
Vol.:(0123456789)

Computational Statistics (2024) 39:2899–2924
https://doi.org/10.1007/s00180-023-01408-7

1 3

ORIGINAL PAPER

A general stream sampling design

Bardia Panahbehagh1,2 · Raphaël Jauslin1 · Yves Tillé2

Received: 25 May 2023 / Accepted: 21 August 2023 / Published online: 20 September 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
With the emergence of the big data era, the need for sampling methods that select
samples based on the order of the observed units is felt more than ever. In order to
meet this necessity, a new sequential unequal probability sampling method is pro-
posed. The decision to select or not each unit is made based on the order in which
the units appear. A variant of this method allows a selection of a sample from a
stream. This method consists in using sliding windows which are a kind of strata of
controllable size. This method also allows the sample to be spread in a controlled
manner throughout the population. A special case of the method with windows of
size one leads to deciding on each sampling unit immediately after observing it. The
implementation of size one windows is simple and will be presented here based on
an algorithm with a single condition. Also, by selecting the windows of size two,
we will have one of the optimal stream sampling methods, which results in a well-
spread stream sample with positive second-order inclusion probabilities.

Keywords Stream sampling algorithms · Inclusion probability · Flow sampling ·
Stratified stream sampling · Window

1 Introduction

There are dozens of methods of unequal probability sampling. Most of them are
described in the books of Hanif and Brewer (1980), Gabler (1990), Tillé (2006) and
Chaudhuri and Pal (2022). Nevertheless, very few methods allow you to decide to
select the units in the order in which they appear. Systematic sampling with unequal
probabilities (Madow 1949) allows sequential sampling from a stream. However,
once the first units are examined, this method quickly becomes deterministic, mak-
ing it predictable, which can be problematic. Indeed, sampling should not be pre-
dictable if it is used to perform a control (Busnel and Tillé 2020).

 * Bardia Panahbehagh
 panahbehagh@khu.ac.ir

1 Department of Mathematics, Kharazmi University, Tehran, Iran
2 Institute of Statistics, University of Neuchâtel, Neuchâtel, Switzerland

http://crossmark.crossref.org/dialog/?doi=10.1007/s00180-023-01408-7&domain=pdf
http://orcid.org/0000-0001-9122-7777

2900 B. Panahbehagh et al.

1 3

Several methods are already available for sampling in a stream. The sequen-
tial version of Hanurav-Vijayan sampling design (Vijayan 1968; Aubry 2023) can
be considered as a generalization of the Sunter sampling procedure (Sunter 1977,
1986). The ordered pivotal method (as a special case of splitting method of Deville
and Tillé 1998) and Deville’s systematic sampling are two different implementations
of the same sampling design (Chauvet 2012). A disadvantage of the order pivotal
method is that the decision to take or not the first unit may be made after examining
a very large number of units in the sampling frame. The sequential version of Hanu-
rav-Vijayan is not generally consistent using Narain-Horvitz-Thompson (Narain
1951; Horvitz and Thompson 1952) estimator. The second-phase of this design may
be more simply implemented in terms of a sequential procedure (Chauvet 2022),
and then can not respect the order of the observations completely. Disadvantages
of Deville’s systematic method include numerous calculations for each step and
problems with receiving data in groups in the middle of the process. In addition to
these algorithms, reservoir sampling methods are available to collect samples from
a stream (Chao 1982; Cohen et al. 2009; Tillé 2019). Using the idea of reservoir in
data mining approaches, such as pattern sampling (Boley et al. 2011; Diop et al.
2018), has provided powerful tools for mining online stream populations to discover
patterns (Giacometti and Soulet 2021). In such methods, the reservoir is updated
each time a unit enters. The final decision on certain units will then be made very
late. In stream sampling, it is a convenient property to be able to comment on each
unit immediately after observing it.

Chromy sequential method (Chromy 1979) leads to an immediate sampling
algorithm with the same design of Deville’s systematic and order pivotal methods
(Chauvet 2021). Many zero second-order inclusion probabilities are the main draw-
back of the three methods. To solve this problem, (Chromy 1979) has proposed to
partially randomize the order of the units in the population before applying the sam-
pling algorithm. With such a reorganization of population units, we lose the appli-
cability of stream methods. Here, to overcome all the discussed drawbacks, we first
propose a method that allows us to decide on the selection of units according to the
order of their appearance in a list. The probabilities are updated only in a window
containing a very small number of units after the unit for which the decision has
been made. The method is therefore particularly interesting for selecting units from
a stream. The great advantage of this new method is that it forces the decision on the
units according to their order of appearance in the stream.

Recently, Jauslin et al. (2022) presented a two-phase balanced version of sequen-
tial sampling that respects the order of units in the sample selection process. But,
depending on the auxiliary variables, this method may not lead directly to a sample.
Therefore, the decision regarding some units will be postponed until the completion
of the first phase of sampling, and during the implementation of the landing phase of
balanced sampling.

We then extend the method to apply integer-sized windows where the size of each
window is defined as the expected number of sample units within it. With windows
of size two, simultaneously we take care about three important issues in stream-
ing populations, the positivity of second-order inclusion probabilities, applicabil-
ity on streaming populations and finally spreading the sample along the population

2901

1 3

A general stream sampling design

indexes. In this version of the method, immediately after observing enough units
with inclusion probabilities sum to greater than or equal to two, we can decide for all
of them and two of them will be selected.

Also, as a special version of the method, windows of size one is equivalent to
Chromy method. It can also easily be shown that Deville’s systematic and Chromy
method lead to the same sampling design. The method is therefore quite appropriate
for stream data and can be applied to unequal or equal inclusion probabilities.

To discuss these matters, in Sect. 2, we introduce the notations and the principal
concept of sampling theory. In Sect. 3, we present the proposed sampling method
while, in Sect. 4, we extend the method to stream sampling. Section 5 is devoted to
the method for windows of size integers and calculation of the second-order inclu-
sion probabilities. In Sect. 6, we present a stream sampling with windows of size
one with extending it to an immediate decision sampling. In Sect. 7, we discuss the
size of the windows. The calculation of the second-order inclusion probabilities of
the method is presented in Sect. 5. In Sect. 8, we run some small examples and
simulations. The manuscript ends with a conclusion on the proposed methods, in
Sect. 9.

