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Abstract
Improved understanding of characteristics related to weather forecast accuracy in 
the United States may help meteorologists develop more accurate predictions and 
may help Americans better interpret their daily weather forecasts. This article exam-
ines how spatio-temporal characteristics across the United States relate to forecast 
accuracy. We cluster the United States into six weather regions based on weather 
and geographic characteristics and analyze the patterns in forecast accuracy within 
each weather region. We then explore the relationship between climate characteris-
tics and forecast accuracy within these weather regions. We conclude that patterns 
in forecast errors are closely related to the unique climates that characterize each 
region.

Keywords  Climate · Clustering · Data Expo 2018 · Glyph plots · Random forests · 
Visualization

1  Introduction

From the icy, wet winters along the Great Lakes, to the hot and dry summers in the 
Southwest, the United States (U.S.) experiences a wide range of climatic extremes. 
These extremes create unique challenges when forecasting the weather. Understand-
ing forecast errors across such a diverse landscape is equally challenging, requir-
ing multi-dimensional visualizations across space, time, and climate measurements. 
Better understanding of the nature and patterns in forecast errors across the U.S. 
helps meteorologists as they strive to improve weather forecasts. It can also help 
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everyday Americans know how much faith to put in the weather forecast on the day 
of an important event.

The 2018 Data Expo of the Sections on Statistical Computing and Statistical 
Graphics of the American Statistical Association (ASA) provided an opportunity to 
explore and compare weather forecast errors across the U.S. Our analysis focused on 
the question:

         How do weather forecast errors differ across regions of the U.S.?
This motivating question prompted the subsequent questions:

–	 Do U.S. weather stations cluster into regions based on weather characteristics?
–	 How do error variables correlate and do these correlations change by region?
–	 How do forecast errors change by region and by season?
–	 Where are the best and worst forecast accuracies?
–	 Which variables are important in determining forecast errors?

Preliminary results of our analysis are published in the proceedings for the 2018 
Joint Statistical Meetings (Lundell et al. 2018).

This article is devoted to answering these questions. We use ensemble graphics 
to create an overall picture of weather forecast errors across different regions of the 
U.S. (Unwin and Valero-Mora 2018). Ensemble graphics enhance traditional analy-
ses by connecting several visualizations of the data with adjoining text. This pres-
entation is able to tell a cohesive story of the data more effectively than would be 
possible with a few disjointed graphics. In Sect. 2, we summarize the data and then 
show that the U.S. can be clustered into six well-defined weather regions using the 
provided climate measurements, elevation, and distance to coast. These clusters, or 
weather regions, form the basis of our comparison of forecast accuracy across the 
U.S. through a series of multi-dimensional plots and variable importance analyses 
described in Sect. 3. In Sect. 4, we introduce the interactive application we created 
to enhance our data explorations. We conclude in Sect. 5 that the climate differences 
that distinguish the weather regions of the U.S. also create region-specific patterns 
and differences in forecast accuracy. Two appendixes are included at the end of this 
paper to explain data cleaning and how to create the glyphs used in this article.

2 � Weather regions

The data contain measurements and forecasts for 113 U.S. weather stations from 
July 2014 to September 2017. Information about the data and other analyses done 
with the data can be found in Cetinkaya-Rundel and Martinez (2023). These data 
can be obtained from our supplemental materials or at the following URL:

https://​commu​nity.​amstat.​org/​joint​scsg-​secti​on/​datae​xpo/​datae​xpo20​18.

Daily measurements for eight different weather metrics were recorded for each 
location including temperature, precipitation, dew point, humidity, sea level pres-
sure, wind speed, cloud cover, and visibility. Many notable weather events are also 

https://community.amstat.org/jointscsg-section/dataexpo/dataexpo2018
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textually recorded such as thunderstorms and fog. Daily measurements of the mini-
mum, maximum, and mean were recorded for each metric. Weather characteristics 
used in this article are listed in Table 1. Data were supplemented with some geo-
graphic information and carefully examined and cleaned. Details on data cleaning, 
obtaining additional data, and the justification behind our final variable selection are 
found in Appendix A.

2.1 � Developing weather clusters

The U.S. has been divided into regions based on environmental characteristics such 
as watersheds and climate (Commission for Environmental Cooperation 1997, 
Briggs et al. 2003). We examined the set of existing environmental regions and were 
unable to find one that made sense in terms of weather in the context of this analy-
sis. We created our own weather regions by clustering the weather stations based on 
the metrics in Table 1. Thus, clusters are defined by weather characteristics observed 
at each station. We use these clusters to determine how weather forecast error pat-
terns are related to the unique climate measurements of a particular region. A review 
of existing weather regions and how they correspond to our weather regions is dis-
cussed in Sect. 2.2. Data were aggregated across each weather station by taking the 
mean and standard deviation of each variable in Table 1 for each of the 113 weather 
stations over the period of record.

