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Abstract
Motivated by the increasing use of discrete-state Markov processes across applied 
disciplines, a Metropolis–Hastings sampling algorithm is proposed for a partially 
observed process. Current approaches, both classical and Bayesian, have relied on 
imputing the missing parts of the process and working with a complete likelihood. 
However, from a Bayesian perspective, the use of latent variables is not necessary 
and exploiting the observed likelihood function, combined with a suitable Markov 
chain Monte Carlo method, results in an accurate and efficient approach. A com-
prehensive comparison with simulated and real data sets demonstrate our approach 
when compared with alternatives available in the literature.

Keywords  Bayesian estimation · Transition matrix · Credit risk scoring

1  Introduction

We consider the inference problem of a partially observed continuous-time Markov 
chain (CTMC), written as X ∶= {X(t); t ≤ �} , that take values on a finite state space, 
� ∶= {1,… ,m} . Such continuous-time discrete-state systems find applications in 
areas such as physics, Van Kampen  (2007); ecology, Fukaya and Royle  (2013); 
neuroscience, Sauer  (2016); and finance, Pardoux  (2008). Hence, the need for 
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efficient inference procedures is required. The literature on CTMC is extensive, with 
an excellent exposition provided in, for example, the monograph by Norris  (1998).

If the process is observed in full, that is all moves and times of moves between 
states are observed, then the likelihood is easy to derive, to evaluate and maxi-
mize. The time the process spends in each state j ∈ � is exponential with parameter 
𝜆j > 0 . After this time the process moves from state j to state k with probability pj,k , 
noting that pj,j = 0 . We then write the vector of (�j) for convenience in matrix form 
with Λ = diag (�1,… , �m) , a m × m matrix. We also let P = (pj,k) be the m × m 
matrix of transition probabilities. The process can be characterized by the intensity 
matrix G = −Λ + ΛP.

With a fully observed process the likelihood can be written as

where Nj,k denotes the number of transitions from state j to state k, Nj is the number 
of exits to state j and Tj is the total time spent in state j, up to the final time for which 
the process is observed. In this case, the maximum likelihood estimator is readily 
obtained, see e.g. Inamura  (2006),

All the above quantities exist provided the process visits all states in �.
However, in most applications, fully observed processes are not typically avail-

able and X is only partially observed at specific time points; Xp ∶= {X(ti) = xi} , for 
i = 1,… , n . This problem of the partially observed CTMC has received consider-
able attention within the literature, and recent reviews can be found in Israel et al.  
(2001), Bladt and Sorensen  (2005), and Pfeuffer  (2017), for example. The latter of 
these references also provides an R package implementation of various proposals.

It is well known that the maximum likelihood estimator (MLE) approach has 
several drawbacks; even with the MLE possibly not existing. This existence issue 
worsens as gaps between the partially observed records increases; see Bladt and 
Sorensen  (2005). Given all this, an EM algorithm treating the unobserved record 
lying between the partial observations as latent variables, is currently a popu-
lar approach, see dos Reis and Smith  (2018) and Pfeuffer et  al.  (2019). On the 
other hand, a Bayesian treatment of the problem has also been presented; Bladt and 
Sorensen  (2005) proposed a Gibbs sampler approach based on a rejection sampling 
algorithm for the unobserved states. A more sophisticated Gibbs sampling approach, 
which relies on the simulation of the CTMC over an interval given the start and 
end states was considered in Fearnhead and Sherlock  (2006), and implemented 
in Pfeuffer  (2017). Another approach is to use the Gibbs sampler in Rao and Teh  
(2013), which simulates the CTMC conditioned on possibly noisy observations.

Therefore, current approaches to tackle the inference problem for Xp prefer the 
use of a complete likelihood. We believe this has been in part motivated in order to 
achieve the existence of a simple looking complete likelihood, even if it is difficult to 

(1)L(G) =

(∏
j≠k

p
Nj,k

j,k

)(
m∏
j=1
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j
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̂
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, and p̂j,k =

Nj,k

Nj

, j, k ∈ {1,… ,m}, j ≠ k.
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obtain; which in a Bayesian setting allows for the use of conjugate priors and avoid-
ance of parameter tuning when performing Markov-chain–Monte-Carlo (MCMC) 
methods. However, problems with using latent variables for sampling the missing 
process in between observed states are the high computational cost for doing so and 
the possibly high correlations which slow the mixing of the sampler. An illustration 
of this problem in a simple scenario consisting of a binary Markov chain is pre-
sented in Appendix B.

