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Abstract
Logistic regression is a standard model in many studies of binary outcome data, 
and the analysis of missing data in this model is a fascinating topic. Based on the 
idea of Wang D, Chen SX (2009) Empirical likelihood for estimating equations with 
missing values. Ann Stat, 37:490–517, proposed are two different types of multi-
ple imputation (MI) estimation methods, which each use three empirical conditional 
distribution functions to generate random values to impute missing data, to estimate 
the parameters of logistic regression with covariates missing at random (MAR) 
separately or simultaneously by using the estimating equations of Fay RE (1996) 
Alternative paradigms for the analysis of imputed survey data. J Am Stat Assoc, 
91:490–498. The derivation of the two proposed MI estimation methods is under the 
assumption of MAR separately or simultaneously and exclusively for categorical/
discrete data. The two proposed methods are computationally effective, as evidenced 
by simulation studies. They have a quite similar efficiency and outperform the com-
plete-case, semiparametric inverse probability weighting, validation likelihood, and 
random forest MI by chained equations methods. Although the two proposed meth-
ods are comparable with the joint conditional likelihood (JCL) method, they have 
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more straightforward calculations and shorter computing times compared to the JCL 
and MICE methods. Two real data examples are used to illustrate the applicability of 
the proposed methods.

Keywords  Inverse probability weighting · Joint conditional likelihood · Missing at 
random · Multiple imputation · Validation likelihood

1  Introduction

“Missing data” is a widespread issue in practical data analysis and frequently 
appear in many areas of science for various reasons, e.g., survey non-response, data 
collection conditions, expensive or long-term experiments. Rubin (1976) used the 
missing mechanism concept to formalize the missing value, where the missingness 
indicators are considered as random variables that are described by a distribution. 
For the missingness mechanism, there are three main types: missing completely at 
random (MCAR), missing at random (MAR), and missing not at random (MNAR). 
MCAR means that the appearance of missing values is completely independent of 
all variables with missing observations and variables with no missing observations. 
MAR means that the missingness is only related to the variables with no missing 
observations, but unrelated to the variables with missing observations. MNAR, nei-
ther MAR nor MCAR, implies that missing values are related to observed and unob-
served values. The impact of missing data on statistical research can lead to biased 
estimates of parameters, lose information, decrease statistical power, increase stand-
ard errors, or weaken generalizability of findings (Dong and Peng 2013). Various 
methods for dealing with missing values in regression models were proposed; see, 
e.g., Rubin (1976), Little (1992), Zhao and Lipsitz (1992), Wang et al. (2002), Lee 
et al. (2012), and Lukusa et al. (2016) for more details.

Logistic regression is often applied in many studies in which researchers would 
like to investigate the relationship between a binary response variable and covari-
ates (Hosmer et al. 2013). In practice, the analysis of logistic regression with one or 
more covariates MAR frequently appears, which provides specific challenges. There 
were some studies on this issue. For instance, Lipsitz et al. (1998) derived a modi-
fied conditional logistic regression with covariates MAR. Wang et  al. (1997) pro-
vided the weighted semiparametric estimation method to investigate the properties 
of regression parameter estimators when the selection probabilities are estimated 
by kernel smoothers. Wang et al. (2002) proposed the joint conditional likelihood 
(JCL) method to estimate the parameters of logistic regression with covariates MAR 
by combining complete-case (CC) (or validation) data, where the cases without 
missing observations are included, and non-complete (or non-validation) data that 
include the cases with missing observations. When both the outcome and covariates 
in logistic regression are MAR, Lee et  al. (2012) presented the two semiparamet-
ric estimation methods, validation likelihood (VL) and JCL estimation methods, to 
estimate the logistic regression parameters. Similarly, Hsieh et  al. (2013) applied 
these approaches to estimate the parameters of logistic regression with the outcome 
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and covariates MAR separately or simultaneously. Jiang et  al. (2020) developed 
a stochastic approximation version of the EM (SAEM) algorithm, which is based 
on Metropolis-Hastings sampling, to perform statistical inference for the parame-
ters of logistic regression with missing covariates, and compared their estimators 
with those of the random forest multiple imputation by chained equations (MICE) 
method from mice package in R (Buuren and Groothuis-Oudshoorn 2011). Tran 
et al. (2021) recently estimated the parameters of logistic regression with categori-
cal/discrete covariates MAR separately or simultaneously via the JCL estimation 
method that uses the information from a CC and three non-complete data sets to 
improve efficiency in estimation.

Based on the results of Tran et al. (2021), although the JCL estimation method 
outperforms the CC, semiparametric inverse probability weighting (SIPW), and VL 
estimation methods, its calculations are more complex and, hence, it takes longer 
computing time. In addition, the estimators of the SAEM approach outperform those 
of the MICE method, but the computing time of the SAEM approach is longer com-
pared to the MICE method. Moreover, it can be seen from Jiang et al. (2020) that the 
MICE estimators are underestimators, although the variables are MCAR. Therefore, 
we are highly motivated to develop other estimation methods for logistic regression 
with covariates MAR separately or simultaneously that are not only comparable 
with the JCL and MICE estimation methods in terms of efficiency but also simpler 
and faster in calculation.

In this work, based on the ideas of Fay (1996), Wang and Chen (2009), and Lee et al. 
(2016, 2020), we develop two different types of MI methods to estimate the param-
eters of logistic regression with two covariate vectors MAR separately or simultane-
ously under the assumption that all covariates and surrogates are categorical/discrete. 
We also compare the two proposed MI methods with the JCL method of Tran et al. 
(2021) and MICE method in terms of efficiency in estimation and computing time. Our 
proposed MI methods are two-step procedures based on the suggestion of Fay (1996) 
that makes the calculation process simpler and faster than the three-step procedure in 
Rubin (1987). Firstly, each type MI estimation method uses three empirical conditional 
distribution functions (CDFs) (Wang and Chen 2009) to generate random values. The 
first type MI (MI1) method uses only the CC data. The second type MI (MI2) method 
uses both the CC and non-complete data to generate random values to impute missing 
data. Secondly, solve the estimating equations to obtain estimates of the logistic regres-
sion parameters (Fay 1996). The estimating equations are more convenient in prac-
tice because they are solved only once rather than combining M estimating equations, 
where M is the number of imputations, to get the pooled estimates as done in Rubin 
(1987), such that it shortens computing time. The formulas of Lee et al. (2016, 2020) 
are applied to estimate the variances of the two proposed MI estimators to improve effi-
ciency in estimation.

Section 2 presents the assumptions and notations used throughout this work. Sec-
tion 3 reviews the SIPW, VL, JCL, and MICE estimation methods. Two different types 
of MI estimation methods are proposed in Sect. 4. In Sect. 5, the finite-sample perfor-
mances of the proposed methods are investigated by conducting extensive simulations 
under various settings. Two real data sets are used to demonstrate the practical use of 
the proposed methods. Section 6 presents some discussions and conclusions.
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2 � Assumptions and notations

Let Y be a binary outcome variable denoting whether an event of interest occurs, where 
Y = 1 if event occurs and Y = 0 otherwise. Suppose that �1 = (X1,X2,… ,Xr1

)T is a 
vector of r1 categorical/discrete covariates, and �2 = (Xr1+1

,Xr1+2
,… ,Xp)

T is a vec-
tor of r2 categorical/discrete covariates, where p = r1 + r2 . It is assumed that �1 and 
�2 may be missing separately or simultaneously. In this work, we do not consider the 
case where some covariates in �1 and �2 have missing observations. Thus, when it is 
said that �s , s = 1, 2 , is missing, it means all covariates in �s have missing observa-
tions simultaneously. Assume that Z = (Z1, Z2,… , Zq)

T a vector of q categorical/dis-
crete covariates that are always observed. Let X = (�T

1
, �T

2
)T , X = (1,XT ,ZT )T , and 

{(Yi,Xi) ∶ i = 1, 2,… , n} be a random sample. Assume that X is MAR. The logistic 
regression model is considered as follows:

where H(u) = {1 + exp(−u)}−1 and � = (�0, �
T
1
, �T

2
, �T

3
)T is a vector of parameters 

associated with Xi . The main goal is to estimate � when some of the Xi s are MAR. Let 
�ij , j = 1, 2, 3, 4 , denote the missingness statuses of Xi = (�T

1i
, �T

2i
)T in which �i1 = 1 if 

both �1i and �2i are observed; 0 otherwise; �i2 = 1 if �1i is missing and �2i is observed; 0 
otherwise; �i3 = 1 if �1i is observed and �2i is missing; 0 otherwise; �i4 = 1 if both �1i and 
�2i are missing; 0 otherwise. Some studies used a surrogate variable that can be meas-
ured or is measured easily that is used instead of a variable that cannot be measured or 
is measured difficultly, so it can be used for an MAR variable in a model to improve the 
information and, hence, enhance the performance of estimation and prediction. See, e.g., 
Wang et al. (1997, 2002), Hsieh et al. (2010, 2013), and Lee et al. (2011, 2012, 2020) 
for more details. We also consider the possibility of categorical/discrete surrogate vec-
tors �1 and �2 for �1 and �2 , respectively, such that �1 and �2 are dependent on �1 and �2 , 
respectively, and independent of Y given X and Z . That is, there are correlations between 
�1 and �1 and �2 and �2 , respectively. Hence, we can have the logistic regression model 
P(Yi = 1|�1i, �2i,Zi, �1i, �2i) = P(Yi = 1|�1i, �2i,Zi) = H(�0 + �T

1
�1i + �T

2
�2i + �T

3
Zi) 

as given in (1). Let W = (�T
1
, �T

2
)T and Vi = (ZT

i
,WT

i
)T , i = 1,… , n . The CC data 

set ( �i1 = 1 ) consists of (Yi,Xi,Vi) , and the three non-complete data sets include 
(Yi, �2i,Vi) , (Yi, �1i,Vi) , and (Yi,Vi) , respectively, when �i2 , �i3 , and �i4 are equal to 1. 
Under the assumption of MAR mechanism (Rubin 1976) of �1 and �2 , the selection 
probability model is

with 
∑4

j=1
�j(Yi,Vi) = 1 . �j(Yi,Vi) s are the unknown nuisance parameters and need 

to be estimated. In this study, under the assumption that Vi s are categorical/discrete 
vectors, the nonparametric estimators of �j(Yi,Vi) are given as follows:

(1)
P(Yi = 1|Xi,Zi) = H(�0 + �T

1
�1i + �T

2
�2i + �T

3
Zi) = H(�T

Xi), i = 1, , 2,… , n,

(2)P(�ij = 1|Yi, �1i, �2i,Zi,Wi) = �j(Yi,Zi,Wi) = �j(Yi,Vi), j = 1, 2, 3, 4,

(3)�̂j(Yi,Vi) =

∑n

k=1
�kjI(Yk = Yi,Vk = Vi)∑n

s=1
I(Ys = Yi,Vs = Vi)

, j = 1, 2, 3, 4,
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where I(⋅) is an indicator function. It is noticed that in this work the requirement of 
categorical/discrete covariates is for mathematical derivation purposes. �̂1(Yi,Vi) s 
are used as weights for the SIPW and VL estimation methods and �̂j(Yi,Vi) s, 
j = 1, 2, 3, 4 , are used as weights for modification of conditional probabilities for the 
JCL estimation method in Sect. 3. If covariates are continuous, one can use the ker-
nel estimation approach by using the arguments of Wang and Wang (2001).

3 � Review of estimation methods

This section briefly reviews the four famous estimation methods, SIPW, VL, JCL, 
and MICE methods, for logistic regression with covariates MAR separately or 
simultaneously. These methods are also used to compare their estimation perfor-
mance with the proposed approaches in the following sections.

3.1 � SIPW estimation method

Horvitz and Thompson (1952) proposed the weighted estimator that uses inverse prob-
ability weighting (IPW) to reduce biased estimation and has become known as the 
H-T estimator. When the selection probabilities are known, Zhao and Lipsitz (1992) 
extended the H-T estimator to propose the IPW estimator to improve efficiency in esti-
mation. This approach is, however, limited in practice because the selection probabili-
ties are usually unknown. Therefore, some authors, e.g., Wang et al. (1997) and Wang 
and Wang (2001), suggested the SIPW approach that uses the nonparametric estima-
tors of the unknown selection probabilities as weighted inverse terms. See, e.g., Hsieh 
et al. (2010) and Lee et al. (2012) for further details. Considering the logistic regres-
sion model (1) when �1 and �2 are MAR separately or simultaneously, one can obtain 
the SIPW estimator �̂W of � by solving the following estimating equations:

where �̂1 =
(
�̂11,… , �̂1n

)
 for �̂1i = �̂1(Yi,Vi) , given in (3), being the estimator of 

�1i = �1(Yi,Vi) defined in (2).