Hierarchical clustering (Hastie et al. 2001, pp. 520-526) with Euclidean distance 
and Ward’s minimum variance clustering method (Murtagh and Legendre 2014) 
was used to identify clusters. The clusters were examined spatially to determine the 
performance of the clustering method and select the final number of clusters. We 
wanted to ensure the weather station clusters were of a sufficient size to be practi-
cal. Five clusters resulted in one cluster that included all of the stations from the 
Midwest to the East Coast which we think is too large because of the differences in 
coastal and inland climates. Seven clusters produced a cluster that contained only 

Table 1   Weather variables included in our analysis. All observations outside the indicated ranges were 
removed prior to our analysis

Variable Unit Abbreviation Range

Min/Max temperature Fahrenheit ◦
F [−37, 127]

Precipitation Inches in [0, 12.95]
Min/Max dew point Fahrenheit ◦

F [−50, 90]

Min/Max humidity Percent % (0, 100]
Min/Max sea level pressure Inch of mercury inHg [28.2, 31.2]
Mean/Max wind speed Miles per Hour mph [0, 70]
Min visibility Miles mi [0, 10]
Cloud cover Number of Eighths of the 

sky covered
okta {0, 1,… , 8}  

Distance to coast Miles mi [0, 807]
Elevation Feet ft [3, 7422]
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five weather stations which is too small. Thus, we chose six clusters to divide the 
U.S. into weather regions.

Figures 1 and 2 show the results of the cluster analysis. Figure 3 shows a parallel 
coordinate plot of the characteristics for each weather region. The Z-score for mean 
and standard deviation for each of the variables in Table 1 was computed and plotted 
on the parallel coordinate plot. It is difficult to distinguish the six weather regions 
from each other so an interactive app was created that provides a better view of the 
features of each cluster. The app is discussed in Sect. 4.

The names and characteristics of each weather cluster are as follows:

–	 Cali-Florida (13 stations): Warm and humid with high dew point and pressure. 
Low variability in almost all measurements.

–	 Southeast (22 stations): Warm and humid with lots of rain. High variability in 
precipitation and low variability in temperature.

–	 Northeast (39 stations): Cold, humid, and low visibility. High variability in tem-
perature, dew point, and pressure.

–	 Intermountain West (19 stations): Cold and dry, with high variability in tempera-
ture, wind speed, and pressure. Low variability in precipitation and dew point.

–	 Midwest (13 stations): Landlocked with high wind speed and high variability in 
temperature, pressure, and wind speed.

–	 Southwest (7 stations): Warm, sunny, and dry with little variation in temperature 
or precipitation. High variability in wind speed and humidity.

Cali−Florida Southeast Northeast Intermountain West Midwest Southwest

Fig. 1   Map of the six weather regions. The color band at the bottom identifies each region by name and 
color
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Fig. 2   Dendrogram of weather clusters identified in Fig. 1
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2.2 � Comparison to existing climate regions

Ecological and climate regions have been developed for the U.S. in other studies. 
Many of these studies focused on smaller regions in the U.S., but a few have looked 
at the U.S. as a whole. Clustering methods and the variables used to identify clus-
ters differ from study to study. The ecological regions of North America defined 
by the Commission for Environmental Cooperation (Commission for Environmental 
Cooperation 1997) used ecosystems to develop regions. Air, water, land, and biota, 
including humans, were used to create the ecoregions. These ecoregions show a 
strong longitudinal trend that corresponds well with the longitudinal trends in our 
clusters. Clusters were not determined by statistical clustering methods, but by care-
ful assessment of ecological properties across North America.

The National Oceanic and Atmospheric Administration (NOAA) developed cli-
mate regions that incorporate seasonal temperature and precipitation information 
(Karl and Koss 1984). These regions differ substantially from the North American 
ecological regions as they also have a lateral trend in addition to the longitudinal 
trend and are constrained by state boundaries. Spectral curves assessing drought and 
wet spells were used to define the NOAA regions (Diaz 1983). The NOAA regions 
correspond roughly to our general weather regions despite region borders being 
defined by state boundaries. The north/south division in the eastern U.S. closely 
aligns with our cluster division in that area. The major east/west division in our clus-
ters is in a similar location to the NOAA clusters as well.