There have been some successful applications of Bayesian inference for partially 
observed CTMCs without the use of latent variables though all use some form of 
restrictions compared to our approach. The paper of Amoros et al.  (2019) considers 
a CTMC with only two states for the modeling of presence or absence of hepatocel-
lular carcinoma. As the transition probabilities for the two states are known exactly, 
there is no need to impute missing data. So despite the overall setting of a hidden 
Markov model, the two states make their algorithm simpler. As well as Amoros 
et al.  (2019), Sherlock et al.  (2010) consider the two state case for which the partial 
and full likelihoods are available. In Georgoulas et al.  (2017) the authors consider 
a pseudo marginal approach for population models based on CTMCs with infinite 
states which are then truncated into a finite state setting. As such it restricts attention 
to rate matrices which depend on a small number of parameters, usually less than 
the number of states. On the other hand, a full rate matrix has d(d − 2) free parame-
ters where d is the number of states. Zhao et al.  (2016) considers the use of CTMCs 
for phylogenetic protein modelling. In particular, they propose a generalized linear 
model based parameterization for the generator matrix and use data augmentation to 
complete the likelihood. On the other hand, Zhao et al.  (2016) consider the use of 
constrained rate matrices instead of full rate matrices due to their particular appli-
cation in phylogenetics. In fact, we do find a suitable dependent Metropolis pro-
posal distribution based on a parameterization of the rate matrix in terms of prob-
ability vectors and scalars. A dependent Dirichlet proposal distribution is shown in 
our paper to work well. Also, in Sect. 2.5, they discuss the use of MH samplers for 
partially observed CTMCs with the following proposals: (1) additively or multipli-
catively perturbing each entry of the generator matrix; or (2) setting an independent 
Dirichlet prior for the transition probabilities at each state. In our experiments, we 
found that in many settings it is better to use a random walk proposal based on a Dir-
ichlet distribution rather than independent ones. As we will see, our new algorithm 
is applied to a fully specified rate matrix.

In the present work we focus on Bayesian inference for the partially observed 
CTMC without using latent variables; we use the likelihood function directly by 
evaluation of matrix exponentials and perform posterior inference via a Metropo-
lis–Hastings approach where the generator matrices are fully specified and not con-
strained. The outline is as follows: Sect. 2 presents the theory and the proposed algo-
rithm. Section 3 includes simulation and real data studies where we compare with, 
while Section 4 concludes with a brief discussion.
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2 � Bayesian procedures

Let a CTMC be partially observed at times {0, t1,… , tn} , and denote the obser-
vations as {X(0),X(t1),… ,X(tn)} where, for short, we write X(ti) = xi , and 
Δi = ti − ti−1 , with t0 = 0 . The probability that the process is in state k at time t after 
being observed in state j at time 0 is denoted by Qt(j, k) . Such a transition probability 
can be expressed in terms of the generator matrix G as follows:

which is the (j, k)th element of the matrix exp(tG) ; written in full as

with G0 = I , the m × m identity matrix. The likelihood then becomes

For more on the theory presented here, see, for example, Grimmett and Stirzaker  
(1982).

Evaluation of the exponential of a matrix is a well studied topic, see Higham  
(2005), and it is readily available in most scientific computing programming lan-
guages, such as R, from the package “expm”. So computation of the likelihood is 
possible and simulation from the corresponding posterior distribution can be per-
formed with a Metropolis–Hastings sampler.

On the other hand, maximization of the above likelihood is difficult due to the 
constraints involving the generator matrix G. Indeed, it appears to be a strategy that 
has not been directly tried. This issue motivated searches for suitable latent vari-
ables, which once found have provided a source of inference for both classical and 
Bayesian approaches alike.

In the next two subsections we consider Bayesian approaches; the first is the 
existing strategy involving latent variables and the second is our proposal which 
obviates the need for latent variables by working with the likelihood (4) directly. The 
former is currently the more popular approach as it is the natural Bayesian version of 
the EM methodology, see for example dos Reis and Smith  (2018) and Pfeuffer et al.  
(2019).

2.1 � Gibbs sampler and latent variables

In order to utilize the complete likelihood (1) given partially observed data, it 
is necessary to sample the complete trajectory of the CTMC between the dis-
cretely observed times where we know the states of the CTMC. An elaborate way 

(2)Qt(j, k) = [exp(t G)](j,k),

(3)exp(tG) =

∞∑
l=0

tl

l!
Gl

(4)L(G) =

n∏
i=1

QΔi
(xi−1, xi) =

n∏
i=1

[exp(Δi G)](xi−1,xi).
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is to sample the process forward from the start; i.e. between consecutive observed 
times (tj, tj+1) the plan is to sample the waiting time Δ�

1
= t�

1
− t1 at state xj , the 

unobserved transition to a state x′
1
 , the waiting time Δ�

2
= t�

2
− t�

1
 at state x′

1
 , the 

unobserved transition to state x′
2
 and so on; the simulated trajectory is accepted if 

at time tj+1 the process is at the observed state xj+1 . This would be how to sample 
the missing process conditional on the G. See Fig 1 for an illustration, where k 
states have been sampled in between known states at times tj and tj+1.

