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Abstract
To capture the higher-order autocorrelation structure for finite-range integer-valued 
time series of counts, and to consider the driving effect of covariates on the underly-
ing process, this paper introduces a pth-order random coefficients mixed binomial 
autoregressive process with explanatory variables. The basic probabilistic and statis-
tical properties of the model are discussed. Conditional least squares and conditional 
maximum likelihood estimators, as well as their asymptotic properties of the esti-
mators are obtained. Moreover, the existence test of explanatory variables are well 
addressed using a Wald-type test. Forecasting problem is also considered. Finally, 
some numerical results of the estimators and a real data example are presented to 
show the performance of the proposed model.

Keywords Finite-range integer-valued time series · Binomial autoregressive model · 
Random coefficient model · Explanatory variables · Forecasting

1 Introduction

As an important branch of time series analysis, integer-valued time series has 
attracted more and more attention in recent years. This kind of data is widely used 
in various fields of our daily life. For example, the annual counts of world major 
earthquakes (Wang et al. 2014; Yang et al. 2018), the monthly number of cases of 
an infectious disease (Pedeli et al. 2015; Yang et al. 2022), and the number of areas 
in which an infectious disease occurs per week (Ristić et al. 2016; Chen et al. 2019), 
among others. According to the different value ranges of the observed data, such 
data can be divided into two categories. The first category is integer-valued time 
series data that take values on the set of natural numbers ℕ0 = {0, 1, 2,…} . The 
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well-known integer-valued autoregressive (INAR) model (Al-Osh and Alzaid 1987) 
is a typical representative on modelling such data. The second category is integer-
valued time series with a finite-range support, say � = {0, 1,… ,N} . To model 
finite-range integer-valued time series of counts (McKenzie 1985) proposed the 
first-order integer-valued binomial autoregressive (BAR(1)) model, which is defined 
as follows:

where �, � ∈ (0, 1) , “ο” is the binomial thinning operator proposed by Steutel and 
van Harn (1979). Let X be an integer-valued random variable and � ∈ (0, 1) , the 
binomial thinning is defined as

where {Bi} is a sequence of independent and identically distributed (i.i.d.) Bernoulli 
random variables satisfying P(Bi = 1) = 1 − P(Bi = 0) = � , which is also independ-
ent of X. All thinnings are performed independently for the BAR(1) model.

Since the seminal work by McKenzie (1985), modelling and inference for finite-
range time series of counts have received considerable attention. Brännäs and Nor-
dström (2006) generalized the BAR(1) model by replacing N with Nt to present an 
econometric model to account for the tourism accommodation impact of arranging 
festivals or special events in many cities. Weiß (2009b) generalized the BAR(1) 
model to pth-order and develop a BAR(p) model. Weiß and Pollett (2014) proposed 
a binomial autoregressive process with density dependent thinning. Möller et  al. 
(2016) developed a self-exciting threshold binomial autoregressive (SET-BAR(1)) 
process. Yang et  al. (2018) contributed the empirical likelihood inference for the 
SET-BAR(1) model, and addressed the problem of estimating the threshold param-
eter of the SET-BAR(1) model. Zhang et al. (2020) proposed a multinomial autore-
gressive model for finite-range integer-valued time series with more than two states. 
Nik and Weiß (2021) developed a binomial smooth-transition autoregressive mod-
els for time series of bounded counts. For recent achievements and applications of 
binomial autoregressive models, we refer the readers to Weiß (2009a), Scotto et al. 
(2014), Chen et  al. (2020), Kang et  al. (2021), Zhang et  al. (2022) and  among 
others.

Researchers found that regression models for time series of counts are becoming 
increasingly often applied (Brännäs 1995). However, the binomial autoregressive 
models mentioned above ignore the effect of exogenous variables on the observed 
data. To address this problem in the area of infinite-range time series of counts, 
scholars have made different attempts. To make the analyzed models more applica-
ble, Freeland and McCabe (2004a) introduced explanatory variables into the param-
eters of first-order INAR model via two different kinds of link functions. Enciso-
Mora et  al. (2009) proposed an INAR(p) process with explanatory variables both 
in the autoregressive coefficients and the expectation of innovation. Ding and Wang 
(2016), and Wang (2020) successively studied the empirical likelihood inferences 
and variable selection problems for first-order Poisson integer-valued autoregressive 

Xt = �◦Xt−1 + �◦(N − Xt−1),

(1.1)𝛼◦X ∶=

�∑X

i=1
Bi, if X > 0,

0, if X = 0,
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model with covariables. Yang et al. (2021) confirmed the existence of a nonlinear 
relationship of climate covariates on crime cases, and further suggested a random 
coefficients integer-valued threshold autoregressive processes driven by logistic 
regression. This research further expands the study of the INAR model with covari-
ables and enhances the applicability of the model.

To capture the impact of covariates on the finite-range time series of counts, Wang 
et  al. (2021) developed a first-order covariates-driven binomial AR (CDBAR(1)) 
process. Zhang and Wang (2023)) developed a binomial AR(1) process with autore-
gressive coefficient driven by a bivariate dependent autoregressive process with 
covariables. However, the two models are both first-order models. To the best of our 
knowledge, there is no literature discussing the high-order modelling for finite-range 
integer-valued time series of counts with explanatory variables. In fact, a high-order 
model for time series of counts is indeed very important, which is recognized by 
many scholars (see, e.g., Zhu and Joe (2006), Weiß (2009b), Yang et al. (2023) and 
among others). In this study, we aim to make a contribution towards this direction.

The remainder of the paper is organized as follows. In Sect. 2, we introduce the 
definition and basic properties of the pth-order random coefficients mixed binomial 
autoregressive process with explanatory variables, and denote the proposed model 
as RCMBAR(p)-X process. In Sect. 3, we discuss the parameter estimation problem 
via two different methods, the asymptotic properties of the estimators are also pro-
vided. In Sect. 4, we develop a Wald-type test to address the testing problem for the 
existence of explanatory variables. In Sect. 5, forecasting problem for the proposed 
model is addressed. In Sect. 6, we conduct some simulation studies to show the per-
formances of the proposed methods. In Sect. 7, we apply the proposed method to the 
weekly rainfall data set in Germany. Some concluding remarks are given in Sect. 8. 
All proofs are postponed to the Appendixes.

