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Abstract

Motivated by the increasing use of discrete-state Markov processes across applied
disciplines, a Metropolis—Hastings sampling algorithm is proposed for a partially
observed process. Current approaches, both classical and Bayesian, have relied on
imputing the missing parts of the process and working with a complete likelihood.
However, from a Bayesian perspective, the use of latent variables is not necessary
and exploiting the observed likelihood function, combined with a suitable Markov
chain Monte Carlo method, results in an accurate and efficient approach. A com-
prehensive comparison with simulated and real data sets demonstrate our approach
when compared with alternatives available in the literature.

Keywords Bayesian estimation - Transition matrix - Credit risk scoring

1 Introduction

We consider the inference problem of a partially observed continuous-time Markov
chain (CTMC), written as X := {X(¢); t < 7}, that take values on a finite state space,
S :={1,...,m}. Such continuous-time discrete-state systems find applications in
areas such as physics, Van Kampen (2007); ecology, Fukaya and Royle (2013);
neuroscience, Sauer (2016); and finance, Pardoux (2008). Hence, the need for
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efficient inference procedures is required. The literature on CTMC is extensive, with
an excellent exposition provided in, for example, the monograph by Norris (1998).

If the process is observed in full, that is all moves and times of moves between
states are observed, then the likelihood is easy to derive, to evaluate and maxi-
mize. The time the process spends in each state j € S is exponential with parameter
A; > 0. After this time the process moves from state j to state k with probability p;,,
notmg that p;; = 0. We then write the vector of (4;) for convenience in matrix form
with A = diag (4,,...,4,,), a m X m matrix. We also let P = (p;;) be the mXm
matrix of transition probabilities. The process can be characterlzed by the intensity
matrix G = —A + AP.

With a fully observed process the likelihood can be written as

£G) = (pr,’f)(]'[ % e‘“f), (1)
#k =1

where Nj,k denotes the number of transitions from state j to state k, Nj is the number
of exits to state j and 7} is the total time spent in state j, up to the final time for which
the process is observed. In this case, the maximum likelihood estimator is readily
obtained, see e.g. Inamura (2006),

~ N ~ Ny .
/1j=?j, and p,»,k=7j, hke{l,...,m}, j#k

All the above quantities exist provided the process visits all states in S.

However, in most applications, fully observed processes are not typically avail-
able and X is only partially observed at specific time points; X, := {X(¢,) = x;}, for
i=1,...,n. This problem of the partially observed CTMC has recelved consider-
able attention within the literature, and recent reviews can be found in Israel et al.
(2001), Bladt and Sorensen (2005), and Pfeuffer (2017), for example. The latter of
these references also provides an R package implementation of various proposals.

It is well known that the maximum likelihood estimator (MLE) approach has
several drawbacks; even with the MLE possibly not existing. This existence issue
worsens as gaps between the partially observed records increases; see Bladt and
Sorensen (2005). Given all this, an EM algorithm treating the unobserved record
lying between the partial observations as latent variables, is currently a popu-
lar approach, see dos Reis and Smith (2018) and Pfeuffer et al. (2019). On the
other hand, a Bayesian treatment of the problem has also been presented; Bladt and
Sorensen (2005) proposed a Gibbs sampler approach based on a rejection sampling
algorithm for the unobserved states. A more sophisticated Gibbs sampling approach,
which relies on the simulation of the CTMC over an interval given the start and
end states was considered in Fearnhead and Sherlock (2006), and implemented
in Pfeuffer (2017). Another approach is to use the Gibbs sampler in Rao and Teh
(2013), which simulates the CTMC conditioned on possibly noisy observations.

Therefore, current approaches to tackle the inference problem for X, prefer the
use of a complete likelihood. We believe this has been in part motivated in order to
achieve the existence of a simple looking complete likelihood, even if it is difficult to
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obtain; which in a Bayesian setting allows for the use of conjugate priors and avoid-
ance of parameter tuning when performing Markov-chain—-Monte-Carlo (MCMC)
methods. However, problems with using latent variables for sampling the missing
process in between observed states are the high computational cost for doing so and
the possibly high correlations which slow the mixing of the sampler. An illustration
of this problem in a simple scenario consisting of a binary Markov chain is pre-
sented in Appendix B.

There have been some successful applications of Bayesian inference for partially
observed CTMCs without the use of latent variables though all use some form of
restrictions compared to our approach. The paper of Amoros et al. (2019) considers
a CTMC with only two states for the modeling of presence or absence of hepatocel-
lular carcinoma. As the transition probabilities for the two states are known exactly,
there is no need to impute missing data. So despite the overall setting of a hidden
Markov model, the two states make their algorithm simpler. As well as Amoros
etal. (2019), Sherlock et al. (2010) consider the two state case for which the partial
and full likelihoods are available. In Georgoulas et al. (2017) the authors consider
a pseudo marginal approach for population models based on CTMCs with infinite
states which are then truncated into a finite state setting. As such it restricts attention
to rate matrices which depend on a small number of parameters, usually less than
the number of states. On the other hand, a full rate matrix has d(d — 2) free parame-
ters where d is the number of states. Zhao et al. (2016) considers the use of CTMCs
for phylogenetic protein modelling. In particular, they propose a generalized linear
model based parameterization for the generator matrix and use data augmentation to
complete the likelihood. On the other hand, Zhao et al. (2016) consider the use of
constrained rate matrices instead of full rate matrices due to their particular appli-
cation in phylogenetics. In fact, we do find a suitable dependent Metropolis pro-
posal distribution based on a parameterization of the rate matrix in terms of prob-
ability vectors and scalars. A dependent Dirichlet proposal distribution is shown in
our paper to work well. Also, in Sect. 2.5, they discuss the use of MH samplers for
partially observed CTMCs with the following proposals: (1) additively or multipli-
catively perturbing each entry of the generator matrix; or (2) setting an independent
Dirichlet prior for the transition probabilities at each state. In our experiments, we
found that in many settings it is better to use a random walk proposal based on a Dir-
ichlet distribution rather than independent ones. As we will see, our new algorithm
is applied to a fully specified rate matrix.

In the present work we focus on Bayesian inference for the partially observed
CTMC without using latent variables; we use the likelihood function directly by
evaluation of matrix exponentials and perform posterior inference via a Metropo-
lis—Hastings approach where the generator matrices are fully specified and not con-
strained. The outline is as follows: Sect. 2 presents the theory and the proposed algo-
rithm. Section 3 includes simulation and real data studies where we compare with,
while Section 4 concludes with a brief discussion.
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2 Bayesian procedures

Let a CTMC be partially observed at times {0,¢,...,¢,}, and denote the obser-
vations as {X(0),X(z)),...,X(#,)} where, for short, we write X(#;) =x;, and
A; =t; —t;,_;, with #; = 0. The probability that the process is in state k at time ¢ after
being observed in state j at time O is denoted by Q,(j, k). Such a transition probability
can be expressed in terms of the generator matrix G as follows:

Q.G k) = [exp(t G)] ;). ()

which is the (j, k)th element of the matrix exp(#G); written in full as

exp(tG) = Z 7 G' 3)
=0 -

with G° = I, the m X m identity matrix. The likelihood then becomes
LG) =[] Qa (i x) = [ Jlexpa; Gl - @)
i=1 i=1

For more on the theory presented here, see, for example, Grimmett and Stirzaker
(1982).

Evaluation of the exponential of a matrix is a well studied topic, see Higham
(2005), and it is readily available in most scientific computing programming lan-
guages, such as R, from the package “expm”. So computation of the likelihood is
possible and simulation from the corresponding posterior distribution can be per-
formed with a Metropolis—Hastings sampler.

On the other hand, maximization of the above likelihood is difficult due to the
constraints involving the generator matrix G. Indeed, it appears to be a strategy that
has not been directly tried. This issue motivated searches for suitable latent vari-
ables, which once found have provided a source of inference for both classical and
Bayesian approaches alike.