This is equivalent to a rejection sampling algorithm; i.e. sample the missing 
process and accept it if it hits the observed part of the process. With a few states 
this might work adequately, but obviously will run into efficiency issues when 
the number of states becomes large or the time elapsed between discrete obser-
vations is large. This rejection sampler approach was originally used by Bladt 
and Sorensen  (2005) to implement a Gibbs sampler. An alternative more effi-
cient version is given by Fearnhead and Sherlock  (2006), where an algorithm for 
exact simulation of the CTMC between two known states, s0 at time t0 and se at 
time te > t0 , was presented. We note that such a simulation scheme relies on the 
evaluation of [exp(te − t0)G)](s0,se) to determine the number of unobserved transi-
tions k in (t0, te) . We also note that matrix exponential evaluations are needed to 
calculate the likelihood (4). The usefulness of such an algorithm for the Gibbs 
sampling procedure of Bladt and Sorensen  (2005) was discussed in Fearnhead 
and Sherlock  (2006) and implemented in the R package of Pfeuffer  (2017). In 
Algorithm 1 we present the corresponding pseudocode for simulation of CTMC 
bridges.
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A Bayesian approach using latent variables can be based on sampling the com-
plete trajectory using a Gibbs sampler where we sample iteratively from

for i = 1,… , n − 1 , and then sample

which is based on (1), suitably multiplied by the prior. Pseudocode for the Gibbs 
sampler is given in Algorithm 2. An advantage of such a Gibbs sampling strategy is 
that the algorithm is automatic, in the sense that no tuning is required. Another alter-
native is to use the Gibbs sampler of Rao and Teh  (2013), presented in Algorithm 3, 
where uniformization is used to draw a CTMC full trajectory conditioned on partial 
observations from a previously drawn full trajectory and the forward filtering back-
ward sampling algorithm is used to resample the states. In contrast with the previ-
ous Gibbs sampler evaluation of matrix exponentials, which can be computationally 
expensive for large dimensions, this algorithm does not require such computations. 
The corresponding Gibbs sampler is presented in Algorithm 4.

[
{X(t), ti < t < ti+1} | G, X(ti) = xi, X(ti+1) = xi+1,Δi+1 = ti+1 − ti

]
,

[G | {X(t), 0 ≤ t ≤ �}],

Fig. 1   Observed states x and y separated by a time of length t 
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2.2 � Metropolis–Hastings sampler

In this subsection we propose a more direct Bayesian approach which does not 
rely on the introduction of latent variables. We do this by considering a Metropo-
lis–Hastings sampler for the posterior distribution based on the likelihood (4). 
The Metropolis–Hastings algorithm works by introducing a proposal distribution 
for the parameters of interest. The proposals for the parameters in the matrices Λ 
and P are given as follows: Regarding the diagonal matrix Λ with j-th diagonal 
entry, denoted by �j , proposal values are given by q(��

j
|�j) , for each j ∈ {1,… ,m} , 

to be a LogNormal distribution with mean log �j and standard deviation �2
j
= �

2 . 
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For the stochastic matrix P, we consider three possible proposal distributions. Let 
pppj denote the vector consisting of the off-diagonal entries in each row of P.

The first proposal is given by q(ppp�
j
|pppj) to be a Dirichlet distribution with parame-

ters cjpppj with cj ∈ ℝ
+ . For such a Dirichlet proposal the mean for ppp′

j
 is pppj . An alter-

native choice is to let q(ppp�
j
|pppj) be a Dirichlet distribution with parameter cjpppj + 111 , 

where 111 is a vector consisting of entries 1. Such a Dirichlet distribution has mode pppj . 
In practice we found this latter proposal is more robust. Finally we consider a pro-
posal q(p�

j,k
|pj,k) to be a LogitNormal distribution with mean logit(pj,k) . If a draw 

from such a proposal is accepted then we have to normalize the vector pppj by the sum 
of its entries, so the matrix P remains a stochastic matrix. This proposal distribution 
is more suitable when some entries of P are zero or close to zero.