3.2 � VL estimation method

Breslow and Cain (1988) proposed the conditional maximum likelihood (ML) 
approach to estimate the parameters of logistic regression for two-stage case-control 
data. They showed that their estimator of � is not only consistent and asymptotically a 
normal distribution but also is useful when information of covariates is missing for a 
large part of the sample. Wang et al. (2002), Lee et al. (2012), and Hsieh et al. (2013) 
applied this approach to provide the VL estimation method, which uses the CC data, 
to solve the issue of missing data in logistic regression. When �1 and �2 are MAR 

(4)UW (�, �̂1) =
1√
n

n�
i=1

�i1

�̂1(Yi,Vi)
Xi(Yi − H(�T

Xi)) = 0,
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separately or simultaneously, Tran et al. (2021) estimated � by using the following esti-
mating equations:

where

and �̂1(Yi,Vi) is given in (3). One can solve ÛV (�) = 0 to obtain the VL estimator 
�̂V of �.

3.3 � JCL estimation method

Both the SIPW and VL approaches that use only the CC data set ( �1 = 1 ) may not 
maximize efficiency in estimation. Therefore, to overcome this drawback, Wang et al. 
(2002) proposed the JCL estimation method that combines the CC and non-complete 
data; see, e.g., Lee et al. (2012) and Hsieh et al. (2013) for more details. Tran et al. 
(2021) proposed the JCL method to estimate the parameters of logistic regression with 
covariates MAR separately or simultaneously.

When �1 and �2 are MAR separately or simultaneously, one can obtain the JCL esti-

mator �̂J = (�̂0, �̂
T

J1
, �̂

T

J2
, �̂

T

J3
)T of � in the logistic regression model (1) by solving the 

following estimating equations:

where Ĥ1(�1i, �2i,Vi; �) is defined in (6), and

(5)ÛV (�) =
1√
n

n�
i=1

�i1Xi(Yi − Ĥ1(�1i, �2i,Vi;�)) = 0,

(6)Ĥ1(�1i, �2i,Vi;�) = H

(
�0 + �T

1
�1i + �T

2
�2i + �T

3
Zi + ln

�̂1(1,Vi)

�̂1(0,Vi)

)

(7)

ÛJ(�) =
1√
n

n�
i=1

�
�i1Xi(Yi − Ĥ1(�1i, �2i,Vi;�)) + �i2Â(�2i,Vi;�1)(Yi − Ĥ2(�2i,Vi;�))

+ �i3B̂(�1i,Vi;�2)(Yi − Ĥ3(�1i,Vi;�)) + �i4T̂(Vi;�1, �2)(Yi − Ĥ4(Vi;�))
�

= 0,

(8)Ĥ2(�2i,Vi; �) = H

(
�0 + �T

2
�2i + �T

3
Zi + R̂2(�2i,Vi;�1) + ln

�̂2(1,Vi)

�̂2(0,Vi)

)
,

(9)Ĥ3(�1i,Vi; �) = H

(
�0 + �T

1
�1i + �T

3
Zi + R̂3(�1i,Vi;�2) + ln

�̂3(1,Vi)

�̂3(0,Vi)

)
,

(10)Ĥ4(Vi; �) = H

(
�0 + �T

3
Zi + R̂4(Vi;�1, �2) + ln

�̂4(1,Vi)

�̂4(0,Vi)

)
,
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for

and

3.4 � MICE estimation method

MI (Rubin 1987, 1996) is a simple and powerful method for dealing with miss-
ing data and is available in several commonly used statistical software and pack-
ages. One can use the MI approaches to generate fully imputed (“completed”) 
data sets by retaining the observed values and replacing the missing data with 
plausible values from an imputation model. There are various extensions of the 
MI method of Rubin (1987) in which their differences are mostly in the struc-
tural assumption of the imputation model. See, e.g., Rubin (1987, 1996), Rubin 
and Schenker (1986), Fay (1996), and Pahel et al. (2011) for details. Their proce-
dures often follow the three basic steps, shown in Figure 1A: Step 1) Imputation: 
impute missing values M times to obtain M imputed (“completed”) data sets; Step 
2) Analysis: analyze each of the M imputed (“completed”) data sets by using the 
chosen statistical methods; Step 3) Pool: combine the M analysis results from 
Step 2 into one result by using the formula of Rubin (1987). The MI methods are 

(11)Â(�2i,Vi; �1) =
(
1, R̂

(�1)

2
(�2i,Vi;�1), �

T
2i
,ZT

i

)T

,

(12)B̂(�1i,Vi; �2) =
(
1, �T

1i
, R̂

(�2)

3
(�1i,Vi;�2),Z

T
i

)T

,

(13)T̂(Vi;�1, �2) =
(
1, R̂

(�1)

4
(Vi;�1, �2), R̂

(�2)

4
(Vi;�1, �2),Z

T
i

)T

,

(14)R̂2(�2i,Vi;�1) = ln

∑n

j=1
�j1e

�T
1
�1j I(Yj = 0, �2j = �2i,Vj = Vi)∑n

k=1
�k1I(Yk = 0, �2k = �2i,Vk = Vi)

,

(15)R̂3(�1i,Vi;�2) = ln

∑n

j=1
�j1e

�T
2
�2j I(Yj = 0, �1j = �1i,Vj = Vi)∑n

k=1
�k1I(Yk = 0, �1k = �1i,Vk = Vi)

,

(16)R̂4(Vi;�1, �2) = ln

∑n

j=1
�j1e

�T
1
�1j+�

T
2
�2j I(Yj = 0,Vj = Vi)∑n

k=1
�k1I(Yk = 0,Vk = Vi)

,

R̂
(�1)

2
(�2i,Vi;�1) =

�

��T
1

R̂2(�2i,Vi;�1), R̂
(�2)

3
(�1i,Vi;�2) =

�

��T
2

R̂3(�1i,Vi;�2),

R̂
(�1)

4
(Vi;�1, �2) =

�

��T
1

R̂4(Vi;�1, �2), R̂
(�2)

4
(Vi;�1, �2) =

�

��T
2

R̂4(Vi;�1, �2).
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almost different in the way of their imputed data to fill missing values (Step 1), 
e.g., mean, regression, hot deck, cold deck, principal component, and chained-
equation imputation methods (Little and Rubin 2019).

The mice package (Buuren and Groothuis-Oudshoorn 2011) is one of the use-
ful and famous packages that uses MI by chained equations, also known as fully 
conditional specification and sequential regression MI, in Step 1 to impute val-
ues for missing data. Specifically, assume u = (u1, u2,… , uk) is a vector of k vari-
ables with missing observations. Firstly, all missing values of ui are filled in by 
using basic random sampling and replacement with observed values themselves. 
Secondly, construct a regression model of u1 on u2,… , uk . Simulated draws from 
the corresponding posterior predictive distribution of u1 are used to replace miss-
ing values of u1 . Then, generate a regression model of u2 based on the u1 vari-
able with imputed values and u3,… , uk . Again, simulated draws from the cor-
responding posterior predictive distribution of u2 are used to replace missing 
values of u2 . Repeat the process for each of u3,… , uk . This procedure is called a 
“cycle”. Repeat this cycle several times (e.g., 10 or 20) to create a first imputed 
(“complete”) data set. Finally, repeat the procedure M times to obtain M imputed 
(“completed”) data sets. Steps 2 and 3 of this MI method follow the rule of Rubin 
(1987).

In summary, this section has introduced four estimation methods used for the 
benchmark comparisons in this work and the convenience of reference. Although 
the simulation results of Tran et al. (2021) showed that the JCL method outperforms 
the CC, VL, and SIPW methods, it is pretty hard to obtain the JCL estimates of the 
logistic regression parameters because of its complex calculations and long comput-
ing time. In addition, the MICE approach can be applied to the case of both con-
tinuous and categorical/discrete data and any missingness mechanism (White et al. 
2011), but its estimators for logistic regression with missing covariates underesti-
mate the parameters, although their standard errors were small (Jiang et al. 2020). 
Moreover, the procedure of this approach may take much time to compute. There-
fore, in Sect. 4, we propose two different types of MI methods that not only provide 
efficient estimation comparable with the JCL and MICE approaches but also have 
more straightforward computations to shorten computing time.

(A) (B)

Fig. 1   The main steps of multiple imputation. A Rubin’s type. B Fay’s type



907

1 3

Estimation of logistic regression with covariates missing…

4 � Proposed MI estimation methods

This section introduces two different types of MI methods based on the ideas of 
Fay (1996), Wang and Chen (2009), and Lee et al. (2016, 2020). The procedure 
of these two proposed MI methods has two steps (Fay’s type, Figure 1B): Step 
1) Impute values for non-complete data by using the empirical CDFs of missing 
values given the observed data as done in Wang and Chen (2009) to obtain M 
imputed (“completed”) data sets; Step 2) Solve the estimating equations only one 
time to obtain the estimates of the logistic regression parameters. The estimated 
variances of the MI estimators are then obtained by using the formulas of Lee 
et al. (2016, 2020). The main difference of these two MI methods is in the way 
of missing data imputation in Step 1. As mentioned in Sect. 1, this procedure is 
more convenient in practice and saves computing time. The details of these two 
different types of MI methods are stated in the following sections.

4.1 � Type 1 MI (MI1) method

Let F
�1i
(�1|�2i, Yi,Vi) , F�2i

(�2|�1i, Yi,Vi) , and F
Xi
(�|Yi,Vi) , where � = (�T

1
, �T

2
)T , be 

the CDFs of �1i given (�2i, Yi,Vi) , �2i given (�1i, Yi,Vi) , and Xi = (�T
1i
, �T

2i
)T given 

(Yi,Vi) , respectively. To build the MI1 method, we consider the following empiri-
cal CDFs of �1i given (�2i, Yi,Vi) , �2i given (�1i, Yi,Vi) , and Xi given (Yi,Vi):

respectively. When �1i and �2i are MAR separately or simultaneously, their 
missing values are imputed several times by random values generated from 
F̃
�1i
(�1|�2i, Yi,Vi) , F̃�2i

(�2|�1i, Yi,Vi) , and F̃
Xi
(�|Yi,Vi) . The MI1 procedure is sum-

marized as follows: 

Step 1.	� Imputation: Generate the vth imputed (“completed”) data ( v = 1, 2,… ,M ) 
based on the missingness status of Xi = (�T

1i
, �T

2i
)T , i = 1, 2,… , n . 

	� i)	� If �i1 = 1 ( �1i and �2i are observed), keep the values of �1i and �2i . 
Set Xi = (1, �T

1i
, �T

2i
,ZT

i
)T for all v.

(17)

F̃
�1i
(�1��2i, Yi,Vi) =

n�
k=1

�
�k1I(Yk = Yi, �2k = �2i,Vk = Vi)∑n

s=1
�s1I(Ys = Yi, �2s = �2i,Vs = Vi)

�
I(�1k ≤ �1),

F̃
�2i
(�2��1i, Yi,Vi) =

n�
k=1

�
�k1I(Yk = Yi, �1k = �1i,Vk = Vi)∑n

s=1
�s1I(Ys = Yi, �1s = �1i,Vs = Vi)

�
I(�2k ≤ �2),

F̃
Xi
(��Yi,Vi) =

n�
k=1

�
�k1I(Yk = Yi,Vk = Vi)∑n

s=1
�s1I(Ys = Yi,Vs = Vi)

�
I(Xk ≤ �),
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ii)	� If �i2 = 1 ( �1i is missing and �2i is observed), keep the values of �2i 
and generate �̃1iv from F̃

�1i
(�1|�2i, Yi,Vi) to fill the missing values of 

�1i . Define X̃2iv = (1, �̃T
1iv
, �T

2i
,ZT

i
)T.

iii)	� If �i3 = 1 ( �1i is observed and �2i is missing), keep the values of �1i 
and generate �̃2iv from F̃

�2i
(�2|�1i, Yi,Vi) to fill the missing values of 

�2i . Define X̃3iv = (1, �T
1i
, �̃T

2iv
,ZT

i
)T.

iv)	� If �i4 = 1 (both �1i and �2i are missing), generate �̃1iv and �̃2iv 
from F̃

Xi
(�|Yi,Vi) to fill the missing values of �1i and �2i . Define 

X̃4iv = (1, �̃T
1iv
, �̃T

2iv
,ZT

i
)T.

Step 2.	� Analysis: Solve the following estimating equations: 

 where Si(�) = Xi(Yi − H(�T
Xi)) , S̃ki(�) = M−1

∑M

v=1
X̃kiv(Yi − H(�T

X̃kiv)) , 
k = 2, 3, 4 , to obtain the MI1 estimator, �̂M1 , of � . Next, calculate the estimated vari-
ance of �̂M1 , V̂ar (�̂M1) , by the formula of Lee et al. (2016), which is also a Rubin-
type estimated variance (Rubin 1987), as follows: 

 where G−1
M1

(�) is the gradient of −M−1
∑M

v=1
Ũv(�) = −UM1(�) , for 

 Notice that in Step 1, the imputed data sets are generated by random sampling from 
the empirical CDFs based on the CC data. The indicator variables �ij , j = 1, 2, 3, 4 , 
i = 1, 2,… , n , are used to identify exactly the partitioned covariate vector without miss-
ing observations that are used as the information for the empirical CDFs. For example, 
when �i2 = 1 ( �i3 = 1 ), the condition from the observed �2i ( �1i ), Yi , and Vi is used to 
create a set of values for the missing values of �1i ( �2i ); when �i4 = 1 , both �1i and �2i are 
missing, the condition from only Yi and Vi is used to create a set of values for the missing 
values of �1i and �2i . In other words, the procedure uses the exact and more information 
from the covariate vector without missing observations for missing data imputation, and, 

(18)UM1(�) =
1√
n

n�
i=1

�
�i1Si(�) + �i2S̃2i(�) + �i3S̃3i(�) + �i4S̃4i(�)

�
= 0,

(19)

G
−1
M1

(��M1)

�
1

M

m�
v=1

n�
i=1

(�Uvi(
��M1))

⊗2 +
�
1 +

1

M

�∑m

v=1
(�Uv(

��M1))
⊗2

M − 1

�
(G−1

M1
(��M1))

T ,

Ũvi(�) =
1√
n

�
�i1Si(�) + �i2S̃2i(�) + �i3S̃3i(�) + �i4S̃4i(�)

�
,

Ũv(�) =

n�
i=1

Ũvi(�).
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hence, estimation may be more efficient. In addition, because this method only has two 
steps and solves the estimating equations one time, it can shorten computing time.