The International Energy Conservation Code (IECC) climate clustering of the 
U.S. (Briggs et al. 2003) and subsequent reclassification by Hathaway et al. (2013) 
divided the U.S. into fourteen regions based on temperature, dew point, wind speed, 
and radiation. Cluster methods included K-means clustering and Monte-Carlo 

Cali−Florida Southeast Northeast Intermountain West Midwest Southwest
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Fig. 3   Parallel coordinate plot of the means and standard deviations of the weather variables listed in 
Table 1. Each line in the plot represents one of the 113 weather stations. The color of the lines match the 
weather region to which the station belongs. An interactive app is available that allows for better iden-
tification of regional trends.The Southwest region is highlighted in this graph to emphasize its weather 
characteristics
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sifting. Monte-Carlo sifting is a method developed by Hathaway et al. (2013) that 
identifies a candidate and dropout reference cell by iteratively searching through a 
set of Monte-Carlo runs. Both sets of regions show a strong lateral trend in the East-
ern U.S. These regions also show distinct separation of the West coast and South-
west deserts from the rest of the Western U.S. Similar trends are also seen in our 
clusters. The lateral trend in the Eastern U.S. is not as strong in our clusters, but this 
is likely because we chose a smaller number of weather clusters. The inclusion of 
additional variables insensitive to lateral trends such as distance to coast, elevation, 
and humidity, all serve to reduce the lateral separation in our clusters.

One key difference between our weather regions and the regions seen in other 
studies is that we combine Florida and the Pacific coast into a single weather region. 
This is likely a result of our choice to omit geographic proximity of weather stations 
in the cluster analysis calculations and consider only similarities in weather pat-
terns. Both Florida and the Pacific coast experience less seasonality in their weather 
patterns than the rest of the country. This results in smaller than average standard 
deviations for many of the climate variables in both of these regions. These small 
standard deviations create a measure of closeness between Florida and the Pacific 
coast, which likely explains why these two geographic areas fall into a single cluster 
when working with six or fewer clusters. The Florida and Pacific stations split into 
separate clusters when using seven clusters with exception of two stations from the 
Pacific Coast that cluster with the Florida stations. Hawaii and Alaska are either 
ignored in the literature or placed in their own regions. Because we did not use spa-
tial proximity as a clustering variable and we assigned all weather stations to one of 
our six weather clusters, Hawaii and Alaska are clustered with Cali-Florida and the 
Northeast respectively. Our clusters show that weather patterns typically have strong 
spatial correlations, with temperate coastal regions being a notable exception.

3 � Forecast error explorations

Given the clear separation of the country into distinct weather regions, we seek to 
determine if there are clear differences in forecast error patterns among the regions. 
Forecasts were restricted to minimum temperature, maximum temperature, and the 
probability of precipitation. The forecast error for minimum and maximum tempera-
ture is calculated as the absolute difference between forecast and measurement. The 
forecast error for precipitation is measured using the Brier Skill Score (BSS), a well-
known measure of probabilistic forecast accuracy (Weigel et al. 2007). It is defined 
for a particular weather station as

where Yij ∈ [0, 1] is the predicted probability of rain on day i with forecast lag j; 
Oi ∈ {0, 1} is a binary variable with value 1 if any precipitation fell during the 
day and 0 otherwise. We define a precipitation event as a positive precipitation 

(1)BSS = 1 −

∑N

i=1

∑M

j=0

�

Yij − Oi

�2

∑N

i=1

∑M

j=0

�

P − Oi

�2
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measurement or the inclusion of the words “rain" or “snow" in the event informa-
tion; P ∈ [0, 1] is the average daily chance of precipitation over the period of inter-
est, defined as P =

1

N

∑N

i=1
Oi ; N denotes the number of days of recorded precipita-

tion in the period of record and M ∈ {0,… , 5} denotes the number of forecast lags.
Note that the BSS ∈ (−∞, 1] , with 1 indicating a perfect forecast skill and move-

ment towards −∞ indicating worse forecasts. We chose to use 1 − BSS so all three 
error variables are consistent in orientation. The following subsections explore dif-
ferences in forecast errors both between and within the previously defined weather 
regions visualized in Fig. 1. Forecast errors are averaged over lag and in some cases 
averaged over month in each graph. The visualizations in the following subsections 
confirm our hypothesis that different weather regions experience distinctly different 
weather forecast error patterns.

3.1 � Error correlations

Are the forecast errors for the three different measurements (i.e., minimum temper-
ature, maximum temperature, and precipitation) correlated with each other? How 
do these relationships change between the different weather regions? We explore 
such correlations through the use of correlation ellipses (Murdoch and Chow 1996) 
superimposed on a map of the U.S. in Fig. 4. We calculated Spearman correlations 
between each pair of measurements for the locations within each cluster. The sign of 
the correlation coefficient is denoted by the slope of the ellipse and the strength of 
correlation is denoted by the width of the ellipse.