In the next two subsections we consider Bayesian approaches; the first is the
existing strategy involving latent variables and the second is our proposal which
obviates the need for latent variables by working with the likelihood (4) directly. The
former is currently the more popular approach as it is the natural Bayesian version of
the EM methodology, see for example dos Reis and Smith (2018) and Pfeuffer et al.
(2019).

2.1 Gibbs sampler and latent variables
In order to utilize the complete likelihood (1) given partially observed data, it

is necessary to sample the complete trajectory of the CTMC between the dis-
cretely observed times where we know the states of the CTMC. An elaborate way
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is to sample the process forward from the start; i.e. between consecutive observed
times (#;,#;,;) the plan is to sample the waiting time A’l = t’l — 1y at state x;, the
unobserved transition to a state x’l, the waiting time A’2 = t’2 - t; at state x’l, the
unobserved transition to state x, and so on; the simulated trajectory is accepted if
at time 7, the process is at the observed state x;, ;. This would be how to sample
the missing process conditional on the G. See Fig 1 for an illustration, where k
states have been sampled in between known states at times 7; and 7,

This is equivalent to a rejection sampling algorithm; i.e. sample the missing
process and accept it if it hits the observed part of the process. With a few states
this might work adequately, but obviously will run into efficiency issues when
the number of states becomes large or the time elapsed between discrete obser-
vations is large. This rejection sampler approach was originally used by Bladt
and Sorensen (2005) to implement a Gibbs sampler. An alternative more effi-
cient version is given by Fearnhead and Sherlock (2006), where an algorithm for
exact simulation of the CTMC between two known states, s, at time £, and s, at
time ¢, > f,, was presented. We note that such a simulation scheme relies on the
evaluation of [exp(, — 7)) G)], ,,) to determine the number of unobserved transi-
tions k in (fy,¢,). We also note that matrix exponential evaluations are needed to
calculate the likelihood (4). The usefulness of such an algorithm for the Gibbs
sampling procedure of Bladt and Sorensen (2005) was discussed in Fearnhead
and Sherlock (2006) and implemented in the R package of Pfeuffer (2017). In
Algorithm 1 we present the corresponding pseudocode for simulation of CTMC
bridges.

Algorithm 1 (Fearnhead and Sherlock (2006)) Simulation of a CTMC (X¢)
with generator G over an interval [to, t.] given the start and end states so and
Se.
1: Let p = max{\1,...,Am}, A = te —tg and M = p~ ! G + I. Simulate the number of
transitions N between times tg and te given by
exp(—pA)(pA)" [MT] 5y s0)
! exp (GA)](50.5.) 7

PN =r| =

2: Simulate t},...,t)y uniformly from the interval [to, te].
3: Let t; = to and s; = so. Simulate the states (s1...,sy) of the CTMC at times
(t},...,thy), respectively, from

Mg,y [M77]

M=+,

~5j,1a56)

(s,5¢)

P[Xy =s| Xy | =sf 1, Xi, =5 =
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Algorithm 2 Gibbs sampler 1
1: for ke {l1,...,l} do
2: Draw {Xt(k+l), ty <t <ti_1| Xf,k,)l = fEi—hXt(f) = xz} from Algorithm 1 using

the generator G(F).
3: Draw the generator Gk+1) given {X§k+1>, 0<t< te} from the posterior distribu-

tion given by the complete likelihood (1) and selected prior distribution.
4: end for

A Bayesian approach using latent variables can be based on sampling the com-
plete trajectory using a Gibbs sampler where we sample iteratively from

[(X(), 1; <1 <11} | G, X(1) = xpp X(111) = Xy, Dy = Ly — 1],
fori =1,...,n— 1, and then sample
[G] {X(®), 0t <1},

which is based on (1), suitably multiplied by the prior. Pseudocode for the Gibbs
sampler is given in Algorithm 2. An advantage of such a Gibbs sampling strategy is
that the algorithm is automatic, in the sense that no tuning is required. Another alter-
native is to use the Gibbs sampler of Rao and Teh (2013), presented in Algorithm 3,
where uniformization is used to draw a CTMC full trajectory conditioned on partial
observations from a previously drawn full trajectory and the forward filtering back-
ward sampling algorithm is used to resample the states. In contrast with the previ-
ous Gibbs sampler evaluation of matrix exponentials, which can be computationally
expensive for large dimensions, this algorithm does not require such computations.
The corresponding Gibbs sampler is presented in Algorithm 4.

So-

-S5

S1- -S1

So- — ; ‘ . ‘ ‘ . S0
t ti t t3  tea tka tk t+a

Fig. 1 Observed states x and y separated by a time of length ¢
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Algorithm 3 (Rao and Teh (2013)) Simulation of a CTMC

{ X[t € [to,te]} with generator G given partial observations X,V =

{XPev(t;) = xi}gzo and a previous draw {XP9; ¢ € [to,t.]} |G’,XI§)ld

{XOld(ti) = xi}i:o'

1: Let p > max{A1,...,A\m} and sample Poisson process U; in [tg, te] with piecewise con-
stant rate

R(t) =p + )\Xfld'

Define W as the sorted, in increasing order, union of the jump times of U and X° in
[to, te]. Denote the entries of W as wj.
2: Use the forward filtering backward sampling algorithm to sample a discrete time Markov

chain {Z;; j=1,...,|W|} given by a transition matrix M = %G’ + I. The likelihood
associated to the partial observations is given by
Lj(x) = 11 1{XM() = @i = o).

{isti€lwj,wip)}

3: Return a CTMC trajectory {X[°V; ¢ € [to,te]} which starts with value zo at time tg
and changes to state Z; = z; at time wj.

Algorithm 4 Gibbs sampler 2
1: Initialize a generator matrix G and wuse Algorithm 1 to initialize
{Xt(o)| Xto0 =), Xz(g) = xn} using G(0).
2: for ke {l,...,l} do
Draw the generator G given {Xt(kfl), 0<t< tE} from the posterior distribution

given by the complete likelihood (1) and selected prior distribution.

4: Draw {Xt(k)| Xt(f) = xo,...,Xt(:f) = xn} using Algorithm 3 with G(®*) and
{xFPlo<e<ey.

5: end for

2.2 Metropolis—Hastings sampler

In this subsection we propose a more direct Bayesian approach which does not
rely on the introduction of latent variables. We do this by considering a Metropo-
lis—Hastings sampler for the posterior distribution based on the likelihood (4).
The Metropolis—Hastings algorithm works by introducing a proposal distribution
for the parameters of interest. The proposals for the parameters in the matrices A
and P are given as follows: Regarding the diagonal matrix A with j-th diagonal
entry, denoted by 4;, proposal values are given by q(/ljf|/1j), foreach j € {1,...,m},

to be a LogNormal distribution with mean log 4; and standard deviation 0'1.2 =o>.
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For the stochastic matrix P, we consider three possible proposal distributions. Let
p; denote the vector consisting of the off-diagonal entries in each row of P.
The first proposal is given by q(p |p;) to be a Dirichlet distribution with parame-

ters ¢;p; with ¢; € R*. For such a Dlrlchlet proposal the mean for p is p;. An alter-
native choice is to let q(p’ Ip;) be a Dirichlet distribution with parameter cp;+1,
where 11is a vector consisting of entries 1. Such a Dirichlet distribution has mode p;.
In practice we found this latter proposal is more robust. Finally we consider a pro-
posal q(p]’.’k Ip;) to be a LogitNormal distribution with mean logit(p; ;). If a draw
from such a proposal is accepted then we have to normalize the vector p; by the sum
of its entries, so the matrix P remains a stochastic matrix. This proposal distribution
is more suitable when some entries of P are zero or close to zero.

Algorithm 5 Metropolis—Hastings sampler
1: Draw G’ from the selected proposal distribution ¢(G’|G(*)).