2  Definition and basic properties of the RCMBAR(p)‑X process

In this section, we first introduce the definition of the pth-order random coefficients 
mixed binomial autoregressive process with explanatory variables, and then give 
some important properties of it. The definition of RCMBAR(p)-X process is given 
as follows:

Definition 1 A sequence of integer-valued random observations {Xt}t∈ℤ is said to 
follow a pth-order random coefficients mixed integer-valued binomial autoregres-
sive process with explanatory variables, if Xt satisfies the recursion

(2.2)Xt =

⎧⎪⎨⎪⎩

�t◦Xt−1 + �t◦(N − Xt−1), w.p. �1,

�t◦Xt−2 + �t◦(N − Xt−2), w.p. �2,

…

�t◦Xt−p + �t◦(N − Xt−p), w.p. �p,
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where “ο” is the binomial thinning operator defined in (1.1), N ∈ ℕ is a predeter-
mined upper limit of the range, the weights �1,�2,… ,�p ∈ (0, 1) , 

∑p

i=1
�i = 1 , 

“w.p." stands for with probability, �t, �t ∈ (0, 1) are the autoregressive coefficients 
satisfying

where �i ∶= (𝛿i,0, 𝛿i,1,… , 𝛿i,q)
⊤ , i = 1, 2 , are the regression coefficients, 

{Zt ∶= (1, Z1,t,… , Zq,t)
⊤} is a sequence of explanatory variables with constant mean 

vector and covariance matrix. For a fixed Zt , the thinning operations at time t are 
performed independently of each other.

As is seen in Definition 1, the RCMBAR(p)-X process is actually a mixture 
integer-valued autoregressive model with fixed weights. Xt equals �t◦Xt−i + 
�t◦(N − Xt−i) with probability �i , i = 1, 2,… , p . Furthermore, the autoregressive 
coefficients �t and �t shared the randomness and flexibility via a logistic struc-
ture with covariates. Obviously, Definition 1 includes the covariates-driven 
binomial AR(1) process of Wang et al. (2021) as a special case when p = 1 . The 
RCMBAR(p)-X model reduces to the binomial AR(p) model of Weiß (2009b) 
when �i,j = 0 for i = 1, 2 and j = 1, 2,… , q.

Denote by {Dt} a sequence of i.i.d. multinomial random variables with param-
eters �1,… ,�p , i.e., Dt = (Dt,1,Dt,2,… ,Dt,p)

⊤ ∼ MULT(1;𝜙1,… ,𝜙p) , then model 
(2.2) can be equivalently rewritten in the following form:

where Dt is independent of all Xs , �t◦Xt−s and �t◦(N − Xt−s) with s < t,

are implied by (2.3). It follows by the expression (2.4) that the conditional probabil-
ity of Xt conditional on Xt−i (i = 1, 2,… , p) and Zt fixed is given by

where a = max
{
0, xt + xt−i − N

}
 , b = min

{
xt, xt−i

}
 . The above conditional prob-

ability can be used to derive the conditional likelihood for the RCMBAR(p)-X 

(2.3)log

(
𝛼t

1 − 𝛼t

)
= Z⊤

t
�1, log

(
𝛽t

1 − 𝛽t

)
= Z⊤

t
�2,

(2.4)Xt =

p∑
i=1

Dt,i(�t◦Xt−i + �t◦(N − Xt−i)),

(2.5)𝛼t =
exp(Z⊤

t
�1)

1 + exp(Z⊤
t
�1)

, 𝛽t =
exp(Z⊤

t
�2)

1 + exp(Z⊤
t
�2)

,

(2.6)

P(Xt = xt|Xt−1 = xt−1,… ,Xt−p = xt−p,Zt)

=

p∑
i=1

𝜙i

b∑
m=a

(
xt−i
m

)(
N − xt−i
xt − m

)
𝛼m
t
(1 − 𝛼t)

xt−i−m𝛽
xt−m

t (1 − 𝛽t)
N−xt−i−xt+m

=

p∑
i=1

𝜙i

b∑
m=a

(
xt−i
m

)(
N − xt−i
xt − m

)
exp(mZ⊤

t
�1)

(1 + exp(Z⊤
t
�1))

xt−i

exp((xt − m)Z⊤
t
�2)

(1 + exp(Z⊤
t
�2))

N−xt−i
,
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process. Furthermore, the conditional expectation and conditional variance are 
given by

and

For the detailed derivations, please see "Appendix A". Moreover, one may also 
interest in the autocovariance function of the RCMBAR(p)-X process. However, the 
derivation is complex even in the case of constant coefficients in Weiß (2009b). In 
this study, we rewrite the RCMBAR(p)-X process in a multivariable form, and fur-
ther derive the autocovariance function. The details are given in "Appendix C".

In the following proposition, we state the strict stationary and ergodic properties of 
the RCMBAR(p)-X process.

Proposition 2.1 Let {Xt}t∈ℤ be the process defined in (2.2). If the explanatory vari-
able sequences {Zj,t} (j = 1, 2,… , q) are all stationary sequences, then {Xt}t∈ℤ is an 
irreducible, aperiodic and positive recurrent (and hence ergodic) Markov chain on 
state space � ∶= {0, 1,… ,N} . Furthermore, there exists a strictly stationary pro-
cess satisfying (2.2).

The proof of Proposition 2.1 is given in "Appendix B".

3  Parameters estimation

In this section, we consider the parameter estimation problem based on a series of 
realizations {Xt}

n
t=1

 from the RCMBAR(p)-X process, {Zt}
n
t=1

 are the correspond-
ing covariates. Denote by � ∶= (�⊤

1
, �⊤

2
,�⊤)⊤ the parameter of interest, where 

� = (𝜙1,…𝜙p−1)
⊤ . The parameter vector takes values in the following parameter 

space

E(Xt|Xt−1,… ,Xt−p,Zt) =

p∑
i=1

𝜙i

(
exp(Z⊤

t
�1)

1 + exp(Z⊤
t
�1)

Xt−i +
exp(Z⊤

t
�2)

1 + exp(Z⊤
t
�2)

(N − Xt−i)

)
,

Var(Xt|Xt−1,… ,Xt−p,Zt)

=

p∑
i=1

𝜙i

(
exp(Z⊤

t
�1)

(1 + exp(Z⊤
t
�1))

2
Xt−i +

exp(2Z⊤
t
�1)

(1 + exp(Z⊤
t
�1))

2
X2
t−i

+
exp(Z⊤

t
�2)

(1 + exp(Z⊤
t
�2))

2
(N − Xt−i)

+
exp(2Z⊤

t
�1)

(1 + exp(Z⊤
t
�1))

2
(N − Xt−i)

2 + 2

2∏
i=1

exp(Z⊤
t
�i)

1 + exp(Z⊤
t
�i)

Xt−i(N − Xt−i)

)

−

(
p∑
i=1

𝜙i

(
exp(Z⊤

t
�1)

1 + exp(Z⊤
t
�1)

Xt−i +
exp(Z⊤

t
�2)

1 + exp(Z⊤
t
�2)

(N − Xt−i)

))2

.