Max Temp

Min Temp

Min Temp

Precip
Combined

Non−significant correlation (α = 0.05)

−1 −0.5 0 0.5 1

Correlation

| | | | | | | | |

Cali−Florida Southeast Northeast Intermountain West Midwest Southwest

Fig. 4   Spearman correlations between forecast error variables represented as ellipses superimposed on 
a map of the United States. The  p value for each correlation is compared against a 0.05 level of signifi-
cance
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All of the correlations between error variables are positive except for correlations 
between minimum temperature and the other two variables in the Northeast. The 
strongest relationships are seen in the Midwest, the South and the Southwest. The 
weakest relationships are found in the Northeast. Only a few cluster-specific correla-
tions are significant. This is likely due to the small number of stations in many of the 
weather regions. However, the overall correlations for the 113 weather stations are 
all positive and significant. This indicates that areas with good predictions for one 
forecast variable have generally good predictions for the other forecast variables as 
well. The weakest correlations are between minimum temperature and precipitation 
predictions. Although there are relationships between the three weather forecast var-
iables, those relationships are not particularly strong and the strength differs within 
each region. The observations made using this correlation ellipse map illustrate how 
this plot style facilitates multi-dimensional comparisons across space. Information 
on the calculations and implementation of the correlation glyphs can be found in 
Appendix B.

3.2 � Error scatterplots

Scatterplots reveal outliers and overall trends within weather regions and across 
forecast lag. Forecast lag is defined as the number of days between the day of fore-
cast and the day being forecast. Thus, same day forecasts would have a lag of 0, one 
day prior forecasts a lag of 1, and so on. Because we are comparing three variables 
spatially and temporally across the U.S., static graphs are not optimal for assess-
ing all relationships of interest. We constructed an interactive scatterplot app using 
Shiny (Chang et  al. 2019) that facilitates examination of trends between the three 
forecast error variables aggregated across all forecast lags or for individual forecast 
lags. Figure  5(a–c) shows examples of plots from the interactive app. The figure 
shows the scatterplot for the data aggregated over all forecast lags, as well as the 
scatterplots for lags of 5, 3, and 1, to illustrate how forecast accuracy changes over 
forecast lag.

Figure  5a compares minimum temperature forecast accuracy with precipitation 
accuracy. Weather stations with the worst predictions of minimum temperature are 
located in New England and the Intermountain West. New England is known for 
extreme winter weather and the frequency of extreme weather events seems to be 
increasing (Cohen et al. 2018). This likely contributes to the struggle these stations 
have predicting minimum temperature. The worst predictor of minimum tempera-
ture is Austin, Nevada. This location is addressed further in Fig.  5c. Cali-Florida 
uniformly has the best predictions of minimum temperature. However, Cali-Florida 
also has some of the greatest variability in precipitation prediction accuracy when 
examining individual lags.

Figure  5b compares maximum temperature prediction accuracy with precipita-
tion accuracy. Four weather stations in the Great Lakes region have the worst pre-
cipitation predictions in the dataset. Poor precipitation forecast accuracy in this 
region illustrates the difficulty in forecasting lake-effect snow. This phenomenon is 
discussed in greater depth in Sect. 3.3. Precipitation forecast accuracy for the Great 
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Fig. 5   Scatterplots comparing the three forecast error variables. The scatterplot to the left of the map is 
aggregated over all forecast lags. Points of interest discussed in the text are highlighted in the plots
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Lakes region improves substantially as the forecast lag decreases and forecasts with 
lag 1 are as accurate as the rest of the nation.

Figure 5c shows the relationship between minimum and maximum temperature 
forecast accuracy. Three outliers stand out in these scatterplots, namely Key West, 
Florida, Austin, Nevada, and San Francisco, California. Key West predicts both 
minimum and maximum temperature more accurately then any other weather sta-
tion. Key West also ranks in the top five for lowest variability in eight of the weather 
variables, which likely explains the accurate forecasts. Austin is the poorest predic-
tor of both measures. Seventy miles along the “loneliest highway in America”(The 
Greater Austin Chamber of Commerce 2018) separate Austin from its weather 
measurements which were collected in Eureka, Nevada. The poor predictions for 
maximum and minimum temperature can be explained by the change in climate over 
such a large distance. This is reflected in a negative prediction bias of around 5 ◦ F for 
maximum temperature and a positive bias of around 7 ◦ F for minimum temperature. 
San Francisco has good predictions of minimum temperature and poor predictions 
for maximum temperature. This phenomenon is further explained in Sect. 3.3.