2: Let
’ ’ (k)|
o i d 1, L) 7@V |G
£(G®) (G0)g(G7GP)
where L is the likelihood (4) and 7 is the selected prior over G. Take

GE+1) _ ed with probability «
(k) with probability 1 — a.

Each time a proposal is made, we recompute the likelihood function in order to
determine whether the proposal is accepted. We illustrate with the update for A;; we
sample A from g(4!|4,) and accept this move with probability

. { L(G") n(A")q(A14)) }
a=min< 1,
L(G) (M)q(A}141)

where G'=—-A +A'P and AN =, 4,,...,4,), while G=-A+AP and
A= (4, 4y,...,4,). A similar and obvious procedure follows for the other param-
eters making up A and P, a complete summary of the algorithm is presented in
Appendix 1. In Algorithm 5 we give pseudocode for the Metropolis—Hastings sam-
pler. The exponential of the matrix G is calculated using the scaling and squar-
ing method of Higham (2005) as implemented in the Julia LinearAlgebra library
https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/. Alternatively, when the num-
ber of states becomes prohibitively large we can use the algorithm of Al-Mohy and
Higham (2011) by calling the Python implementation of the SciPy library (Virtanen
et al. 2020).

2.3 Prior selection

With such a Bayesian framework, the setting of prior distributions is relatively
straightforward. For example, we assign independent gamma priors to each “/, with
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shape and rate parameters a;, f; € R*. Each row of P can be assigned a Dirichlet
prior with parameters chosen so the prior is uniform on the simplex. In previous
Bayesian analyses the prior distribution was assigned on the off-diagonal elements
of the matrix G, e.g. Bladt and Sorensen (2005), Pfeuffer (2017). The main motiva-
tion of this was to assign gamma priors so that there is conjugacy when considering
the complete likelihood (1). However, a prior assignment at the level of the matrices
A and P is useful to elicit expert information given the interpretation of the matrices.
The jth diagonal elements of A give the rates of the exponential times the Markov
chain waits in state j and the jth row of P gives transition probabilities for the cor-
responding state changes. In particular, for the simulation studies where we compare
Gibbs samplers with the Metropolis—Hastings algorithm, we will use gamma priors
with equal shape parameters so that it coincides with the Dirichlet prior on the rows
of P, with gamma priors on the diagonal entries of D, as discussed above.

3 lllustrations

We programmed the Metropolis—Hastings algorithm, and the two Gibbs samplers in
the Julia programming language with the code available at https://github.com/alan7
riva/CTMC. Overall, we observe that the Metropolis—Hastings algorithm is not only
significantly simpler to code but it is also faster and has better mixing throughout
our experiments.

3.1 Two state toy example

Here we consider a two state problem with generator matrix

_ (M A
¢= < 4 —’12>

for A;, 4, > 0. In such a case we know explicitly Q(¢) = exp(¢tG) and assuming that
we discretely observe a Markov chain associated with this generator matrix G over
a time mesh Ak, A € R* and k € {1,...,n} for some n € N, the likelihood L(A)
is also computable; details are given in Appendix B. We drew simulations for the
above CTMC with A= (4;,4,) € {(1,1), (2,1)}. The prior distributions were
A ~ Gamma(2, 1) for all the experiments. The variance in the LogNormal proposals
for A; were set to 0.5. A CTMC was generated until 1000 transitions were obtained
and we considered the discrete observations given by times Ak with A = 1.0 and
1 <k < min {n; X(nA) was fully observed}. For the simulation studies with rates 4
we obtained, respectively, 1014 and 1482 partial observations. In Figs. 2 and 3 we
show the posterior fits of A, and A, respectively with 50000 iterations of MCMC
after diagnosing convergence with the potential scale reduction factor of Gelman
and Rubin (1992) below 1.01 calculated with 4 chains started at random.

In Tables 1 and 2 we show the computation time, effective sample sizes (ESS)
and ESS per second of computation before diagnosing convergence, all averaged
over the 4 chains started at random values; the same quantities are also presented
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50000 MCMC iterations after diagnosing convergence
true A = (1,1)

2, posterior marginal distribution 2, posterior marginal distribution 24 posterior marginal distribuion

[0 Gibbs sampler 1 histogram [0 Gibbs sampler 2 histogram [ M-H sampler histogram
—— True posterior marginal 5 —— True posterior marginal —— TTrue posterior marginal

o [ 7 @ W o , 0 @ W o , 0 T T

Fig.2 Marginal histograms of 4, for Gibbs samplers 1, 2 and Metropolis—Hastings with 5000 iterations
after diagnosing convergence, with potential scale reduction, compared with the true posterior
distribution. True A = (1, 1)

50000 MCMC iterations after diagnosing convergence
true A=(2,1)

) posterior marginal distribution ), posterior marginal distribution A posterior marginal distribution

20 20
[ Gibbs sampler 1 histogram [ Gibbs sampler 2 histogram [ M-H sampler histogram
— Tiue posteror marginal —— Tiue posteror marginal — e posteror margnal

00
05 [ s 20 25 05 [ s 20 25 7 is 20 25

Fig.3 Marginal histograms of A, for Gibbs samplers 1, 2 and Metropolis—Hastings with 5000
iterations after diagnosing convergence, with potential scale reduction, compared with the the posterior
distribution. True 4 = (2, 1)

Table 1 Gibbs and Metropolis—Hastings comparison for toy simulation study with 4 = (1, 1)

MH Gibbs 1 Gibbs 2

Iterations until diagnosing convergence 2023 1069 4457
Time (s) before diagnosing convergence (mean) 0.341 14.3 75.5
Time (s) after diagnosing convergence 6.29 524 864

ESS after diagnosing convergence 4, 864 2291 1003
ESS/sec after diagnosing convergence 4, 137 4.37 1.16
ESS after diagnosing convergence 4, 871 2240 1007
ESS/sec after diagnosing convergence 4, 138 4.28 1.17

for a 50000 iterations run started at the final value of one of the 4 pilot runs
used to assess convergence, the choice of such run was sampled from a uniform
distribution.

We observe that the Metropolis—Hastings sampler is significantly faster than
the Gibbs samplers, resulting in bigger ESS per second. In our experiments Gibbs
sampler 1 outperforms Gibbs sampler 2 due to the latter being considerably slow.
For this reason in the following studies we focus our comparison only on Gibbs
sampler 1.
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Table 2 Gibbs and Metropolis—Hastings comparison for toy simulation study with 4 = (2, 1)

MH Gibbs 1 Gibbs 2
Iterations until diagnosing convergence 2521 17483 3891
Time (s) before diagnosing convergence (mean) 0.424 348 300
Time (s) after diagnosing convergence 5.41 733 11657
ESS after diagnosing convergence 4, 166 36 59
ESS/sec after diagnosing convergence 4, 30.7 0.14 0.005
ESS after diagnosing convergence 4, 165 36 59
ESS/sec after diagnosing convergence 4, 30.5 0.14 0.005

3.2 Five state simulation example

In this study, we draw observations from a CTMC with state space S = {1,2,3,4,5}.
In all the experiments presented in this section, the stochastic matrix P = (p; ;) asso-
ciated with the Markov Chain is chosen such that p;, = 0.25 for j # k. On the other
hand we take A = (4, 4, 4, 4, 4) for 3 types of simulation using 4 € {0.25,0.5,1,2,4}.
Let n be the total number of observations, for which we take the inter-arrival times
A, = A fori e {1,...,n}. For different values of 4 and A we choose the number
of observations n(4,A) = 500044, so we have about E 2?21 T;/A = 5000 obser-
vations in each study. The prior distributions were A, ~ Exp(1), i € {1,...,5} and
pjx ~ Gamma(0.25,1), j € {1,...,5}, k € {1, ..., 4} pairwise independently for all
the experiments. The variance in the LogNormal proposals for A; were set to 0.5.
For the proposals of p; we used a Dirichlet with common parameter 0.5. We ran
the Gibbs and Metropolis—Hastings sampler; i.e. Algorithms 2 and 5, respectively,
with 10000 iterations for each experiment. In Fig. 4, we present the mean genera-
tors obtained from each sampler after removing 3000 burn-in iterations with A = 1.
Respective figures for A € {0.25,0.5,2, 4} are presented in the supplementary mate-
rial. We observe that when the scale 1/4 is equal to the observation window A,
both the Gibbs sampler 1 and Metropolis—Hastings chains produce a mean genera-
tor which fits well with the true values; with the Metropolis—Hastings performance
being faster so allowing for better estimation if desired.

