
Vol.:(0123456789)

Computational Statistics (2023) 38:1337–1355
https://doi.org/10.1007/s00180-022-01265-w

1 3

ORIGINAL PAPER

Sparse precision matrix estimation with missing 
observations

Ning Zhang1 · Jin Yang1

Received: 2 December 2021 / Accepted: 13 July 2022 / Published online: 26 July 2022 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Sparse Gaussian graphical models have been extensively applied to detect the con-
ditional independence structures from fully observed data. However, datasets with 
missing observations are quite common in many practical fields. In this paper, we 
propose a robust Gaussian graphical model with the covariance matrix being esti-
mated from the partially observed data. We prove that the inverse of the Karush–
Kuhn–Tucker mapping associated with the proposed model satisfies the calmness 
condition automatically. We also apply a linearly convergent alternating direction 
method of multipliers to find the solution to the proposed model. The numerical per-
formance is evaluated on both the synthetic data and real data sets.

Keywords  Missing data · Inverse probability weighting · Gaussian graphical model · 
ADMM

1  Introduction

Let {�i ∈ ℝ
n, i = 1,… ,m} be a set of samples independently drawn from a Gauss-

ian distribution N(�,Σ) . It is well known that the elements of a precision matrix 
(i.e., the inverse of covariance matrix Σ−1 ) could be applied to characterize the con-
ditional independence between two variables. This is based on the fact proved in 
Dempster (1972) that the i-th and j-th components of random variable � ∼ N(�,Σ) 
are conditionally independent if and only if [Σ−1]ij = 0 . However, the true covari-
ance matrix Σ is hardly known in practice, but usually can be estimated from the 
observations.
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When the samples are fully observed, let 𝜇̂ ∶=
1

m

∑m

i=1
𝜉i , the sample covariance 

matrix ŝ = 1

m

∑m

i=1
(𝜉i − 𝜇̂)(𝜉i − 𝜇̂)T is a widely used estimator. If the sample size m 

is larger than the dimension n, the sample covariance matrix ŝ is in general positive 
definite, but the elements of precision matrix estimator ŝ−1 are typically nonzero (Yuan 
and Lin 2007). Moreover, contemporary datasets are often high dimensional ( n ≳ m ). 
In this setting, the sample covariance matrix is rank deficient. Therefore, the sparse 
Gaussian graphical model (sGGM) was introduced (Yuan and Lin 2007) :

where 𝜆 > 0 , ŝ is the sample covariance matrix estimated by the fully observed sam-
ples, and ‖x‖1 = ∑n

i,j=1
�xij� . The sparse Gaussian graphical model and its variants 

have been applied in many fields, such as climate networks (Zerenner et al. 2014), 
biological networks (Wang et al. 2016; Zhang et al. 2018), and traffic management 
(Sun et al. 2012). A large amount of literature is devoted to the algorithm design and 
analysis: interior point methods (Lu and Toh 2010; Yuan and Lin 2007), block coor-
dinate descent method (Friedman et al. 2008), alternating direction method of mul-
tipliers (Yuan 2012), Newton-type methods (Hsieh et al. 2014; Wang et al. 2010), to 
name just a few.

Dataset with missing values is a ubiquitous phenomenon in the practical world 
(Lounici 2014). The covariance matrix is an essential part of many applications and 
algorithms (Pavez and Ortega 2021). However, only a few literature study the covari-
ance estimation from the data with missing values. Inverse probability weighting (IPW) 
approaches (Seaman and White 2013) are commonly applied to correct the bias of 
the covariance estimation from the partially observed data. The estimator obtained by 
the IPW approach is usually named as IPW estimator. Under the assumption that the 
data are missing completely at random, Kolar and Xing (2012), and Lounici (2014) 
introduced different IPW estimators instead of the sample covariance matrix. Recently, 
under more general assumptions about missingness, new IPW estimators are proposed 
by Park and Lim (2019), Park et al. (2020), Pavez and Ortega (2021). Moreover, the 
precision matrix estimation based on the IPW estimator has also been studied in Fan 
et al. (2019); Kolar and Xing (2012).

It has been proved that problem (1.1) has a unique solution under the assumption 
that the covariance matrix estimation is positive semidefinite (Hsieh et al. 2014). How-
ever, the IPW estimators are usually non-positive semidefinite. When the non-positive 
semidefinite IPW estimator is taken as a surrogate of the sample covariance matrix, the 
objective function in problem (1.1) could be unbounded from below. Therefore, prob-
lem (1.1) may fail to yield a precision matrix estimator when ŝ is non-positive semidefi-
nite. Moreover, the estimation of the covariance matrix from data with missing values 
is still challenging work.