Each time a proposal is made, we recompute the likelihood function in order to 
determine whether the proposal is accepted. We illustrate with the update for �1 ; we 
sample �′

1
 from q(��

1
|�1) and accept this move with probability

where G� = −Λ� + Λ�P and Λ� = (��
1
, �2,… , �m) , while G = −Λ + ΛP and 

Λ = (�1, �2,… , �m) . A similar and obvious procedure follows for the other param-
eters making up Λ and P, a complete summary of the algorithm is presented in 
Appendix 1. In Algorithm 5 we give pseudocode for the Metropolis–Hastings sam-
pler. The exponential of the matrix G is calculated using the scaling and squar-
ing method of Higham  (2005) as implemented in the Julia LinearAlgebra library 
https://​docs.​julia​lang.​org/​en/​v1/​stdlib/​Linea​rAlge​bra/. Alternatively, when the num-
ber of states becomes prohibitively large we can use the algorithm of Al-Mohy and 
Higham  (2011) by calling the Python implementation of the SciPy library (Virtanen 
et al.  2020).

2.3 � Prior selection

With such a Bayesian framework, the setting of prior distributions is relatively 
straightforward. For example, we assign independent gamma priors to each �j , with 

� = min

{
1,

L(G�)�(Λ�)q(�1|��1)
L(G)�(Λ)q(��

1
|�1)

}
,
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shape and rate parameters �j, �j ∈ ℝ
+ . Each row of P can be assigned a Dirichlet 

prior with parameters chosen so the prior is uniform on the simplex. In previous 
Bayesian analyses the prior distribution was assigned on the off-diagonal elements 
of the matrix G, e.g. Bladt and Sorensen  (2005), Pfeuffer  (2017). The main motiva-
tion of this was to assign gamma priors so that there is conjugacy when considering 
the complete likelihood (1). However, a prior assignment at the level of the matrices 
Λ and P is useful to elicit expert information given the interpretation of the matrices. 
The jth diagonal elements of Λ give the rates of the exponential times the Markov 
chain waits in state j and the jth row of P gives transition probabilities for the cor-
responding state changes. In particular, for the simulation studies where we compare 
Gibbs samplers with the Metropolis–Hastings algorithm, we will use gamma priors 
with equal shape parameters so that it coincides with the Dirichlet prior on the rows 
of P, with gamma priors on the diagonal entries of D, as discussed above.

3 � Illustrations

We programmed the Metropolis–Hastings algorithm, and the two Gibbs samplers in 
the Julia programming language with the code available at https://​github.​com/​alan7​
riva/​CTMC. Overall, we observe that the Metropolis–Hastings algorithm is not only 
significantly simpler to code but it is also faster and has better mixing throughout 
our experiments.

3.1 � Two state toy example

Here we consider a two state problem with generator matrix

for 𝜆1, 𝜆2 > 0 . In such a case we know explicitly Q(t) = exp(tG) and assuming that 
we discretely observe a Markov chain associated with this generator matrix G over 
a time mesh Δk , Δ ∈ ℝ

+ and k ∈ {1,… , n} for some n ∈ ℕ , the likelihood L(�) 
is also computable; details are given in Appendix B. We drew simulations for the 
above CTMC with ��� = (�1, �2) ∈ {(1, 1), (2, 1)} . The prior distributions were 
� ∼ Gamma(2, 1) for all the experiments. The variance in the LogNormal proposals 
for �i were set to 0.5. A CTMC was generated until 1000 transitions were obtained 
and we considered the discrete observations given by times Δk with Δ = 1.0 and 
1 ≤ k ≤ min {n ; X(nΔ) was fully observed} . For the simulation studies with rates ��� 
we obtained, respectively, 1014 and 1482 partial observations. In Figs. 2 and 3 we 
show the posterior fits of �1 and �2 respectively with 50000 iterations of MCMC 
after diagnosing convergence with the potential scale reduction factor of Gelman 
and Rubin  (1992) below 1.01 calculated with 4 chains started at random.

In Tables 1 and 2 we show the computation time, effective sample sizes (ESS) 
and ESS per second of computation before diagnosing convergence, all averaged 
over the 4 chains started at random values; the same quantities are also presented 

G =

(
−�1 �1

�2 −�2

)
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for a 50000 iterations run started at the final value of one of the 4 pilot runs 
used to assess convergence, the choice of such run was sampled from a uniform 
distribution.

We observe that the Metropolis–Hastings sampler is significantly faster than 
the Gibbs samplers, resulting in bigger ESS per second. In our experiments Gibbs 
sampler 1 outperforms Gibbs sampler 2 due to the latter being considerably slow. 
For this reason in the following studies we focus our comparison only on Gibbs 
sampler 1.