4.2 � Type 2 MI (MI2) method

The MI2 method is quite similar to the MI1 method except for the formulas of 
empirical CDFs, which are used to generate values to fill missing data. Consider the 
empirical CDFs of �1i given (�2i, Yi,Vi) , �2i given (�1i, Yi,Vi) , and Xi given (Yi,Vi) 
as follows:

respectively. When �1i and �2i are MAR separately or simultaneously, their miss-
ing values are imputed several times by random observations generated from 
̃̃
F
�1i
(�1|Yi,Vi) , 

̃̃
F
�2i
(�2|Yi,Vi) , and ̃̃F

Xi
(�|Yi,Vi) according to the missingness sta-

tuses of �1i and �2i . The procedure of the MI2 method is stated as follows: 

Step 1.	� Imputation: Generate the vth imputed (“completed”) data 
( v = 1, 2,… ,M ) according to the missingness status of Xi = (�T

1i
, �T

2i
)T , 

i = 1, 2,… , n . 

�i)	� If �i1 = 1 , keep the values of �1i and �2i . Set Xi = (1, �T
1i
, �T

2i
,ZT

i
)T for 

all v.

ii)	� If �i2 = 1 , keep the values of �2i and generate ̃̃
�1iv from 

̃̃
F
�1i
(�1|�2i, Yi,Vi) to fill the missing values of �1i . Define 

̃̃
X2iv = (1,

̃̃
�

T

1iv
, �T

2i
,ZT

i
)T.

iii)	� If �i3 = 1 , keep the values of �1i and generate ̃̃
�2iv from 

̃̃
F
�2i
(�2|�1i, Yi,Vi) to fill the missing values of �2i . Define 

̃̃
X3iv = (1, �T

1i
,
̃̃
�

T

2iv
,ZT

i
)T.

iv)	� If �i4 = 1 , generate ̃̃�1iv and ̃̃�2iv from ̃̃F
Xi
(�|Yi,Vi) to fill the missing 

values of �1i and �2i . Define ̃̃X4iv = (1,
̃̃
�

T

1iv
,
̃̃
�

T

2iv
,ZT

i
)T.

̃̃
F
�1i
(�1�Yi,Vi) =

n�
k=1

�
(�k1 + �k3)I(Yk = Yi,Vk = Vi)∑n

s=1
(�s1 + �s3)I(Ys = Yi,Vs = Vi)

�
I(�1k ≤ �1),

̃̃
F
�2i
(�2�Yi,Vi) =

n�
k=1

�
(�k1 + �k2)I(Yk = Yi,Vk = Vi)∑n

s=1
(�s1 + �s2)I(Ys = Yi,Vs = Vi)

�
I(�2k ≤ �2),

̃̃
F
Xi
(��Yi,Vi) =

n�
k=1

�
�k1I(Yk = Yi,Vk = Vi)∑n

s=1
�s1I(Ys = Yi,Vs = Vi)

�
I(Xk ≤ �),
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Step 2.	� Analysis: Solve the following estimating equations: 

 where Si(�) = Xi(Yi − H(�T
Xi)) , 

̃̃
Ski(�) = M−1

∑M

v=1

̃̃
Xkiv(Yi − H(�T ̃̃

Xkiv)) , 
k = 2, 3, 4 , to obtain the MI2 estimator, �̂M2 , of � . Then, calculate the estimated var-
iance of �̂M2 , V̂ar (�̂M2) , by the following formulas: 

 where G−1
M2

(�) is the gradient of −M−1
∑M

v=1

̃̃
Uv(�) = −UM2(�) , for 

 Notice that each of the two proposed MI methods uses three empirical CDFs of Wang 
and Chen (2009) to generate random values for �1 and �2 MAR separately or simultane-
ously. However, there is a slight difference between these two MI approaches in how 
information is obtained from the observed data to replace the missing data in the first 
and second empirical CDFs, while the third empirical CDFs are the same. The MI1 
method uses only �i1 = 1 , but the information of observed �2i is given in the indica-
tor function in F̃

�1i
(�1|�2i, Yi,Vi) , and the information of observed �1i is given in the 

indicator function in F̃
�2i
(�2|�1i, Yi,Vi) . The MI2 method, however, combines �i1 = 1 

and �i3 = 1 in ̃̃F
�1i
(�1|Yi,Vi) , and �i1 = 1 and �i2 = 1 in ̃̃F

�2i
(�2|Yi,Vi) , but the informa-

tion of observed �1i or �2i is not given in the indicator functions I(Yk = Yi,Vk = Vi) s. 
Moreover, by the conditions inside the indicator functions in the empirical CDFs, the 
MI2 method can be applied to the case of both the continuous and categorical/discrete 
X data, while the MI1 method can only be applied to the case of the categorical/dis-
crete X data, which is its limitation in practice. Despite their differences in methodol-
ogy, both the techniques aim to improve information for missing data imputation and 
maximize estimation efficiencies. The next section investigates the finite-sample per-
formances of the proposed methods compared to the CC, SIPW, VL, JCL, and MICE 
estimation methods via extensive simulations.

(20)UM2(�) =
1√
n

n�
i=1

�
�i1Si(�) + �i2

̃̃
S2i(�) + �i3

̃̃
S3i(�) + �i4

̃̃
S4i(�)

�
= 0,

(21)

G
−1
M2

(��M2)

⎧
⎪⎨⎪⎩
1

M

m�
v=1

n�
i=1

(
��Uvi(

��M2))
⊗2 +

�
1 +

1

M

�∑m

v=1
(
��Uv(

��M2))
⊗2

M − 1

⎫
⎪⎬⎪⎭

(G−1
M2

(��M2))
T ,

̃̃
Uvi(�) =

1√
n

�
�i1Si(�) + �i2

̃̃
S2i(�) + �i3

̃̃
S3i(�) + �i4

̃̃
S4i(�)

�
,

̃̃
Uv(�) =

n�
i=1

̃̃
Uvi(�).
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5 � Simulation and real data studies

5.1 � Simulation studies

Monte Carlo simulations were conducted to examine the finite-sample performances 
of the following estimators: 

(1)	 �̂F : full data ML estimator used as a benchmark for comparisons
(2)	 �̂C : CC estimator
(3)	 �̂W : SIPW estimator that is the solution of UW (�, �̂1) = 0 in (4)
(4)	 �̂V : VL estimator that is the solution of ÛV (�) = 0 in (5)
(5)	 �̂J : JCL estimator that is the solution of ÛJ(�) = 0 in (7)
(6)	 �̂M1 : MI1 estimator that is the solution of UM1(�) = 0 in (18)
(7)	 �̂M2 : MI2 estimator that is the solution of UM2(�) = 0 in (20)
(8)	 �̂ME : MICE estimator from mice package in R, used as a benchmark for com-

parisons.

To evaluate the estimation performances of the proposed methods as well as com-
pare with the other estimation methods under various situations, we were motivated 
to construct five scenarios, where the two univariates X1 and X2 were uncorrelated 
in Scenarios 1-4, and correlated in Scenario 5. Specifically, Scenario 1 studied the 
impact of the sample size on the performance of all the estimation methods under 
the same selection probabilities. Three sets of selection probabilities were consid-
ered in Scenario 2 to examine the influence of the missing rates on the performances 
of the estimation methods. The aim of Scenario 3 was the same as Scenario 2 except 
only changing the value of � to know whether the efficiencies of the estimators were 
altered or not under different logistic regression models. In Scenario 4, three dif-
ferent numbers of imputations were studied to know how they affected the perfor-
mances of the two proposed MI estimation methods. Finally, Scenario 5 provided 
six different correlation coefficients between X1 and X2 under the same selection 
probabilities and sample size to investigate the performances of all the methods in 
these situations.

For each experimental configuration, 1, 000 replications were performed. M = 30 
was considered except considering M = 5, 25 , and 45 in Scenario 4. Calculated were 
the bias, standard deviation (SD), asymptotic standard error (ASE), and coverage 
probability (CP) of a 95% confidence interval for each estimator. To evaluate the 
relative efficiencies (REs) of estimators, we computed the ratio of mean square error 
(MSE) of each of the other estimators, without including the full data ML estima-
tor, to those of the MI1 and MI2 estimators, respectively, where the MSE of an 
estimator was defined as the sum of the square of bias and the square of SD, i.e., 
MSE = bias2 + SD2.

Scenario 1. The goal was to assess how well all the estimation methods per-
formed when the two covariates X1 and X2 were independent by using the 
same observed selection probabilities and considering the three different sam-
ple sizes n = 500 , 1, 000, and 2, 000. The discrete distribution of the four values 
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(−0.3,−0.1, 0.4, 1) with probabilities (0.2,  0.3,  0.3,  0.2), respectively, was used to 
generate the data of X1 . The data of X2 were generated from the discrete distribu-
tion of the four values (−1,−0.4, 0.2, 0.6) with probabilities (0.1,  0.3,  0.3,  0.3), 
respectively. The Bernoulli distribution with success probability 0.4 was used to 
generate the data of Z. The surrogate variables of X1 and X2 were Wk that is 1 if 
Xk > 0 ; 0 if Xk ≤ 0 , k = 1, 2 . The Bernoulli distribution with success probability 
P(Y = 1|X1,X2, Z) = H(�0 + �1X1 + �2X2 + �3Z) was used to generate the data of Y, 
where � = (�0, �1, �2, �3)

T = (1,−0.5, 1, log(2))T . The following multinomial logis-
tic regression model

was used to generate the data of �ij given (Yi,W1i,W2i, Zi) , 
i = 1, 2,… , n , j = 1, 2, 3 , where � = (�1, �2, �3)

T = (2, 0.6, 0.6)T and 
� = (�1, �2, �3, �4)

T = (0.7,−0.2, 0.1,−1.2)T . Under the three different sample sizes, 
the observed selection probabilities were similar and about 0.6,  0.15,  0.15, and 
0.1, respectively. This means that the percentages of complete cases, only X1 miss-
ing, only X2 missing, and both of them missing were 60%, 15%, 15%, and 10%, 
respectively.

The simulation results of Scenario 1 are illustrated in Table 1. The full data ML 
method overall outperformed the other approaches, but it is only considered as a 
benchmark comparison because it has the practical disadvantage that no missing 
data are required. The biases of the CC (for �0, �3 ) and MICE (for �1, �2 ) estima-
tors were the largest, which implies that these two methods have the worst estima-
tion. The performances of the SIPW and VL methods were similar, and the MI1, 
MI2 and JCL methods had similar performances, particularly when n = 1, 000 and 
2,000. The SD and ASE of each estimator were similar except the MICE estima-
tor for �1 and �2 , and decreased when the sample size was increased. The ASEs of 
the MI1 and MI2 estimators were similar and the smallest compared to the other 
estimators except the full data ML estimator. The empirical CPs for all the estima-
tion methods were overall close to the nominal probability 95% except the CC (for 
�0 when n = 2, 000 ; �3 when n = 1, 000, 2, 000 ) and MICE (for �0 when n = 2, 000 ; 
�1 when n = 500, 2, 000 ; �2 when n = 1, 000, 2, 000 ) methods. In addition, it can be 
seen from Table 2 that the relative efficiency values were larger than 1 except the 
JCL (for �0 when n = 500, 1, 000 ; �1, �2 when n = 500, 1, 000, 2, 000 ) and MICE 
(for �0 when n = 500, 1, 000 ; �1 when n = 500 and MICE versus MI1; �3 when 
n = 500, 1, 000, 2, 000 ) estimators, which shows that the two proposed MI estima-
tors were comparable with the JCL and MICE estimators (for �0 as n = 500, 1, 000 ; 
�1 as n = 500 ; �3 as n = 500, 1, 000, 2, 000 ) in terms of efficiency. The relative effi-
ciency values of the MICE estimator to the two proposed MI estimators tended to 
be increased and were larger than 1 (for �1, �2 ) when the sample size was increased, 
i.e., the two different types of MI estimators are more efficient than the MICE esti-
mator for �1 and �2 when the sample size was increased.