2 Notation

Consider a finite population of size N labeled by U = {1, 2,… ,N} , a vector of val-
ues taken by a variable of interest y = (y1, y2,… , yN)

⊤ and a vector of first-order
inclusion probabilities � = (𝜋1,𝜋2,… ,𝜋N)

⊤ , each associated with the respective
labels in U. Consider also the total of the variable of interest,

as the main parameter. A sample s is a subset of U and a sampling design p(.) is a
probability distribution on all the subsets of U. A random sample is defined by:

To estimate this parameter, two approaches can be used:

(1) Consider a sampling design p(.) and find a sampling method (or algorithm) to
implement this design. Based on this approach, according to p(.), all the first- and
second-order inclusion probabilities can be specified using

Y =
∑
k∈U

yk,

Pr (S = s) = p(s), p(s) ≥ 0, and
∑
s⊂U

p(s) = 1, for all s ⊂ U.

�k = Pr(k ∈ S) =
∑
s∋k

p(s) and

�k� = Pr(k,� ∈ S) =
∑

s∋{k,�}

p(s), for all k,� ∈ U.

2902 B. Panahbehagh et al.

1 3

(2) Consider a vector of first-order inclusion probabilities � and find a sampling
method to select a random sample S such that Pr(k ∈ S) = �k, for all k ∈ U.

In this article, the second approach is considered. If 𝜋k > 0 , for all k ∈ U , then Y can
be estimated unbiasedly employing the first-order inclusion probabilities using the
Narain-Horvitz-Thompson estimator

Its accuracy depends on the second-order inclusion probabilities

Indeed, the values of � indicate the desired chance (calculated using some auxil-
iary variables) for the units to be selected in the final sample and different sampling
methods can lead to the same � . Methods with the same � , can lead to different
matrices of second-order inclusion probabilities � , which directly affects the accu-
racy of the estimation. If 𝜋k� > 0, for all k,� ∈ U, then Var(Ŷ) can be unbiasedly
estimated by

The accuracy is however not always the most important criterion for evaluating a
strategy (combination of a sampling method and an estimator). Another important
criterion can be the applicability of the strategy according to the accessibility of the
data over time. Since efficient designs are usually complex, it is important to be able
to calculate the second-order inclusion probabilities to have a vision of the accuracy
of designs. These topics will be discussed further in Sect. 4.

3 One‑step one‑decision sampling method

In this section, we present a procedure called One-Step One-Decision (OSOD) sam-
pling method. The general idea of the method is that, at each step, a decision is
made about the selection of the unit. After that, inclusion probabilities are updated
according to the decision made on this unit. This procedure is repeated on the fol-
lowing units and it takes at most N steps to obtain the final sample. This method
does not allow the selection of a sample from a stream but serves as a basis for the
construction of the following methods.

Consider a finite population U. Define the sum of the inclusion probabilities

Ŷ =
∑
k∈S

yk

�k
.

(1)Var(Ŷ) =
∑
k∈U

∑
�∈U

(�k� − �k��)
yk

�k

y
�

�
�

.

V̂ar(Ŷ) =
∑
k∈S

∑
�∈S

�k� − �k��
�k�

yk

�k

y
�

�
�

.

n =
∑
k∈U

�k,

2903

1 3

A general stream sampling design

which can be non-integer. For simplicity, we first consider the method in which the
decision is made for the first unit. Also suppose that

The first unit is selected with probability �1 . Let �1
1
 be the updated inclusion prob-

ability of unit 1. It can be 0 or 1 and can be summarized as follows

After deciding on the first unit, the remaining inclusion probabilities are updated.
The general idea of the method is to increase (respectively decrease) the inclusion
probabilities of the following units depending on whether �1

1
 has been changed to

0 (respectively 1). The inclusion probabilities of the remaining units are updated as
follows

where constant c1 is defined by

Equation (3) is calculated in such a way that the overall chances of the units to
be selected are exactly equal to the predetermined inclusion probabilities, which
results in respecting the sample size expectation. Indeed, in the first part of (3),
the first unit is not selected, and then we have distributed �1 on the other units as
�1(0)

k
= �k + �k�1, for some 0 < 𝛼k ≤ 1 , using (4) which guaranties that �k is pro-

portional to �k , and the updated inclusion probabilities do not exceed the value of 1.
The second part of (3) has been built in a way to preserve the first order inclusion
probabilities.

After the first step, the decision is irrevocably made for unit 1. Simply, this operation
can be repeated for other steps t = 2,… ,N. At step t, decisions are made on the first
t − 1 units and � has been updated t − 1 times. The updated vector is denoted by

where its first t − 1 units are in {0, 1} . Again, it is supposed that

N∑
k=1

�k ≥ 1 and

N∑
k=1

(1 − �k) ≥ 1.

(2)�1
1
=

{
1 with probability �1
0 with probability 1 − �1.

(3)�1
k
=

⎧⎪⎨⎪⎩

�1(0)

k
= min(c1�k, 1) if �1

1
= 0

�1(1)

k
=

�k − �1(0)

k
(1 − �1)

�1
if �1

1
= 1,

for k = 2,… ,N,

(4)
N∑
k=2

min(c1�k, 1) = n.

�
t−1 = (𝜋t−1

1
,𝜋t−1

2
,… ,𝜋t−1

k
,… ,𝜋t−1

N
)⊤,

(5)
N∑
k=t

�t−1
k

≥ 1 and

N∑
k=t

(1 − �t−1
k

) ≥ 1,

2904 B. Panahbehagh et al.

1 3

and a decision is taken for the tth unit with probability

Then, the inclusion probabilities are updated by

where ct is defined by

and nt is the number of selected units up to step t.
Conditions (5) are required to update other probabilities. For example, at the

first step, it is necessary to have enough amplitude in other inclusion probabilities
to distribute �1 as �1(0)

k
= �k + �k�1 (if unit 1 is not selected) or to remove 1 − �1

from them as �1(1)

k
= �k − �k(1 − �1) (if unit 1 is selected) for some 0 < 𝛼k ≤ 1

on the following inclusion probabilities. Then, henceforth, OSOD stands for the
design with a population that satisfies Conditions (5).

The procedure is formally presented in Algorithm 1.

Result 1 shows that the sampling procedure respects the inclusion probabilities
and thus the fixed sample size.

Result 1 With OSOD, for all t = 1, 2,… we have

�t
t
=

{
1 with probability �t−1

t

0 with probability 1 − �t−1
t

.