In this paper, we consider the following Gaussian graphical model:

(1.1)min
x≻0

− log det x + ⟨ŝ, x⟩ + 𝜆‖x‖1,

(1.2)min
x∈C

− log det x + ⟨ŝ, x⟩ + 𝜆‖x‖1,off ,
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where ŝ ∈ �
n is a given IPW estimator (not necessarily positive semidefinite), 

‖x‖1,off = ∑
i≠j �xij� and C ∶= {x ∈ �

n ∶ ‖x‖ ≤ �} with ‖x‖ ∶= (
∑n

i,j
x2
ij
)1∕2 and 𝛼 > 0 . 

The main motivations to study problem (1.2) are listed below:

–	 Lower boundedness the set C , which is named as side constraint in Loh and 
Wainwright (2015), is used to guarantee the existence of a unique global optimal 
solution.

–	 Robustness the proposed model (1.2) can be used to hedge against the risk raised 
by the uncertainty of the covariance matrix estimation. Specifically, there exists a 
positive scalar � such that problem (1.2) can be equivalently rewritten as the fol-
lowing penalized problem: 

 Furthermore, by using the identity 𝜇‖x‖ = max‖s−ŝ‖≤𝜇⟨s − ŝ, x⟩ , problem (1.3) 
can be equivalently reformulated into the following robust counterpart of sparse 
Gaussian graphical model, 

 where U is the uncertainty set defined as 

 Therefore, we refer to the problem (1.2) as a robust Gaussian graphical 
model (rGGM) throughout this paper.

In addition to the lower boundedness and robustness, another motivation to consider 
rGGM is to pave the way for solving nonconvex regularized Gaussian graphical 
model [see e.g., Fan et al. (2019), Loh and Wainwright (2015)]. It has been com-
monly accepted that nonconvex regularizers have better performance than that of 
convex regularizers (Fan et  al. 2016). Besides, the widely used smoothly clipped 
absolute deviation [SCAD, Fan and Li (2001)] and minimax concave penalty [MCP, 
Zhang (2010)] regularizers can be reformulated as the difference of �1 norm and 
some smooth convex functions (Ahn et  al. 2017; Tang et  al. 2020). Note that the 
lower boundedness assumption usually plays an essential role in the theoretical 
analysis of various numerical algorithms. Therefore, a systematic study on the con-
vex regularized Gaussian graphical model with side constraints may provide a theo-
retical foundation for designing more efficient numerical algorithms for solving the 
nonconvex regularized Gaussian graphical models.

Note that the proposed Gaussian graphical model is a composite convex optimi-
zation problem:

The alternating direction method of multipliers (ADMM) has been extensively used 
for solving the structured composite convex optimization problem [see e.g. Fan 
et  al. (2019), Yuan (2012), Yuan et  al. (2020)]. Under some calmness conditions,  

(1.3)min
x≻0

− log det x + ⟨ŝ, x⟩ + 𝜆‖x‖1,off + 𝜇‖x‖.

min
x≻0

max
s∈U

− log det x + ⟨s, x⟩ + 𝜆‖x‖1,off ,

U ∶= {s ∈ �
n ∶ ‖s − ŝ‖ ≤ 𝜇}, 𝜇 > 0.

(1.4)min
x≻0

− log det x + ⟨ŝ, x⟩ + p(x), p(x) ∶= 𝜆‖x‖1,off + �C(x).
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(Han et  al. 2018) show that the globally convergent semiproximal ADMM can 
achieve a linear convergence rate. A systematical study on the linear convergence of 
various ADMM-type algorithms has been given in Yuan et al. (2020). However, due 
to the side constraint C , the linear convergence rate of ADMM-type algorithms for 
solving problem (1.2) can not be directly obtained from Yuan et al. (2020, Table 4). 
Therefore, we investigate the stability analysis of the solution mapping associated 
with the problem (1.2). This will facilitate the algorithm design and give the theo-
retical guarantee of various algorithms, such as the alternating direction method of 
multipliers and the proximal point algorithm.

The remaining parts of this paper are organized as follows. In Sect. 2, we present 
some definitions and preliminary results. In particular, we derive the specific expres-
sion of the proximal mapping associated with the convex regularizer p and the Lip-
schitz continuity of the KKT solution mapping associated with the problem (1.2). In 
Sect. 3, we propose the alternating direction method of multipliers, its implementa-
tion details, and convergence analysis for solving the problem (1.2). We evaluate the 
numerical performance of synthetic data and real data in Sect. 4 and conclude the 
paper in Sect. 5.