Fig. 2   Marginal histograms of �
1
 for Gibbs samplers 1, 2 and Metropolis–Hastings with 5000 iterations 

after diagnosing convergence, with potential scale reduction, compared with the true posterior 
distribution. True ��� = (1, 1)

Fig. 3   Marginal histograms of �
2
 for Gibbs samplers 1, 2 and Metropolis–Hastings with 5000 

iterations after diagnosing convergence, with potential scale reduction, compared with the the posterior 
distribution. True ��� = (2, 1)

Table 1   Gibbs and Metropolis–Hastings comparison for toy simulation study with ��� = (1, 1)

MH Gibbs 1 Gibbs 2

Iterations until diagnosing convergence 2023 1069 4457
Time (s) before diagnosing convergence (mean) 0.341 14.3 75.5
Time (s) after diagnosing convergence 6.29 524 864
ESS after diagnosing convergence �

1
864 2291 1003

ESS/sec after diagnosing convergence �
1

137 4.37 1.16
ESS after diagnosing convergence �

2
871 2240 1007

ESS/sec after diagnosing convergence �
2

138 4.28 1.17

1366



1 3

On the estimation of partially observed continuous‑time Markov…

3.2 � Five state simulation example

In this study, we draw observations from a CTMC with state space � = {1, 2, 3, 4, 5} . 
In all the experiments presented in this section, the stochastic matrix P = (pj,k) asso-
ciated with the Markov Chain is chosen such that pj,k = 0.25 for j ≠ k . On the other 
hand we take Λ = (�, �, �, �, �) for 3 types of simulation using � ∈ {0.25, 0.5, 1, 2, 4} . 
Let n be the total number of observations, for which we take the inter-arrival times 
Δi = Δ for i ∈ {1,… , n} . For different values of � and Δ we choose the number 
of observations n(�,Δ) = 5000�Δ , so we have about �

∑n

i=1
Ti∕Δ = 5000 obser-

vations in each study. The prior distributions were �i ∼ Exp(1) , i ∈ {1,… , 5} and 
pj,k ∼ Gamma(0.25, 1) , j ∈ {1,… , 5} , k ∈ {1,… , 4} pairwise independently for all 
the experiments. The variance in the LogNormal proposals for �i were set to 0.5. 
For the proposals of pppj we used a Dirichlet with common parameter 0.5. We ran 
the Gibbs and Metropolis–Hastings sampler; i.e. Algorithms 2 and 5, respectively, 
with 10000 iterations for each experiment. In Fig. 4, we present the mean genera-
tors obtained from each sampler after removing 3000 burn-in iterations with Δ = 1 . 
Respective figures for Δ ∈ {0.25, 0.5, 2, 4} are presented in the supplementary mate-
rial. We observe that when the scale 1∕� is equal to the observation window Δ , 
both the Gibbs sampler 1 and Metropolis–Hastings chains produce a mean genera-
tor which fits well with the true values; with the Metropolis–Hastings performance 
being faster so allowing for better estimation if desired.

When the scale of the waiting times for the true process to change state are 
smaller than the observation window Δ , one could expect the Gibbs sampler, 
which uses as auxiliary variables the unobserved transitions, to perform better 
than the Metropolis–Hastings sampler. However, we observe that this is not the 
case; for instance, when Δ = 0.5 with scale 0.125 we have that the Frobenius 
distance between the true generator matrix and the mean generator associated 
with the Metropolis–Hastings sampler is 5.79, while for the Gibbs sampler we get 
a distance of 6.63. Table  3 shows for each experiment the computation time and 
Frobenius distance to the true generator matrix for the Metropolis–Hastings and 
Gibbs samplers as well as for the EM algorithm, which is usually used in credit 
risk applications (see for instance Pfeuffer  (2017)). All starting points are the same 
for the three methods. Another advantage of the Metropolis–Hasting algorithm 

Table 2   Gibbs and Metropolis–Hastings comparison for toy simulation study with ��� = (2, 1)

MH Gibbs 1 Gibbs 2

Iterations until diagnosing convergence 2521 17483 3891
Time (s) before diagnosing convergence (mean) 0.424 348 300
Time (s) after diagnosing convergence 5.41 733 11657
ESS after diagnosing convergence �

1
166 36 59

ESS/sec after diagnosing convergence �
1

30.7 0.14 0.005
ESS after diagnosing convergence �

2
165 36 59

ESS/sec after diagnosing convergence �
2

30.5 0.14 0.005
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showcased by these experiments was again the improvement of computation times 
as well as their stability across experiments in comparison to the Gibbs sampler 
where depending on the observation window and true scale the algorithm could 
be slower due to the bridges simulations. Similar behavior was observed for Gibbs 
sampler 2. Table 4 shows computation time.