�t
k
=

⎧
⎪⎨⎪⎩

�t(0)

k
= min(ct�

t−1
k

, 1) if �t
t
= 0

�t(1)

k
=

�t−1
k

− �t(0)

k
(1 − �t−1

t
)

�t−1
t

if �t
t
= 1,

for k = t + 1, t + 2… ,N,

N∑
k=t+1

min(ct�
t−1
k

, 1) = n − nt,

2905

1 3

A general stream sampling design

The proof of Result 1 and all the following results are given in Appendix.
Currently, the sampling procedure considers the entire population to modify the

inclusion probabilities. In the next section, an improvement is proposed for sampling
from a stream. In fact, only a small part of the following units is enough to update
the inclusion probabilities. This improvement, completely modifies the application
of the method.

4 Extending the method to stream sampling

A data stream is a sequence of information arriving sequentially in time. When sam-
pling streams, there is usually a very large set of data coming in continuously. Due
to the limited space required for data storage, it is desirable to make a decision on
the selection of units at the right time.

As pointed out in Sect. 1, in the methods proposed so far, the decision about a
unit that is at the beginning of a stream can be made too late. Ideally, the decision
to select or not a unit from a stream must be taken as soon as possible, which the
OSOD method allows. The idea to extend the OSOD method to stream sampling
consists of considering a window of units instead of the entire population to update
inclusion probabilities.

Result 2 shows that the number of units required to be considered, depends on the
inclusion probabilities of the following units. Essentially, it is enough to wait until
we have a set of units such that there exists a constant ct that satisfies �t ≥ (1 − 1∕ct) .
Furthermore, Result 3 also shows that a sufficient condition to update inclusion
probabilities is that the inclusion probabilities within the window sum up to an
integer.

Result 2 In OSOD, at step t, a necessary and sufficient condition to have enough
space to update the following inclusion probabilities is that

Result 3 In OSOD, at step t, a sufficient condition to have enough space to update
the following inclusion probabilities is that n =

∑
k∈U �k is an integer.

Therefore, after deciding on the first unit, we need a sufficient number of units
with c1 that satisfies �1 ≥ (1 − 1∕c1) . Moreover, if there is a window of integer size,
then it is possible to apply the method on this window. Still, it could be possible that
no window sums up to an integer and no constant c1 satisfies the condition until the
end of the stream. In this case, it is possible to use Result 3 and the notion of phan-
tom unit (Grafström et al. 2012) to artificially transform the sum of the inclusion
probabilities to an integer and finish the procedure. Also, an interesting method to
solve this problem will be presented in Sect. 5.

E(�t
k
) = �k, for all k ∈ U, and

N∑
k=1

�t
k
=

N∑
k=1

�k.

�t ≥ 1 − 1∕ct.

2906 B. Panahbehagh et al.

1 3

Algorithm 2 gives a detailed explanation of the proposed method.

In summary, OSOD has many advantages on streams:

• The decision about units can be made based on their order.
• In order to update the population inclusion probabilities after selecting a unit, the

entire population is not needed and only a small part of it (based on Result 2 or
Result 3) is sufficient. In fact, in the case of streams, there is usually no finite set
called population, and the data is generated online.

• A decision can be made about one part of the population independently of other
parts.

5 Stratified stream sampling (SSS)

In this section, based on the idea of Result 3, we try to partition the population into
windows of integer size and then implement different designs, inside each window.
Consider a population with � = (𝜋1,𝜋2,… ,𝜋N)

⊤, and an arbitrary integer number
m. Let k1 ∈ U be the index such that

2907

1 3

A general stream sampling design

Then we split �k1 = �a1 + �b1 such that

Now, for building the first windows, say w1 , as well as the other windows, we have

With the same approaches we build the other windows of size m:

We call unit k = ki, the cross-border unit of the window wi . To continue, we first
consider the first window. For the first unit inside w1 , its inclusion probability will be
updated as (2), and it is possible to update other units inside the first window as (3)
for k = 2, 3,… , a1 with defining constant c1 by

∑a1
k=2

min(c1�k, 1) = m. The rest of
the population units, stay unchanged as

After deciding on the first unit, to continue, since
∑a1

k=2
�1
k
 is an integer, according to

Result 3, we can make a decision on all the units inside the respective window step
by step, except maybe for the last one which is a part of a cross-border unit and is
not a real unit.

From now on, to simplify notation, �+
k

 and �∗
k
 denote the final update (which

leads to a 0-1 decision) and the initial update (which needs to be imposed on the
new window units before entering it) on unit k, respectively. With these notations,
after a complete decision about the first window (which will lead to selecting a
sample of size m) �a1 will be finally updated to 1 (or 0) with probability �a1 (or
1 − �a1). Before starting to update the units inside w2 , we first need to make a
decision on unit k = k1 , and update the other units based on �+

a1
 . For this purpose,

we proceed as follows,

(6)
k1−1∑
k=1

𝜋k < m and

k1∑
k=1

𝜋k ≥ m.

k1−1∑
k=1

�k + �a1 = m.

� = (𝜋1, 𝜋2, … , 𝜋k1−2, 𝜋k1−1, 𝜋a1
���

w1∶ The first window

+𝜋b1 , 𝜋k1+1, … , 𝜋N)
⊤.

� =(𝜋1,𝜋2,… ,𝜋k1−2,𝜋k1−1,𝜋a1
�����������������������������������

w1, of size m

+ 𝜋b1 ,𝜋k1+1,… ,𝜋k2−1,𝜋a2
�������������������������������

w2, of size m

+ 𝜋b2 ,… ,𝜋ai−1 + 𝜋bi−1 ,𝜋ki−1+1,… ,𝜋ki−1,𝜋ai
�����������������������������������

wi, of size m…

+𝜋bi …)⊤.

�1
k
= �k; k = b1, k1 + 1, k1 + 2,… ,N.

2908 B. Panahbehagh et al.

1 3

• if �+
a1
= 1 , we consider k = k1 as a sample unit (�∗

k1
= �+

k1
= 1) and then the

extra part in w2 , i.e. �b1 , should be distributed on the other units inside w2 to
initially update them as

• if �+
a1
= 0 , we do not decide on the cross-border unit k1 , and the units inside w2

including b1 will be updated as

The Details of the implementation of the method are given in Algorithm 3.

Result 4 shows that SSS respects the first-order inclusion probability and fixed
sample size.

Result 4 In SSS, for k = 1, 2,… and i = 1, 2,… ,

 (i) E(�∗
k
) = �k,

 (ii) 0 ≤ �∗(0)

k
,�∗(1)

k
≤ 1,

 (iii)
∑ai+1

k=bi
�∗(0)

k
= m , and

∑ai+1
k=bi

�∗(1)

k
= m − 1.