Here, we collect the frequently used notations of this paper. Let �n ( �n
+
,�n

++
) be 

the space of n × n real symmetric (positive semidefinite, positive definite) matrices. 
For a matrix x ∈ �

n , we use ‖x‖1 and ‖x‖ to denote its vector �1 and Frobenious 
norm, i.e., ‖x‖1,off = ∑

i≠j �xij� and ‖x‖ = (
∑

i,j x
2
ij
)1∕2 . Let �C denote the indicator 

function of the convex set C ⊆ �
n , that is �C(x) = 0 if x ∈ C , and +∞ otherwise, and 

ΠC(x) denote the Euclidean projection of x onto C.

2 � Tools and definitions

In this section, we recall some definitions and present the results that will be used 
in the theoretical analysis and numerical implementation. Let � , �  be two finite-
dimensional real Hilbert spaces.

2.1 � Proximal mapping

The proximal mapping associated with the regularizer p, a sum of two functions, 
plays a key role in the arithmetic design.

Definition 2.1  (Moreau 1965; Yosida 1964 regularization.) Let f ∶ � → ℜ ∪ {+∞} 
be a proper, lower semicontinuous, convex function. The Moreau-Yosida regulariza-
tion of f is given by

The unique solution to problem (2.1) is called the proximal mapping associated with 
f which is defined as

(2.1)Φf (x) ∶= min
z∈�

�
f (z) +

1

2
‖z − x‖2

�
, x ∈ �.
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Lemma 2.1  Let p ∶ 𝕊
n → ℝ ∪ {+∞} be defined by p(x) = �‖x‖1,off + �C(x) , then 

one has

Proof  The proof is presented in Appendix 6.1.�  □

2.2 � Lipschitz‑like properties

The Lipschitz-like properties of solution mapping corresponding to convex optimi-
zation problems can be employed to establish the convergence rates of various algo-
rithms. Firstly, we consider the following linearly perturbed formulation:

where f (x) ∶= − log det x and p ∶ �
n → ℜ ∪ {+∞} is defined by (1.4). Define a 

mapping:

and a multifunction 𝖲𝗈𝗅 ∶ �
n × �

n × �
n ⇉ �

n × �
n × �

n:

Proposition 2.1  The multifunction ��� defined by (2.4) is Lipschitz continuous near 
the origin, i.e., there exist a neighborhood N  of the origin and a positive scalar � 
such that ���(u, v,w) ≠ � for any (u, v,w) ∈ N  and

Proof  The proof is given in Appendix 6.2. � □

The proof of Proposition 2.1 is motivated by the routine of the proof in Zhang 
et al. (2020, Theorem 3.1). However, the regularizer p defined in (1.4) is no longer 
positive homogeneous, which is beyond the scope of the framework presented in 
Zhang et  al. (2020). Therefore, based on Proposition 2.1, the proximal point dual 
Newton algorithm (Zhang et al. 2020) potentially can be applied to solve the prob-
lem (1.2).

To establish the linear convergence rate of the alternating direction method of 
multipliers for solving problem (1.2) based on the results presented in Han et  al. 

Proxf (x) ∶= argmin
z∈�

�
f (z) +

1

2
‖z − x‖2

�
, x ∈ �.

Proxp(x) = ΠC◦Prox�‖⋅‖1,off (x), ∀x ∈ �
n.

(2.2)
min
x,y

f (x) + ⟨ŝ, x⟩ + p(y) − ⟨(u, v), (x, y)⟩
s.t. x − y + w = 0,

(2.3)Kpert((x, y, z);(u, v,w)) =

⎛⎜⎜⎝

x − Proxf (x + u − z − ŝ)

y − Proxp(y + v + z)

x − y − w

⎞⎟⎟⎠
,

(2.4)

���(u, v,w) ∶=
{
(x, y, z) ∶ Kpert((x, y, z);(u, v,w)) = 0

}
= set of all(x, y, z)satisfying the KKT condition for problem (2.2).

‖���(u, v,w) − ���(u�, v�,w�)‖ ≤ �‖(u, v,w) − (u�, v�,w�)‖, ∀ (u, v,w), (u�, v�,w�) ∈ N.
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(2018), we should recall the definition of the calmness of a set-valued mapping 
F ∶ � ⇉ � .

Definition 2.2  A set-valued mapping F ∶ � ⇉ �  is said to be calm at (x̄, ȳ) ∈ gphF 
with modulus � ≥ 0 if there exist neighborhoods Nx̄ of x̄ and Nȳ of ȳ such that

where � denotes the closed unit ball in � .

The definition was first introduced as the pseudo-upper Lipschitz continuity in Ye 
and Ye (1997, Definition 2.8) and was coined as calmness in Rockafellar and Wets 
(1998). It is well known that F  is calm at (x̄, ȳ) ∈ gphF  if and only if its inverse 
set-valued mapping F−1 is metrically subregular [c.f. Dontchev and Rockafellar 
(2004, Definition 3.1)] at (ȳ, x̄) ∈ gphF−1.