Θ ∶=
{
� ∈ ℝ

q+1 ×ℝ
q+1 × (0, 1)p−1

}
.
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In the following, we study the conditional least squares (CLS) and conditional maxi-
mum likelihood (CML) estimation methods for �.

3.1  CLS estimation for �

Let

be the CLS criterion function, where g(�,Xt−1,… ,Xt−p,Zt) ∶= E(Xt|Xt−1,… ,Xt−p,Zt) , 
and Ut(�) = (Xt − g(�,Xt−1,… ,Xt−p,Zt))

2 . Then, the CLS-estimator 

�̂CLS ∶= (�̂
⊤

1,CLS
, �̂

⊤

2,CLS
, �̂CLS)

⊤ is obtained by minimizing (3.7) with respect to � , 
and giving

Since the RCMBAR(p)-X process is stationary and ergodic by Proposition 2.1, it 
follows by Theorems 3.1 and 3.2 in Klimko and Nelson (1978) that the CLS-estima-
tors �̂CLS are strongly consistent and asymptotically normally distributed. We state 
this property in the following theorem. The proof of this theorem is postponed to 
Appendix B.

Theorem 3.1 Under the conditions of Proposition 2.1 and E‖Zt‖3 < ∞ , the CLS-
estimators �̂CLS are strongly consistent and asymptotically normal,

where �0 is the true value of � , V ∶= E�0

(
𝜕

𝜕�
g(�,X0,… ,X1−p,Z1)

𝜕

𝜕�⊤
g(�,X0,… ,X1−p,Z1)

)
 , 

W ∶= E�0

(
𝜕

𝜕�
g(�,X0,… ,X1−p,Z1)

𝜕

𝜕�⊤
g(�,X0,… ,X1−p,Z1)U1(�)

)
.

3.2  CML estimation for �

In this section, we consider the CML estimation for � . To this end, we need to derive 
the conditional likelihood function first. For fixed values of x0 , x−1 , … , and x1−p , the 
conditional likelihood function of RCMBAR(p)-X process can be written as

(3.7)Q(�) =

n∑
t=1

(Xt − g(�,Xt−1,… ,Xt−p,Zt))
2 =

n∑
t=1

Ut(�),

(3.8)�̂CLS ∶= argmin
�∈Θ

Q(�).

(3.9)
√
n(�̂CLS − �0)

L
⟶N(0,V−1WV−1),

L(�) =

n∏
t=1

P(Xt = xt|Xt−1 = xt−1,… ,Xt−p = xt−p,Zt).
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Thus, the CML-estimator �̂�CML
 can be obtained by minimizing the following condi-

tional log likelihood function

and giving

The existence of (2.5) in the conditional expectations and the conditional probabili-
ties makes the calculations of (3.8) and (3.10) very complex. It is technically very 
difficult or even impossible to find closed-form expressions for CLS and CML esti-
mators. Therefore, numerical procedures have to be employed. Fortunately, we can 
use computer programs to complete the optimization process.

The following results establish the strong consistency and the asymptotic normal-
ity of the CML-estimators.

Theorem 3.2 Under the conditions of Proposition 2.1, the CML-estimators �̂CML are 
strongly consistent and asymptotically normal,

where �0 is the true value of � , I(�) denotes the Fisher information matrix.

The proof of this theorem is given in "Appendix B".

4  Testing the existence of explanatory variables

In this section, we focus on an interesting issue, that is, to test whether the explana-
tory variables exist in the RCMBAR(p)-X model. For this purpose, we give the null 
hypothesis and the alternative hypothesis as follows:

The inference problem in (4.12) is indeed very important as it is testing a BAR(p) 
model against a RCMBAR(p)-X model. When the null hypothesis holds, the model 
will reduce to the BAR(p) model in Weiß (2009b).

Testing problem (4.12) is equivalent to the following hypothesis:

�(�) = logL(�) =

n∑
t=1

logP(Xt = xt|Xt−1 = xt−1,… ,Xt−p = xt−p,Zt),

(3.10)�̂CML = argmax�(�).

(3.11)
√
n(�̂CML − �0)

L
⟶N(0, I−1(�0)),

(4.12)
H0 ∶ �i,j = 0 (i = 1, 2, j = 1,… , q), v.s. H1 ∶ At least one �i,j ≠ 0 (i = 1, 2, j = 1,… , q).

(4.13)H0 ∶ D� = 0 vs H1 ∶ D� ≠ 0,
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where � = (��
1
, ��

2
)� , D =

(
B 0

0 B

)
 is a block matrix with B = (0q×1, Iq×q) , Iq×q 

stands for a qth-order identity matrix. To address this testing problem, we develop a 
Wald-type test. For this purpose, we introduce some regularity conditions: 

 (C1) {Xt} is a stationary process.

 (C1) �̂∶ = (�̂
�

1
, �̂

�

2
)� is a consistent estimator of � . Moreover, �̂ is asymptotically 

normally distributed around the true value �0 , i.e., 

 for some covariance matrix �.
Thus, we obtain the following theorem.

Theorem  4.3 Under the assumptions (C1–C2), the statistic for testing problem 
(4.13) is

where �̂ is a consistent estimator of � . Furthermore, when H0 is true,

where �2
2q

 stands for a chi-square distribution with 2q degrees of freedom.

Theorem 4.3 follows easily by the properties of normal distribution and the Slut-
sky’s Theorem. Therefore, we omit the proof of it. We can use Theorem 4.3 to test 
weather the autoregressive coefficient of a RCMBAR(p)-X model is a constant. 
Also, it can be used to test whether a specific explanatory variable is included in the 
model. In this point of view, it provides a way to separate the proposed model from 
a consistent coefficient one. In practice, the estimator �̂ can be any consistent estima-
tor of � . In this study, we use the CML-estimator obtained in the previous section.

5  Forecasting for RCMBAR(p)‑X process

In the following, we address the forecasting problem for the RCMBAR(p)-X pro-
cess. A general method in time series forecasting is to use the conditional expec-
tation, which yields forecasts with minimum the mean square error. However, this 
method is unsatisfactory for integer-valued time series, since it seldom produces 
integer-valued forecasts. An alternative way is to use the k-step-ahead conditional 
distribution (Freeland and McCabe 2004b). Provided that the k-step-ahead condi-
tional distribution is available, point prediction such as the conditional expectation 
or conditional median results are easy to calculate. Yang et al. (2021) generalized 
(Freeland and McCabe 2004b)’s approach to a covariate-driven threshold INAR 
model.