Scenario 2. In this scenario, we examined the impact of observed selection 
probabilities, i.e., when the missing rates were changed, on the efficiencies of the 

(22)ln

(
P(�ij = 1|Yi,W1i,W2i, Zi)

P(�i4 = 1|Yi,W1i,W2i, Zi)

)
= �j + �1Yi + �2W1i + �3W2i + �4Zi
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Table 1   Simulation results of scenario 1 ( M = 30 ; n = 500, 1, 000, 2, 000 ); � = (1,−0.5, 1, log(2))T ; 
� = (2, 0.6, 0.6)T ; � = (0.7,−0.2, 0.1,−1.2)T ; observed selection probabilities: (0.6, 0.15, 0.15, 0.1)

n �̂
F

�̂
C

�̂
W

�̂
V

�̂
J

�̂
M1

�̂
M2

�̂
ME

500 �
0

Bias 0.0053 0.0523 0.0093 0.0071 0.0042 0.0077 0.0071 −0.0299
SD 0.1470 0.1871 0.1496 0.1506 0.1478 0.1480 0.1479 0.1427
ASE 0.1460 0.1874 0.1492 0.1512 0.1473 0.1470 0.1470 0.1485
CP 0.9450 0.9520 0.9440 0.9500 0.9410 0.9420 0.9430 0.9520

�
1

Bias −0.0069 0.0003 −0.0177 −0.0124 −0.0004 −0.0137 −0.0119 0.0780
SD 0.2222 0.2931 0.2495 0.2463 0.2293 0.2363 0.2344 0.2224
ASE 0.2291 0.3020 0.2486 0.2542 0.2370 0.2355 0.2360 0.2602
CP 0.9660 0.9610 0.9530 0.9620 0.9690 0.9580 0.9570 0.9700

�
2

Bias 0.0095 0.0138 0.0176 0.0124 −0.0002 0.0131 0.0129 − 0.1293
SD 0.2121 0.2705 0.2318 0.2332 0.2192 0.2227 0.2215 0.2106
ASE 0.2069 0.2726 0.2217 0.2271 0.2139 0.2116 0.2121 0.2368
CP 0.9430 0.9550 0.9380 0.9400 0.9400 0.9330 0.9370 0.9410

�
3

Bias 0.0177 0.1223 0.0289 0.0103 0.0180 0.0187 0.0186 −0.0035
SD 0.2298 0.3242 0.2411 0.2405 0.2351 0.2317 0.2316 0.2295
ASE 0.2321 0.3177 0.2345 0.2459 0.2353 0.2328 0.2329 0.2321
CP 0.9560 0.9390 0.9490 0.9580 0.9560 0.9570 0.9600 0.9490

1,000 �
0

Bias 0.0098 0.0534 0.0091 0.0092 0.0086 0.0095 0.0094 −0.0256
SD 0.1034 0.1309 0.1063 0.1065 0.1046 0.1053 0.1051 0.1013
ASE 0.1030 0.1318 0.1051 0.1058 0.1040 0.1038 0.1038 0.1047
CP 0.9440 0.9430 0.9460 0.9460 0.9410 0.9450 0.9430 0.9470

�
1

Bias −0.0027 0.0088 0.0006 0.0004 0.0019 −0.0011 −0.0007 0.0792
SD 0.1599 0.2133 0.1744 0.1757 0.1656 0.1685 0.1673 0.1643
ASE 0.1611 0.2112 0.1748 0.1763 0.1666 0.1661 0.1664 0.1828
CP 0.9460 0.9540 0.9500 0.9480 0.9440 0.9420 0.9440 0.9500

�
2

Bias 0.0033 0.0047 0.0041 0.0040 −0.0025 0.0031 0.0030 − 0.1344
SD 0.1469 0.1913 0.1580 0.1589 0.1518 0.1542 0.1540 0.1488
ASE 0.1455 0.1908 0.1561 0.1579 0.1501 0.1493 0.1495 0.1692
CP 0.9480 0.9480 0.9400 0.9390 0.9390 0.9360 0.9420 0.8920

�
3

Bias 0.0043 0.0925 0.0056 0.0040 0.0064 0.0048 0.0048 −0.0160
SD 0.1669 0.2253 0.1684 0.1695 0.1690 0.1678 0.1679 0.1655
ASE 0.1632 0.2215 0.1642 0.1678 0.1645 0.1635 0.1635 0.1630
CP 0.9480 0.9290 0.9430 0.9480 0.9500 0.9470 0.9450 0.9350

2,000 �
0

Bias 0.0001 0.0404 0.0006 0.0002 0.0000 0.0003 0.0003 −0.0363
SD 0.0727 0.0948 0.0745 0.0747 0.0740 0.0737 0.0737 0.0717
ASE 0.0725 0.0926 0.0740 0.0742 0.0732 0.0731 0.0731 0.0738
CP 0.9520 0.9200 0.9510 0.9480 0.9470 0.9510 0.9510 0.9250

�
1

Bias 0.0022 0.0171 0.0003 0.0014 0.0035 0.0015 0.0019 0.0875
SD 0.1136 0.1472 0.1224 0.1230 0.1174 0.1186 0.1185 0.1142
ASE 0.1135 0.1485 0.1232 0.1236 0.1176 0.1173 0.1173 0.1292
CP 0.9550 0.9560 0.9510 0.9540 0.9530 0.9520 0.9500 0.9260
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estimators given n = 1, 000 fixed. The same as Scenario 1 were the values for � and 
� and the procedure to generate the data of X1 , X2 , Z, Y, W1 , and W2 . For the multi-
nomial logit model in (22) to generate the data of �ij , set � = (0.7,−0.2, 0.1,−1.2)T 
and � = (0.7, 0.5, 0.5)T , (1.5, 0.6, 0.6)T , and (2.5, 0.6, 0.6)T to obtain the three sets 
of observed selection probabilities, (0.31, 0.26, 0.26, 0.17), (0.47, 0.20, 0.20, 0.13), 
and (0.72, 0.11, 0.11, 0.06), respectively.

Table 3 shows the simulation results of this scenario. The biases, SDs and ASEs 
of the last seven estimators overall tended to be decreased when the CC percentage 
was increased from 31% to 72%. The serious bias still happened to the CC (for �0, �3 ) 
and MICE (for �1, �2 ) estimators. The performances of the MI1 and MI2 estimation 

Table 1   (continued)

n �̂
F

�̂
C

�̂
W

�̂
V

�̂
J

�̂
M1

�̂
M2

�̂
ME

�
2

Bias 0.0008 −0.0020 0.0005 0.0003 −0.0013 0.0010 0.0011 − 0.1383
SD 0.1019 0.1389 0.1105 0.1108 0.1050 0.1068 0.1063 0.1054
ASE 0.1025 0.1340 0.1100 0.1106 0.1057 0.1053 0.1054 0.1224
CP 0.9490 0.9510 0.9470 0.9420 0.9500 0.9450 0.9430 0.8100

�
3

Bias 0.0044 0.0947 0.0047 0.0045 0.0051 0.0047 0.0046 −0.0157

SD 0.1150 0.1543 0.1161 0.1165 0.1161 0.1155 0.1154 0.1134
ASE 0.1149 0.1556 0.1156 0.1167 0.1157 0.1152 0.1152 0.1147
CP 0.9480 0.9080 0.9470 0.9460 0.9440 0.9470 0.9470 0.9470

Table 2   Relative efficiencies in scenario 1 ( M = 30 ; n = 500, 1, 000, 2, 000 ); � = (1,−0.5, 1, log(2))T ; 
� = (2, 0.6, 0.6)T ; � = (0.7,−0.2, 0.1,−1.2)T ; observed selection probabilities: (0.6, 0.15, 0.15, 0.1)

RE
mk

 , m ∈ {C,W,V , J,E} , k = 1, 2 , are the relative efficiencies of the CC, SIPW, VL, JCL, and MICE 
estimators to MIk estimators for each �

i
 , i = 0, 1, 2, 3.

RE
mk

 is the ratio of MSE of m estimator to MSE of MIk estimator for each �
i
.

RE
mk

= MSE
m
∕MSE

k
 , RE12 = MSE1∕MSE2 , MSE = bias

2 + SD
2

n � RE
C1

RE
W1

RE
V1

RE
J1

RE
E1

RE
C2

RE
W2

RE
V2

RE
J2

RE
E2

RE
12

500 �
0

1.718 1.023 1.035 0.995 0.968 1.722 1.025 1.037 0.997 0.970 1.002
�
1

1.533 1.117 1.086 0.938 0.992 1.560 1.136 1.104 0.955 1.008 1.017
�
2

1.474 1.086 1.096 0.966 1.227 1.490 1.098 1.108 0.976 1.241 1.011
�
3

2.222 1.091 1.072 1.029 0.975 2.224 1.092 1.073 1.030 0.976 1.001
1000 �

0
1.788 1.018 1.022 0.985 0.977 1.795 1.022 1.026 0.989 0.981 1.004

�
1

1.605 1.071 1.087 0.966 1.171 1.628 1.087 1.103 0.980 1.188 1.014
�
2

1.539 1.050 1.062 0.969 1.691 1.544 1.053 1.065 0.972 1.695 1.003
�
3

2.105 1.007 1.020 1.015 0.981 2.103 1.006 1.019 1.014 0.980 0.999
2000 �

0
1.955 1.022 1.027 1.008 1.189 1.955 1.022 1.027 1.008 1.189 1.000

�
1

1.561 1.065 1.075 0.981 1.471 1.563 1.067 1.077 0.982 1.474 1.002
�
2

1.692 1.070 1.076 0.967 2.651 1.708 1.081 1.086 0.976 2.676 1.009
�
3

2.453 1.010 1.017 1.011 0.981 2.457 1.012 1.019 1.013 0.983 1.002
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Table 3   Simulation results of scenario 2 ( M = 30 ; n = 1, 000 ); � = (1,−0.5, 1, log(2))T ; 
� = (0.7,−0.2, 0.1,−1.2)T

�̂
F

�̂
C

�̂
W

�̂
V

�̂
J

�̂
M1

�̂
M2

�̂
ME

Observed selection probabilities: 0.31, 0.26, 0.26, 0.17; � = (0.7, 0.5, 0.5)T

�
0

Bias 0.0098 0.1027 0.0111 0.0089 0.0069 0.0107 0.0099 −0.0473
SD 0.1034 0.1910 0.1124 0.1130 0.1069 0.1088 0.1077 0.1013
ASE 0.1030 0.1835 0.1099 0.1123 0.1050 0.1043 0.1044 0.1060
CP 0.9440 0.9200 0.9480 0.9480 0.9460 0.9380 0.9420 0.9350

�
1

Bias −0.0027 0.0094 −0.0029 0.0012 0.0118 −0.0026 −0.0003 0.1315
SD 0.1599 0.3072 0.2113 0.2047 0.1696 0.1889 0.1827 0.1726
ASE 0.1611 0.3002 0.2022 0.2092 0.1705 0.1688 0.1695 0.1989
CP 0.9460 0.9580 0.9410 0.9570 0.9500 0.9160 0.9230 0.9290

�
2

Bias 0.0033 0.0026 0.0147 0.0046 −0.0162 0.0084 0.0061 − 0.2332
SD 0.1469 0.2729 0.1875 0.1842 0.1554 0.1695 0.1633 0.1489
ASE 0.1455 0.2712 0.1774 0.1848 0.1545 0.1514 0.1519 0.1896
CP 0.9480 0.9550 0.9330 0.9470 0.9440 0.9170 0.9300 0.8010

�
3

Bias 0.0043 0.1543 0.0231 0.0036 0.0128 0.0057 0.0051 −0.0255
SD 0.1669 0.3300 0.1911 0.1802 0.1758 0.1696 0.1687 0.1648
ASE 0.1632 0.3263 0.1671 0.1811 0.1669 0.1638 0.1638 0.1628
CP 0.9480 0.9390 0.9140 0.9550 0.9310 0.9390 0.9430 0.9330

Observed selection probabilities: 0.47, 0.20, 0.20, 0.13; � = (1.5, 0.6, 0.6)T

�
0

Bias 0.0098 0.0759 0.0098 0.0094 0.0077 0.0095 0.0091 −0.0361
SD 0.1034 0.1495 0.1072 0.1076 0.1043 0.1054 0.1054 0.1024
ASE 0.1030 0.1478 0.1065 0.1076 0.1043 0.1040 0.1040 0.1053
CP 0.9440 0.9240 0.9480 0.9510 0.9400 0.9460 0.9450 0.9440

�
1

Bias −0.0027 0.0095 0.0003 0.0012 0.0071 0.0001 0.0011 0.1089
SD 0.1599 0.2345 0.1839 0.1841 0.1668 0.1737 0.1723 0.1662
ASE 0.1611 0.2384 0.1833 0.1859 0.1683 0.1674 0.1678 0.1896
CP 0.9460 0.9560 0.9520 0.9500 0.9470 0.9400 0.9500 0.9440

�
2

Bias 0.0033 0.0106 0.0075 0.0067 −0.0054 0.0061 0.0045 − 0.1731
SD 0.1469 0.2179 0.1670 0.1677 0.1533 0.1576 0.1562 0.1502
ASE 0.1455 0.2150 0.1623 0.1653 0.1515 0.1503 0.1506 0.1763
CP 0.9480 0.9550 0.9420 0.9350 0.9370 0.9350 0.9360 0.8600