When the scale of the waiting times for the true process to change state are
smaller than the observation window A, one could expect the Gibbs sampler,
which uses as auxiliary variables the unobserved transitions, to perform better
than the Metropolis—Hastings sampler. However, we observe that this is not the
case; for instance, when A = 0.5 with scale 0.125 we have that the Frobenius
distance between the true generator matrix and the mean generator associated
with the Metropolis—Hastings sampler is 5.79, while for the Gibbs sampler we get
a distance of 6.63. Table 3 shows for each experiment the computation time and
Frobenius distance to the true generator matrix for the Metropolis—Hastings and
Gibbs samplers as well as for the EM algorithm, which is usually used in credit
risk applications (see for instance Pfeuffer (2017)). All starting points are the same
for the three methods. Another advantage of the Metropolis—Hasting algorithm
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Table 3 Frobenius distance Gibbs 1 M-H EM
between estimated posterior
mean and true generator matrix A=4
across 5 by 5 simulation studies
1/A=4 0.0455 0.0448 0.0436
1/A=2 2.4357 1.4644 0.1516
1/A=1 2.0586 1.6259 1.0289
A=2
1/A=2 0.1033 0.1048 0.1059
1/A=1 1.1454 1.005 0.5163
1/A=05 1.8128 2.1211 1.4434
A=1
1/A=1 0.2393 0.2358 0.2235
1/A=0.5 2.5025 1.7987 0.7307
1/A=0.25 3.8773 3.5661 2.3316
A=05
1/A=05 0.3224 0.3202 0.3136
1/A=025 1.0471 1.2246 0.9696
1/4=0.125 6.6398 5.7922 4.3873
A =025
1/A=0.25 0.8714 0.8586 0.8617
1/4=0.125 4.9129 3.7802 4.0352
1/4 =0.0625 14.9219 13.5827 8.0351

showcased by these experiments was again the improvement of computation times
as well as their stability across experiments in comparison to the Gibbs sampler
where depending on the observation window and true scale the algorithm could
be slower due to the bridges simulations. Similar behavior was observed for Gibbs
sampler 2. Table 4 shows computation time.

3.3 Creditrisk analysis

In Pfeuffer (2017) a package for analyzing continuous-time Markov chain
models with partially observed data is presented. In particular, they implement
the Gibbs sampler of Bladt and Sorensen (2005) with a default setting to use
the exact simulation of the Markov chain over an interval given the start and end
states, as presented and discussed in Fearnhead and Sherlock (2006), rather than
the acceptance—rejection sampling algorithm of Bladt and Sorensen (2005). The
foremost application of the package is in credit risk where the Markov chain states
{AAA, AA, A,BBB,BB,B,C,D} correspond to credit ratings. In Fig. 5 we show
a comparison of the new Metropolis—Hastings algorithm, using the LogitNormal
proposal in P with the Gibbs sampler for the credit risk application presented
in Pfeuffer (2017). The choice of the priors was taken so they coincide for both
samplers. Here we take the priors for each 4; as Gamma (7,5) and the Dirichlet
distribution for each p; as Dirichlet with common parameter 1. The variance in the
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Table 4 Computation time for 5

by 5 simulation studies Gibbs I time M-H time
A=4
1/A=4 722 7.1
1/A=2 1055 7.8
1/A=1 1050 6.7
A=2
1/A=2 778 72
1/A=1 807 7.3
1/4=05 909 8.7
A=1
1/A=1 696 74
1/A=0.5 829 8.7
1/A=0.25 931 7.6
A=05
1/A=05 1460 11.4
1/A=025 1485 12.3
1/A=0.125 1807 12
A =025
1/4=025 707 7.1
1/4=0.125 757 6.7
1/4 =0.0625 797 7.7

LogNormal and LogitNormal proposals are taken to be 0.5. We observe that the
fitted values for the mean generator matrices, obtained from a run of length 100000
of which the first 10000 iterations were discarded as burn in, are close to the Gibbs
mean values; the Frobenius distance between the matrices is less than 0.11. Hence,
we have shown in a not too demanding scenario that the use of latent variables is not
necessary and equal performance can be achieved using the observed likelihood.

4 Discussion

Bayesian inference for a partially observed CTMC, without the use of latent
variables, has not, to the best of our knowledge, been considered before. We
argue that the use of latent variables in this problem is unnecessary and leads
to more complex and difficult implementation algorithms. On the other hand,
the use of and convergence of the Metropolis—Hastings MCMC sampler is both
simpler and faster, as showcased in Sect. 3.1. The Metropolis—Hastings approach
is computationally simple yet efficient in comparison with Gibbs samplers based
on imputing missing latent observations in the form of CTMC bridges between
the partial observations. Both algorithms accurately target the posterior distribu-
tions, however high correlations in the bridge sampler steps cause slow mixing
and small effective sample sizes per second in this particular setting. The only
complicated aspect to our algorithm is the computation of the exponential of a
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Estimated Generators for discretely observed data with A =1
Data with scale 1/A = 1.0

Mean generator matrix for Metropolis-Hastings chain Mean generator matrix for Gibbs chain

~ EUYEN 0220 0.139 0.254 0.267 H 0.214

T ff-di |
0.137 0257 0269  oogeen

0.191 0.226

0.294 0.199 0.221 ~ 0.288 QEOEEIE 0.289

0.232 0.299 0.270

- 0180 0235 0.288 0281 5. 0.184
w 'S

« 0221 0.262 0.267 EHUEN 0.264 « 0216 0.262 0.273 EEIE 0.263

True diagonal
value -1.0

o 0216 0.258 0.272 o 0217 0.258 0.269 0.229
1 2 3 4 5 1 2 3 4 5
To To
Data with scale 1/A =0.5
Mean generator matrix for Metropolis-Hastings chain Mean generator matrix for Gibbs chain |

~ BBeEN 0473 0.575 0.393  0.468 ~ BIEN 0466 0.599 0.296 0.613

_True off-diagonal
value 0.5

0.367 0.516 0.619

0.354 0.409 0.683 0.407

N

0.333

gm 0.566 0.377 0.355 Sm 0.606 0.473 FSEVELE 0.368
w w

1.268

«+ 0.295 0.468 0.365 True diagonal

value -2.0

+ 0.469

o 0.556 o 0.768 0.484 0.415 1199
1 2 3 4 5 1 2 3 4 5
To To
Data with scale 1/A = 0.25
Mean generator matrix for Metropolis-Hastings chain Mean generator matrix for Gibbs chain |

0.895 0.925 1.591 ~ EPEEN 0.597

TV 1132

_True off-diagonal

0.122 0.425 [=RERE

value 1.0
~ 1.013 0334 0484 «~ 0.937 1.955 0.537 0.110
gm 1.202 0.334 1.280 § el 0.452 BSEENEN 0.076  0.220
w w
< 0.603 0473 1143 [WNEEN 0533 < 0526 0331 1146 0.611
True diagonal
» 0.801 1.402 0380 1.012 BEEEEM .~ 0.276 1945 0.126 1.405 value -4.0
1 2 3 4 5 1 2 3 4 5
To To