The interactive app developed in conjunction with this project allows for further 
investigation of forecast accuracy trends. The app is discussed in Sect. 4.

3.3 � Seasonal trends

The position of the U.S. in the northern hemisphere makes most of the country sub-
ject to distinct weather seasons. Seasons are most pronounced in the northern U.S. 
We hypothesize that the forecast error behavior is inextricably linked to this season-
ality. We explore this through a series of space-time graphs. Modeling space and 
time simultaneously creates a three-dimensional problem usually visualized as small 
multiples. Small multiples are “a series of graphics, showing the same combination 
of variables [e.g., latitude and longitude], indexed by changes in another variable 
[e.g., time]” (Tufte 2002, p. 170). The issue with this approach is that it becomes dif-
ficult to visually comprehend all but the most drastic changes from graph to graph. 
One alternative that allows simultaneous visualizations of both space and time is 
through the use of glyphs, or symbols, that allow for multi-dimensional visualiza-
tions in a spatial context (Carr et al. 1992,Wickham et al. 2012).

Figure  6 shows glyph plots of seasonal forecast errors throughout time. The 
forecast error is visualized as the scaled distance from a center point to the edge 
of a polygon with twelve observations starting with January at the 12:00 position 
and proceeding clockwise. The asymmetry of the glyphs about their center points 
illustrates how forecast errors change across time and across space. For example, 
locations in the Northeast are worse at forecasting precipitation in the winter than 
in the summer, while locations in the Southeast forecast precipitation equally well 
throughout the year.

In addition to highlighting forecasting asymmetries, Fig. 6 reveals location-spe-
cific anomalies. For example, San Francisco, California, predicts minimum tem-
peratures well all year, but only predicts maximum temperatures well in the win-
ter months. This is likely due to chilling coastal fogs known to frequent the region 
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throughout the year that can create sharp temperature differences over short dis-
tances (Nolte 2016). The struggle to predict temperature seems reasonable in light 
of these facts as this measurement location is more than 11 miles inland from the 
forecast location. The issue is likely less pronounced in the winter because the con-
trast between inland and coastal temperatures is reduced.

Maximum temperature predictions are particularly poor in the summer months 
in Austin, Nevada. It is unclear why predictions are worse in the summer than in the 
winter.

Another location-specific anomaly of note is the drastic seasonality of precipita-
tion forecasts for locations surrounding the Great Lakes, as observed in Fig. 6. The 
error scatterplots in Fig. 5b show that precipitation accuracy is poor in this region, 
but the seasonality of the predictions cannot be observed in the scatterplots. The 
unusually bad forecasting in the winter is likely due to lake-effect snow which is 
prevalent in the region. Up to 100% more snow falls downwind of Lake Superior 
in the winter than would be expected without the lake-effect (Scott and Huff 1996). 
This area has been previously identified as having the most unpredictable precipi-
tation patterns in the nation (Silver and Fischer-Baum 2014). The above exam-
ples demonstrate the ease with which comparisons can be made across space and 
time with these glyph-based plots. Information about how to generate the glyphs is 
included in Appendix B.

3.4 � Variable importance

The differences in forecast error patterns across regions prompt identification of the 
most important climate measurements for predicting forecast error. We used ran-
dom forests (Breiman 2001) to determine which weather variables had the great-
est impact on the forecast errors. The data were aggregated over forecast lag and 
month. Three random forest models were generated for each weather region using 
the forecast error variables as the response. The means and standard deviations for 
each of the weather variables listed in Table 1 and the forecast lag were the predic-
tor variables. Figure 7 contains three parallel coordinate plots that show the variable 
importance measures in each region for each forecast error variable. The importance 
measures obtained from random forests were recentered by subtracting the mini-
mum importance measure and then rescaled to the interval (0, 100) by dividing by 
the maximum importance measure of the recentered values for each weather cluster 
and forecast error variable combination, and finally multiplying by 100. Thus, the 
most important variable within each weather region has a value of 100 and the least 
important has a value of 0 for each error measure. This allows direct comparisons of 
importance between weather regions and across error measures.