�
3

Bias 0.0043 0.1159 0.0071 0.0055 0.0092 0.0057 0.0053 −0.0189
SD 0.1669 0.2694 0.1703 0.1711 0.1698 0.1678 0.1676 0.1645
ASE 0.1632 0.2530 0.1649 0.1711 0.1653 0.1636 0.1636 0.1629
CP 0.9480 0.9080 0.9390 0.9530 0.9410 0.9410 0.9400 0.9400

Observed selection probabilities: 0.72, 0.11, 0.11, 0.06; � = (2.5, 0.6, 0.6)T

�
0

Bias 0.0098 0.0405 0.0106 0.0106 0.0093 0.0102 0.0101 −0.0175
SD 0.1034 0.1234 0.1049 0.1048 0.1039 0.1043 0.1043 0.1016
ASE 0.1030 0.1212 0.1044 0.1048 0.1037 0.1036 0.1036 0.1043
CP 0.9440 0.9320 0.9480 0.9470 0.9410 0.9460 0.9450 0.9480
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methods were essentially the same, and the ASEs of the two proposed MI estimators 
were overall the smallest in comparison with the other estimators except the full data 
ML estimator. The empirical CPs based on all the estimation methods were overall 
close to the nominal probability 95% except the CC (for �0 when CC percentage = 
0.31, 0.47), SIPW (for �3 when CC percentage = 0.31), MI1 and MI2 (for �1, �2 when 
CC percentage = 0.31), and MICE (for �1 when CC percentage = 0.31; �2 when CC 
percentage = 0.31, 0.47, 0.72) methods. The relative efficiency values in Table 4 were 
still greater than 1 except the JCL (for �0, �1, �2 ) and MICE (for �0 when CC percent-
age = 0.72; �3 ) estimators, and tended to decrease except the JCL (for �0, �1, �2 ) and 
MICE (for �3 ) estimators when the CC percentage was increased, indicating that the 
two different types of MI estimators were comparable with the JCL estimator and 
the most efficient compared to the CC, SIPW, VL, and MICE estimators. When the 
CC percentage was 0.72, the relative efficiency values were (very) close to 1 for the 
SIPW, VL, and JCL estimators compared to the two MI estimators.

Scenario 3. In this scenario, we wished to know whether changing the val-
ues of the logistic regression parameters affects the performances of the estima-
tion methods. Therefore, we kept all the settings in Scenario 2 except chang-
ing � = (1,−0.5, 1, log(2))T to � = (−1, 1, 0.7,−1)T . As the simulation results 
given in Tables  5 and 6, the three sets of observed selection probabilities were 
(0.29, 0.24, 0.24, 0.23), (0.45, 0.19, 0.19, 0.16), and (0.70, 0.10, 0.10, 0.10), respec-
tively, which were quite similar to those in Scenario 2, although the first three 
observed selection probabilities 0.29, 0.24, and 0.24 in the first set in this scenario 
were slightly reduced, compared to the first three observed selection probabilities 
0.31,  0.26, and 0.26 in the first set in Scenario 2, and the last observed selection 
probability 0.23 was slightly increased compared to the last one 0.17. The perfor-
mances of all these estimation methods in this scenario were quite similar to those in 
Scenario 2. One of the reasons might have the similar missing rates in this scenario 

Table 3   (continued)

�̂
F

�̂
C

�̂
W

�̂
V

�̂
J

�̂
M1

�̂
M2

�̂
ME

�
1

Bias −0.0027 0.0071 −0.0030 −0.0033 −0.0001 −0.0031 −0.0025 0.0604

SD 0.1599 0.1931 0.1705 0.1701 0.1643 0.1671 0.1662 0.1583

ASE 0.1611 0.1929 0.1696 0.1705 0.1652 0.1649 0.1651 0.1772

CP 0.9460 0.9530 0.9520 0.9510 0.9470 0.9460 0.9480 0.9630
�
2

Bias 0.0033 0.0043 0.0063 0.0054 0.0010 0.0052 0.0052 − 0.0987
SD 0.1469 0.1726 0.1535 0.1541 0.1492 0.1501 0.1497 0.1448
ASE 0.1455 0.1742 0.1520 0.1530 0.1488 0.1484 0.1485 0.1618
CP 0.9480 0.9530 0.9410 0.9400 0.9470 0.9460 0.9460 0.9240

�
3

Bias 0.0043 0.0741 0.0048 0.0047 0.0055 0.0049 0.0050 −0.0108
SD 0.1669 0.2084 0.1674 0.1685 0.1680 0.1670 0.1669 0.1653
ASE 0.1632 0.2004 0.1638 0.1659 0.1640 0.1634 0.1634 0.1631
CP 0.9480 0.9330 0.9440 0.9470 0.9450 0.9450 0.9460 0.9440
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and Scenario 2. Hence, in general, changing the value of � had a little effect on the 
selection probabilities and the efficiencies of the proposed estimation methods.

Scenario 4. The purpose of this scenario was to examine the impact of the num-
ber of multiple imputations on the performances of the proposed methods when X1 
and X2 were independent with a fixed sample size. All the settings were the same as 
in Scenario 1 except considering M = 5, 25 , and 45, respectively, given n = 1, 000 . 
The observed selection probabilities were 0.60, 0.15, 0.15, and 0.10.

The simulation results for the MI1, MI2 and MICE methods in Table  7 were 
essentially the same as those in Table  1 of Scenario 1 when n = 1, 000 . Table  8 
shows that the relative efficiency values were also overall the same as those in 
Table 2 of Scenario 1 for n = 1, 000 . Therefore, this simulation study demonstrated 
that the two proposed MI methods were not affected by the number of imputations.

Table 9 provides a summary of computing time for each estimation method. The 
JCL and MICE methods had the longest and second longest computing time, respec-
tively. The JCL method took an average of 21.88 seconds to perform one simula-
tion, which are approximately 73, 35.3 and 23 times the two proposed MI methods 
when M = 5, 25 , and 45, respectively. On average, the MICE methods took 1.15, 
5.73, and 10.30 seconds to perform one simulation when M = 5, 25 , and 45, which 
are approximately 3.8, 9.2 and 10.8 times the two proposed MI methods, respec-
tively. However, the performances of the JCL and two proposed MI methods were 
essentially the same. Therefore, based on the simulation results, the MI1 and MI2 

Table 4   Relative efficiencies in scenario 2 ( M = 30 ; n = 1, 000 ); � = (1,−0.5, 1, log(2))T ; 
� = (0.7,−0.2, 0.1,−1.2)T

RE
mk

 , m ∈ {C,W,V , J,E} , k = 1, 2 , are the relative efficiencies of the CC, SIPW, VL, JCL, and MICE 
estimators to MIk estimators for each �

i
 , i = 0, 1, 2, 3.

RE
mk

 is the ratio of MSE of m estimator to MSE of MIk estimator for each �
i
.

RE
mk

= MSE
m
∕MSE

k
 , RE12 = MSE1∕MSE2 , MSE = bias

2 + SD
2

� RE
C1

RE
W1

RE
V1

RE
J1

RE
E1

RE
C2

RE
W2

RE
V2

RE
J2

RE
E2

RE
12

Observed selection probabilities: 0.31, 0.26, 0.26, 0.17; � = (0.7, 0.5, 0.5)T

�
0

3.935 1.067 1.075 0.960 1.046 4.020 1.091 1.099 0.981 1.069 1.022
�
1

2.647 1.251 1.174 0.810 1.319 2.830 1.338 1.255 0.866 1.410 1.069
�
2

2.586 1.228 1.179 0.848 2.658 2.789 1.325 1.271 0.914 2.866 1.079
�
3

4.608 1.287 1.128 1.079 0.966 4.659 1.301 1.140 1.091 0.976 1.011
Observed selection probabilities: 0.47, 0.20, 0.20, 0.13; � = (1.5, 0.6, 0.6)T

�
0

2.510 1.035 1.042 0.977 1.053 2.511 1.035 1.042 0.977 1.054 1.001
�
1

1.826 1.121 1.123 0.924 1.309 1.855 1.139 1.142 0.939 1.330 1.016
�
2

1.913 1.123 1.132 0.946 2.112 1.949 1.144 1.153 0.964 2.152 1.019
�
3

3.051 1.031 1.040 1.026 0.973 3.059 1.033 1.042 1.028 0.975 1.002
Observed selection probabilities: 0.72, 0.11, 0.11, 0.06; � = (2.5, 0.6, 0.6)T

�
0

1.536 1.012 1.010 0.991 0.968 1.536 1.012 1.010 0.991 0.968 1.000
�
1

1.337 1.041 1.036 0.966 1.028 1.351 1.052 1.048 0.977 1.039 1.011
�
2

1.321 1.046 1.054 0.987 1.361 1.329 1.052 1.060 0.992 1.368 1.005
�
3

1.752 1.005 1.018 1.012 0.983 1.754 1.006 1.019 1.013 0.984 1.001
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Table 5   Simulation results of scenario 3 ( M = 30 ; n = 1, 000 ); � = (−1, 1, 0.7,−1)T ; 
� = (0.7,−0.2, 0.1,−1.2)T

�̂
F

�̂
C

�̂
W

�̂
V

�̂
J

�̂
M1

�̂
M2

�̂
ME

Observed selection probabilities: 0.29, 0.24, 0.24, 0.23; � = (0.7, 0.5, 0.5)T

�
0

Bias −0.0067 0.0628 −0.0133 −0.0069 −0.0032 −0.0092 −0.0073 0.0617
SD 0.1022 0.1810 0.1116 0.1110 0.1040 0.1065 0.1049 0.0990
ASE 0.1029 0.1802 0.1109 0.1130 0.1048 0.1044 0.1045 0.1075
CP 0.9520 0.9240 0.9560 0.9600 0.9570 0.9600 0.9530 0.9240

�
1

Bias 0.0088 0.0411 0.0231 0.0072 0.0001 0.0128 0.0079 − 0.1815
SD 0.1599 0.2935 0.2106 0.2035 0.1704 0.1864 0.1797 0.1715
ASE 0.1608 0.2906 0.2038 0.2074 0.1719 0.1689 0.1695 0.2023
CP 0.9620 0.9530 0.9420 0.9550 0.9580 0.9230 0.9400 0.8800

�
2

Bias 0.0111 0.0169 0.0296 0.0082 0.0062 0.0217 0.0156 − 0.1490
SD 0.1577 0.2801 0.1971 0.1917 0.1668 0.1790 0.1740 0.1577
ASE 0.1557 0.2809 0.1877 0.1953 0.1646 0.1618 0.1625 0.1905
CP 0.9560 0.9580 0.9430 0.9530 0.9600 0.9340 0.9450 0.9100

�
3

Bias −0.0148 0.1034 −0.0428 −0.0088 −0.0112 −0.0162 −0.0152 0.0191
SD 0.1701 0.3312 0.1891 0.1784 0.1715 0.1713 0.1708 0.1661
ASE 0.1676 0.3179 0.1729 0.1852 0.1705 0.1683 0.1684 0.1677
CP 0.9430 0.9300 0.9300 0.9570 0.9460 0.9430 0.9420 0.9470

Observed selection probabilities: 0.46, 0.19, 0.19, 0.16; � = (1.5, 0.6, 0.6)T

�
0

Bias −0.0067 0.0443 −0.0102 −0.0074 −0.0055 −0.0089 −0.0081 0.0426
SD 0.1022 0.1435 0.1068 0.1072 0.1043 0.1049 0.1048 0.1021
ASE 0.1029 0.1454 0.1069 0.1079 0.1042 0.1041 0.1041 0.1062
CP 0.9520 0.9430 0.9490 0.9550 0.9560 0.9490 0.9500 0.9410

�
1

Bias 0.0088 0.0314 0.0196 0.0130 0.0066 0.0154 0.0131 − 0.1290
SD 0.1599 0.2335 0.1862 0.1854 0.1704 0.1748 0.1736 0.1686
ASE 0.1608 0.2324 0.1834 0.1853 0.1689 0.1676 0.1679 0.1906
CP 0.9620 0.9450 0.9620 0.9660 0.9520 0.9440 0.9450 0.9040

�
2

Bias 0.0111 0.0141 0.0127 0.0051 0.0073 0.0104 0.0096 − 0.1095
SD 0.1577 0.2290 0.1768 0.1771 0.1634 0.1684 0.1672 0.1604
ASE 0.1557 0.2246 0.1721 0.1757 0.1618 0.1603 0.1608 0.1810
CP 0.9560 0.9510 0.9490 0.9520 0.9550 0.9480 0.9560 0.9230

�
3

Bias −0.0148 0.0748 −0.0216 −0.0123 −0.0122 −0.0153 −0.0152 0.0123
SD 0.1701 0.2576 0.1751 0.1750 0.1708 0.1710 0.1710 0.1669
ASE 0.1676 0.2499 0.1698 0.1759 0.1691 0.1682 0.1682 0.1679
CP 0.9430 0.9290 0.9440 0.9550 0.9470 0.9460 0.9450 0.9440

Observed selection probabilities: 0.70, 0.10, 0.10, 0.10; � = (2.5, 0.6, 0.6)T

�
0

Bias −0.0067 0.0217 −0.0076 −0.0068 −0.0061 −0.0071 −0.0071 0.0217
SD 0.1022 0.1184 0.1038 0.1039 0.1032 0.1031 0.1032 0.1015
ASE 0.1029 0.1200 0.1043 0.1047 0.1036 0.1035 0.1035 0.1045
CP 0.9520 0.9490 0.9510 0.9500 0.9520 0.9520 0.9530 0.9450
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methods overall outperformed the other methods, except the full data ML and JCL 
methods, when estimating the parameters of logistic regression with covariates 
MAR.