√
n(�̂ − �0)

L
⟶ N(0,�),

Sn = n�̂
�

D�(D�̂D�)
−1
D�̂ ,

Sn
L

⟶ �2
2q
, n → ∞,
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In this study, we mainly focus on the one-step forecast, since it is usually often 
adopted in practice. A general version of k-step forecast can be easily obtained 
using (Freeland and McCabe 2004b)’s approach based on the representation of the 
RCMBAR(p)-X process given in (B.5). Notice that the state space of RCMBAR(p)-
X process is a finite set on {0, 1,… ,N}, we can easily obtain the one-step forecast-
ing conditional distribution with parameter � , as follows:

where P(Xn+1 = x|Xn,… ,Xn−p+1,Zn,�) is defined in (2.6). Based on (5.14), we 
can calculate the point predictions such as the conditional expectation, conditional 
median, and so on.

In addition to point predictions, we are also interested in the forecasting confi-
dence interval for each point in {0, 1,… ,N} . Given that we have already obtained 
some versions of �̂ , together with the asymptotic normality of �̂ as

where �0 denotes the true value of � , � is the covariance matrix. Then, we have the 
following theorem similar to Theorem  2 in Freeland and McCabe (2004b) which 
can be used to construct the confidence interval for p(x|Xn,… ,Xn−p+1,Zn,�) . Obvi-
ously, the interval may be truncated outside [0, 1].

Theorem  5.4 For a fixed x ∈ {0, 1,… ,N} , if assumption (5.15) holds, the quan-
tity p(x|Xn,… , Xn−p+1,Zn, �̂) has an asymptotically normal distribution with mean 
p(x|Xn,… ,Xn−p+1,Zn,�0) and variance n−1D�D⊤ , i.e.,

where D =

(
�p(x|Xn,…,Xn−p+1,Zn,�)

��

|||�=�0
)

 , �̂ is the consistent estimator of �.

The above Theorem  5.4 follows easily by (5.15) and the well-known delta 
method (see, e.g., van der Vaart (1998), Chapter 3). In practice, �̂ can be chosen 
as the CML-estimator �̂CML discussed in Sect.  3, and then � be I−1(�) accord-
ingly. Moreover, based on Theorem  5.4, we can get the 100(1 − �) confidence 
interval for p(x|Xn,… ,Xn−p+1,Zn,�) as follows:

where 𝜎 =
√
D�D⊤ , u1− �

2

 is the (1 − �

2
)-upper quantile of N(0, 1).

As an illustration, we draw the one-step forecasting distribution and 95% fore-
casting confidence intervals under a RCMBAR(2)-X model in Fig. 1. The param-
eters are chosen the same as Scenario A in Sect. 6, i.e., (�1,0, �1,1, �2,0, �2,1,�1) = 
(0.2, 0.4, 0.4, 0.3, 0.8) and N = 50 . In order to make the figure reproducible, we 

(5.14)
p(x|Xn,… ,Xn−p+1,Zn,�) ∶= P(Xn+1 = x|Xn,… ,Xn−p+1,Zn,�), x = 0, 1,… ,N,

(5.15)
√
n(�̂ − �0)

L
⟶N(0,�),

√
n(p(x�Xn,… ,Xn−p+1,Zn, �̂) − p(x�Xn,… ,Xn−p+1,Zn,�0))

L
⟶N(0,D�D⊤),

C𝛼
�
=

�
p(x�Xn,… ,Xn−p+1,Zn, �̂) −

𝜎√
n
u1− 𝛼

2

, p(x�Xn,… ,Xn−p+1,Zn, �̂) +
𝜎√
n
u1− 𝛼

2

�
,
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use R-code ‘set.seed(18)’ to fixed the random number. Then, we generate 200 
‘random observations’, where X200 = 25 and X199 = 24.

Figure  1 shows us that the forecasting distribution is an unimodal asymmet-
ric distribution. The main probability points are concentrated between 12 and 40. 
The forecasting interval covers each probability mass. Meanwhile, the interval 
lengths in the middle part are greater than that on both sides. Figure 1 shows us 
more comprehensive statistical information about the next prediction, which is 
clearly more informative than a single point.

6  Simulation studies

6.1  Comparison of CLS and CML

In this subsection, we conduct simulation studies to report the performances of the 
proposed CLS and CML estimators. For this purpose, we choose the sample sizes 
n = 100, 300 and 500 for the following two models: 

Scenario A.  In this scenario, we consider a RCMBAR(2)-X model with param-
eters (�1,0, �1,1 , �2,0, �2,1,�1)=(0.2,  0.4,  0.4,  0.3,  0.8) and N = 50 . 
The explanatory variable Z1,t is generated from an i.i.d. N(0,  1) 
distribution.

Scenario B.  In this scenario, we consider a RCMBAR(3)-X model with param-
eters (�1,0, �1,1 , �2,0, �2,1, �2,2,�1,�2)=(0.4, 0.1, 0.2, 0.6, 0.4, 0.3) and 
N = 50 . The explanatory variable is generated from an AR(1) pro-
cess, Z1,t = 0.2Z1,t−1 + �t with �t ∼ N(0, 1) and Z1,0 = 0.

Fig. 2  One-step ahead forecasting distribution and the 95% forecasting confidence intervals
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Scenario C.  In this scenario, we consider a RCMBAR(2)-X model with param-
eters (�1,0, �1,1, �1,2 , �2,0, �2,1, �2,2,�1)=(0.2,  0.4,  0.6,  0.1,  0.3,  0.5,  0.
7) and N = 40 . There are two explanatory variables in the model, 
where Z1,t is generated from an i.i.d. N(0, 1) distribution, Z2,t is gener-
ated from an AR(1) process, Z2,t = 0.5Z2,t−1 + �t with �t ∼ N(0, 1) and 
Z2,0 = 0.

The above three scenarios consider different cases of explanatory variables. 
Scenarios A considers a simple independent normally distributed explanatory 
variable. Scenarios B considers a dependence explanatory variable of an AR(1) 
process. In Scenarios C, we consider two explanatory variables in the model. 
Firstly, we show the sample paths and autocorrelation function (ACF) plots for 
the two scenarios in Fig. 2. As is seen in Fig. 2 that there is no trend and seasonal 
characteristics in the subfigures, indicating that all series are stationary. Moreover, 
the three series show different autocorrelation characteristics, which implies that 
RCMBAR(p)-X model can describe different autocorrelation structures.

Next, we conduct simulation studies to show the performances of the proposed 
CLS and CML estimators. For the above three models, we calculated the estimates 
based on the two methods, the empirical biases (Bias), and the mean square errors 
(MSE). All the simulations are performed under the R software based on 1000 
replications. The simulation results are summarized in Tables 1, 2 and 3.