Figure 7 shows that the most important variable for the precipitation error is fore-
cast lag regardless of weather region. None of the other variables are very impor-
tant relative to lag. The Southeast shows minimum dew point (DP) and the stand-
ard deviation of maximum dew point as being somewhat important. Cloud cover is 
important for the precipitation error in the Northeast.
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Forecast lag is also the most important variable for the maximum temperature 
error for all weather regions except Cali-Florida. The standard deviation of maxi-
mum temperature and maximum wind speed (WS) are more important than lag 
in Cali-Florida. The variability in maximum temperature is also important for the 
Southeast, Northeast, and the Intermountain West. Distance to coast (Dist2Coast) 
and elevation are important for the maximum temperature error in the Intermountain 
West.

Variables that are important for the minimum temperature error varied substan-
tially across weather regions. The variability in minimum temperatures is important 
for all regions, but other important variables differ widely from region to region. 
Minimum temperature is the most important for the Northeast and Intermountain 
West, but maximum temperature is important for the Southeast. Minimum dew 
point and the variability in the maximum sea level pressure (SLP) are important in 
the Southwest while variability in minimum sea level pressure is the most important 
for the Midwest, Southeast, and Southwest. Forecast lag is not particularly impor-
tant for any of the regions except for the Midwest.

4 � Interactive application

It is difficult to identify the patterns in climate measurements and forecast errors for 
all weather regions with static visualizations. We developed an interactive Shiny app 
to enhance our weather data explorations. This app can be accessed at

      https://​jilll​undell.​shiny​apps.​io/​final​datae​xpoapp/.
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Fig. 7   Variable importance for each of the three forecast accuracy measurements. Variable importance 
measures have been rescaled to make the measures directly comparable between weather regions and 
accuracy measures

https://jilllundell.shinyapps.io/finaldataexpoapp/
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The first tab of the app is an interactive version of the parallel coordinate plot 
introduced in Fig.  3. The app allows the user to select a weather region which is 
highlighted on the graph. Characteristics of the selected region can be easily seen 
and compared to all other observations.

The second tab of the app is an interactive scatterplot. Figure 5(a–c) shows exam-
ples of the graphs generated in this tab. The user can select up to two of the three 
forecast error variables to be on the axes. The forecast lag can also be selected. 
Points on the scatterplot can be brushed or clicked and the selected points show up 
on a map of the U.S. Information about selected stations is listed in a table under the 
graph. The idea of linked brushing between scatterplots and maps was first intro-
duced in Monmonier (1989). This app allows for a more complete exploration of 
outliers and trends in the data across forecast lags and between error variables than 
a static graph.

5 � Conclusions

Climate patterns in the United States cleanly separate into six recognizable regions 
through a cluster analysis using the means and standard deviations of the weather 
variables provided in Table  1. We explored the relationship between the three 
weather forecast variables (i.e., minimum temperature, maximum temperature, and 
precipitation) using correlation ellipses shown in Fig. 4. We found that all clusters 
show signs of positive correlations among the error variables with the exception of 
the Northeast cluster.

We visualized the pairwise relationship between forecast errors through a series 
of scatterplots across all forecast lags in Fig. 5. These plots highlight the superiority 
of locations in the Cali-Florida region for predicting minimum temperature across 
all lags, and also show that the poor precipitation predictions of the Great Lakes 
region are mostly confined to forecasts greater than lag 2. Lastly, the abnormally 
high errors in Austin, Nevada, are likely a product of the large distance between 
forecast and measurement locations.

We explored seasonal differences of forecast errors in Fig. 6 and observed that 
seasonal differences in forecast errors tend to be more pronounced in northern, 
inland clusters than southern clusters. We also showed that location specific anoma-
lies, such as the asymmetry in seasonal maximum temperature forecast errors in San 
Francisco and the precipitation forecast errors near the Great Lakes, have plausible 
explanations in the literature.

Next, we compared the important variables in determining forecast errors across 
clusters using scaled random forest variable importance measures in Fig. 7. These 
measures demonstrate that forecast lag is most important in determining the maxi-
mum temperature and the precipitation forecast errors, but not important in predict-
ing the minimum temperature forecast errors. Many clusters place similar impor-
tance on a few variables, but there are some variables that are important only in 
a single cluster, such as the importance of maximum wind speed in predicting the 
maximum temperature forecast error in Cali-Florida.
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For further insight regarding the nature of forecast errors across these six clusters, 
we refer readers to our R Shiny app described in the previous section. A current ver-
sion of the app can be found at the following URL:

      https://​jilll​undell.​shiny​apps.​io/​final​datae​xpoapp/.
This app, in conjunction with the visualizations presented in this article, rein-

forces the idea that the U.S. cleanly clusters into well defined weather regions and 
patterns in forecast errors are closely related to the unique climates that characterize 
each region.