3 � ADMM algorithm

In this section, we present the Alternating Direction Method of Multipliers 
(ADMM) for solving the problem (1.2) and prove that the proposed method is glob-
ally linearly convergent. By introducing auxiliary variable, problem (1.2) can be 
reformulated as

For a given positive scalar 𝜎 > 0 , the augmented Lagrangian function associated 
with problem (3.1) is defined by

The Karush–Kuhn–Tucker (KKT) condition of problem (3.1) can be described as 
follows:

The ADMM for problem (3.1) can be characterized as follows:

F(x) ∩Nȳ ⊆ F(x̄) + 𝜅‖x − x̄‖�, ∀ x ∈ Nx̄,

(3.1)
min
x,y

f (x) + ⟨ŝ, x⟩ + p(y)

s.t. x − y = 0.

�𝜎(x, y, z) = f (x) + ⟨ŝ, x⟩ + p(y) + ⟨x − y, z⟩ + 𝜎

2
‖x − y‖2.

(3.2)∇f (x) + z + ŝ = 0, 0 ∈ 𝜕p(y) − z, and x − y = 0.
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3.1 � Convergence analysis

The ADMM algorithm has been widely applied in convex regularized Gaussian 
graphical model. Its globally convergent properties have been well-established. 
However, to the best of our knowledge, there is lack of systematic analysis on 
the convergence rate of ADMM for solving the rGGM. In this part, we show that 
ADMM for solving the problem (3.1) is globally and linearly convergent.

Define a KKT mapping R ∶ �
n × �

n × �
n → �

n × �
n × �

n:

Then, it holds that

That is, R−1(0) is the set of KKT points and R−1(0) = ���(0, 0, 0).
The following result plays a key role in establishing the linear convergence 

rate of ADMM. Its proof relies on several auxiliary results, we give the details in 
Appendix 6.2.

Proposition 3.1  Let R be the KKT mapping defined by (3.3), then R−1 is calm at the 
origin for the KKT point (x̄, ȳ, z̄) of problem (3.1).

Proof  From Definition 2.2, it is sufficient to show that there exist neighborhoods W 
of (x̄, ȳ, z̄) and V of origin, a positive scalar �0 such that

Since the function f is strongly convex on any compact subset of �n
++

 , we know that 
the KKT point of problem (3.1) is unique. The global Lipschitz continuity of prox-
imal mappings Proxf  and Proxp implies that the multifunction R is globally con-
tinuous. Therefore, there exists a neighborhood V0 of the origin such that for any 
(u, v,w) ∈ V0 there exists (x, y, z) ∈ R−1(u, v,w) , that is

This, together with the definition of Kpert , implies that

Consequently, it holds that ���(u, v,w + u − v) = {(x − u, y − v, z)} . Let (x̄, ȳ, z̄) be 
the KKT point of problem (3.1), then R(x̄, ȳ, z̄) = 0 and ���(0, 0, 0) = {(x̄, ȳ, z̄)}.

(3.3)R(x, y, z) =

⎛
⎜⎜⎜⎝

x − Prox
f

(x − z − ŝ)

y − Prox
p

(y + z)

x − y

⎞
⎟⎟⎟⎠
.

R(x, y, z) = 0 ⟺ (x, y, z)satisfies the KKT condition(3.2).

(3.4)R−1(u, v,w) ∩W ⊆ R−1(0) + 𝜅0‖(u, v,w)‖�, ∀(u, v,w) ∈ V.

⎛⎜⎜⎜⎝

x − u − Prox
f

(x − z − ŝ)

y − v − Prox
p

(y + z)

x − y − w

⎞⎟⎟⎟⎠
= 0.

Kpert((x − u, y − v, z);(u, v,w + u − v)) = 0.
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Set V = V0 ∩ {(u, v,w) ∶ (u, v,w + u − v) ∈ N} ≠ � with N  being described in 
Proposition 2.1. Then, it follows from Proposition 2.1 that

Therefore, for any (u, v,w) ∈ V , one has

This implies (3.4) holds. The proof is completed. � □

Theorem 3.1  The infinite sequence {(xk, yk, zk)} generated by Algorithm 1 converges 
globally and linearly to a KKT point of problem (3.1).

Proof  Since Algorithm 1 is essentially a special case of the semi-proximal ADMM 
studied in Han et  al. (2018), we can obtain the conclusion directly from Proposi-
tion 3.1 and Han et al. (2018, Theorem 2). � □

3.2 � Implementation details

To implement the algorithm efficiently, we give the details for implementation:

–	 Closed-form expression of yk+1 : from the definition of the augmented Lagrangian 
function, one has 

 Specifically, we have 

(a)	 if p(x) = �‖x‖1,off , then yk+1 = Prox�−1�‖⋅‖1,off (x
k + zk∕�);

(b)	 if p(x) = ‖x‖1,off + �C(x) , then by some elementary calculation and 
Lemma 2.1 , one has

	 
 where C� ∶= {x ∶ ‖x‖2 ≤ ��}.