Since the size of the windows is an integer, we can implement any arbitrary
design and sample size inside each stratum. Different designs and sample sizes

(7)�∗(1)

k
= min(c∗

2
�k, 1), k = k1 + 1,… , a2, where

a2∑
k=k1+1

min(c∗
2
�k, 1) = m.

(8)�∗(0)

k
=

�k − �∗(1)

k
�a1

(1 − �a1)
, k = b1, k1 + 1,… , a2.

2909

1 3

A general stream sampling design

inside different strata make the design completely flexible. Based on the next
result, we can calculate all the second-order inclusion probabilities which makes
SSS a flexible stream sampling design, capable to estimate the accuracy of the
estimations.

Result 5 With m as the size of the windows, considering pi as the sampling design
implemented in ith window, and defining

and

where �pi
d1d2

 , �pi(ai∈S)

d1d2
 and �pi(ai∉S)

d1d2
 are the second-order inclusion probability of units

d1 and d2 with implementing design pi in window i, when they are updated given
�+
ai
= 1 similar to (7) and they are updated given �+

ai
= 0 according to (8) respec-

tively, we have

(i) if k and � are two non-cross-border units belonging to the same window, say i,
then

(ii) if k and � are two non-cross-border units belonging to distinct windows i and j,
respectively, where i < j then,

 where �aj−1|k can be calculated based on a recursive relation as

(iii) if k = ki and � is a non-cross-border belonging to window j, where i < j then

 where

f (k, d1, c, d2) = �d1|k min(c�d2 , 1) + (1 − �d1|k)
�d2 −min(c�d2 , 1)�d1

1 − �d1
,

�
pi(ai)

d1d2
= �ai�

pi(ai∈S)

d1d2
+ (1 − �ai)�

pi(ai∉S)

d1d2

𝜋k� =

⎧⎪⎨⎪⎩

𝜋
pi
k�
, i = 1

𝜋
pi(ai)

k�
, i > 1.

�k� = �kf (k, aj−1, cj,�),

𝜋aj� �k =
⎧⎪⎨⎪⎩

f (k, aj�−1, cj� , aj�), i < j� < j

𝜋
pi (ai−1)

kai

𝜋k
j� = i.

�k� = �kf (k, aj−1, cj,�),

2910 B. Panahbehagh et al.

1 3

(iv) if � = kj and k is a non-cross-border unit belonging to window i, where i < j then

 where

(v) if k = ki and � = kj , where i < j , we have

 then

In addition to proving Result 5 in Appendix, we will run some simulations to
evaluate calculation of the second-order inclusion probabilities in Sect. 8.

6 Immediate decision sampling (IDS)

Here we show that the method of windows of size one leads to immediate deci-
sion and is equivalent to Chromy sequential method, Deville’s systematic sampling,
and the order pivotal method. Also, we will present a very simple algorithm for the
method, with only one condition.

𝜋aj� �k =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

f (k, aj�−1, cj� , aj�), i + 1 < j� < j

𝜋ai�k min(ci+1𝜋ai+1 , 1) + (1 − 𝜋ai�k)
𝜋
pi (ai∉s)

biai+1

𝜋bi∕(1−𝜋ai)
, j� = i + 1,

𝜋ai
𝜋k

j� = i.

�k� = �k

[
�aj|k + (1 − �aj|k)

�bj
1 − �aj

]
,

𝜋aj� �k =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

f (k, aj�−1, cj� , aj�), i < j� < j

𝜋
pi (ai−1)

kai

𝜋k
, j� = i > 1

𝜋
pi
kai

𝜋k
j� = i = 1.

�k� = �k��|k,

𝜋k�� =

�
𝜋aj�k + (1 − 𝜋aj�k)

𝜋bj
1 − 𝜋aj

�
,

𝜋aj� �k =
⎧
⎪⎨⎪⎩

f (k, aj�−1, cj� , aj�), i + 1 < j� ≤ j

𝜋ai
𝜋k

min(cj𝜋aj , 1) + (1 −
𝜋ai
𝜋k
)

𝜋
pi (ai∉s)

biaj

𝜋bi∕(1−𝜋ai)
, j� = i + 1.

2911

1 3

A general stream sampling design

If we set m = 1 in (6), then we will have windows of size one. Since the sum of
inclusion probabilities within the window is one, if a unit is selected, all the other
inclusion probabilities will be updated to zero to compensate for the required inclu-
sion probabilities, i.e. �1(1)

k
= 0 in (3) while �1(0)

k
= �k∕(1 − �k) . Result 6 shows that

setting m = 1 , will lead to an immediate decision sampling on the population units.

Result 6 With F0 = 0 and F
�
=
∑�

k=1
�k, windows of size one is equivalent to the

following process:

After observing unit � in windows wi , if

 (I) � is not a cross-border unit,

(1) if n
�
< i ,

(2) if n
�
= i ,

 (II) � is a cross-border unit,

(1) if n
�
< i ,

(2) if n
�
= i ,

Then, based on IDS, there is no need to know about unobserved units coming
in the future to make a decision on the observed unit. The four IDS scenarios in
Result 6, can be summarized in one condition as presented in Algorithm 4.

�∗
�
=

�
�

1 − (F
�−1 − ⌊F

�−1⌋) ,

�∗
�
= 0.

�∗
�
= 1,

�∗
�
=

�
�
−
�
1 − (F

�−1 − ⌊F
�−1⌋)

�
F
�−1 − ⌊F

�−1⌋ .

2912 B. Panahbehagh et al.

1 3

Result 7 IDS, Chromy sequential method, Deville’s systematic sampling, and the
order pivotal method are four implementations of the same design.

It is worth noting that although IDS and Chromy sequential method are the same
method, but in Algorithm 4, we have provided a very easy algorithm to code the
design with only one condition. Then, with a fixed order of population units, IDS
can be considered as a simpler version of Deville’s method. In IDS, according to
Algorithm 4, there is no need to check whether a unit is a cross-border unit or not,
and there is no need to generate random variables from different distributions for
each window.

7 Size of the windows, spreading the sample, and the designs inside

There are a few points about window size. Regarding the optimal window size, in
the case of streaming data, it is preferable to decide on the current units as soon as
possible. In Sect. 6, we showed that if we set the window sizes to one, the method
is equivalent to Chromy (1979), which is an immediate decision sampling for each
observed unit. As a drawback, windows of size one lead to many zero second-
order inclusion probabilities. In fact, the second-order inclusion probabilities are
zero among all the units completely inside each window. A solution investigated
by Chauvet (2021), is to change the starting unit randomly. This approach contrasts
with the data streaming aspect. Then the balance between having (almost) all the
second-order inclusion probabilities positive, respecting the streaming aspect and
immediate decision leads to set m = 2 . For this purpose, after receiving enough data
to make a window of size m = 2 , we can completely decide on the data inside the
window.