Table 5   (continued)

�̂
F

�̂
C

�̂
W

�̂
V

�̂
J

�̂
M1

�̂
M2

�̂
ME

�
1

Bias 0.0088 0.0199 0.0114 0.0097 0.0083 0.0100 0.0104 − 0.0673

SD 0.1599 0.1904 0.1697 0.1693 0.1645 0.1652 0.1652 0.1606

ASE 0.1608 0.1899 0.1694 0.1702 0.1651 0.1646 0.1648 0.1761

CP 0.9620 0.9480 0.9470 0.9500 0.9510 0.9450 0.9460 0.9580
�
2

Bias 0.0111 0.0077 0.0123 0.0115 0.0099 0.0114 0.0113 − 0.0580
SD 0.1577 0.1898 0.1642 0.1643 0.1604 0.1622 0.1619 0.1575
ASE 0.1557 0.1839 0.1622 0.1635 0.1590 0.1586 0.1587 0.1696
CP 0.9560 0.9530 0.9520 0.9510 0.9560 0.9490 0.9560 0.9550

�
3

Bias −0.0148 0.0462 −0.0160 −0.0142 −0.0134 −0.0151 −0.0152 0.0017
SD 0.1701 0.2045 0.1708 0.1719 0.1703 0.1702 0.1704 0.1680
ASE 0.1676 0.2014 0.1684 0.1705 0.1683 0.1679 0.1680 0.1679
CP 0.9430 0.9400 0.9460 0.9470 0.9470 0.9440 0.9460 0.9480

Table 6   Relative efficiencies in scenario 3 ( M = 30 ; n = 1, 000 ); � = (−1, 1, 0.7,−1)T ; 
� = (0.7,−0.2, 0.1,−1.2)T

RE
mk

 , m ∈ {C,W,V , J,E} , k = 1, 2 , are the relative efficiencies of the CC, SIPW, VL, JCL, and MICE 
estimators to MIk estimators for each �

i
 , i = 0, 1, 2, 3.

RE
mk

 is the ratio of MSE of m estimator to MSE of MIk estimator for each �
i
.

RE
mk

= MSE
m
∕MSE

k
 , RE12 = MSE1∕MSE2 , MSE = bias

2 + SD
2

� RE
C1

RE
W1

RE
V1

RE
J1

RE
E1

RE
C2

RE
W2

RE
V2

RE
J2

RE
E2

RE
12

Observed selection probabilities: 0.29, 0.24, 0.24, 0.23; � = (0.7, 0.5, 0.5)T

�
0

3.212 1.105 1.082 0.947 1.190 3.319 1.142 1.119 0.979 1.230 1.033
�
1

2.516 1.286 1.188 0.832 1.786 2.715 1.387 1.282 0.897 1.927 1.079
�
2

2.422 1.222 1.133 0.857 1.448 2.580 1.302 1.206 0.913 1.543 1.065
�
3

4.066 1.270 1.078 0.998 0.944 4.094 1.278 1.085 1.004 0.951 1.007
Observed selection probabilities: 0.46, 0.19, 0.19, 0.16; � = (1.5, 0.6, 0.6)T

�
0

2.035 1.038 1.042 0.984 1.104 2.042 1.042 1.045 0.987 1.108 1.003
�
1

1.803 1.138 1.122 0.944 1.464 1.832 1.157 1.140 0.960 1.487 1.016
�
2

1.849 1.104 1.103 0.940 1.325 1.877 1.120 1.119 0.954 1.345 1.015
�
3

2.441 1.056 1.044 0.995 0.950 2.442 1.056 1.044 0.995 0.950 1.000
Observed selection probabilities: 0.70, 0.10, 0.10, 0.10; � = (2.5, 0.6, 0.6)T

�
0

1.357 1.014 1.015 1.001 1.009 1.354 1.012 1.013 1.000 1.007 0.998
�
1

1.338 1.056 1.050 0.990 1.107 1.338 1.056 1.050 0.990 1.107 1.000
�
2

1.365 1.026 1.026 0.977 1.065 1.370 1.029 1.030 0.981 1.070 1.004
�
3

1.505 1.008 1.019 1.000 0.967 1.502 1.006 1.016 0.997 0.964 0.998
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Scenario 5. The scenario aimed to examine the performances of all the 
approaches when X1 and X2 were correlated given that the observed selection prob-
abilities and sample size were fixed. The settings of M, � , and � in this scenario were 
the same as those in Scenario 1. We set � = (1.15, 0.6, 0.6)T to compare the efficien-
cies of all the estimation methods in a situation of higher missing rates, i.e., the 
observed selection probabilities (0.40, 0.23, 0.23, 0.14), given n = 1, 000 . In addi-
tion, to generate the correlated data of X1 and X2 , the distribution that had the four 
values −0.3,−0.1, 0.4 , and 1 with probabilities 0.2, 0.3, 0.3, and 0.2, respectively, 
was used to first generate the data of X1 . Then, given each value of X1 , the data of 
X2 , (−1,−0.4, 0.2, 0.6) , were generated such that the correlations between X1 and 
X2 were � = −0.21,−0.53,−0.71, 0.21, 0.51 , and 0.71, respectively. For example, 
for the case of � = −0.21 , if X1 = −0.3 , the four values of X2 were generated with 

Table 8   Relative efficiencies in scenario 4 ( M = 5, 25, 45 ; n = 1, 000 ); � = (1,−0.5, 1, log(2))T ; 
� = (2, 0.6, 0.6)T ; � = (0.7,−0.2, 0.1,−1.2)T ; observed selection probabilities: (0.60, 0.15, 0.15, 0.10)

RE
mk

 , m ∈ {C,W,V , J,E} , k = 1, 2 , are the relative efficiencies of the CC, SIPW, VL, JCL, and MICE 
estimators to MIk estimators for each �

i
 , i = 0, 1, 2, 3.

RE
mk

 is the ratio of MSE of m estimator to MSE of MIk estimator for each �
i
.

RE
mk

= MSE
m
∕MSE

k
 , RE12 = MSE1∕MSE2 , MSE = bias

2 + SD
2

M � RE
C1

RE
W1

RE
V1

RE
J1

RE
E1

RE
C2

RE
W2

RE
V2

RE
J2

RE
E2

RE
12

5 �
0

1.792 1.020 1.024 0.987 0.981 1.798 1.024 1.028 0.991 0.984 1.004
�
1

1.603 1.070 1.086 0.965 1.217 1.611 1.075 1.091 0.969 1.223 1.005
�
2

1.527 1.042 1.054 0.961 1.697 1.538 1.049 1.061 0.968 1.709 1.007
�
3

2.105 1.007 1.020 1.015 0.982 2.108 1.009 1.021 1.016 0.984 1.001
25 �

0
1.788 1.018 1.022 0.986 0.973 1.795 1.022 1.026 0.989 0.977 1.004

�
1

1.605 1.071 1.087 0.966 1.170 1.630 1.088 1.104 0.981 1.188 1.005
�
2

1.536 1.048 1.060 0.967 1.698 1.555 1.061 1.073 0.979 1.720 1.007
�
3

2.108 1.009 1.021 1.016 0.983 2.108 1.009 1.021 1.016 0.983 1.001
45 �

0
1.795 1.022 1.026 0.989 0.976 1.798 1.024 1.028 0.991 0.978 1.004

�
1

1.609 1.074 1.090 0.968 1.153 1.628 1.087 1.103 0.980 1.167 1.005
�
2

1.540 1.050 1.062 0.969 1.702 1.551 1.058 1.070 0.977 1.715 1.007
�
3

2.105 1.007 1.020 1.015 0.979 2.105 1.008 1.020 1.015 0.979 1.001

Table 9   Summary of computing time (second) for performing one simulation for each estima-
tion method in Scenario 4 ( M = 5, 25, 45 ; n = 1, 000 ); � = (1,−0.5, 1, log(2))T ; � = (2, 0.6, 0.6)T ; 
� = (0.7,−0.2, 0.1,−1.2)T ; observed selection probabilities: (0.60, 0.15, 0.15, 0.10)

�̂
F

�̂
C

�̂
W

�̂
V

�̂
J

M = 5 M = 25 M = 45

�̂
M1

�̂
M2

�̂
ME

�̂
M1

�̂
M2

�̂
ME

�̂
M1

�̂
M2

�̂
ME

Min. 0.01 0.01 0.13 0.15 17.97 0.28 0.29 1.07 0.57 0.57 5.39 0.86 0.89 9.69
Mean 0.02 0.02 0.13 0.16 21.88 0.30 0.30 1.15 0.62 0.63 5.73 0.95 0.96 10.30
Max. 0.06 0.06 0.18 0.20 24.24 0.38 0.36 1.34 0.69 0.69 6.34 1.05 1.09 11.33
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probabilities 0.42, 0.1, 0.2, and 0.28, respectively. Similarly, when X1 = −0.1, 0.4 , 
and 1, we generated the four values of X2 with probabilities (0.2,  0.1,  0.4,  0.3), 
(0.2, 0.4, 0.2, 0.2), and (0.65, 0.05, 0.05, 0.25), respectively. Finally, the surrogate 
variables W1 and W2 of X1 and X2 , respectively, were set as in Scenario 1.

Given in Tables 10 and 11, respectively, are the simulation results for X1 and X2 
with negative and positive correlation values. The biases of the CC and MICE esti-
mators were overall larger than the other estimators. The biases were overall not 
changed much when the absolute correlation value was increased except the MICE 
estimator (for �1 when � was changed from −0.21 to −0.71 ; �0, �1, �2 when � was 
changed from 0.21 to 0.71). The SDs and ASEs of all the estimators, except the 
estimators of �3 , tended to be increased with the increase in the absolute correla-
tion value. The SD and ASE of the CC estimator were the largest. The SD and 
ASE of the JCL estimator were comparable with or (slightly) larger than those of 
the MI1 and MI2 estimators. The empirical CPs based on all the estimation meth-
ods were overall close to the nominal probability 95% except the CC (for �0 when 
� = −0.53 ; �3 when � = −0.53,−0.71, 0.51, 0.71 ), MI1 (for �0 when � = 0.71 ; �1, �2 
when � = −0.71, 0.51 ), MI2 (for �1 when � = −0.71, 0.51 ), and MICE (for �0 when 
� = −0.21, 0.21, 0.51, 0.71 ; �1, �2 for all � values) methods. The relative efficiency 
values of the CC, SIPW, VL, and MICE estimators to the two different types of 
MI estimators were greater than 1 except the relative efficiency values of the SIPW 
to MI2 estimators and the MICE to the two different types of MI estimators (for 
�0 when � = −0.53,−0.71 ; �1 when � = −0.21 ; �3 when � = 0.21, 0.51, 0.71 ). The 
performances of the MI1 and MI2 estimators were comparable with that of the JCL 
estimator in terms of efficiency (Table 12).

In summary, Scenarios 1–5 show that the performances of the JCL and two pro-
posed MI methods were comparable, but Scenario 4 demonstrates that the MI1 and 
MI2 methods shortened the computing time the JCL and MICE methods took.

5.2 � Examples

Two real data examples were used to demonstrate the practicality of the two pro-
posed MI methods and CC, SIPW, VL, JCL, and MICE methods. M = 30 imputa-
tions were used.

