ering the upper bound of the Monte Carlo error 

√
(0.5)(1 − 0.5)∕10,000 = 0.005 , 

the proposed empirical likelihood ratio tests are more powerful for small sample 
sizes on the right-hand side. Between the two empirical likelihood ratio tests, the 
test based on ZA tends to have better power performance than the test based on ZK in 
most cases.

For comparative purposes, the differences between the simulated power values 
of the test procedures based on U statistic and ZK , and the test procedures based on 
U statistic and ZA for Weibull distribution with M1 = M2 = 30 and for lognormal 
distribution with different sample sizes are plotted in Figures 9 and 10 in the Sup-
plementary Materials, respectively. Negative values of the differences indicate that 
the proposed tests based on ZA and ZK provide better power performance than the 
Mann–Whitney U test. We also included the lines for plus and minus three Monte 
Carlo errors ( ±3MCE ) to indicate if the differences are significant.

When the mean lifetime of the component lifetime distribution of System 2 is 
larger than the mean lifetime of the component lifetime distribution of System 1, 
the proposed empirical likelihood ratio test based on ZA provides better power val-
ues among the three nonparametric tests considered here. The advantage of the test 
based on ZA is more significant when the two systems are extremely different (i.e., 
setting [S1]). When the mean lifetime of the component lifetime distribution of Sys-
tem 2 is smaller than the mean lifetime of the component lifetime distribution of 
System 1, the Mann–Whitney U test provides better power values among the three 
nonparametric tests considered here.

The proposed nonparametric tests outperform when the shape of the compo-
nent lifetime distributions are different (i.e., settings [D2] and [D3]). For exam-
ple, from the top left panel of Figures  9 and  10 in the Supplementary Materi-
als show that the proposed empirical likelihood ratio tests provide better power 
performance than the Mann–Whitney U test in detecting changes in the shape 
parameters. Despite the alteration of the shape parameter in setting [D5] (see Fig-
ures  11, 17, and  23 in the Supplementary Materials, the proposed tests do not 
outperform the U test, which may be due to minor deviations in the shape of the 
gamma distributions.
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7  Concluding remarks

In this manuscript, we studied the problem of testing the homogeneity of compo-
nent lifetime distributions based on system-level data, which can be applied to many 
practical situations in life testing procedures involving systems with known struc-
tures. We showed that those existing parametric test procedures might suffer from 
the inflation of Type-I error rates when the underlying probability distributions of 
the component lifetimes are misspecified. To address this issue, we focus on devel-
oping nonparametric statistical test procedures for the homogeneity of component 
lifetime distributions based on system-level data. We proposed two empirical likeli-
hood ratio tests based on the empirical likelihood ratio and the nonparametric esti-
mation of component lifetime distributions. We provided the computational algo-
rithms for obtaining the null distributions of the test statistics using the Monte Carlo 
method. Our simulation results show that the proposed nonparametric procedures 
provide comparative power values with those existing tests. These proposed test 
procedures have advantages in power performance when the two systems are very 
different. The computer programs to execute the test procedures presented in this 
manuscript are written in R (R Core Team 2022), and they are available from the 
authors upon request.

For future research, since censoring and truncation are common in life testing 
procedures, one can consider the extensions of the test procedures discussed in this 
paper to the cases in which some system lifetimes are censored. On the other hand, 
in this work, the system structures are assumed to be known. This assumption may 
not be realistic in some situations in which the systems of interest are black boxes. 
Therefore, developing test procedures for the homogeneity problem will be interest-
ing when complete information about the system structure is unavailable. In this sit-
uation, we can consider that auxiliary data, such as the number of failed components 
at the time of system failure, is available along with system lifetime (Jin et al. 2017).

Another possible research direction is to investigate using the homogeneity tests 
for detecting the dependence between the component lifetimes. Note that the homo-
geneity tests of component lifetime distributions based on system lifetime data 
studied here can also be used to detect the dependence between the components. 
However, when the null hypothesis in Eq. (4) is rejected, it may be due to the differ-
ence between the lifetime distributions of the components in the two systems or the 
dependence between the component lifetimes in the two systems, and these effects 
may not be distinguishable based on the current test procedures. It will be interest-
ing to develop statistical procedures to detect the lack of independence between the 
component lifetimes using the homogeneity tests.

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s00180- 023- 01421-w.
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