3.3 � Credit risk analysis

In Pfeuffer  (2017) a package for analyzing continuous-time Markov chain 
models with partially observed data is presented. In particular, they implement 
the Gibbs sampler of Bladt and Sorensen  (2005) with a default setting to use 
the exact simulation of the Markov chain over an interval given the start and end 
states, as presented and discussed in Fearnhead and Sherlock  (2006), rather than 
the acceptance–rejection sampling algorithm of Bladt and Sorensen  (2005). The 
foremost application of the package is in credit risk where the Markov chain states 
{AAA,AA,A, BBB, BB, B, C,D} correspond to credit ratings. In Fig.  5 we show 
a comparison of the new Metropolis–Hastings algorithm, using the LogitNormal 
proposal in P with the Gibbs sampler for the credit risk application presented 
in Pfeuffer  (2017). The choice of the priors was taken so they coincide for both 
samplers. Here we take the priors for each �j as Gamma (7, 5) and the Dirichlet 
distribution for each pppj as Dirichlet with common parameter 1. The variance in the 

Table 3   Frobenius distance 
between estimated posterior 
mean and true generator matrix 
across 5 by 5 simulation studies

Gibbs 1 M-H EM

Δ = 4

 1∕� = 4 0.0455 0.0448 0.0436
 1∕� = 2 2.4357 1.4644 0.1516
 1∕� = 1 2.0586 1.6259 1.0289
Δ = 2

 1∕� = 2 0.1033 0.1048 0.1059
 1∕� = 1 1.1454 1.005 0.5163
 1∕� = 0.5 1.8128 2.1211 1.4434
Δ = 1

 1∕� = 1 0.2393 0.2358 0.2235
 1∕� = 0.5 2.5025 1.7987 0.7307
 1∕� = 0.25 3.8773 3.5661 2.3316
Δ = 0.5

 1∕� = 0.5 0.3224 0.3202 0.3136
 1∕� = 0.25 1.0471 1.2246 0.9696
 1∕� = 0.125 6.6398 5.7922 4.3873
Δ = 0.25

 1∕� = 0.25 0.8714 0.8586 0.8617
 1∕� = 0.125 4.9129 3.7802 4.0352
 1∕� = 0.0625 14.9219 13.5827 8.0351
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LogNormal and LogitNormal proposals are taken to be 0.5. We observe that the 
fitted values for the mean generator matrices, obtained from a run of length 100000 
of which the first 10000 iterations were discarded as burn in, are close to the Gibbs 
mean values; the Frobenius distance between the matrices is less than 0.11. Hence, 
we have shown in a not too demanding scenario that the use of latent variables is not 
necessary and equal performance can be achieved using the observed likelihood.

4 � Discussion

Bayesian inference for a partially observed CTMC, without the use of latent 
variables, has not, to the best of our knowledge, been considered before. We 
argue that the use of latent variables in this problem is unnecessary and leads 
to more complex and difficult implementation algorithms. On the other hand, 
the use of and convergence of the Metropolis–Hastings MCMC sampler is both 
simpler and faster, as showcased in Sect. 3.1. The Metropolis–Hastings approach 
is computationally simple yet efficient in comparison with Gibbs samplers based 
on imputing missing latent observations in the form of CTMC bridges between 
the partial observations. Both algorithms accurately target the posterior distribu-
tions, however high correlations in the bridge sampler steps cause slow mixing 
and small effective sample sizes per second in this particular setting. The only 
complicated aspect to our algorithm is the computation of the exponential of a 

Table 4   Computation time for 5 
by 5 simulation studies

Gibbs 1 time M-H time

Δ = 4

 1∕� = 4 722 7.1
 1∕� = 2 1055 7.8
 1∕� = 1 1050 6.7
Δ = 2

 1∕� = 2 778 7.2
 1∕� = 1 807 7.3
 1∕� = 0.5 909 8.7
Δ = 1

 1∕� = 1 696 7.4
 1∕� = 0.5 829 8.7
 1∕� = 0.25 931 7.6
Δ = 0.5

 1∕� = 0.5 1460 11.4
 1∕� = 0.25 1485 12.3
 1∕� = 0.125 1807 12
Δ = 0.25

 1∕� = 0.25 707 7.1
 1∕� = 0.125 757 6.7
 1∕� = 0.0625 797 7.7

1369



	 A. Riva‑Palacio et al.

1 3

matrix for which adequate software is now currently available. Our approach 
is general as it allows for the inference of fully specified generator matrices, 
i.e. without further constraints than having negative values in the diagonal, 
non-negative values off the diagonal and zero sum rows. Two approaches were 

Fig. 4   Comparison of estimated generator matrices for Metropolis–Hastings and Gibbs chains for Δ = 1 
with � = 4 (first row), � = 2 (second row) and � = 1 (third row)
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proposed, one for generator matrices with non-zero off-diagonal entries and one 
for the possibility of such zero entries.