It can be seen from Tables 1, 2 and 3 that the biases and MSEs are getting small 
with the increases of the sample size, indicating the consistency of the estimators. 
Generally, the CML estimates seem to be more efficient since they present smaller 
bias and MSE values, regardless the number and the type of explanatory variables.

Fig. 3  Sample path and ACF plots of Scenarios A, B and C
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6.2  Powers of the test

In this subsection, we conduct simulations to show the performances of the 
hypothesis test discussed in Sect. 4. To this end, we further consider the follow-
ing two Scenarios: 

Scenario D.  In this scenario, we also consider a RCMBAR(2)-X model with 
parameters (�1,0, �1,1 , �2,0, �2,1,�1) = (0.2, 0, 0.4, 0, 0.8) and N = 40 . 
The explanatory variable Z1,t is generated in the same way as Sce-
nario A.

Table 1  Simulation results of Scenario A under different sample sizes

Methods n Results �1,0 = 0.2 �1,1 = 0.4 �2,0 = 0.4 �2,1 = 0.3 �1 = 0.8

CLS 100 Bias 0.0165 0.0159 0.0187 0.0155 0.0647
MSE 0.0004 0.0004 0.0004 0.0001 0.0030

300 Bias 0.0135 0.0150 0.0142 0.0078 0.0344
MSE 0.0001 0.0002 0.0003 0.0001 0.0010

500 Bias 0.0056 0.0072 0.0123 0.0053 0.0141
MSE 0.0001 0.0001 0.0002 0.0000 0.0003

CML 100 Bias 0.0119 − 0.0201 0.0139 − 0.0060 − 0.0237
MSE 0.0001 0.0004 0.0003 0.0001 0.0006

300 Bias 0.0035 − 0.0109 − 0.0107 0.0089 0.0183
MSE 0.0001 0.0002 0.0002 0.0001 0.0004

500 Bias 0.0037 0.0047 − 0.0044 − 0.0001 0.0099
MSE 0.0000 0.0000 0.0000 0.0000 0.0001

Table 2  Simulation results of Scenario B under different sample sizes

Methods n Results �1,0 = 0.4 �1,1 = 0.1 �2,0 = 0.2 �2,1 = 0.6 �1 = 0.4 �2 = 0.3

CLS 100 Bias − 0.0223 0.0261 0.0208 0.0124 0.0295 0.0310
MSE 0.0006 0.0007 0.0006 0.0002 0.0007 0.0007

300 Bias − 0.0294 0.0168 0.0202 0.0197 0.0160 0.0116
MSE 0.0104 0.0003 0.0004 0.0003 0.0002 0.0002

500 Bias − 0.0065 0.0144 0.0119 0.0108 0.0118 0.0096
MSE 0.0001 0.0002 0.0002 0.0001 0.0001 0.0001

CML 100 Bias − 0.0120 0.0222 0.0248 − 0.0126 0.0212 − 0.0262
MSE 0.0001 0.0005 0.0006 0.0002 0.0006 0.0007

300 Bias − 0.0082 0.0198 0.0186 − 0.0133 0.0161 − 0.0092
MSE 0.0001 0.0004 0.0003 0.0003 0.0003 0.0001

500 Bias − 0.0059 0.0114 0.0025 − 0.0020 0.0120 − 0.0031
MSE 0.0000 0.0001 0.0000 0.0000 0.0001 0.0000
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Scenario E.  In this scenario, we consider a RCMBAR(3)-X model with param-
eters (�1,0, �1,1 , �2,0, �2,1,�1,�2) = (0.6, 0, 0.3, 0, 0.5, 0.3) and N = 40 . 
The explanatory variable Z1,t is generated in the same way as Sce-
nario B.

Table 3  Simulation results of Scenario C under different sample sizes

Methods n Results �1,0 = 0.2 �1,1 = 0.4 �1,2 = 0.6 �2,0 = 0.1 �2,1 = 0.3 �2,2 = 0.5 �1 = 0.7

CLS 100 Bias − 0.0096 0.0025 0.0114 0.0154 0.0081 0.0096 0.1074
MSE 0.0164 0.0172 0.0156 0.0189 0.0183 0.0162 0.5885

300 Bias − 0.0071 − 0.0015 0.0020 0.0098 0.0047 0.0043 0.0689
MSE 0.0059 0.0047 0.0048 0.0071 0.0055 0.0052 0.3851

500 Bias − 0.0043 − 0.0011 − 0.0004 0.0080 0.0031 0.0038 0.0614
MSE 0.0033 0.0028 0.0025 0.0040 0.0032 0.0027 0.2747

CML 100 Bias − 0.0130 − 0.0007 0.0057 0.0170 0.0098 0.0169 0.1772
MSE 0.0002 0.0000 0.0000 0.0003 0.0001 0.0003 0.0314

300 Bias − 0.0030 − 0.0011 − 0.0019 0.0060 0.0056 0.0082 0.0768
MSE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0059

500 Bias − 0.0035 − 0.0003 0.0004 0.0048 0.0036 0.0040 0.0850
MSE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0072

Fig. 4  Q-Q plots of Sn under Scenario D based on CML method

Fig. 5  Q-Q plots of Sn under Scenario E based on CML method
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It is clear that Scenarios D and E are cases where H0 is true. Firstly, we give an 
intuitive explanation for Theorem 4.3. For this purpose, we draw the Q-Q plots of Sn 
under Scenarios D and E in Figs. 3 and 4, aiming to show how Sn distributes when 
H0 is true. Meanwhile, we also draw the Q-Q plots of Sn under Scenarios A and B in 
Figs. 5 and 6, aiming to investigate whether the result of chi-square distribution for 
Sn will still hold when H0 is not true.

As is seen in Figs. 3 and 4 that, the sample Q-Q scatter plots getting closer 
to the theoretical Q-Q lines as the sample size increases. This implies the test-
ing statistics Sn gradually converges to a �2

2
 distribution as expected, regardless 

of the order of the model. On the contrary, as is seen in Figs. 5 and 6 that the 

Fig. 6  Q-Q plots of Sn under Scenario A based on CML method

Fig. 7  Q-Q plots of Sn under Scenario B based on CML method

Table 4  Empirical power and 
size of test (4.13) based on 
CML method

n Empirical power when H0 is 
not true

Empirical size when H0 
is true   

Scenario A Scenario B Scenario D Scenario E

100 1 1 0.045 0.055
300 1 1 0.047 0.051
500 1 1 0.051 0.050
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scatter plots all fall outside the confidence band areas, indicating that the �2
2
 dis-

tribution is no longer valid.
Next, we show the detailed performances of testing problem (4.13) discussed 

in Section 4. To this end, we summary the simulation results under Scenarios A, 
B, D, and E using CML method in Table 4. As is seen in Table 4 that when H0 is 
true (Scenarios D and E), the empirical size is getting closer to the significance 
level of 0.05, which implies that the asymptotic distribution in Theorem 4.3 is 
correct. On the other hand, we also see that all empirical power results (Sce-
narios A and B) are equal to one when H0 is not true. This implies the proposed 
test statistics performs well in practice.