Regarding the feasibility of implementing the method, if we are dealing with
a streaming population, we will always have enough data to make the current

2913

1 3

A general stream sampling design

window of size m. To implement the method inside a finite population, one can
decide on m according to the population size and inclusion probabilities. For the
last window, we may have to resize the window and if the sum of the inclusion
probabilities of the last window is not an integer, we can solve the problem by
using a phantom unit (Grafström et al. 2012).

Moreover, if the population has spatial coordinates, we can construct windows
based on the coordinates. Then, the smaller the windows size, the spreader the
sample is in the population coordinates, which can lead to more efficient samples
(see Grafström and Lundström 2013).

8 Examples and simulations

In this section, the validity of calculating second-order inclusion probabilities and
efficiency of the proposed design will be evaluated using several examples and
simulations.

8.1 Evaluating result 5

To have a general case, consider a population of size N = 15 with n = 7 and the
strata size H = 3 with

To have strata of size H = 3 , since the total size is n = 7 , we will have an unbal-
anced stratified population. The population is partitioned in L = 3 strata, all size
H1 = H2 = 3 but the last one of size H3 = 1 (see Table 1).

Let matrix � be the second-order inclusion probabilities calculated based on
Result 5,

(9)� = (.34, .82, .47, .66, .47, .36, .40, .53, .20, .22, .81, .67, .53, .11, .41).

Table 1 Stratification of
population (9) with N = 15 ,
n = 7 , stratified in L = 3
windows of sizes H1 = 3 ,
H2 = 3 and H3 = 1 respectively

L = 3 i = 1 i = 2 i = 3

k
i

6 13 15
H

i
3 3 1

�
k
i

0.36 0.53 0.41
�
a
i

0.24 0.05 0.41
�
b
i

0.12 0.48 0.00

2914 B. Panahbehagh et al.

1 3

and matrix �̂ be the second-order inclusion probabilities based on a Monte Carlo
simulation with M = 10, 000 iterations. In each iteration, we implemented SSS in
Sect. 5 using R where within the stratum elimination procedure (Tillé 1996) by func-
tion UPtille under library sampling had been used, then 10, 000 samples have
been obtained and the element (k,�) in the matrix �̂ indicates number of times that
the units k and � have been selected together in the same sample, resulted in:

The comparison of � and �̂ confirms the validity of Result 5. As we can see in
� , all the second-order inclusion probabilities are positive, except for �k� with
k = 14,� = 15 which was obvious due to the sample size H3 = 1 in the third stratum.

Also, for larger population sizes, N = 100, 200 , with different sample sizes and
different strata sizes, we run Monte Carlo simulations with M = 10, 000 itera-
tions. The first-order inclusion probabilities were set putting random uniform dis-
tribution into the inclusionprobabilities function under the sampling
library. Again, within each stratum, elimination procedure was used to select a
sample. To compare the calculated (� , based on Result 5) and the estimated (̂� ,
based on Monte Carlo) matrices of the second-order inclusion probabilities, we
defined the following criterion

where �k� and �̂�k� are the (k, l) elements of � and �̂ respectively. Also, I(.) is an
indicator function that takes 1 if “.” is satisfied. Based on Central Limit Theorem,
we accept the validity of the results with a confidence level of 0.95 if Z ≤ 0.05 .

� =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.34 .26 .11 .18 .11 .08 .14 .18 .07 .07 .28 .23 .18 .04 .14

.82 .35 .49 .35 .28 .33 .43 .17 .18 .66 .55 .43 .09 .33

.47 .25 .15 .13 .19 .24 .09 .10 .38 .31 .25 .05 .19

.66 .25 .21 .26 .34 .13 .14 .53 .44 .35 .07 .27

.47 .14 .19 .25 .10 .10 .38 .32 .25 .05 .19

.36 .13 .18 .06 .06 .29 .24 .19 .04 .15

.40 .15 .05 .05 .30 .22 .21 .04 .16

.53 .08 .08 .39 .29 .28 .06 .21

.20 .01 .15 .11 .10 .02 .08

.22 .16 .12 .11 .02 .09

.81 .50 .43 .09 .33

.67 .35 .07 .27

.53 .01 .04

.11 .00

.41

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.35 .26 .11 .19 .11 .08 .14 .18 .07 .08 .28 .23 .18 .04 .15

.81 .34 .49 .35 .28 .32 .42 .17 .18 .67 .55 .43 .09 .33

.46 .25 .15 .13 .18 .24 .10 .09 .38 .31 .24 .05 .19

.66 .25 .21 .26 .35 .14 .14 .54 .45 .35 .07 .27

.47 .14 .19 .24 .09 .10 .38 .31 .25 .05 .19

.36 .13 .17 .06 .06 .29 .23 .19 .04 .14

.40 .14 .04 .05 .30 .22 .21 .04 .16

.52 .07 .08 .39 .30 .27 .06 .21

.21 .01 .16 .11 .11 .02 .08

.21 .16 .12 .11 .02 .08

.82 .51 .43 .09 .34

.67 .35 .07 .27

.53 .01 .04

.11 .00

.41

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Z𝜋 =

∑N

k=1
I

�����
�̂�kk−𝜋k√

𝜋k(1−𝜋k)∕M

���� > 1.96

�

N
, Z

♢
=

∑∑N

k≤� I
�����

�̂�k�−𝜋k�√
𝜋k�(1−𝜋k�)∕M

���� > 1.96

�

N(N−1)

2

,

2915

1 3

A general stream sampling design

Results are shown in Table 2 which once again confirms the validity of Result 5
independent of N, n, H, and L.

8.2 Efficiency of SSS

The R package library datasets (R Core Team 2022) contains the swiss database.
Switzerland, in 1888, was entering a period known as the demographic transition; i.e.,
its fertility was beginning to fall from the high level typical of underdeveloped coun-
tries. The data concerns N = 47 French-speaking districts at about this period of the
demographic transition.

We are convinced that SSS is particularly efficient in the research field of stream
sampling. To evaluate the accuracy of the SSS estimator relative to other sampling
design like elimination and max entropy, we used swiss data, including 3 variables
(see Fig. 1):

• Fertility: common standardized fertility measure,
• Agriculture: % of males involved in agriculture as occupation,
• Infant Mortality: live births who live less than 1 year.