–	 Closed-form expression of xk+1 : from the definition of the augmented Lagran-
gian function, one has 

 Specifically, let x̃ ∶= yk+1 − (zk + ŝ) have the eigenvalue decomposition 
x̃ = PDPT with D = diag(d) , from Wang et al. (2010)[Lemma 3.1], one has 

‖���(u, v,w + u − v) − ���(0, 0, 0)‖ = ‖(x − u, y − v, z) − (x̄, ȳ, z̄)‖ ≤ 𝜅‖(u, v,w + u − v)‖.

‖(x, y, z) − (x̄, ȳ, z̄)‖ ≤ 𝜅‖(u, v,w + u − v)‖ + ‖(u, v, 0)‖
≤ (2𝜅 + 1)‖(u, v,w)‖.

yk+1 = argmin
y

��

(
xk, y, zk

)
= argmin

y

p(y) +
�

2

‖‖‖y − xk − zk∕�
‖‖‖
2

.

yk+1 = �−1Proxp�

�
�xk + zk

�
, p�(x) ∶= ΠC�

◦Prox�‖⋅‖1,off (x),

xk+1 = argmin
x≻0

f (x) +
𝜎

2

‖‖‖x − yk+1 + (zk + ŝ)∕𝜎
‖‖‖
2

= Prox𝜎−1f (y
k+1 −

(
zk + ŝ)∕𝜎

)
.
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 where [�+
�
(d)]i = (

√
d2
i
+ 4� − di)∕2, i = 1,… , p.

–	 Stopping criteria: based on the KKT condition for problem (3.1) and Proposi-
tion  3.1, we terminate the algorithm when the relative KKT residual is less 
than 10−5 or the maximum number of iteration 20,000 is attained. Here, the 
relative KKT residual is given as 

 where 𝜂p =
‖x−y‖
1+‖x‖ , 𝜂d =

‖x−Proxf (x−z−ŝ)‖
1+‖x‖  , and �c =

y−Proxp(y+z)

1+‖y‖ .

4 � Numerical experiments

In this section, we evaluate the performance of the proposed model (1.2) by com-
paring with the sparse Gaussian graphical model (sGGM) with positive semidefi-
nite covariance estimation and the sGGM with IPW estimator. Meanwhile, we 
use ADMM to solve the three models. Specifically, we consider the following 
problems:

where the covariance estimation ŝ and the regularizer p ∶ �
n → ℜ ∪ {+∞} are 

taken respectively as the following forms: given an IPW estimator s ∈ �
n,

–	 for sGGM with positive semidefinite covariance estimation (sGGM in short ): 
p(x) ∶= �‖x‖1,off and ŝ = Π

�
n
+
(s) . More specifically, let the given estimator s 

admit the eigenvalue decomposition s = UDiag(�1,… ,�n)U
T with U being an 

orthogonal matrix, then ŝ = UDiag(𝜇̂1 … , 𝜇̂n)U
T , 𝜇̂i = max{𝜇i, 0}, i = 1,… , n . 

Here, for a given vector � , Diag(�) is the diagonal matrix whose diagonal ele-
ments are the components of �.

–	 for sGGM with IPW estimator (rGGM0 in short): p(x) ∶= �‖x‖1,off and ŝ = s;
–	 for rGGM: p(x) ∶= �‖x‖1,off + �C(x) and ŝ = s.

In this part, the IPW estimator s ∈ �
n is obtained from Kolar and Xing (2012). 

Given a set of partially observed samples {�i ∈ ℝ
n, i = 1,… ,m} . Let � ∈ ℜm×n be 

the matrix with elements given by

Then, the (i, j)-th element of the IPW estimator s is taken as

xk+1 = Pdiag
(
�+
�
(d)

)
PT , � ∶= �−1,

� = {�p, �d, �c},

(4.1)min
x≻0

f (x) + ⟨ŝ, x⟩ + p(x),

�ij =

{
1, if�ijis observed;

0, otherwise.
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where 𝜇̂i = (
∑m

k=1
𝛿ki)

−1
∑m

k=1
𝛿ki𝜉ki.

The performance of the estimations of precision matrix from different methods 
are evaluated by F1-Score:

where

Here, |x̂ ∩ x∗| is the number of nonzeros in x∗ estimated as nonzeros in x̂ , x̂ and x∗ are 
the estimated precision matrix from the problem (4.1) and the true precision matrix, 
respectively. The regularized parameter � and � are chosen by using the modified 
BIC criterion [see e.g. Städler and Bühlmann (2012)]:

where x̂(𝜆, 𝛼) is the optimal solution of problem (4.1), and �{ŝij≠0} = 1 if ŝij ≠ 0 , and 
0 otherwise.