7  Real data example

In this section, we will use the RCMBAR(p)-X model to fit a set of rainy days at 
Bremen in Germany. The data was published by the German Weather Service, and 
can be downloaded in the following URL: http://www.dwd.de/. The original data set 
records the local daily rainfall of Bremen. We choose the time period from January 
2011 to December 2021. With the selected data set, we calculated the number of 
rainfall days per week and the corresponding rainfall. Specifically, for each week t, 
the value Xt counts the number of rainy days, and Z1,t records the total rainfall of the 
week. Therefore, we obtain a time series of counts with a finite-range N = 7 , totally 
consists 574 weekly observations. Moreover, in this study, Z1,t is used as an explana-
tory variable.

For convenience, we denote {Xt}
573
t=0

 and {Z1,t}573t=0
 as the sequences of observed 

data and explanatory variables, and further draw the time series and ACF plots of 
the observations in Fig. 7, draw the time series of the covariate in 8. From Fig. 7 

Fig. 8  Time series and ACF plots of the rainfall days counts
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we can see that the analyzed data set is a stationary time series. The ACF exhib-
its an exponential decay trend. Figure  8 also implies the sequence of covariate is 
stationary.

For comparison purpose, we also use the BAR(1) model  (McKenzie 1985), the 
BAR(p) model (Weiß 2009b) with p = 2 and 3, and the CDBAR(1) model (Wang 
et al. 2021) to fit this data set, and compare different models by AIC and BIC cri-
teria. The BAR(1) model is the original binomial autoregressive model of order 
one, which does not contain explanatory variables. The BAR(p) model is an exten-
sion of BAR(1) model, which is a pth-order constant coefficients binomial autore-
gressive model with the jth-order regime existing in the model with probability �j 
( j = 1, 2,… , p ). The CDBAR(1) model is defined via introducing explanatory vari-
ables into both autoregressive coefficents of a BAR(1) model, which is also a spe-
cial case of the RCMBAR(p)-X model proposed in this study. For each of the fitted 
model, we calculate the conditional maximum likelihood estimation (CMLE) of the 
model parameters, the corresponding standard errors (SE), AIC and BIC values. All 
the fitting results are summarized in Table 5.

It can be seen from Table  4 that (i) among similar models, higher order mod-
els have better fitting effect than lower order models; and (ii) among different 
models, the models with explanatory variables are better than the models without 
explanatory variables. This shows that it is necessary to study high-order models 
and consider explanatory variables. Moreover, among all competition models, the 
RCMBAR(3)-X model has the smallest AIC and BIC values. This implies that the 
RCMBAR(3)-X model is a competitive model in terms of AIC and BIC, and is 
appropriate for fitting this data set.

In the following, we conduct the diagnostic checking for the fitted RCMBAR(3)-
X model. For this purpose, we need to calculate the standardized Person residuals. 
As is reviewed by many authors (see, e.g., Yang et  al. (2022, 2023), Zhang et  al. 

Fig. 9  Time series plot of the covariates
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(2022) and among others), the standardized residuals provides a relatively easy 
way to check whether the model fits data adequately. Specifically, if the model is 

Table 5  Fitting results of the 
rainfall days counts under 
different models

Models Para SE AIC BIC

BAR (1) �̂� = 0.1486 0.0210  2525.030  2533.732
�̂� = 0.5103 0.0074

BAR (2) �̂� = 0.1636 0.0255 2523.376  2536.418
�̂� = 0.5099 0.0066

�̂�1 = 0.9096 0.1074

BAR (3) �̂� = 0.2386 0.0301  2513.742  2531.125
�̂� = 0.5101 0.0073

𝜙1 = 0.6571 0.0860

𝜙2 = 0.0667 0.0776

CDBAR (1) �̂�1 = 0.0412 0.0038 2307.994  2316.696

�̂�1 = 0.0215 0.0038

RCMBAR (2)-X 𝛿1,0 = −0.9454 0.1325  2071.353  2093.098

𝛿1,1 = 0.1376 0.0104

𝛿2,0 = −0.7097 0.0881

𝛿2,1 = 0.0345 0.0040

�̂�1 = 0.6083 0.0779

RCMBAR (3)-X 𝛿1,0 = −1.0539 0.1491 2041.910  2067.994

𝛿1,1 = 0.1737 0.0125

𝛿2,0 = −0.7796 0.1030

𝛿2,1 = 0.0295 0.0045

�̂�1 = 0.5000 0.0718

�̂�2 = 0.1838 0.0612

Fig. 10  Diagnostic checking plots in fitting RCMBAR(3)-X model with the rainfall data set. a standard-
ized residuals; b ACF plot of the residuals; c PACF plot of the residuals
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correctly specified, the residuals should have no significant serial correlation. For 
the RCMBAR(3)-X model, the standardized residuals is defined as

In practice, we can substitute the CMLE results into the conditional expectation and 
conditional variance equations in (7.16) to calculate {êt}.

Figure  9 shows the time series plot, ACF and partial autocorrelation function 
(PACF) plots of the the standardized residuals under RCMBAR(3)-X model. As is 
shown in Fig.  9 that the residuals is a stationary series. The p-value of ADF test 
is smaller than 0.01, which ensures the stationarity of the residuals. Moreover, the 
ACF and PACF plots show that the residuals have no sequence autocorrelation. 
This implies {êt} is a stationary white noise which ensures that the RCMBAR(3)-X 
model is correctly specified.

Finally, as an application, we draw the one-step ahead forecasting distribution and the 
forecasting confidence intervals of the corresponding points in Fig. 10. From Fig. 10 we 
can see that the most likely number of rainy days in the region next week are 3 - 4 days.

8  Conclusions

This article introduces a pth-order random coefficients integer-valued binomial autore-
gressive process with explanatory variables, which can accurately capture the higher-
order dependence of integer-valued time series with bounded support, and conveniently 
model the relationship between observational process with covariates. The CLS and 
CML methods are introduced to address the parameter estimation problems for the 
model. The results show that the CML method has higher estimation accuracy. Moreo-
ver, we also considered the existence test of explanatory variables. Finally, a real data 
example is provided to show the outstanding performance of the proposed model.