“Fertility” variable was used for the main variable y and “Agriculture” and “Infant
Mortality” variables were considered for auxiliary variables to create first-order inclu-
sion probabilities. Also, we defined the efficiency of SSS as

where “.” indicates “elimination” or “max entropy” design, and “ VarM ” indicates
the Monte Carlo variance of the respective estimators based on 10,000 iterations.
Results are shown in Table 3 which shows that SSS is quite comparable with other
commonly used sampling designs in terms of accuracy. The smaller the size of the
strata and the larger the sample size, the more efficient the SSS. As an interesting
point, for all cases with m = 1 , SSS is more efficient than any other methods.

EF(.) =
VarM(Ŷ.)

VarM(Ŷ SSS)
,

Table 2 Results for 10,000
Monte Carlo iterations of
implementing the SSS design
in random populations of sizes
N = 200, 100

N n H L Z� Z
⋄

200 20 5 4 0.05 0.05
30 6 0.05 0.05
50 10 0.06 0.05

100 15 3 5 0.05 0.05
30 7 0.05 0.04
50 10 0.04 0.05

2916 B. Panahbehagh et al.

1 3

Fig. 1 The distribution and relationship among three variables of interest, Fertility, Agriculture and
Infant Mortality, for the swiss data. In this 3 × 3 matrix of plots, the lower off-diagonal draws scatter
plots, the diagonal represents density plots and the upper off-diagonal reports the Pearson correlations

Table 3 Efficiency of SSS relative to elimination and maximum entropy designs based on Monte Carlo
variance of the estimators

n H Fertility—agriculture Fertility—infant.mortality

EF(elimination) EF(max entropy) EF(elimination) EF(max entropy)

6 1 1.07 1.11 1.20 1.21
2 0.98 1.02 0.98 0.99
3 0.99 1.02 0.98 0.98

9 1 1.14 1.21 1.16 1.17
2 1.11 1.18 1.18 1.19
3 0.98 1.04 0.98 0.99

12 1 1.15 1.24 1.26 1.27
2 1.05 1.13 1.20 1.21
3 1.00 1.09 0.98 0.99

2917

1 3

A general stream sampling design

9 Conclusion

SSS is a general stream sampling method that allows decisions on units based on
their order. The order can be arbitrary, but if the data are the result of a stream, this
method can be very useful for deciding which units should be stored as samples over
time. Then, after deciding on each unit to update the inclusion probabilities, it is not
necessary to use all the population, and usually only a small window of the popula-
tion can be sufficient. SSS is flexible for stratifying populations and allocating sam-
ples into the strata, leading to almost immediate decision on units. In spatial data it
is possible to spread the sample over the population coordinates, while the level of
spreading can be controlled using window sizes. Window size is a leverage that can
be used to make a trade-off between design entropy and sample dispersion over the
population indices. The smaller the window size, the greater the sample dispersion
the lower the entropy of the design, and vice versa. Size one and two windows are
special cases with interesting properties. The former leads to an immediate decision
where after observing each unit we can make an immediate decision about its selec-
tion without depending on unobserved units. On the other hand, the latter is one of
the optimal options, which spreads the sample over the population indices with a rea-
sonable entropy that gives positive chance to all second-order inclusion probabilities.

For future research, it will be interesting to investigate the problem of spreading
the sample over the population coordinates using SSS and compare with other suc-
cessful methods in spatial spreading of sample units, such as local pivotal (Grafström
et al. 2012) and weakly associated vectors (Jauslin and Tillé 2020) methods. For this
purpose, in two-dimensional coordinates, one unit can be considered as the center, and
then using the units close to build the strata. Choosing central units is one of the chal-
lenges of this method. Such units can be selected randomly or non-randomly. Since the
windows of size one, splits one of the inclusion probabilities to make the smallest pos-
sible strata, the level of spreading would probably be good and worth studying.

Appendix

Proof of Result 1 Without loss of generality and for ease of notation we only do the
proof for t = 1 . For k = 1 it is obvious that E(�1

1
) = �1 , and for k = 2, 3,… ,N,

Also for the sum of inclusion probabilities, we have

and

E(�1
k
) = �1(0)

k
(1 − �1) + �1(1)

k
�1 = �1(0)

k
(1 − �1) +

�k − �1(0)

k
(1 − �1)

�1
�1 = �k.

∑
k∈U

�1(0)

k
= 0 +

N∑
k=2

�1(0)

k
=

N∑
k=2

min(c1�k, 1) = n =

N∑
k=1

�k,

2918 B. Panahbehagh et al.

1 3

 ◻

Proof of Result 2 Without loss of generality and for ease of notation we only do the
proof for t = 1 . Since

for k = 2, 3,… ,N , a necessary and sufficient condition is that �1 ≥ 1 − 1∕c1 , which
gives the result. ◻

Proof of Result 3 Let define

Then it is possible to decompose n as

and

where “ # ” indicates cardinality. Now, if n is an integer, c1A is an integer denoted by
d, thus A = d∕c1 . In this case, we have #UB = n − d . Furthermore, it is easy to see
that B ≤ #UB . Now, from Eq. (10), we have

Now if d = 1, 2,… then �1 ≥ (1 − 1∕c1) and if d = 0 then #UB = n or in other
words, �1(0)

k
= 1 for all k = 2, 3,… ,N . Therefore, to have all �1(1)

k
≥ 0 , it is neces-

sary to have

∑

k∈U
�1(1)
k = 1 +

N
∑

k=2
�1(1)
k

= 1 +
∑N

k=2 �k − (1 − �1)
∑N

k=2 �
1(0)
k

�1

=
�1 + {(n − �1) − n + n�1}

�1
= n =

N
∑

k=1
�k.

𝜋1(1)

k
=

⎧
⎪⎨⎪⎩

𝜋k −min(c1𝜋k, 1)(1 − 𝜋1)

𝜋1
≤ 𝜋k − c1𝜋k(1 − 𝜋1)

𝜋1
if 𝜋1(1)

k
= 1

𝜋k − c1𝜋k(1 − 𝜋1)

𝜋1
if 𝜋1(1)

k
< 1,

UA ={k ∈ U|0 < 𝜋1(0)

k
< 1}, UB = {k ∈ U|𝜋1(0)

k
= 1},

A =
∑
k∈UA

𝜋k and B =
∑
k∈UB

𝜋k.

(10)�1 + A + B = n

c1A + #UB = n,

�1 = n − A − B = n −
d

c1
− B ≥ n −

d

c1
− #UB = n −

d

c1
− (n − d) = d

(
1 −

1

c1

)
.