5.2.1 � Example 1

The first real data example is the data set of the Global Longitudinal Study of Osteopo-
rosis in Women (GLOW500M) (Hosmer et al. 2013). Let Y be a binary outcome varia-
ble to denote whether a respondent had any fracture in the first year, where Y = 1 if yes; 
Y = 0 if no. Three covariates are considered. X1 is used to indicate the history of prior 
fracture that had missing values, in which X1 is 1 if yes and 0 if no. X2 denotes the self-
reported risk of fracture that had missing values, where X2 = 1 if less than others of the 
same age; 2 if same as others of the same age; 3 if greater than others of the same age. 
Z denotes age at enrollment with integer values from 55 to 90 without missing values. 
The sample size is n = 500 . The rates of only X1 missing, only X2 missing, and both 
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Table 10   Simulation results of scenario 5 ( M = 30 ; � = −0.21,−0.53,−0.71 ; n = 1, 000 ); 
� = (1,−0.5, 1, log(2))T ; � = (1.15, 0.6, 0.6)T ; � = (0.7,−0.2, 0.1,−1.2)T ; observed selection probabili-
ties: (0.40, 0.23, 0.23, 0.14)

� �̂
F

�̂
C

�̂
W

�̂
V

�̂
J

�̂
M1

�̂
M2

�̂
ME

−0.21 �
0

Bias 0.0102 0.0830 0.0132 0.0104 0.0094 0.0120 0.0235 −0.0608
SD 0.1085 0.1672 0.1127 0.1141 0.1120 0.1102 0.1114 0.1073
ASE 0.1051 0.1668 0.1112 0.1128 0.1069 0.1064 0.1077 0.1114
CP 0.9470 0.9300 0.9440 0.9490 0.9410 0.9420 0.9400 0.9140

�
1

Bias 0.0015 0.0171 0.0008 −0.0003 0.0046 0.0020 − 0.0318 −0.0036
SD 0.1579 0.2544 0.1880 0.1872 0.1649 0.1738 0.1725 0.1626
ASE 0.1572 0.2579 0.1852 0.1893 0.1643 0.1632 0.1634 0.1920
CP 0.9570 0.9600 0.9480 0.9550 0.9470 0.9350 0.9350 0.9800

�
2

Bias 0.0061 0.0080 0.0139 0.0065 0.0017 0.0112 0.0173 − 0.1720
SD 0.1178 0.1928 0.1356 0.1356 0.1237 0.1274 0.1261 0.1197
ASE 0.1195 0.1954 0.1345 0.1389 0.1243 0.1227 0.1233 0.1556
CP 0.9470 0.9530 0.9500 0.9560 0.9470 0.9390 0.9410 0.8400

�
3

Bias 0.0016 0.1324 0.0108 0.0011 0.0095 0.0029 0.0036 −0.0400
SD 0.1556 0.2650 0.1654 0.1646 0.1615 0.1576 0.1581 0.1546
ASE 0.1560 0.2683 0.1594 0.1668 0.1589 0.1565 0.1566 0.1560
CP 0.9560 0.9360 0.9360 0.9480 0.9460 0.9440 0.9450 0.9470

−0.53 �
0

Bias 0.0077 0.0772 0.0084 0.0081 0.0082 0.0082 0.0150 0.0054
SD 0.1094 0.1756 0.1124 0.1129 0.1101 0.1103 0.1108 0.1074
ASE 0.1056 0.1670 0.1090 0.1106 0.1068 0.1063 0.1066 0.1115
CP 0.9460 0.9230 0.9410 0.9480 0.9440 0.9430 0.9390 0.9590

�
1

Bias −0.0013 0.0200 0.0031 0.0056 −0.0007 −0.0004 −0.0280 − 0.2016
SD 0.1792 0.3050 0.2145 0.2116 0.1884 0.1996 0.1938 0.1686
ASE 0.1847 0.3023 0.2096 0.2154 0.1924 0.1908 0.1892 0.2237
CP 0.9600 0.9460 0.9550 0.9550 0.9490 0.9410 0.9480 0.9290

�
2

Bias 0.0103 0.0092 0.0160 0.0158 0.0051 0.0123 0.0084 − 0.1535
SD 0.1314 0.2154 0.1499 0.1514 0.1357 0.1418 0.1359 0.1203
ASE 0.1339 0.2193 0.1492 0.1546 0.1393 0.1376 0.1363 0.1661
CP 0.9510 0.9550 0.9440 0.9560 0.9540 0.9410 0.9500 0.9160

�
3

Bias 0.0064 0.1362 0.0110 0.0031 0.0062 0.0066 0.0071 −0.0438
SD 0.1637 0.2845 0.1736 0.1736 0.1699 0.1660 0.1660 0.1629
ASE 0.1638 0.2820 0.1663 0.1745 0.1660 0.1642 0.1644 0.1648
CP 0.9500 0.9290 0.9420 0.9440 0.9450 0.9430 0.9460 0.9390
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of them missing were 16%, 16%, and 4%, respectively. Thus, the size of the CC data 
set is 320 (64%). In addition, let W denote the hip fracture of mother that is 1 if yes; 0 
otherwise. Because W is not significant in logistic regression with the response Y, and 
W is correlated with X2 (Spearman’s rank correlation coefficient is 0.13 with p-value 
0.025) under the CC data, W is considered as a surrogate variable of X2 in this study. 
Moreover, the self-reported risk of fracture was dichotomized to be less than others of 
the same age ( X2 = 1 ) versus same as or greater than others of the same age ( X2 = 2 or 
3). The dummy variable DX2 is used for the dichotomized self-reported risk of fracture, 
which is 1 if X2 = 1 and 0 otherwise. Age at enrollment (Z) was categorized to be three 
groups, Z ≤ 60 , 60 < Z ≤ 70 , and Z > 70 . Let DZ1 and DZ2 be dummy variables for 
the categorized age at enrollment. DZ1 is 1 if Z ≤ 60 and 0 otherwise, and DZ2 = 1 if 
60 < Z ≤ 70 and 0 otherwise. The missingness mechanism of X1 and X2 was identified 
as MAR by Tran et al. (2021). The following logistic regression model is used to fit the 
data set:

The estimates of �k s and their corresponding ASEs are given in Table  13. The 
analysis results indicate that �k , k = 0, 1, 2, 3, 4 , are statistically significantly differ-
ent from zero based on all the estimation methods except �3 and �4 based on the 

(23)P(Y = 1|X1,X2, Z,W) = H(�0 + �1X1 + �2DX2 + �3DZ1 + �4DZ2).

� is the correlation coefficient between X1 and X2

Table 10   (continued)

� �̂
F

�̂
C

�̂
W

�̂
V

�̂
J

�̂
M1

�̂
M2

�̂
ME

−0.71 �
0

Bias 0.0059 0.0793 0.0124 0.0052 0.0043 0.0075 0.0075 −0.0101

SD 0.1110 0.1683 0.1173 0.1157 0.1119 0.1132 0.1125 0.1096

ASE 0.1075 0.1705 0.1113 0.1129 0.1086 0.1084 0.1083 0.1177

CP 0.9350 0.9320 0.9420 0.9420 0.9390 0.9380 0.9380 0.9580

�
1

Bias 0.0006 0.0009 0.0175 −0.0078 −0.0108 0.0105 0.0049 − 0.3282

SD 0.2065 0.3491 0.3054 0.3034 0.2406 0.2634 0.2532 0.1666

ASE 0.2134 0.3501 0.2948 0.3052 0.2464 0.2342 0.2343 0.2420

CP 0.9610 0.9470 0.9420 0.9490 0.9480 0.9180 0.9250 0.8310

�
2

Bias 0.0095 0.0068 0.0319 0.0041 −0.0030 0.0193 0.0159 − 0.1863

SD 0.1486 0.2518 0.1967 0.1940 0.1646 0.1754 0.1698 0.1092

ASE 0.1517 0.2483 0.1896 0.1994 0.1691 0.1606 0.1606 0.1771

CP 0.9580 0.9420 0.9440 0.9560 0.9560 0.9270 0.9380 0.9130

�
3

Bias 0.0055 0.1420 0.0235 0.0035 0.0050 0.0072 0.0071 − 0.0431

SD 0.1580 0.2662 0.1634 0.1633 0.1597 0.1580 0.1579 0.1557

ASE 0.1551 0.2663 0.1575 0.1639 0.1572 0.1555 0.1555 0.1576

CP 0.9490 0.9270 0.9450 0.9510 0.9450 0.9520 0.9500 0.9470
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Table 11   Simulation results of scenario 5 ( M = 30 ; � = 0.21, 0.51, 0.71 ; n = 1, 000 ); 
� = (1,−0.5, 1, log(2))T ; � = (1.15, 0.6, 0.6)T ; � = (0.7,−0.2, 0.1,−1.2)T ; observed selection probabili-
ties: (0.40, 0.23, 0.23, 0.14)

� �̂
F

�̂
C

�̂
W

�̂
V

�̂
J

�̂
M1

�̂
M2

�̂
ME

0.21 �
0

Bias 0.0094 0.0821 0.0125 0.0110 0.0072 0.0106 0.0110 − 0.1153
SD 0.1084 0.1709 0.1158 0.1158 0.1118 0.1119 0.1115 0.1008
ASE 0.1069 0.1698 0.1139 0.1158 0.1090 0.1085 0.1088 0.1089
CP 0.9450 0.9390 0.9500 0.9550 0.9550 0.9470 0.9510 0.8240

�
1

Bias −0.0018 0.0152 −0.0061 −0.0059 0.0069 −0.0024 −0.0041 0.2575
SD 0.1653 0.2759 0.1965 0.1971 0.1777 0.1828 0.1809 0.1649
ASE 0.1650 0.2707 0.1954 0.1995 0.1729 0.1720 0.1720 0.1913
CP 0.9500 0.9520 0.9600 0.9660 0.9440 0.9420 0.9430 0.7570

�
2

Bias 0.0056 0.0061 0.0121 0.0091 −0.0032 0.0083 0.0078 − 0.2392
SD 0.1216 0.1989 0.1390 0.1385 0.1253 0.1296 0.1281 0.1199
ASE 0.1210 0.1980 0.1376 0.1413 0.1258 0.1245 0.1251 0.1508
CP 0.9450 0.9440 0.9460 0.9550 0.9500 0.9370 0.9370 0.6670

�
3

Bias 0.0054 0.1372 0.0098 0.0052 0.0104 0.0058 0.0056 − 0.0270
SD 0.1601 0.2771 0.1654 0.1659 0.1659 0.1618 0.1616 0.1571
ASE 0.1577 0.2722 0.1601 0.1677 0.1602 0.1582 0.1582 0.1572
CP 0.9400 0.9430 0.9360 0.9510 0.9340 0.9340 0.9340 0.9470

0.51 �
0

Bias 0.0078 0.0840 0.0124 0.0116 0.0053 0.0094 0.0026 − 0.1489
SD 0.1067 0.1712 0.1156 0.1163 0.1099 0.1110 0.1088 0.0996
ASE 0.1077 0.1712 0.1158 0.1181 0.1103 0.1095 0.1092 0.1072
CP 0.9580 0.9340 0.9560 0.9620 0.9560 0.9510 0.9550 0.7090

�
1

Bias −0.0053 0.0103 −0.0160 −0.0150 0.0068 −0.0088 0.0137 0.4810
SD 0.1898 0.3207 0.2400 0.2391 0.2099 0.2209 0.2131 0.1707
ASE 0.1898 0.3120 0.2333 0.2404 0.2030 0.2003 0.1999 0.2101
CP 0.9500 0.9460 0.9510 0.9560 0.9500 0.9210 0.9280 0.3280

�
2

Bias 0.0123 0.0165 0.0209 0.0182 0.0032 0.0152 0.0024 − 0.3039
SD 0.1327 0.2315 0.1615 0.1599 0.1409 0.1499 0.1439 0.1191
ASE 0.1344 0.2203 0.1559 0.1613 0.1414 0.1395 0.1387 0.1520
CP 0.9480 0.9400 0.9370 0.9490 0.9470 0.9230 0.9340 0.4770

�
3

Bias 0.0076 0.1421 0.0169 0.0065 0.0080 0.0088 0.0078 −0.0171
SD 0.1632 0.2913 0.1716 0.1693 0.1689 0.1652 0.1646 0.1607
ASE 0.1605 0.2775 0.1623 0.1701 0.1627 0.1609 0.1608 0.1603
CP 0.9530 0.9190 0.9450 0.9580 0.9430 0.9500 0.9500 0.9590
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CC method. Based on the SIPW, VL, JCL, MI1, MI2 and MICE methods, the esti-
mates of �k s and their ASEs were overall quite similar. According to all the estima-
tion methods, the results of testing �1 = 0 and �2 = 0 and their estimates reveal that 
women with the history of prior fracture were more likely to have fracture(s) in the 
first year compared to those without the history of prior fracture, and women with 
self-reported risk of fracture less than others of the same age were less likely to 
have fracture(s) in the first year compared to those whose self-reported risk of frac-
ture was the same as or greater than others of the same age. The results of testing 
�3 = 0 and �4 = 0 and their estimates based on the SIPW, VL, JCL, MI1, MI2 and 
MICE estimation methods indicate that women aged 60 years or younger and those 
older than 60 years and younger than or equal to 70 years were less likely to have 
fracture(s) in the first year compared to those older than 70 years. 