(7.16)et =
Xt − E(Xt�Xt−1,… ,Xt−3, Z1,t)√

Var(Xt�Xt−1,… ,Xt−3, Z1,t)
, t = 1, 2,… , n.

Fig. 11  Forecasting distribution and the 95% confidence intervals of the analyzed data sets
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Appendix A: The derivations of moments

In the following, we derive the derivations of moments for the RCMBAR(p)-X model. 
With the representation of (2.4), the calculation of conditional expectation is trivial, 
thereby, omitted. We go on to derive the conditional variance.

Notice that (2.4) implies Dt,iDt,j = 0 for i ≠ j , it follows that

Therefore, the conditional variance can be derived as follows

Appendix B: The proofs of theorems

Proof of Proposition 2.1 We should first prove the RCMBAR(p)-X process defined 
by (2.2) is an irreducible and aperiodic Markov chain. Without loss of generality, 
denote by (Ωj,Aj,Pj) the probability space of Zj,t . It follows by Definition 1 that 
E|Zj,t| = ∫

Ωj
|Zj,t|dPj < ∞ , which implies

E(X2
t
|Xt−1,… ,Xt−p,Zt)

= E

(
p∑
i=1

D2
t,i
(𝛼t◦Xt−i + 𝛽t◦(N − Xt−i))

2|Xt−1,… ,Xt−p,Zt

)

=

p∑
i=1

𝜙iE[(𝛼t◦Xt−i)
2 + 2(𝛼t◦Xt−i)(𝛽t◦(N − Xt−i)) + (𝛽t◦(N − Xt−i))

2|Xt−1,… ,Xt−p,Zt]

=

p∑
i=1

𝜙i[𝛼t(1 − 𝛼t)Xt−i + 𝛼2
t
X2
t−i

+ 𝛽t(1 − 𝛽t)(N − Xt−i) + 𝛽2
t
(N − Xt−i)

2 + 2𝛼t𝛽tXt−i(N − Xt−i)]

=

p∑
i=1

𝜙i

(
exp(Z⊤

t
�1)

(1 + exp(Z⊤
t
�1))

2
Xt−i +

exp(2Z⊤
t
�1)

(1 + exp(Z⊤
t
�1))

2
X2
t−i

+
exp(Z⊤

t
�2)

(1 + exp(Z⊤
t
�2))

2
(N − Xt−i)

+
exp(2Z⊤

t
�1)

(1 + exp(Z⊤
t
�1))

2
(N − Xt−i)

2 + 2

2∏
i=1

exp(Z⊤
t
�i)

1 + exp(Z⊤
t
�i)

Xt−i(N − Xt−i)

)
.

Var(Xt|Xt−1,… ,Xt−p,Zt) = E(X2
t
|Xt−1,… ,Xt−p,Zt) − E2(Xt|Xt−1,… ,Xt−p,Zt)

=

p∑
i=1

𝜙i

(
exp(Z⊤

t
�1)

(1 + exp(Z⊤
t
�1))

2
Xt−i +

exp(2Z⊤
t
�1)

(1 + exp(Z⊤
t
�1))

2
X2
t−i

+
exp(Z⊤

t
�2)

(1 + exp(Z⊤
t
�2))

2
(N − Xt−i)

+
exp(2Z⊤

t
�1)

(1 + exp(Z⊤
t
�1))

2
(N − Xt−i)

2 + 2

2∏
i=1

exp(Z⊤
t
�i)

1 + exp(Z⊤
t
�i)

Xt−i(N − Xt−i)

)

−

(
p∑
i=1

𝜙i

(
exp(Z⊤

t
�1)

1 + exp(Z⊤
t
�1)

Xt−i +
exp(Z⊤

t
�2)

1 + exp(Z⊤
t
�2)

(N − Xt−i)

))2

.

IZ(i,m, t) ∶= ∫Ω1

…∫Ωq

exp(mZ⊤
t
�1)

(1 + exp(Z⊤
t
�1))

xt−i

exp((xt − m)Z⊤
t
�2)

(1 + exp(Z⊤
t
�2))

N−xt−i
dZ1,t … dZq,t < ∞.
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Notice that each term in (2.5) is strictly greater than zero, we obtain

Equation (A.1) implies the process (2.2) is an irreducible and aperiodic chain. Since 
the state space � ∶= {0, 1,… ,N} has only a finite number of elements, {Xt}t∈ℤ is 
also a positive recurrent Markov chain and hence ergodic. Finally, Theorem 1.3 in 
Karlin and Taylor (1975) guarantees the existence of the stationary distribution for 
{Xt} .   ◻

Proof of Theorem 3.1 In order to prove Theorem 3.1, we need to check all the regu-
larity conditions of Theorems 3.1 and 3.2 in Klimko and Nelson (1978) hold. The 
regularity conditions for Theorem  3.1 in Klimko and Nelson (1978) are given as 
follows:

(i) �g∕��i , �2 g∕��i��j , �3 g∕��i��j��k exist and are continuous for all � ∈ Θ , 
where �i , �j , �k denote the components of � , i, j, k ∈ {1, 2,… ,m} , g is the abbrevia-
tion for g(�,Xt−1,… ,Xt−p,Zt) , m = 2q + p + 1 denotes the dimension of �;

(ii) For i, j ∈ {1, 2,… ,m} , E|(X1 − g)𝜕g∕𝜕𝜃i| < ∞ , E|(X1 − g)𝜕2 g∕𝜕𝜃i𝜕𝜃j| < ∞ 
and E|𝜕g∕𝜕𝜃i ⋅ 𝜕g∕𝜕𝜃j| < ∞ , where g and its partial derivatives are evaluated at �0 
and the �-filed generated by all the information before zero time;

(iii) For i, j, k ∈ {1, 2,… ,m} there exist functions H(0)(X0,… ,X1−p) , 
H

(1)

i
(X0,… ,X1−p) , H

(2)

ij
(X0,… ,X1−p) , H

(3)

ijk
(X0,… ,X1−p) such that

for all � ∈ Θ , and

Recall that g(�,Xt−1,… ,Xt−p,Zt) =
∑p

i=1
𝜙i

�
exp(Z⊤

t
�1)

1+exp(Z⊤
t
�1)

Xt−i +
exp(Z⊤

t
�2)

1+exp(Z⊤
t
�2)

(N − Xt−i)
�
 . 