4.1 � Simulation 1

The data generating processes in this part are from Kolar and Xing (2012), Städler 
and Bühlmann (2012), Rothman et al. (2008). Assume that �1,… , �m , i.i.d.∼ N(0, s) 
with

Model 1: �ij = 0.7|i−j|, i, j = 1,… , n;
Model 2: for i, j = 1,… , n , the (i, j)-th element of covariance matrix Σ:

where �{i=j} represents a function which is 1 if i = j and 0 otherwise;
Model 3: Ω = B + �I , where each off-diagonal entry of B is generated indepen-

dently and equals 0.5 with probability � = 0.1 or 0 with probability 1 − � . Diagonal 
entries of B are zero, and � is chosen such that the condition number of Ω = Σ−1 is n.

For each model, we obtain the training datasets by deleting completely at ran-
dom r%(r = 10, 20, 30) of the synthetic data. It has been pointed out in Rothman 
et al. (2008) that in Model 1 and Model 2, the number of nonzeros in s−1 is pro-
portional to m, whereas in Model 3, the number of nonzeros in s−1 is propor-
tional to m2 . That is, the precision matrices generated by Model 1 and Model 2 
have strong sparsity and that generated by Model 3 have weak sparsity.

sij =

∑m

k=1
𝛿ki𝛿kj

�
𝜉ki − 𝜇̂i

��
𝜉kj − 𝜇̂j

�
∑m

k=1
𝛿ki𝛿kj

, i, j = 1,… , n,

F1 =
2 × precision × recall

precision + recall
,

precision =
|x̂ ∩ x∗|

the number of nonzeros in
x̂, recall =

|x̂ ∩ x∗|
the number of nonzeros in

x∗.

(4.2)

(𝜆∗, 𝛼∗) ∶= min
𝜆,𝛼

m(− log det x̂(𝜆, 𝛼) + ⟨ŝ, x̂(𝜆, 𝛼)⟩) + log(m)
�
i≤j

�{x̂(𝜆,𝛼)ij≠0},

�ij = �{i=j} + 0.4�{|i−j|=1} + 0.2�{|i−j|=2} + 0.2�{|i−j|=3} + 0.1�{|i−j|=4},
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We evaluate the performance of rGGM (1.2) by comparing with that of the 
sGGM and rGGM0. The parameters chosen to obtain the precision matrix esti-
mation are selected by using (4.2). Specifically, the optimal � is selected from 
set {10, 9, 8,… , 1} , the optimal regularized parameters � for Model 1, Model 2, 
and Model 3 are from {0.5, 0.45, ..., 0.35}, {0.2, 0.15, ..., 0.05}, and {0.075, 
0.0725, ..., 0.06}, respectively. The Average performance results based on 50 
simulation runs are presented in Table  1. Meanwhile, we test the convergence 
time of ADMM used in rGGM. Specifically, the models with m = 100, n = 100 
take less than 0.15 s, the models with m = 150, n = 200 take no more than 0.4 s, 
and the models with m = 200, n = 500 take less than 4 s. From the table, we can 
see that the F1-Scores for all three methods tend to decrease with the increase of 
missing rates for most cases.

For Model 1, which has the most strong sparsity of the three data generating 
processes, the F1-Score obtained by rGGM is significantly better than that gen-
erated by the other two methods. The main reason is that the number of nonze-
ros in the precision matrix obtained from rGGM is in good agreement with that 
of the true precision matrix. This can be observed from the values of precision 
and recall corresponding to each estimation method. According as the sparsity 
decreases, the advantage of the F1-Score obtained by rGGM goes down. How-
ever, for the highest dimensional cases with three different data generating pro-
cesses, the F1-Score obtained by rGGM is still better than that generated by the 
other two methods. For better illustration, we also give the boxplots (Fig. 1) of 
the data generated by three models with m = 200, n = 500, r = 30.

4.2 � Simulation 2: protein

In this part, we generate the data based on the real dataset protein1 
( m = 6621, n = 357 ) which can be obtained from LIBSVM library (Chang and Lin 
2011). The dataset protein contains three classes and the sample sizes corresponding 
to each class are 3112, 2323, and 1186, respectively.

The datasets used in this part are generated by the following steps. For each class, 
we first generate the sample covariance matrix si ∈ �

357
+

(i = 1, 2, 3) based on the 
complete data from dataset protein and select edges by using the sparse Gaussian 
graphical model (1.1). The selected edges will be taken as the “true” edges. Then, 
we randomly generate 50 datasets with samples from multivariate Gaussian distribu-
tion N(0, si) . For each synthetic dataset, we further produce completely at random 
r% missing values, r = 10, 20, 30 . Finally, we evaluate the performances of sGGM, 
rGGM0, and rGGM with F1-Score based on the 50 synthetic datasets.