The visualizations in this paper, both interactive and static, were designed to be 
scalable for larger weather datasets. We anticipate illustrating this capability on 
an expanded set of stations in the future. An expanded analyses will also serve to 
validate the regional patterns observed and described in this paper. In addition, we 
anticipate adapting several of the static glyph plots presented in this paper for inter-
active use. Greater interactivity will allow for more detailed explorations of weather 
patterns in the United States across both time and space.

Appendix A: Methods for data cleaning

We primarily used the dataset provided by the Data Expo to perform the analy-
ses described in the article. We supplemented the provided location information 
with elevation and distance to the nearest major coast. Elevation information was 
obtained for each location through Google’s API server (Google 2018) via the rgbif 
R package (Chamberlain 2017). Distance to coast was calculated as the closest geo-
graphical distance between each measurement location and one of the vertices in 
the U.S. Medium Shoreline dataset (National Oceanic 2018b), which includes all 
ocean and Great Lakes coasts for the contiguous 48 states. Because this dataset does 
not include the coastlines of Alaska and Hawaii, distance to coast calculations for 
these locations used manually extracted shorelines from NOAA’s Shoreline Data 
Explorer (National Geodetic Survey 2018). We acknowledge there are limitations 
to this method of distance calculation, as distances for some locations, such as Ari-
zona (Flagstaff, Nogales, and Phoenix), are slightly longer than they would be had 
we used shoreline information for Mexico’s Gulf of California. Nevertheless, these 
measurements effectively separate inland weather stations from coastal stations.

Table 1 shows the weather variables included in our final analysis. We excluded 
mean daily measurements for temperature, precipitation, dew point, humidity and 
sea level pressure as these measurements were near perfect linear combinations of 
their corresponding minimum and maximum measurements. We also excluded max-
imum visibility from the analysis as this measurement was equal to 10 miles for 
more than 97% of all recorded measurements. Lastly, we combined the information 
provided by maximum wind speed and maximum wind gust by retaining only the 
lower of the two measurements after removing outliers. The decision to combine 
the information from these two wind variables was motivated by the fact that 13% 
of all maximum wind gust values were missing. In addition, it is difficult to separate 
unusually high, yet valid, maximum wind gust and wind speed measurements from 
true outliers.

https://jilllundell.shinyapps.io/finaldataexpoapp/
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Some stations did not record relevant climate variables. When possible, these miss-
ing observations were replaced with corresponding measurements obtained from 
the nearest National Weather Service (NWS) first order station as obtained through 
the National Climatic Data Center (NCDC) (National Oceanic 2018). Missing val-
ues include wind speed in Baltimore, Maryland, precipitation in Denver, Colorado, 
and replacements of outlier precipitation measurements at multiple locations. When 
replacements were not readily obtained through the NCDC, systematic missing obser-
vations were replaced with corresponding observations from the nearest geographical 
neighbor within the dataset, as was the case for visibility and cloud cover in Balti-
more, Maryland (replaced with Dover, Delaware, measurements) and Austin, Nevada 
(replaced with Reno, Nevada, measurements).

Table 1 also shows the observation ranges for each of the included variables. These 
measurement ranges are either definitional, such as the bounds for humidity, or sim-
ply practical, such as the bounds for temperature. All measurements falling outside the 
bounds shown in Table 1 were removed prior to our analysis. Several individual outli-
ers were also removed or replaced based on location-specific inconsistencies including

–	 Removal of one unusually low minimum temperature measurement in Honolulu, 
Hawaii, ( < 10◦ F) and two in San Francisco, California ( < 20◦F);

–	 Replacement of the following unusually high precipitation readings with precipita-
tion readings at nearby weather stations (National Oceanic 2018a):

–	 Oklahoma City, Oklahoma, on 8/10/2017 ( 38.33 in → 0.8in)
–	 Salmon, Idaho, on 4/21/2015, 5/2/2016, and 5/3-4/2017 ( 10.02 in → 0in)
–	 Flagstaff, Arizona, on 12/24/2016 ( 7.48 in → 0.97in)
–	 Indianapolis, Indiana, on 7/15/2015 ( 9.99 in → 0in);

–	 Removal of one unusually low minimum dew point measurement in Honolulu, 
Hawaii ( < 40◦F), two in Hoquiam, Washington ( < 0◦F), four in Las Vegas, Nevada 
( < −15◦F), and two in Denver, Colorado ( < −20◦F).

Forecast variables were restricted to minimum temperature, maximum temperature, 
and the probability of precipitation. We found no obvious outliers in the weather fore-
casts. This is reasonable due to the fact that forecasts are not subject to inevitable sensor 
technology failures that occur when taking an actual measurement. Rather, the forecast 
data were replete with duplicate values for minimum temperature and precipitation. We 
retained the lowest forecast of minimum temperature and the highest forecast of pre-
cipitation probability for each forecast.