Appendix A: Metropolis‑Hastings algorithm (5) details

The Metropolis–Hastings moves used in our work are the following:

–	 For � ∈ Λ =
{
�1,… , �m

}
 let g ∶ ℝ → ℝ

+ be given by g(x) = ex and propose 
moves from � to ̃𝜆 by 

 with Z ∼ Norma(0, 1) so ̃𝜆 has a LogNormal distribution. The corresponding 
transition kernel is given by q( ̃𝜆 | 𝜆) ∝ e−0.5(log(𝜆)−log(

̃
𝜆))2 ̃

𝜆
−1.

–	 For transition matrix P with no zeros in off-diagonal entries and
	   ppp ∈

{(
pj,1,… , pj,j−1, pj,j+1,… , pj,m

)
∶ 1 ≤ j ≤ m

}
 , let c > 0 and propose 

 with 111 = (1,… , 1) so p̃pp has mode ppp.
–	 For transition matrix P with zeros in off-diagonal entries and
	   p ∈

{
pj,k ∶ 1 ≤ j ≤ m, 1 ≤ k ≤ m, j ≠ k

}
 , let g ∶ ℝ → ℝ

+ be a standard 
logistic function g(x) = ex∕(1 + ex) and propose moves from p to p̃ by 

 with Z ∼ Normal(0, 1) so p̃ has a LogitNormal distribution. Denote www as the 
vector ppp with entry value p changed to p̃ . Finally we do a normalization 

 The transformation f (x1,… , xm) =
�

x1∑m

i=1
xi
,… ,

xm−1∑m

i=1
xi
,
∑m

i=1
xi

�
 is known to have 

Jacobian 
�∑m

i=1
xi
�−m+1 . So the corresponding transition kernel is given by 

̃
𝜆 = g(g−1(𝜆) + Z)

p̃pp|ppp ∼ Dirichlet(111 + cppp)

p̃ = g(g−1(p) + Z)

p̃pp = www∕

m∑
k=1

w.

Fig. 5   Estimated generator matrices for Metropolis–Hastings and Gibbs chains for the credit risk data of 
Pfeuffer  (2017)
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q(p̃pp �ppp) ∝ exp
�
−0.5(logit(pk) − logit(p̃))2

� (p̃+∑i≠k pi)
m−1

p̃(1−p̃)
 . Note that we do not mar-

ginalize the random variable S =
∑m

i=1
wi so we have to draw simulations of the 

auxiliary variable p̃ to evaluate the above conditional density.

Appendix B: Second simulation study details

For a generator matrix

with 𝜆1, 𝜆2 > 0 , we have explicitly that

For discrete observation over a time mesh Δk , Δ ∈ ℝ
+ , and k ∈ {1,… , n} for some 

n ∈ ℕ of the Markov chain associated G; let neq
i

 be the number of times the state 
remains equal for transitions starting in state i and nch

i
 the number of times the state 

changes for transitions starting in state i along the time mesh, with i ∈ {1, 2} . The 
likelihood is readily seen to be

Simulations for the above CTMC with (�1, �2) = (1, 1) and (�1, �2 = (2, 1) were 
drawn. The prior distributions were � ∼ Gamma(1, 1) and 

{
pj,k

}
j≠k

∼ Dirichlet(1) 
for all the experiments. A CTMC was generated until 1000 transitions were obtained 
and we considered the discrete observations given by times Δk with Δ = 1 and 
1 ≤ k ≤ min {n ; X(nΔ) was fully observed}.

In Figs. 6 and 7 we compare the true posterior distributions given the simulated data 
with the Gibbs sampler 1 realizations of �1 and �2 ; whereas in Figures 8 and 9 we do 
the same experiment for the Gibbs sampler 2 and in 10, 11 for the Metropolis–Hastings 
sampler. The choice of priors was taken as indicated above for all the three samplers. 

G =

(
−�1 �1

�2 −�2

)

Q(t) = exp(tG) =

⎛
⎜⎜⎜⎝

�2

�1+�2
+

�1

�1+�2
e−(�1+�2)t

�1

�1+�2
−

�1

�1+�2
e−(�1+�2)t

�2

�1+�2
−

�2

�1+�2
e−(�1+�2)t

�1

�1+�2
+

�2

�1+�2
e−(�1+�2)t

⎞
⎟⎟⎟⎠
.