(11)�1(1)

k
=

�k − (1 − �1)

�1
≥ 0,⇒ �k + �1 − 1 ≥ 0.

2919

1 3

A general stream sampling design

But as in such cases, �1(0)

k
= �k + �k�1 = 1, for some 0 < 𝛼k ≤ 1 , then �k + �1 ≥ 1

and therefore Condition (11) is satisfied.
Then, if n is an integer, the condition of Result 2 is always fulfilled. ◻

Proof of Result 4 Proof for w1 is obvious based on Result 1. We prove the result for
w2 :

 (i) For k = k1 + 1,… , a2 ,

 and for k = k1 ,

 (ii) For �+
a1
= 1 , in (7), actually �b1 will be distributed on �k1+1,… ,�a2 . To show

that the inclusion probabilities in (8) are non-negative, we have

 which leads to

 But the size of w2 is an integer, we know that

 and then

 Therefore, as �a1 + �b1 = �k1 ≤ 1 we have

 (iii) Proof for respecting sum of the inclusion probabilities are straightforward by
calculating summation of �∗(0)

k
 and �∗(1)

k
 inside w2.

For the other windows, proof is the same. ◻

E(�∗
k
) = �a1�

∗(1)

k
+ (1 − �a1)�

∗(0)

k
= �a1�

∗(1)

k
+ �k − �a1�

∗(1)

k
= �k,

E(�∗
k1
) = �a1 × 1 + (1 − �a1)

�k1 − �a1
(1 − �a1)

= �k1 .

�k −min(c∗
2
�k, 1)�a1

(1 − �a1)
≥ �k − c∗

2
�k�a1

(1 − �a1)
≥ 0

(1 − �a1) ≥ (1 −
1

c∗
2

).

�k −min(c∗
2
�k, 1)(1 − �b1)

�b1
≥ �k − c∗

2
�k(1 − �b1)

�b1
≥ 0

�b1 ≥
(
1 −

1

c∗
2

)
.

(1 − �a1) ≥ �b1 ≥
(
1 −

1

c∗
2

)
.

2920 B. Panahbehagh et al.

1 3

Proof of Result 5 For calculating the second-order inclusion probability �k� where
k < � , k ∈ wi and � ∈ wj , we have

In �
�∣k , given k is selected affect on selecting �

�
 by changing �aj−1 . Then based on a

recursive relation, step by step we can calculate �aj−1∣k using �aj−2∣k and so on. Then
we need to consider the cases in Result 5, as

(i) in this case, the second inclusion probabilities can be calculated based on the
design, pi , implemented inside the respective window,

(ii) here, after following recursive calculation for calculating �ai∣k , as ai and k are in
the same window, we have

(iii) here, since unit k is a cross-border unit, if ai is selected, �ai+1 will be updated as
min(ci+1�ai+1 , 1) , and if ai is not selected, then �ai+1 will be updated as

 For conditional probability of ai itself, as ai is a part of �k = ai + bi, and then

 therefore we have

(iv) when �
�
= �aj + �bj , then

 and the rest of the proof is the same as case ii),
(v) the first part of the proof of this case is the same as case iv), and after recursive

calculations, the last part is the same as the last part of case iii).

 ◻

Proof of Result 6 After deciding on the first window, as a1 is not a real unit, depend-
ing on the decision for this unit, the units inside w2 will be initially updated as

Pr (k ∈ S,� ∈ S) = Pr (k ∈ S) Pr (� ∈ S ∣ k ∈ S) = �k��∣k.

�ai∣k =
�kai
�k

=
�
pi
kai

�k
,

�
pi(ai∋S)

biai+1

�bi∕(1 − �ai)
.

{ai ∈ S} ⊂ {k ∈ S},

�ai∣k =
Pr (k ∈ S, ai ∈ S)

�k
=

Pr (ai ∈ S)

�k
=

�ai
�k

,

�
�∣k = Pr (aj ∈ S) + Pr (aj ∉ S) Pr (bj ∈ S ∣ aj ∉ S) = �aj|k + (1 − �aj|k)

�bj
1 − �aj

,

2921

1 3

A general stream sampling design

and

Consider unit � , inside w2

 (I) j is not a cross-border unit,

(1) if n
�
< i and �+

a1
= 1 , then according to (13) we have

 and if �+
a1
= 0 ,

 which with replacing �∗(1)

�
 by �

�
∕(1 − �b1) we have

(2) if n
�
= i , according the window size, this unit will not be selected.

 (II) � is a cross-border unit,

(1) if n
�
< i , according to the window size, this unit will be selected with prob-

ability one.
(2) if n

�
= i , we can calculate �∗

�
 directly using (12).

 For the other windows, the proof is the same.

(12)�∗
b1
=

⎧
⎪⎨⎪⎩

�∗(1)

b1
= 0 if �+

a1
= 1

[2mm]�∗(0)

b1
=

�k1 − �a1
1 − �a1

if �+
a1
= 0,

(13)�∗
k
=

⎧
⎪⎨⎪⎩

�∗(1)

k
=

�k
1−�b1

if �+
a1
= 1

[2mm]�∗(0)

k
=

�k − �∗(1)

k
�a1

1 − �a1
if �+

a1
= 0,

for k = k1 + 1,… , a2.

�∗
�
=

�
�

1−�b1

1 −
∑�−1

i=k1+1

�
�

1−�b1

=
�
�

1 − (F
�−1 − ⌊F

�−1⌋) ,

�∗
�
=

�
�
−�∗(1)

�
�a1

1−�a1

1 −
�k1−�a1
1−�a1

−
∑�−1

i=k1+1

�
�
−�∗(1)

�
�a1

1−�a1

,

�∗
�
=

�
�

1 − (F
�−1 − ⌊F

�−1⌋) .

2922 B. Panahbehagh et al.

1 3

 ◻

Proof of Result 7 The structure of the population and cross-units inside both methods
are the same, and the updating principle of Deville’s method is the same as Eqs. (12)
and (13). In Deville’s method, consider the two first windows,

 (I) � is not a cross-border unit,

(1) If the cross-border unit is selected inside the previous window, then

 which is equivalent to the first term of (13),
(2) If the cross-border unit is not selected inside the previous window, then

 which is equivalent to the second term of (13),
 (II) � is a cross-border unit (� = k1),

(1) If the cross-unit is selected inside the previous window, then the method
ignores the second part of k1 , i.e. (�∗

a1
=0), which is equivalent to the first

term of (12),
(2) If the cross-unit is not selected inside the previous window, then

 which is equivalent to the second term of (12),
For the other windows, the proof is the same.