Forecast lags of six or seven days contained a large number of missing values. We 
removed all forecasts past lag 5. We also removed all forecasts containing negative lags 
(i.e., a forecast made after the actual observation).
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Appendix B: Polar coordinate considerations for geographic maps

The glyph plots in Figs.  4 and 6 rely on proper conversions from polar to geo-
graphic or Cartesian coordinates. This allows the glyphs to be plotted directly 
on the underlying map, rather than embedding polar coordinate subplots in the 
image. Avoiding subplots allows for greater precision in the placement of the 
glyphs and avoids the computational burden of creating and embedding multi-
ple figures. This direct plotting approach requires special considerations for geo-
graphical maps, as polar coordinate glyphs become distorted when projecting 
geographical coordinates to a Cartesian plane. For example, a perfect circle in 
geographical coordinates will appear elongated in the vertical direction when the 
circle is projected in the northern hemisphere. One solution to this issue is to pro-
ject all geographical coordinates to a Cartesian plane prior to the glyph construc-
tion. This can be conveniently accomplished using the mapproject() function in 
the mapproj R package (McIlroy et al. 2017).

Polar coordinates are defined in terms of radius r and angle � . Figure 6 defines 
r ∈ [0, 1] as the scaled average absolute error between predicted and actual tempera-
ture and � =

(4−m)�

6
 where m represents the numeric month. We center each glyph at 

0 with Cartesian coordinates

Let (xi, yi) represent the set of Cartesian coordinates centered at the origin that cre-
ate the glyph associated with location i. These coordinates are defined using the 
same units as the underlying map projection. The final coordinates of the rendered 
glyph are defined as

where (ux, uy) represents coordinates of location i and � represents a global scal-
ing parameter used to adjust the size of the rendered glyphs on the map. A point is 
drawn at location (ux, uy) to serve as a reference for the glyph. Asymmetry about the 
point (ux, uy) reveals seasonal patterns in the forecast errors.

We construct the correlation ellipses of Fig. 4 with foci F1,F2 located along the 
semi-major axis y = x ( � =

�

4
 ) for positive correlations and y = −x ( � = −

�

4
 ) for 

negative correlations. We fix F1 at the origin and denote r as the radius extending 
from F1 to the edge of the ellipse, as illustrated in Fig. 8. This approach to ellipse 
creation is outlined in Knisley and Shirley (2001) and adapted here where we define 
r for � ∈ [0, 2�] as

where � ∈ (−1, 1)�{0} represents the desired correlation between forecast errors. 
In the event that � = −1, 1, or 0 , we use 𝜌 ± 𝜖 (𝜖 > 0) when creating the ellipse to 
avoid numerical precision errors. The ellipse is then converted to Cartesian coordi-
nates and centered at the origin as

(x, y) = (r cos �, r sin �)

� ⋅ (xi + ux, yi + uy)

r =
(1 − ���)2

1 −
√

�p�(2 − �p�) cos(� −
sign (�)�

4
)
,
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Each ellipse is scaled to be circumscribed in the [−0.5, 0.5] × [−0.5, 0.5] square. 
This scaling makes it possible to create a matrix of ellipses using a common grid 
size. It also reduces the difference in areas between ellipses which facilitates com-
parisons of shape. This scaling is defined as

Note that there are three ellipses for each location. We define a matrix of ellipses 
centered at the shared vertex of the lattice denoted by (ux, uy) . Let (xi, yi) represent 
the coordinates of one of the three ellipses centered at this location. Each ellipse is 
centered and scaled on the map as

where o1 and o2 represent offset terms used to separate the centers of the three ellip-
ses in the matrix defined for each location.

This direct plotting approach of the ellipses eases plot customization, as there 
is no need to reconcile formatting differences between independently created sub-
plots. This approach can also be generalized to plot other geometric shapes on a geo-
graphic map. It is also helpful for interactive applications that require fast renderings 
of images in response to dynamic inputs.
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et al. 2015), geosphere (Hijmans 2016), mapproj (McIlroy et al. 2017), rgdal (Bivand et al. 2018), and sp 
(Bivand et al. 2013) R packages. Other data manipulations and visualizations made use of the tidyverse 
(Wickham 2017), as well as the ggforce (Pedersen 2018), latex2exp (Meschiari 2015), RColorBrewer 
(Neuwirth 2014), and reshape2 (Wickham 2007) R packages. Variable importance models made use of 
the randomForest (Liaw and Wiener 2002) R package.
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