Fig.4 Comparison of estimated generator matrices for Metropolis—Hastings and Gibbs chains for A = 1
with 4 = 4 (first row), 4 = 2 (second row) and A = 1 (third row)

matrix for which adequate software is now currently available. Our approach
is general as it allows for the inference of fully specified generator matrices,
i.e. without further constraints than having negative values in the diagonal,
non-negative values off the diagonal and zero sum rows. Two approaches were
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Mean generator matrix for Metropolis-Hastings chain Mean generator matrix for Gibbs chain

-0.1371 0.0549 0.0161 0.0128 0.0129 0.0130 0.0139 0.0135 -0.1403 0.1074 0.0102 0.0046 0.0046 0.0045 0.0045 0.0046

A ARA

0.0086 -0.0995 0.0652 0.0069 0.0046 0.0046 0.0049 0.0047 0.0072 -0.1028 0.0873 0.0034 0.0012 0.0012 0.0012 0.0012

< 0.0027 0.0326 -0.1405 0.0874 0.0046 0.0032 0.0057 0.0041 0.0007 0.0382 -0.1423 0.0921 0.0025 0.0011 0.0050 0.0027

A

0.0027 0.0047 0.0396 -0.1026 0.0413 0.0056 0.0043 0.0045 0.0012 0.0035 0.0440 -0.1046 0.0448 0.0048 0.0025 0.0037

From
B8 BBB

From
B8 BBB

0.0038 0.0064 0.0047 0.0383 -0.1476 0.0784 0.0107 0.0054

0.0011 0.0050 0.0015 0.0442 -0.1494 0.0866 0.0090 0.0020 L os
« 0.0045 0.0080 0.0066 0.0085 0.0528 -0.1966 0.0647 0.0516 « 0.0012 0.0063 0.0040 0.0062 0.0597 -0.1994 0.0674 0.0546

c
c

0.0251 0.0306 0.0291 0.0316 0.0428 0.1159 EuR:pIyy 0.1510 0.0076 0.0116 0.0101 0.0102 0.0174 0.1548 EWX:NENY 0.2033

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

s m A 888 B8 8 c o ys m A 888 B8 B c o
To To

o
o

Fig.5 Estimated generator matrices for Metropolis—Hastings and Gibbs chains for the credit risk data of
Pfeuffer (2017)

proposed, one for generator matrices with non-zero off-diagonal entries and one
for the possibility of such zero entries.

Appendix A: Metropolis-Hastings algorithm (5) details
The Metropolis—Hastings moves used in our work are the following:

— ForAe A= {/11, ...,ﬂm} let g : R - R* be given by g(x) = ¢* and propose
moves from 4 to 4 by

i=g@' W +2)

with Z ~ Norma(0, 1) so 4 has a LogNormal distribution. The corresponding
transition kernel is given by g(1 | 1) o« e=0-5(g()-log(A))* I-1,
— For transition matrix P with no zeros in off-diagonal entries and
pPE {(pj,l, s Pij1s Djjats - ,pj’m) 1 1<Lj< m}, let ¢ > 0 and propose
Pplp ~ Dirichlet(1 + cp)
with1 = (1, ..., 1) so p has mode p.
— For transition matrix P with zeros in off-diagonal entries and

PE{P_;,k c1Lj<m 1 Skﬁm,j;ék}, let ¢ : R—> R* be a standard
logistic function g(x) = ¢*/(1 + ¢*) and propose moves from p to p by

p=g'®+2)

with Z ~ Normal(0, 1) so p has a LogitNormal distribution. Denote w as the
vector p with entry value p changed to p. Finally we do a normalization

p=w/ Zw.
k=1

. _ X X m .
The transformation f(xi,...,x,,) = (m, - zi,x,.’zizl xi> is known to have

. —m+1 . . L
Jacobian (Z:’;lxi) " So the corresponding transition kernel is given by
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a( | p) o exp (—0.5(logit(p,) — logit(5))?) %

ginalize the random variable S = Z:’;l w; so we have to draw simulations of the
auxiliary variable p to evaluate the above conditional density.

. Note that we do not mar-

Appendix B: Second simulation study details

— _}'l /11
¢= < Ay —/12>

with 4,, 4, > 0, we have explicitly that

For a generator matrix

A A =it A A e~ i+t
Mthy A A Mth, A Ay
0(1) = exp(1G) =
LT - NP PR Py M- SRS VPR Y
+hy, A +A thy, A A,
For discrete observation over a time mesh Ak, A € R*, and k € {1, ...,n} for some

n € N of the Markov chain associated G; let nfq be the number of times the state
remains equal for transitions starting in state i and nl?h the number of times the state
changes for transitions starting in state i along the time mesh, with i € {1,2}. The
likelihood is readily seen to be

eq

L(A) = 4 + A e~ (it A)A ] A + A o~ (ith)A :
A+ A+ 4 A+ A+ 4

nch n(’h
Y R Ny RV S S TN S NORTS

Simulations for the above CTMC with (4,,4,) =(1,1) and (4,,4, = (2,1) were
drawn. The prior distributions were 4 ~ Gamma(l, 1) and {pj!k}j _ ~ Dirichlet(1)

for all the experiments. A CTMC was generated until 1000 transitions were obtained
and we considered the discrete observations given by times Ak with A =1 and
1 <k < min {n; X(nA) was fully observed}.

In Figs. 6 and 7 we compare the true posterior distributions given the simulated data
with the Gibbs sampler 1 realizations of A, and A,; whereas in Figures 8 and 9 we do
the same experiment for the Gibbs sampler 2 and in 10, 11 for the Metropolis—Hastings
sampler. The choice of priors was taken as indicated above for all the three samplers.

@ Springer



On the estimation of partially observed continuous-time Markov... 1373

Gibbs sampler 1 for A = (1,1) study

A\ posterior marginal distribution

7"4-\\ 1 Gibbs sampler 1 histogram
?[ x — Tiue posterior marginal
sl

08 1.0 12 14 16

Ao posterior marginal distribution

‘r AN
/ N [ Gibbs sampler 1 histogram
7[ \ — True posterior marginal

A posterior distribution

Gibbs sampler 1 histogram True posterior ac

1.25 1.25
20

100 1.00 15
10
075 075
05
050 0.50 0
0.50 075 1.00 125 0.50 075 1.00 125
M M

Fig.6 Marginal and bivariate histograms of A for the Gibbs sampler 1 ran for 50000 iterations after
diagnosing stationarity compared with the the true posterior distribution. corresponding to 4 = (1, 1)
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Gibbs sampler 1 for A = (2,1) study

A posterior marginal distribution

P \ [ Gibbs sampler 1 histogram
08 —— True posterior marginal
06
04
02+
00 =
1 2 3 4 5

A, posterior marginal distribution

20}
ﬁx ] Gibbs sampler 1 histogram
—— Tue posterior marginal

15 H

10

05 |-

00 t

05 10 15 20 25

\ posterior distribution

Gibbs sampler 1 histogram True posterior

20 20 30
25
15 15 20
.-é\‘ 15
10 - 10 10
I 05

0%, 2 3 s % 2 3 4 °

M M

Fig.7 Marginal and bivariate histograms of A for the Gibbs sampler 1 ran for 50000 iterations after
diagnosing stationarity compared with the the true posterior distribution. corresponding to 4 = (2, 1)
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Gibbs sampler 2 for A = (1,1) study

M posterior marginal distribution

[ Gibbs sampler 2 histogram
—— Tiue posterior marginal

0.8 10 12 14
Ao posterior marginal distribution
4L
TN [ Gibbs sampler 2 histogram

—— Tiue posterior marginal

3¢

20

05

06 08 10 12 14
A posterior distribution

Gibbs sampler 2 histogram True posterior
1.25 1.25
100 1.00
0.75 0.75
0.50 0.50

050 075 1.00 125 050 0.75 100 125
M M

Fig. 8 Marginal and bivariate histograms of A4 for the Gibbs sampler 2 ran for 50000 iterations after
diagnosing stationarity compared with the the true posterior distribution. corresponding to 4 = (1, 1)
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Gibbs sampler 2 for A = (2,1) study