The numerical results are visualized by box plots, see Fig. 2. We can see from 
the figure that the F1-Score obtained by rGGM is higher than that of the other two 
methods for 6 out of 9 cases. For the other 3 cases, the F1-Score of rGGM is still 
comparable with that of the other two methods.

1  Available at: https://​www.​csie.​ntu.​edu.​tw/​~cjlin/​libsvm .

https://www.csie.ntu.edu.tw/%7ecjlin/libsvm
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4.3 � Simulation 3: university webpages

For illustration, we also explore the performance of rGGM on the dataset Uni-
versity Webpages, which was originally collected by the World Wide Knowledge 
Base (Web–>Kb) project of the CMU text learning group.2 In this part, we use the 

Fig. 1   Comparison of F1-Score for sGGM, rGGM0, and rGGM with data generated by Model 1, Model 
2, and Model 3 based on 50 simulation runs ( m = 200, n = 500, r = 30)

Fig. 2   Comparison of F1-Score for sGGM, rGGM0, and rGGM with 3 class datasets generated from 
protein. Here, the sample sizes corresponding to each class are 3112, 2323, and 1186, respectively

2  Available at: http://​www.​cs.​cmu.​edu/​afs/​cs.​cmu.​edu/​proje​ct/​theo-​20/​www/​data/.

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/
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3  Available at: https://​ana.​cacho​po.​org/​datas​ets-​for-​single-​label-​text-​categ​oriza​tion.

pre-processed dataset webkb-test-stemmed,3 which contains four different classes: 
student, staff, course, and project. More specifically, we select the class student, the 
one has the largest sample size m = 544 . The pre-precessing details can be found 
in Cardoso-Cachopo (2007, Section 2.8). We further process the dataset and obtain 
the term-document matrix X ∈ ℜ544×n by log-entropy weighting method [see e.g. 
Dumais (1991), Guo et al. (2011)]. Here, we take n = 300.

Since the term-document matrix X ∈ ℜ544×300 is very sparse (the percentage of 
nonzeros is 10.1% ), we produce completely at random r% nonzero missing values 
( r = 10, 20, 30 ) and evaluate the performances of sGGM, rGGM0, and rGGM with 
F1-Score based on the 50 synthetic datasets. The results are visualized in Fig. 3. As 
shown in the figure, the F1-scores for all the methods tend to decrease as the missing 
rate increases. But, the rGGM still has better F1-Score on the class student of the 
dataset University Webpages.

5 � Conclusion

In this paper, we proposed an estimator of sparse precision matrix based on the 
dataset with partially observed observations. The estimator was obtained by using a 
robust convex optimization problem that can be solved by a linearly convergent first-
order method. The numerical results showed that the presented estimators usually 
have satisfactory F1-Scores. It is commonly accepted that the nonconvex regulariz-
ers have better performance than convex regularizers. Therefore, we will design the 
efficient numerical algorithms for solving the robust Gaussian graphical model with 
nonconvex regularizers based on the theoretical analysis of the convex counterpart 
in the future.

Fig. 3   Comparison of F1-Score for sGGM, rGGM0, and rGGM with class student generated from the 
data set University Webpages 

https://ana.cachopo.org/datasets-for-single-label-text-categorization
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Appendix

Proof of Lemma 2.1

Lemma 6.1  (Yu 2013,  Theorem 1) Let f and g be two closed convex proper func-
tions. A sufficient condition for Proxf+g = Proxf◦Proxg is

Let p ∶ 𝕊
n → ℝ ∪ {+∞} be defined by

It follows from the definition of proximal mapping that

Lemma 6.2  Let function p be defined by (6.1), it holds that

Proof  From Lemma 6.1, it is sufficient to show that

From (6.2), it is sufficient to consider the following cases: 

(a)	 If ‖x‖ ≤ � , then y = x . Therefore, the relationship (6.3) holds.
(b)	 If ‖x‖ > 𝛼 , then y = �x∕‖x‖ , which means sgn(y) = sgn(x) . Therefore, the rela-

tionship (6.3) also holds in this case.

The proof is completed. � □

Proof of Proposition 2.1

Lemma 6.3  (Zhang et  al. 2020,  Lemma 3.1) Let f (x) ∶= − log det x . Then all 
Gf ∈ �Proxf (Z) are self-adjoint and positive definite with 𝜆max(Gf ) < 1.

Lemma 6.4  Let x ∈ �
n and B ∶ �

n → �
n be any self-adjoint positive definite opera-

tor, p is the function defined in Lemma2.1. Then, for any chosen Gp ∈ �Proxp(x) , the 
linear operator I − Gp + GpB is nonsingular.