L(�) =

(
�2

�1 + �2

+
�1

�1 + �2

e−(�1+�2)Δ
)n

eq

1
(

�1

�1 + �2

+
�2

�1 + �2

e−(�1+�2)Δ
)n

eq

2

×

(
�1

�1 + �2

−
�1

�1 + �2

e−(�1+�2)Δ
)nch

1
(

�2

�1 + �2

−
�2

�1 + �2

e−(�1+�2)Δ
)nch

2

.
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Fig. 6   Marginal and bivariate histograms of ��� for the Gibbs sampler 1 ran for 50000 iterations after 
diagnosing stationarity compared with the the true posterior distribution. corresponding to ��� = (1, 1)

1373



	 A. Riva‑Palacio et al.

1 3

Fig. 7   Marginal and bivariate histograms of ��� for the Gibbs sampler 1 ran for 50000 iterations after 
diagnosing stationarity compared with the the true posterior distribution. corresponding to ��� = (2, 1)
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Fig. 8   Marginal and bivariate histograms of ��� for the Gibbs sampler 2 ran for 50000 iterations after 
diagnosing stationarity compared with the the true posterior distribution. corresponding to ��� = (1, 1)
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Fig. 9   Marginal and bivariate histograms of ��� for the Gibbs sampler 2 ran for 50000 iterations after 
diagnosing stationarity compared with the the true posterior distribution. corresponding to ��� = (2, 1)
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Fig. 10   Marginal and bivariate histograms of ��� for the Metropolis–Hastings sampler ran for 50000 
iterations after diagnosing stationarity compared with the the true posterior distribution. corresponding 
to ��� = (1, 1)
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Fig. 11   Marginal and bivariate histograms of ��� for the Metropolis–Hastings sampler ran for 50,000 
iterations after diagnosing stationarity compared with the the true posterior distribution. corresponding 
to ��� = (2, 1)
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The variance in the LogNormal proposals for �i in the Metropolis–Hastings were set 
to 0.0025. We ran 50000 iterations of each sampler after having diagnosed stationarity 
via the potential scale reduction factor of Gelman and Rubin  (1992). We highlight 
that the run time for the Metropolis–Hastings algorithm is significantly faster than the 
Gibbs samplers as showed in Tables 1 and 2. This is due to the computational cost 
of simulating the conditioned trajectories between discretely observed times for the 
CTMC.

Fig. 12   Comparison of estimated generator matrices for Metropolis–Hastings and Gibbs chains for Δ = 4 
with � = 0.25 (first row), � = 0.5 (second row) and � = 1 (third row)
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Appendix C: Further comparisons for the third simulation study

In this appendix we present further mean generator comparisons between the 
Gibbs and Metropolis–Hastings samplers for discretely observed CTMCs. Also 
we present comparisons of generators fitted with the EM algorithm and our 
Metropolis–Hastings approach.

Fig. 13   Comparison of estimated generator matrices for Metropolis–Hastings and Gibbs chains for Δ = 2 
with � = 2 (first row), � = 1 (second row) and � = 0.5 (third row)
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C.1: Gibbs and Metropolis–Hastings comparisons

In Figs. 13, 15 and  we present the mean generator comparisons for the Gibbs and 
Metropolis–Hastings samplers with simulation studies determined, respectively, by 
Δ = 0.5, 2 (Figs. 12, 13, 14, 15, 16, 17, 18, 19, 20).

As mentioned in the main document the entry-wise distance of the Gibbs mean 
generator with the true generator tends to be greater than the one with respect to 
the Metropolis–Hasting mean generator; this is particularly illustrated in the mean 

Fig. 14   Comparison of estimated generator matrices for Metropolis–Hastings and Gibbs chains for 
Δ = 0.5 with � = 8 (first row), � = 4 (second row) and � = 2 (third row)
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Fig. 15   Comparison of estimated generator matrices for Metropolis–Hastings and Gibbs chains for 
Δ = 0.25 with � = 4 (first row), � = 8 (second row) and � = 16 (third row)
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Fig. 16   Comparison of estimated generator matrices for Metropolis–Hastings and EM algorithms for 
Δ = 4 with � = 1 (first row), � = 0.5 (second row) and � = 0.25 (third row)
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Fig. 17   Comparison of estimated generator matrices for Metropolis–Hastings and EM algorithms for 
Δ = 2 with � = 2 (first row), � = 1 (second row) and � = 0.5 (third row)
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Fig. 18   Comparison of estimated generator matrices for Metropolis–Hastings and EM algorithms for 
Δ = 1 with � = 4 (first row), � = 2 (second row) and � = 1 (third row)
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Fig. 19   Comparison of estimated generator matrices for Metropolis–Hastings and EM algorithms for 
Δ = 0.5 with � = 8 (first row), � = 4 (second row) and � = 2 (third row)
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Fig. 20   Comparison of estimated generator matrices for Metropolis–Hastings and EM algorithms for 
Δ = 0.25 with � = 16 (first row), � = 8 (second row) and � = 4 (third row)
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generators for Δ = 0.5 as shown in Table  1 of the main document in terms of 
Frobenius distances.

C.2: EM and Metropolis–Hastings comparison

We use the EM algorithm of the ctmcd R package, see Pfeuffer  (2017), to compare 
with the proposed Metropolis–Hastings algorithm in the context of the third 
simulation study.
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