A\ posterior marginal distribution

N
'Z \ [ Gibbs sampler 2 histogram
08 - \ — True posterior marginal
06 (Z x
04
02
00 !
1 2 3 4 5
Ao posterior marginal distribution
20+ l’*
X [ Gibbs sampler 2 histogram
,Z x — True posterior marginal
15 \
10
05
0.0 I EE ===
05 10 15 20 25

A posterior distribution

Gibbs sampler 2 histogram

True posterior

3¢

20

05

20 [ 20
15t 15
<
10t 10
05 05
1 2 3 4 1 2 3 4
M M

Fig.9 Marginal and bivariate histograms of A for the Gibbs sampler 2 ran for 50000 iterations after
diagnosing stationarity compared with the the true posterior distribution. corresponding to 4 = (2, 1)
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125

Metropolis—Hastings sampler for A = (1,1) study

M-H sampler histogram

Ay posterior marginal distribution

2=
/TN [ IM-H sampler histogram
\ —— Tiue posterior marginal

08 10 12 14

Ao posterior marginal distribution

N\
Z N\ [ MH sampler histogram

Z \ —— True posterior marginal

08 1.0 12 14

A posterior distribution

True posterior

& 100 1.00
075 075
050 : . . 0.50

0.50 075 1.00 125 0.50 075 1.00 1.25

M

M

30

25

20

05

Fig. 10 Marginal and bivariate histograms of A for the Metropolis—Hastings sampler ran for 50000
iterations after diagnosing stationarity compared with the the true posterior distribution. corresponding

tod=(L,1)
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Metropolis—Hastings sampler for A = (2,1) study

A4 posterior marginal distribution

a0
f \ [ IM-H sampler histogram
08 | \ | — True posterior marginal
06| ]Z x_
04t N
02}
00 | | I
1 2 3 4 5
Ao posterior marginal distribution
20 7"*
\ [ M-H sampler histogram
7 K —— True posterior marginal

05

0.0
05 10 15 20 25

A posterior distribution

M-H sampler histogram True posterior

20 20 30

25

15 15 20

z<N 15
1.0 = 10 10

05

08 1 2 3 1‘1 08 1 2 3 4 0

M M

Fig. 11 Marginal and bivariate histograms of A for the Metropolis—Hastings sampler ran for 50,000
iterations after diagnosing stationarity compared with the the true posterior distribution. corresponding
tod=(2,1)
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The variance in the LogNormal proposals for 4; in the Metropolis—Hastings were set
to 0.0025. We ran 50000 iterations of each sampler after having diagnosed stationarity
via the potential scale reduction factor of Gelman and Rubin (1992). We highlight
that the run time for the Metropolis—Hastings algorithm is significantly faster than the
Gibbs samplers as showed in Tables 1 and 2. This is due to the computational cost
of simulating the conditioned trajectories between discretely observed times for the
CTMC.

Estimated Generators for discretely observed data with A =4
Data with scale 1/A =1

Mean generator matrix for Metropolis-Hastings chain Mean generator matrix for Gibbs chain
0.973 0.073 0.025 0.089 B -0.780 WKLY

0.040 0091 0289 o offdiagonal

0.852 0.037 0.187 ~ 0.187 0.293 0.010

0.180 1.385

N

»n 0191 0.034 0.486 0.384 Em 0.255  0.387 0.726  0.518

From

< 0.651 0.107 0.129 + 0211 0.132 0.266 0.668

True diagonal

» 0118 0113 0.022 » 0127 10914 0176 0.245 value -1.0
1 2 3 4 5 1 2 3 4 5
To To

Data with scale 1/A =2
Mean ienerator matrix for Metropolis-Hastings chain Mean generator matrix for Gibbs chain

_True off-diagonal
0.007 0.023 0.018 ' 0.546 ~ EEEEE 0.100  0.111  0.076  0.186 value 0.125

~ 0.020 WEUEEYM 0.129 0.059 & 0.344 ~ 0.069

§~ 0089 0044 EEGE 0154 0292 5~ 0171 0.084

-

0.194 0.011 0.214

0.703  0.779

True diagonal
value -0.5

0.581

-0.628 WYL

« 0.046 0.009 + 0193 0.208

o 0399 049 0.327 » 0.014 0.108 = 0.951

1 2 3 4 5 1 2 3 4 5
To To
Data with scale 1/A =4
Mean generator matrix for Metropolis-Hastings chain Mean generator matrix for Gibbs chain

True off-diagonal

0.068 0.054 0.053 0.063 " value 0.0625

0.052  0.052 0.062 -

0.056 0.074

0.070  0.075 ~

0.057 0.064

5~ 0.067 0.063 5~ 0.068
w w

0.056 0.060

+ 0.056 0.073 < 0.055

True diagonal
value -0.25

» 0.058 0.054 0.067 0.066

»0.059 0.054 0.068

Fig. 12 Comparison of estimated generator matrices for Metropolis—Hastings and Gibbs chains for A = 4
with 4 = 0.25 (first row), 4 = 0.5 (second row) and A = 1 (third row)
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Estimated Generators for discretely observed data with A =2
Data with scale 1/A =2.0

Mean generator matrix for Metropolis-Hastings chain Mean generator matrix for Gibbs chain  True off-diagonal

value 0.125
0.156 0.161 0.109

0.110 0.157 0.158 0.108 ] - 0.107

0.106 0.122 0.137 ~ 0.107 0.121 0.139

0.155 0.129 0.108 0.152

0.109

5~ 0.130
£

From

0.144

0.144 « 0.115 0.109

< 0.110 0.107

True diagonal
value -0.5

» 0110 0.133 0.115 » 0.107 0.129 0.119

1 2 3 4 5 1 2 3 4 5

Data with scale 1/A=1

Mean generator matrix for Gibbs chain

R 0.078

Mean generator matrix for Metropolis-Hastings chain

0.094 0.103 0.391 0.510 -

0103 0408 0678 o offdiagonal

0.349  0.094 ~ 0.244 0.315 0.356 0.163

QNI 0.339

0.297  0.590

0.291

0.133

0.337  0.615

From
3

- 0.245
w

« 0.187 0.447 0.304

+ 0.117 = 0.463 0.284
True diagonal

0.063 value -1

2 0522 0423 0.598

n 0423 0411 0.597 0.045

1 2 3 4 5 1 2 3 4 5
To To

Data with scale 1/A=0.5

RZE 0495 1.172 0.204 0.534

-

0.320 0.974 0.471 0.543 - '
_True off-diagonal

value 0.5

Mean ienerator matrix for Metropolis-Hastings chain Mean generator matrix for Gibbs chain

~ 0.305 m 0.587 0.362 0.286 ~ 0.666 0.939 0.262 0.080
gm 1.108 0.641 0.167 0.883 Em 0313 0.360 EEY)

DRCLEE 0.067 True diagonal

value -2.0

+ 0.222 0.158 ' 0.891 FMVFE 0.255 « 1169 0.294 0.429

» 0.657 0.373 0.302 0.529 BSS:{eHE o 0.241 0.690 0.051 & 1.113
1 2 3 4 5 1 2 3 4 5
To To

Fig. 13 Comparison of estimated generator matrices for Metropolis—Hastings and Gibbs chains for A = 2
with A = 2 (first row), 4 = 1 (second row) and A = 0.5 (third row)

Appendix C: Further comparisons for the third simulation study

In this appendix we present further mean generator comparisons between the
Gibbs and Metropolis—Hastings samplers for discretely observed CTMCs. Also
we present comparisons of generators fitted with the EM algorithm and our
Metropolis—Hastings approach.
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Estimated Generators for discretely observed data with A = 0.5
Data with scale 1/A=0.5
Mean generator matrix for Metropolis-Hastings chain Mean generator matrix for Gibbs chain