Proof  It follows Lemma  6.1 that Proxp is the projection onto the closed convex 
set C . Therefore, we know from Sun and Qi (2001, Theorem 2.3) that any element 

𝜕g(x) ⊆ 𝜕g
(
Proxf (x)

)
, ∀ x

(6.1)p(x) = �‖x‖1,off + �(x), �(x) ∶= �C(x), C ∶= {x ∶ ‖x‖ ≤ �}.

(6.2)Prox𝜑(x) = ΠC(x) =

�
x, ‖x‖ ≤ 𝛼,
𝛼x

‖x‖ , ‖x‖ > 𝛼.

Proxp = ΠC◦Prox�‖⋅‖1,off .

(6.3)𝜕Prox𝜆‖⋅‖1,off (x) ⊆ 𝜕Prox𝜆‖⋅‖1,off (y), y = ΠC(x), ∀x ∈ ℝ
m.



1353

1 3

Sparse precision matrix estimation with missing observations﻿	

Gp ∈ �Proxp(x) is self-adjoint, positive definite, and �max(Gp) ∈ [0, 1] . The proof can 
be completed by Zhang et al. (2020, Lemma 3.2). � □

Lemma 6.5  Let Kpert be the KKT mapping defined by (2.3), (x̄, ȳ, z̄) be the KKT point 
of problem (1.4). Then, Any element in 𝜕(x,y,z)Kpert((x̄, ȳ, z̄), (0, 0, 0)) is nonsingular.

Proof  Since Proxp is directionally differentiable, it follows from the chain rule pre-
sented in Sun (2006, Lemma 2.1) that for any G ∈ 𝜕(x,y,z)Kpert((x̄, ȳ, z̄), (0, 0, 0)) , there 
exist Gf ∈ 𝜕Proxf (x̄ − z̄ − ŝ) and Gp ∈ 𝜕Proxp(ȳ + z̄) such that

Suppose that there exists (Δx,Δy,Δz) ∈ �
n × �

n × �
n such that G(Δx,Δy,Δz) = 0 , 

i.e.,

It follows from Lemma  6.3 that both Gf  and G−1
f

− I are self-adjoint and positive 
definite. This, together with (6.4), implies that

We know from Lemma 6.4 that (I − Gp + Gp(G
−1
f

− I)) is nonsingular. This, together 
with (6.5), implies that

Therefore, G is nonsingular. The proof is completed. � □

In order to give the proof of Proposition 2.1, we recall the implicit theorem from 
Clarke et al. (1998). Let � be a Hilbert space and � be a metric space. Consider the 
equation

where H is a mapping from � ×� to � . Assume that V ⊆ � is an open set such that 
H is continuous on V ×� and such that the partial derivative �xH(x, �) exists for all 
(x, �) ∈ V ×� , and is continuous jointly in (x, �) ∈ V ×�.

The following result is from Clarke et al. (1998, Theorem 3.6), which is usually 
named as Clarke’s implicit function theorem.

Lemma 6.6  Let (x0, �0) ∈ V ×� be a point satisfying H(x0, �0) = 0 . Then one has

G(Δx,Δy,Δz) =

⎛
⎜⎜⎝

Δx − Gf (Δz + Δx)

Δy − Gp(Δy + Δz)

Δx − Δy

⎞
⎟⎟⎠
, ∀ (Δx,Δy,Δz) ∈ �

n × �
n × �

n.

(6.4)

⎧⎪⎨⎪⎩

Δx − Gf (Δz + Δx) = 0,

Δy − Gp(Δy + Δz) = 0,

Δx − Δy = 0.

(6.5)Δz =
(
G−1
f

− I
)
Δx and

(
I − Gp + Gp

(
G−1
f

− I
))

Δx = 0.

Δx = 0, Δy = 0, and Δz = 0.

H(x, �) = 0,
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(a)	 If �xH(x0, �0) is onto and one to one, then there exist neighborhoods Nx of x0 
and N� of �0 and a unique continuous function x̂(⋅) ∶ N𝛼 → Nx with x̂(𝛼0) = x0 
such that H(x̂(𝛼), 𝛼) = 0, ∀𝛼 ∈ N𝛼.

(b)	 If in addition H is Lipschitz in a neighborhood of (x0, �0) , then x̂ is Lipschitz.

Now, we are ready to present the proof of Proposition 2.1.

Proof  The global Lipschitz continuities of the proximal mappings Proxf  and Proxp 
imply that the mapping Kpert defined by (2.3) is Lipschitz continuous. Therefore, the 
proof can be completed by Lemmas 6.5, 6.6, and the fact that for any (u, v, w), the 
set ���(u, v,w) must be a singleton if it is nonempty. � □
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