It is easy to check that condition (i) holds. Denote by pk ∶= P(Xt = k) , 
k = 0, 1,… ,N . Thus, we have for any fixed s ≥ 1,

(A.1)

P(Xt = xt|Xt−1 = xt−1,… ,Xt−p = xt−p)

= ∫Ω1

…∫Ωq

P(Xt = xt|Xt−1 = xt−1,… ,Xt−p = xt−p,Zt)dZ1,t … dZq,t

=

p∑
i=1

𝜙i

b∑
m=a

(
xt−i
m

)(
N − xt−i
xt − m

)
IZ(i,m, t) > 0.

(B.1)
|g| < H(0), |𝜕g∕𝜕𝜃i| < H

(1)

i
, |𝜕2g∕𝜕𝜃i𝜕𝜃j| < H

(2)

ij
, |𝜕3g∕𝜕𝜃i𝜕𝜃j𝜕𝜃k| < H

(3)

ijk
,

(B.2)
E|X1 ⋅ H

(3)

ijk
(X0,… ,X1−p)| < ∞,

E(H(0)(X0,… ,X1−p) ⋅ H
(3)

ijk
(X0,… ,X1−p)) < ∞,

E(H
(1)

i
(X0,… ,X1−p) ⋅ H

(2)

ij
(X0,… ,X1−p)) < ∞.

(B.3)E(|Xt|s) = E(Xs
t
) =

N∑
k=0

pk ⋅ k
s ≤

N∑
k=0

pk ⋅ N
s = Ns < ∞.
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By Definition 1, Zt has a finite covariance matrix, which, together with (B.3) ensures 
that condition (ii) holds. Denote by x = (x1,… , xn)

⊤ a n-dimensional vector, further 
denote by ‖x‖1 = �x1� + �x2� +…+ �xn� , ‖x‖∞ = max1≤i≤n �xi� . Let

then for any i, j, k ∈ {1, 2,… ,m} , we can verify that (B.1) holds. Moreover, 
E‖Zt‖3 < ∞ and (B.4) imply that (B.2) holds, which implies the �̂CLS is a strongly 
consistent estimator. With the fact that Xt − g is bounded by 2N, we obtain that Ut(�) 
is bounded by 4N2 . Together with condition (ii), we have that

Therefore, the regularity conditions for Theorem 3.2 in Klimko and Nelson (1978) 
hold are also hold, implying the asymptotic normality for �̂CLS .   ◻

Proof of Theorem  3.2 To prove Theorem  3.2, we first give an equivalent repre-
sentation of the RCMBAR(p)-X process. We begin with some notations. Let 
Yt ∶= (Xt,Xt−1,… ,Xt−p+1)

⊤ , �i,t = Dt,i�t , �i,t = Dt,i�t , i = 1, 2,… , p , and further 
denote two pth-order matrices �t and � t as

With the fact that 0◦X = 0 and 1◦X = X (see Lemma 1 in Silva and Oliveira 2004), 
model (2.2) can be written in the following form:

where N⊤ = (N,… ,N)1×p , “ ◦ ” operation here denotes a matrix operation which 
acts as the usual matrix multiplication while replacing scaler multiplication with 
the binomial thinning operation. Thus, we obtain a multivariate version binomial 
autoregressive model with state space

i.e., � = {(s1,… , sp)|sj ∈ {0, 1,… ,N}, j = 1, 2,… , p} . Denote by 
Pt|t−1(�) ∶= P(Yt = yt|Yt−1 = yt−1) the transition probability of {Yt} . Thus, we have

(B.4)
H(0)(X0,… ,X1−p) = N, H

(1)

i
(X0,… ,X1−p) = N‖Zt‖1,

H
(2)

ij
(X0,… ,X1−p) = N‖Zt‖2∞, H(3)

ijk
(X0,… ,X1−p) = N‖Zt‖3∞,

E(U1(�)|𝜕g∕𝜕𝜃i ⋅ 𝜕g∕𝜕𝜃j|) < ∞, i, j ∈ {1, 2,… ,m}.

�t ∶=

⎛
⎜⎜⎜⎜⎝

�1,t �2,t … �p−1,t �p,t
1 0 … 0 0

0 1 … 0 0

⋮ ⋮ ⋮ ⋮

0 0 … 1 0

⎞⎟⎟⎟⎟⎠
and � t ∶=

⎛
⎜⎜⎜⎜⎝

�1,t �2,t … �p−1,t �p,t
0 0 … 0 0

0 0 … 0 0

⋮ ⋮ ⋮ ⋮

0 0 … 0 0

⎞⎟⎟⎟⎟⎠
.

(B.5)Yt = �t◦Yt−1 + � t◦(N − Yt−1),

� ∶= {0, 1,… ,N} × {0, 1,… ,N}… × {0, 1,… ,N}
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

p multiple cartesian product

,

(B.6)

Pt|t−1(�) ∶ = P(Yt = yt|Yt−1 = yt−1,Zt)

= P(Xt = xt,… ,Xt−p+1 = xt−p+1|Xt−1 = xt−1,… ,Xt−p = xt−p,Zt)

= P(Xt = xt|Xt−1 = xt−1,… ,Xt−p = xt−p,Zt).
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Equations (B.6) imples models (2.2) and (B.5) have the same transition probabili-
ties, and also have the same CML estimators accordingly. Therefore, we can use the 
result in Billingsley (1961) to prove Theorem 3.2. To this end, we need to verify 
that Condition 5.1 in Billingsley (1961) holds. Condition 5.1 of Billingsley (1961) is 
fulfilled provided that:

1. The set D of (k, l) such that Pt|t−1(�) = P(Yt = k|Yt−1 = l,Zt) > 0 is independ-
ent of �;

2. Each Pt|t−1(�) has continuous partial derivatives of third order throughout Θ;
3. The d × r matrix

(d being the number of elements in D) has rank r throughout Θ , r ∶= dim(Θ).
4. For each � ∈ Θ there is only one ergodic set and there no transient states.
Conditions 1 and 2 are easily fulfilled by (2.6). For any � , we can select a r dimen-

sional square matrix of rank r from the d × r dimensional matrix (B.7), then Condi-
tion 3 is also true. Since the state space of (B.5) is a finite set, and Pt|t−1(�) > 0 , then 
Condition 4 holds. Thus, Conditions 1 to 4 are all fulfilled, which implies Condition 
5.1 in Billingsley (1961) holds. Thereby, the CML-estimators �̂CML are strongly con-
sistent and asymptotically normal.

The proof is complete.   ◻

Appendix C: the autocovariance function

Based on model (B.5), we derive the autocovariance function in the following 
form. Denote by �(k) ∶= Cov(Yt,Yt−k) . By the law of total covariance, we have

The above representation gives a measure of autocorrelation property of (B.5), 
which further gives a measure for the RCMBAR(p)-X process.
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