~ 7MYl 0.487 0530 0.466 0.574 ~ ZAEN 0.486

0531 0468 0569 - opor-dagonal

0.463

0.458 0.414 0.395 ~ 0.414 0.402

QRIS 0.617 0.435

§n 0473 0.623 0439 5. 0463
w w

« 0501 0.468 0.561 0.504

+« 0.474 0.483 0.555
True diagonal
value -2.0

o 0449 0525 0.474 n 0.441 0530 0.461 0.526
1 2 3 4 5 1 2 3 4 5
To To
Data with scale 1/A =0.25
Mean generator matrix for Metropolis-Hastings chain Mean generator matrix for Gibbs chain
_True off-diagonal
~ NN 1204 1134 0.663 1.115 - 1111 0.579 1116 value 1.0

0.494 1344 1.197 ~ 0.666 0.299 1537 1.313

~

2171

§n 0952 0674 B 1009 2046 5. 0684 0856 1.132
w w

« 1419 0.748 0.844 « 1477 0.706 0.801 REERFN 0.881

True diagonal
value -4.0

o 0798 0.981 2336 o 0997 0.857 2736 0.635

1 2 3 4 5 1 2 3 4 5
To To
Data with scale 1/A =0.125
Mean generator matrix for Metropolis-Hastings chain Mean generator matrix for Gibbs chain I

3.508 1.461 0.873 ~ [EOSEI 3.820 1.972 0.596 0.196

_True off-diagonal
2.590 0.226 value 2.0

0.841 3.202 2.560 ~ 1.035

gm 1.076 0.573 2.194 gm 0.404 0.318 3913 1.697
w w
< 2855 1177 1380 < 0.162 0.361
o 2349 1485 1.469 B 5.096 [ELY True diagonal
value -8.0
1 2 3 4 5 1 2 3 4 5

To To

Fig. 14 Comparison of estimated generator matrices for Metropolis—Hastings and Gibbs chains for
A = 0.5 with 4 = 8 (first row), 4 = 4 (second row) and A = 2 (third row)

C.1: Gibbs and Metropolis—Hastings comparisons

In Figs. 13, 15 and we present the mean generator comparisons for the Gibbs and
Metropolis—Hastings samplers with simulation studies determined, respectively, by
A =0.5,2 (Figs. 12, 13, 14, 15, 16, 17, 18, 19, 20).

As mentioned in the main document the entry-wise distance of the Gibbs mean
generator with the true generator tends to be greater than the one with respect to
the Metropolis—Hasting mean generator; this is particularly illustrated in the mean
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Estimated Generators for discretely observed data with A = 0.25
Data with scale 1/A = 0.0625

Mean generator matrix for Metropolis-Hastings chain Mean generator matrix for Gibbs chain True offdi |
_lrue orr-alagona
~ QERPPR 1746 0.250 | 6.641 3.288 ~ [BBBIGER 5,695 2.872 2413 0.352 value 4

SRR 7.076 0.687 0.515 ~ 2,027 QPAUEY 3130 4.988 1.505

0.140

~ 4214

- 4994 0448 BELPE| 1629 4120 5. 2362 5101 [SPEGRY 5.108
w w

« 1314 4.093 3336 BEREELR 4.626 < 1932 0437 0.560 B¥AEER 9.700
True diagonal
» 1301 | 6.713 » 4842 0841 5700 0244 value -16.0
1 2 3 4 5 1 2 3 4 5
To To
Data with scale 1/A = 0.125
Mean generator matrix for Metropolis-Hastings chain Mean generator matrix for Gibbs chain

1.838 1572 3.147 _True off-diagonal

1.752  2.062 2.013 -
value 2

1642 1.265 3.308

1767 1471 2.819 ~

2,737  0.519

§~ 2052 2923 1472 5 2434
w w

« 2201 0.406 2273 + 1993 0.484 3.737
True diagonal
w 2163 2411 3.061 o 1700 3236 2.683 value 8.0
1 2 3 4 5 1 2 3 4 5
To To
Data with scale 1/A =0.25
Mean generator matrix for Metropolis-Hastings chain Mean generator matrix for Gibbs chain

1191 0814 0790 o offdiagonal

1150 0.751 0.821 -IB

0.739 1.093 1.170

0.772 1114 1176 ~

0.842 1.273

§n 1184 0.848 1236 5~ 116l
w w

0.850

« 0927 1.002 1.053

< 0916 1.003 1.051

True diagonal
value -4.0

» 1160 0.820 1.150 o 1156 0811 1176 1.146

Fig. 15 Comparison of estimated generator matrices for Metropolis—Hastings and Gibbs chains for
A = 0.25 with A = 4 (first row), A = 8 (second row) and A = 16 (third row)
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Estimated Generators for discretely observed data with A =4
Data with scale 1/A =4
Mean generator matrix for Metropolis-Hastings chain EM generator matrix

0.052 0.052 0.062 ~ RPLEE 0.066

0.053 0053 0063 e ofdagonal

0.054 0.070 0.075 ~ 0.065 0.056 0.068 0.073

N

§n 0067 0077 0.057 0.063 §n 0.067 0.053
w w

+ 0.056 0.073 0.062 « 0.055 0.072
True diagonal
o 0.059 0.054 0.068 o 0.058 0.055 value -0.25
1 2 3 4 5 1 2 3 4 5
To To
Data with scale 1/A =2
Mean generator matrix for Metropolis-Hastings chain EM generator matrix

_True off-diagonal

QUSKZE 0.007 0.023 0.018 | 0.546 ~EPPE 0135 0.073  0.105  0.137 value 0.125

0.020 0.129 0.059 ' 0.344 ~ 0.073 0.151 0.107 0.135

gm 0.089 0.044 0.154  0.292 gm 0.133 0.136 0.135
w w

+ 0.046 0.009 0.081 pEUKyi@m 0.474 True diagonal

value -0.5

« 0129 0.104 0.145

o 0399 049 0.327 » 0.087 0.088 0.166 0.155

1 2 3 4 5 1 2 3 4 5

Data with scale 1/A=1
Mean generator matrix for Metropolis-Hastings chain

0.073  0.025 0.089 -

EM generator matrix
SRPLN 0.627

0431 0011 0081 o offdagonal

0.037 0.187 ~ 0.402 0.437 0.234

§- 0191 0.486 0384 5~ 0513 0.400  0.447
w i
« 0651 0.107 0580 « 0303 0.160 0.465 0.014
True diagonal
» 0118 0113 0.022 o 0017 0427 0158 0.166 [NAI value -1.0
1 2 3 4 5 1 2 3 4 5
To To

Fig. 16 Comparison of estimated generator matrices for Metropolis—Hastings and EM algorithms for
A =4 with A = 1 (first row), 4 = 0.5 (second row) and A = 0.25 (third row)
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Estimated Generators for discretely observed data with A = 2
Data with scale 1/A =2.0

Metropolis-Hastings mean generator matrix EM generator matrix

_True off-diagonal
value 0.125

0.110 0.157 0.158 0.108 - 0.146 0.127 0.146 0.086

RN 0.106 0.122  0.137 ~ 0.164 0.102 0.143 0.142

~

0.130 0.148 0.109 0.132 0.084 0.156

From
3

0155 5~ 0.089
uw

< 0.110 0.107 0.128 0.144 « 0123 0.143 0.092

True diagonal
value -0.5

» 0.110 0.133 0.115 «» 0.144 0.122 0.156 0.131
1 2 3 4 5 1 2 3 4 5
To To
Data with scale 1/A=1.0
Metropolis-Hastings mean generator matrix EM generator matrix

~ -1.035 0.291 0.376 0.197 0.170 ~ -1.091 0.359 0.145 0.264 0.328 ,
_True off-diagonal
value 0.25