Pr (� ∈ S) =

F
�

∫
F
�−1

f (x)dx =

F
�

∫
F
�−1

1

⌈Fk1
⌉ − Fk1

dx =
1

⌈Fk1
⌉ − Fk1

�
�

=
1

1 − �b1
�
�

Pr (� ∈ S) =

F
�

∫
F
�−1

1 −
(⌈Fk1−1

⌉ − Fk1−1
)(Fk1

− ⌊Fk1
⌋)�

1 − (⌈Fk1−1
⌉ − Fk1−1

)
��

1 − (Fk1
− ⌊Fk1

⌋)�dx

=
1 − �k1

(1 − �a1)(1 − �b1)
�
�

Pr (� ∈ S) =

F
�

∫
⌊F

�
⌋

1

1 − (⌈Fk1−1
⌉ − Fk1−1

)
dx

=
1

1 − (⌈Fk1−1
⌉ − Fk1−1

)
(F

�
− ⌊F

�
⌋)

=
1

1 − �a1
�b1 =

�k1 − �a1
1 − �a1

2923

1 3

A general stream sampling design

Now if s is a fixed sample and p
I
(.) and p

D
(.) are the designs of IDS and Deville’s

method respectively, as all the units inside s have to be selected under the same prin-
ciple in both method, then p

I
(s) = p

D
(s). Furthermore, it is proved in Chauvet (2012)

and Chauvet (2021) that the Deville’s, Chromy sequential and order pivotal methods
lead to the same design, and then the proof is complete. ◻

References

Aubry P (2023) On the correct implementation of the hanurav-vijayan selection procedure for unequal
probability sampling without replacement. Commun Stat-Simul Comput 52(5):1849–1877

Boley M, Lucchese C, Paurat D, Gartner T (2011) Direct local pattern sampling by efficient two-step
random procedures. In: ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
KDD’11, San Diego, USA, 21–24 August 2011. ACM Press, New York, USA, pp 582–590

Busnel Y, Tillé Y (2020) Attack-tolerant unequal probability sampling methods over sliding window for
distributed streams. In: 4th international conference on compute and data analysis (ICCDA 2020),
Mar 2020, San Jose, United States, pp 72–78

Chao M-T (1982) A general purpose unequal probability sampling plan. Biometrika 69:653–656
Chaudhuri A, Pal S (2022) Sampling with Varying Probabilities. Springer Nature Singapore, Singapore,

pp 43–109
Chauvet G (2012) On a characterization of ordered pivotal sampling. Bernoulli 18(4):1320–1340
Chauvet G (2021) A note on chromy’s sampling procedure. J Surv Stat Methodol 9(5):1050–1061
Chauvet G (2022) A Cautionary Note on the Hanurav-Vijayan Sampling Algorithm. J Surv Stat Methodol

10(5):1276–1291
Chromy JR (1979) Sequential sample selection methods. In: Proceedings of the American statistical asso-

ciation, survey research methods section, pp 401–406
Cohen E, Duffield N, Kaplan H, Lund C, Thorup M (2009) Stream sampling for variance-optimal estima-

tion of subset sums. In: Proceedings of the twentieth annual ACM-SIAM symposium on discrete
algorithms. society for industrial and applied mathematics, pp 1255–1264

Deville J-C, Tillé Y (1998) Unequal probability sampling without replacement through a splitting
method. Biometrika 85:89–101

Diop L, Diop CT, Giacometti A, Li D, Soulet A (2018) Sequential pattern sampling with norm con-
straints. In: t2018 IEEE international conference on data mining (ICDM), pp 89–98

Gabler S (1990) Minimax Solutions in Sampling from Finite Populations. Springer, New York
Giacometti A, Soulet A (2021) Reservoir pattern sampling in data streams. In: Oliver N, Pérez-Cruz

F, Kramer S, Read J, Lozano JA (eds) Machine learning and knowledge discovery in databases.
Research track. Springer International Publishing, Cham, pp 337–352

Grafström A, Lundström NLP (2013) Why well spread probability samples are balanced? Open J Stat
3(1):36–41

Grafström A, Lundström NLP, Schelin L (2012) Spatially balanced sampling through the pivotal method.
Biometrics 68(2):514–520

Grafström A, Matei A, Qualité L, Tillé Y (2012) Size constrained unequal probability sampling with a
non-integer sum of inclusion probabilities. Electron J Stat 6:1477–1489

Hanif M, Brewer KRW (1980) Sampling with unequal probabilities without replacement: A review. Int
Stat Rev 48:317–335

Horvitz DG, Thompson DJ (1952) A generalization of sampling without replacement from a finite uni-
verse. J Am Stat Assoc 47(260):663–685

Jauslin R, Panahbehagh B, Tillé Y (2022) Sequential spatially balanced sampling. Environmetrics
33(8):e2776

Jauslin R, Tillé Y (2020) Spatial spread sampling using weakly associated vectors. J Agric Biol Environ
Stat 25(3):431–451

Madow WG (1949) On the theory of systematic sampling, II. Ann Math Stat 20:333–354
Narain RD (1951) On sampling without replacement with varying probabilities. J Indian Soc Agric Stat

3:169–174

2924 B. Panahbehagh et al.

1 3

R Core Team (2022) R: a language and environment for statistical computing. R foundation for statistical
computing, Vienna, Austria

Sunter AB (1977) List sequential sampling with equal or unequal probabilities without replacement. Appl
Stat 26:261–268

Sunter AB (1986) Solutions to the problem of unequal probability sampling without replacement. Int Stat
Rev 54:33–50

Tillé Y (1996) An elimination procedure of unequal probability sampling without replacement. Biom-
etrika 83:238–241

Tillé Y (2006) Sampling Algorithms. Springer, New York
Tillé Y (2019) A general result for selecting balanced unequal probability samples from a stream. Inf

Process Lett 152:1–6
Vijayan K (1968) An exact �ps sampling scheme, generalization of a method of Hanurav. J Roy Stat Soc

B30:556–566

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

	A general stream sampling design
	Abstract
	1 Introduction
	2 Notation
	3 One-step one-decision sampling method
	4 Extending the method to stream sampling
	5 Stratified stream sampling (SSS)
	6 Immediate decision sampling (IDS)
	7 Size of the windows, spreading the sample, and the designs inside
	8 Examples and simulations
	8.1 Evaluating result 5
	8.2 Efficiency of SSS

	9 Conclusion
	Appendix
	References