~ 0312 -1.156 0.266 0.293 0.284 ~ 0220 -1.116 0.298 0.349 0.226

_True diagonal
value -1.0

From
3

0.210 0.445 -1.208 0.384 0.169 Sm 0.433 0.159 -0.959 0.215 0.166
I
+ 0315 0.177 0.279 -1.084 0.313 < 0152 0.331 0.339 -1.010 0.211

w0171 0.277 0.271 0.223 -0.942 » 0285 0.268 0.177 0.183 -0.930

1 2 3 4 5 1 2 3 4 5
To To

Data with scale 1/A = 0.5

Metropolis-Hastings mean generator matrix EM generator matrix |

0.320 0.974 0.471 0.543 ~ BQEGEPAE 0.405 0.211  0.762 0.199

_True off-diagonal

value 0.5
0.362 0.286 ~ 0.645 BOR:ER 0.371 0.047 0.810
0.167 = 0.883 Em 0.028 0.454 [oRiCER 0.464 0.478
w

« 0.222 0.158 | 0.891 BERPFE 0.255 «+ 0.506 0.278 0.380 [EGLE)

0.587

~

1.108

From
3

0.531 True diagonal
value -2.0

w 0.657 0.373 0.302 0.529 R » 0453 0.666 0.536 0.371

1 2 3 4 5 1 2 3 4 5
To To

Fig. 17 Comparison of estimated generator matrices for Metropolis—Hastings and EM algorithms for
A =2 with A = 2 (first row), A = 1 (second row) and A = 0.5 (third row)
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Estimated Generators for discretely observed data with A =1
Data with scale 1/A = 1.0
EM generator matrix

QNN 0.228

Metropolis-Hastings mean generator matrix
BYEN 0220 0.139 0254  0.267 -

0274 0242 0282 - ofidiagonal

0.273

0.193 0.196 0.241

0.294 0.199 0.221 ~

0.291

~

0.204 0.224 0.241

- 0180 0235 0288 0281 5~ 0.351
w w

« 0221 0262 0.267 « 0267 0.253 0.217

True diagonal

» 0216 0258 0.272 o 0254 0278 0.197 value -1.0
1 2 3 4 5 1 2 3 4 5
To To
Data with scale 1/A =0.5
EM generator matrix |

DRCELN 0.604 0415 0.555 0.544

_True off-diagonal
value 0.5

Metropolis-Hastings mean generator matrix
ﬁm 0.473 0575 0.393 0.468 -

~ 0.416 0.354 0.409 0.683 ~

0.309 0.485 0.587 0.544

0.345

Em 0.566  0.477 0.377 0.355 gm 0.658  0.747
w w

« 0469 0473 0.369 +« 0333 0.238 True diagonal

value -2.0
o 0556 0.423 0.447 w 0.685 0.369
1 2 3 4 5 1 2 3 4 5
To To
Data with scale 1/A =0.25
Metropolis-Hastings mean generator matrix EM generator matrix |

0.895 0.925 1.591 ~ SR 0.792  0.198 0.858 1.603

_True off-diagonal
value 1.0

1.013 0.334 0.484 ~ 0543 0.842 0.759 0.730

gm 1.202 0.334 1.280 gm 1212 1.361
w w
< 0.603 0473 1143 0533 < 0717 0.396
True diagonal
~ 0.801 1402 0380 1.012 o 0882 0.952 value -4.0
1 2 3 4 5 1 2 3 4 5
To To

Fig. 18 Comparison of estimated generator matrices for Metropolis—Hastings and EM algorithms for
A = 1 with A = 4 (first row), A = 2 (second row) and A = 1 (third row)
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Estimated Generators for discretely observed data with A = 0.5
Data with scale 1/A =0.5
EM generator matrix

WELY 0571

Metropolis-Hastings mean generator matrix
0.487 0.530 0.466 0.574 -

0409 0353 0675 g oftdiagonal

QRN 0422 0525 0.398

0.458 0.414 0.395 ~

0.492

0.452

- 0473 0380 0.623 0439 5. 0.693
w w

« 0474 0483 0.555 « 0519 0.495

True diagonal

o 0449 0525 0474 o 0517 0431 value -2.0
1 2 3 4 5 1 2 3 4 5
To To

Data with scale 1/A =0.25
EM generator matrix

1231

Metropolis-Hastings mean generator matrix
1204 1134 0663 1115 -

_True off-diagonal
0.953 0.865 1.174 value 1.0

0.901 0.919 0.817

0.494 1.344 1197 ~

KN 0.878 1495

§- 0952 1009 2046 5o 0745
w w

« 1419 0.748 0.844 EENELN 0.788 < 0931 0.968 0.924

True diagonal
value -4.0

o 0.798 0.981 2.336 w1248 0753 1.071 1125

1 2 3 4 5 1 2 3 4 5
To To
Data with scale 1/A = 0.125
Metropolis-Hastings mean generator matrix EM generator matrix I
- 1269 3,508 1.461 0.873 - 2.040 1350 1916 2.098

_True off-diagonal

2255 1106 1.221 value 2.0

0.841 = 3.202 2.560 ~

1749 2134

0.573

§- 1076 2194 5o 1704
w w

2229

1.380 + 2027 1.051

« 2.855 1177 1.256

True diagonal

Late value -8.0

w2111 1810 1.030

o 2349 1485 1.469

Fig. 19 Comparison of estimated generator matrices for Metropolis—Hastings and EM algorithms for
A = 0.5 with 4 = 8 (first row), 4 = 4 (second row) and A = 2 (third row)
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Estimated Generators for discretely observed data with A = 0.25
Data with scale 1/A =0.25
EM generator matrix

1.237

Mean generator matrix for Metropolis-Hastings chain
1150 0.751 0.821 -

1181 0819 0815 o offdiagonal

1.090 1.157

0.751

0.772 1114 1.176 ~ 0988

N

0.825 1.270

- 1184 1165 0.848 1236 5~ 1170
w w

1.049

« 0916 1.003 1.051 « 0938 0.992
True diagonal
value -4.0

1.158

» 1160 0.820 1.150 o 1140 0.823 1181

1 2 3 4 5 1 2 3 4 5
To

Data with scale 1/A =0.125
EM generator matrix

1742 2.092 1.853 2416 _True off-diagonal

n generator matrix for Metropolis-Hastings chain

- 1.752  2.062 2.013 -
value 2
~ 1767 1471 2.819 ~ 1.824 2142 1383 2713
§n 2052 2708 §n 2267 2516 2295 1771
w w
+ 2201 0406 2273 + 1.889 0414 2811
True diagonal
value -8.0

w2271 3279 1527 3.094

1 2 3 4 5 1 2 3 4 5
To

o 2163 2411 3.061

Data with scale 1/A =0.0625
EM generator matrix

RVNLIN 4.671

_True off-diagonal

Mean generator matrix for Metropolis-Hastings chain
1522 4.066 2.693 value 4

SURCPPN 1,746 0.250 | 6.641  3.288 -

2.863 4852 4.487 1.078

4214 BIERION 7.076 0.687 0.515 ~

Em 4994 0.448 EEPGE 1.629 4120 Sm 2.845  3.497
w w

« 1314 4093 3336 BIEREELE 4.626 + 3.844 1.265

o 1301 6713 0.364 4.440 BWAEER .~ 3230 4351 2985 2874

1 2 3 4 5 1 2 3 4 5
To To

~

4.098

QKLY 3.334

4.027 5.463

True diagonal
value -16.0

Fig.20 Comparison of estimated generator matrices for Metropolis—Hastings and EM algorithms for

A = 0.25 with A = 16 (first row), 4 = 8 (second row) and A = 4 (third row)
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generators for A = 0.5 as shown in Table 1 of the main document in terms of
Frobenius distances.

C.2: EM and Metropolis—Hastings comparison

We use the EM algorithm of the ctmed R package, see Pfeuffer (2017), to compare
with the proposed Metropolis—Hastings algorithm in the context of the third
simulation study.
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