5.2.2 � Example 2

The two proposed MI methods are applied to analyze the second real data exam-
ple, the set of cable television (TV) data collected from the customer survey 
study of 1,586 residents in three cities in Taiwan (Lee et  al. 2011). The satis-
faction level of cable TV service is considered as the binary outcome variable, 
denoted by Y ( 1 = satisfied; 0 = neutral and dissatisfied). The two covariates with 

� is the correlation coefficient between X1 and X2

Table 11   (continued)

� �̂
F

�̂
C

�̂
W

�̂
V

�̂
J

�̂
M1

�̂
M2

�̂
ME

0.71 �
0

Bias 0.0093 0.0831 0.0311 0.0043 0.0031 0.0222 0.0048 − 0.2864

SD 0.1345 0.2142 0.1718 0.1658 0.1476 0.1556 0.1480 0.1061

ASE 0.1345 0.2171 0.1607 0.1689 0.1461 0.1406 0.1397 0.1266

CP 0.9580 0.9370 0.9350 0.9590 0.9540 0.9250 0.9360 0.3620

�
1

Bias −0.0029 0.0076 −0.0353 0.0098 0.0166 −0.0247 0.0157 0.6903

SD 0.2244 0.3728 0.3197 0.3104 0.2599 0.2788 0.2617 0.1681

ASE 0.2296 0.3779 0.3065 0.3234 0.2605 0.2481 0.2458 0.2268

CP 0.9570 0.9510 0.9400 0.9520 0.9460 0.9210 0.9380 0.0710

�
2

Bias 0.0095 0.0170 0.0394 0.0019 −0.0010 0.0284 0.0045 − 0.4092

SD 0.1590 0.2644 0.2136 0.2054 0.1766 0.1901 0.1784 0.1100

ASE 0.1600 0.2627 0.1993 0.2116 0.1780 0.1691 0.1676 0.1573

CP 0.9530 0.9560 0.9310 0.9550 0.9500 0.9200 0.9380 0.1990

�
3

Bias 0.0036 0.1350 0.0187 0.0002 0.0022 0.0062 0.0054 −0.0114

SD 0.1581 0.2636 0.1632 0.1607 0.1608 0.1588 0.1587 0.1554

ASE 0.1509 0.2587 0.1526 0.1580 0.1528 0.1512 0.1511 0.1511

CP 0.9390 0.9250 0.9300 0.9510 0.9390 0.9350 0.9370 0.9360
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missing values are response, denoted by X1 ( 1 = Yes; 0 = No), to the question 
“Have you been given a discount on cable TV?”, and response, denoted by X2 
( 0 = the number of children under 12 years old is equal 0; 1 = the number of 
children under 12 years old is ≥ 1 ), to the question “How many children under the 
age of 12 live with you?”. Another non-missing covariate is response, denoted 
by Z ( 1 = Yes ; 0 = No ), to the question “Are you paying for the fourth channel?”. 
Because the rates of only X1 missing, only X2 missing, and both of them miss-
ing were 17.9%, 1.3%, and 0.4%, respectively, the CC data set consists of 1,274 
respondents (80.3%). A surrogate variable of X1 and X2 is response, denoted as 

Table 12   Relative efficiencies in scenario 5 ( M = 30 ; � = −0.21,−0.53,−0.71, 0.21, 0.51, 0.71 ; 
n = 1, 000 ); � = (1,−0.5, 1, log(2))T ; � = (1.15, 0.6, 0.6)T ; � = (0.7,−0.2, 0.1,−1.2)T ; observed selec-
tion probabilities: (0.40, 0.23, 0.23, 0.14)

� is the correlation coefficient between X1 and X2

RE
mk

 , m ∈ {C,W,V , J,E} , k = 1, 2 , are the relative efficiencies of the CC, SIPW, VL, JCL, and MICE 
estimators to MIk estimators for each �

i
 , i = 0, 1, 2, 3

RE
mk

 is the ratio of MSE of m estimator to MSE of MIk estimator for each �
i

RE
mk

= MSE
m
∕MSE

k
 , RE12 = MSE1∕MSE2 , MSE = bias

2 + SD
2

� � RE
C1

RE
W1

RE
V1

RE
J1

RE
E1

RE
C2

RE
W2

RE
V2

RE
J2

RE
E2

RE
12

−0.21 �
0

2.835 1.048 1.068 1.028 1.238 2.688 0.993 1.013 0.975 1.173 0.948
�
1

2.152 1.170 1.160 0.901 0.876 2.113 1.149 1.139 0.885 0.860 0.982
�
2

2.276 1.136 1.127 0.936 2.685 2.299 1.147 1.138 0.945 2.711 1.010
�
3

3.532 1.106 1.091 1.053 1.026 3.509 1.099 1.083 1.046 1.020 0.994
−0.53 �

0
3.008 1.038 1.047 0.996 0.945 2.943 1.016 1.025 0.975 0.925 0.979

�
1

2.345 1.155 1.125 0.891 1.734 2.437 1.200 1.169 0.926 1.802 1.039
�
2

2.294 1.122 1.144 0.910 1.878 2.507 1.226 1.250 0.995 2.052 1.093
�
3

3.605 1.096 1.092 1.047 1.031 3.604 1.096 1.092 1.047 1.031 1.000
−0.71 �

0
2.689 1.081 1.042 0.974 0.941 2.723 1.094 1.055 0.986 0.953 1.012

�
1

1.754 1.347 1.325 0.835 1.950 1.900 1.459 1.436 0.904 2.113 1.083
�
2

2.038 1.275 1.209 0.870 1.497 2.182 1.365 1.295 0.932 1.603 1.071
�
3

3.639 1.089 1.066 1.020 1.043 3.644 1.091 1.068 1.022 1.045 1.001
0.21 �

0
2.846 1.074 1.071 0.994 1.857 2.864 1.081 1.078 1.000 1.869 1.006

�
1

2.284 1.156 1.163 0.946 2.797 2.332 1.181 1.188 0.966 2.855 1.021
�
2

2.348 1.154 1.142 0.931 4.244 2.404 1.182 1.170 0.954 4.346 1.024
�
3

3.647 1.047 1.051 1.054 0.969 3.657 1.050 1.054 1.057 0.972 1.003
0.51 �

0
2.930 1.089 1.101 0.976 2.586 3.071 1.141 1.153 1.022 2.709 1.048

�
1

2.107 1.184 1.174 0.902 5.330 2.258 1.269 1.259 0.967 5.713 1.072
�
2

2.373 1.168 1.141 0.875 4.694 2.600 1.280 1.250 0.959 5.145 1.096
�
3

3.839 1.086 1.049 1.045 0.954 3.869 1.095 1.057 1.053 0.962 1.008
0.71 �

0
2.137 1.234 1.113 0.882 3.776 2.407 1.390 1.254 0.994 4.255 1.127

�
1

1.775 1.321 1.231 0.866 6.443 2.023 1.505 1.403 0.987 7.344 1.140
�
2

1.900 1.277 1.142 0.844 4.860 2.204 1.482 1.325 0.979 5.638 1.160
�
3

3.473 1.068 1.022 1.024 0.961 3.479 1.070 1.024 1.026 0.963 1.002
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W ( 1 = Yes; 0 = No), to the question “Would you pay extra money for additional 
channels?”. We fit the following logistic regression model to the data set:

The multinomial logistic regression model 
log

(
�j(Y ,W, Z)∕�4(Y ,W, Z)

)
= �j + �1jY + �2jW + �3jZ , j = 1, 2, 3 , is used to 

examine the effects of Y, W, and Z on the missingness mechanism of X1 and X2 , 
i.e., on their selection probabilities. The p-values of Wald chi-squared tests for the 
effects of Y (i.e., testing H0 ∶ �1j = 0 , j = 1, 2, 3 ) and Z (i.e., testing H0 ∶ �3j = 0 , 
j = 1, 2, 3 ) are 0.0021 and < 0.0001 , respectively, so Y and Z are statistically signifi-
cantly related to the missingness mechanism of X1 and X2 and, hence, it is reason-
able to assume that X1 and X2 are MAR.

Table 14 gives the estimates of �k , k = 0, 1, 2, 3 , and their corresponding ASEs. 
The results of testing �k = 0 , k = 0, 1, 2, 3 , are statistically significant except testing 
�1 = 0 by using the MICE estimation method. The estimates of �1 and �3 are posi-
tive, implying that the respondents were more likely to be satisfied with the cable 
TV service when they were offered a discount and when they paid for the fourth 
channel, respectively. Based on all the estimation methods, the estimates of �2 are 

(24)P(Y = 1|X1,X2, Z,W) = H(�0 + �1X1 + �2X2 + �3Z).

Table 13   Results of logistic regression analysis of GLOW500M data

Values in parentheses are asymptotic standard errors (ASEs)
X1 is the history of prior fracture ( 0 = no; 1 = yes)
X2 is the self-reported risk of fracture (1 = less than others of the same age; (2 = same as others of the 
same age; 3 = greater than others of the same age)
DX2 is the dummy variable for the dichotomized self-reported risk of fracture
DX2 = 1 if X2 = 1 and 0 if X2 = 2 or 3.
Z is age at enrollment (integer values from 55 to 90)
DZ1 and DZ2 are the dummy variables for the categorized age at enrollment
DZ1 = 1 if Z ≤ 60 and 0 otherwise
DZ2 = 1 if 60 < Z ≤ 70 and 0 otherwise

Variable Parameters �̂
C

�̂
W

�̂
V

�̂
J

�̂
M1

�̂
M2

�̂
ME

Intercept �
0

−0.7902 −0.6843 −0.6863 −0.7972 −0.7178 −0.7248 −0.7089

(0.2678) (0.2456) (0.2477) (0.2341) (0.2207) (0.2226) (0.2152)
X
1

�
1

0.7265 0.7179 0.7337 0.8330 0.7717 0.7973 0.7304
(0.2895) (0.2991) (0.2977) (0.2671) (0.2545) (0.2673) (0.2681)

DX
2

�
2

−0.7370 −0.7277 −0.7448 −0.6246 −0.6706 −0.6918 −0.5777

(0.3139) (0.3108) (0.3105) (0.2813) (0.2628) (0.2685) (0.2703)
DZ

1
�
3

−0.7180 −1.1682 −1.1041 −1.0699 −1.1235 −1.1100 −1.1743

(0.3936) (0.3488) (0.3513) (0.3413) (0.3358) (0.3372) (0.3292)
DZ

2
�
4

−0.4289 −0.5871 −0.5730 −0.5243 −0.5823 −0.5713 −0.5928

(0.2991) (0.2475) (0.2513) (0.2480) (0.2430) (0.2444) (0.2406)
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negative, revealing that it is less likely for the respondents to report satisfaction with 
the cable TV service when there were children under 12 years old in their family. 
The parameter estimates based on the SIPW, VL, JCL, MI1, MI2, and MICE meth-
ods are quite similar and different from those based the CC method. Moreover, the 
ASEs of the two different types of MI estimators of �0 , �1 , and �3 are the smallest in 
comparison with the other estimation methods, showing the outperformance of the 
two proposed MI methods and consistence with the simulation results.

Moreover, one can also apply the estimation methods to analyze the cable TV 
data set with artificial missing values and higher missing rates. To this end, let 
(�0

1
, �0

2
, �0

3
, �0

4
) be indicators for the original missingness statuses of X1 and X2 . Let 

(�∗
1
, �∗

2
, �∗

3
, �∗

4
) be indicators for artificial missingness statuses of X1 and X2 under the 

assumption of MAR mechanism. Let (𝛿1, 𝛿2, 𝛿3, 𝛿4) be the combination of indicators 
for the original and artificial missingness statuses of X1 and X2 , where 
𝛿ij = 𝛿0

i1
𝛿∗
ij
+ (1 − 𝛿0

i1
)𝛿0

ij
 , i = 1, 2,… , n , j = 1, 2, 3, 4 . The following multinomial 

logistic regression model

is applied to generate the data of �∗
ij
 , j = 1, 2, 3, 4 , given (Yi,Wi, Zi) , where 

�∗ = (�∗
1
, �∗

2
, �∗

3
)T = (1.7,−0.5, 1)T and �∗ = (�∗

1
, �∗

2
, �∗

3
)T = (−0.7,−0.5,−0.3)T . 

One can obtain the selection probabilities of (𝛿1, 𝛿2, 𝛿3, 𝛿4) as 
(0.406, 0.234, 0.231, 0.129), which imply that the percentages of complete cases, 
only X1 missing, only X2 missing, and both of them missing are 40.6%, 23.4%, 
23.1%, and 12.9%, respectively.

The analysis results of the artificial cable TV data set are given in Table 15. 
In general, these results have some changes compared to those of the original 
cable TV data set in Table 14 because of increased missing rates, but they still 

(25)ln

(
P(�∗

ik
= 1|Yi,Wi, Zi)

P(�∗
i4
= 1|Yi,Wi, Zi)

)
= �∗

k
+ �∗

1
Yi + �∗

2
Wi + �∗

3
Zi, k = 1, 2, 3,

Table 14   Results of logistic regression analysis of Cable TV data

Values in parentheses are asymptotic standard errors (ASEs)
X1 ( 1 = Yes; 0 = No): response to question “Have you been given a discount on cable TV?”.
X2 ( 0 = the number of children under 12 years old is equal 0; 1 = the number of children under 12 years 
old is ≥ 1 ): response to question “How many children under the age of 12 live with you?”.
Z ( 1 = Yes; 0 = No): response to question “Are you paying for the fourth channel?”

Variable Parameters �̂
C

�̂
W

�̂
V

�̂
J

�̂
M1

�̂
M2

�̂
ME

Intercept �
0

−1.8243 −1.7830 −1.7885 −1.7559 −1.7657 −1.7498 −1.7477

(0.1372) (0.1306) (0.1302) (0.1259) (0.1257) (0.1250) (0.1267)
X
1

�
1

0.3443 0.3488 0.3466 0.3251 0.3541 0.3052 0.2847
(0.1656) (0.1676) (0.1653) (0.1644) (0.1586) (0.1541) (0.1581)

X
2

�
2

−0.4420 −0.4667 −0.4482 −0.5359 −0.5320 −0.5381 −0.5266

(0.1679) (0.1706) (0.1679) (0.1489) (0.1472) (0.1481) (0.1471)
Z �

3
0.3842 0.5515 0.5566 0.5530 0.5492 0.5524 0.5557
(0.1560) (0.1374) (0.1374) (0.1373) (0.1373) (0.1372) (0.1373)
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represent well the performance properties of the proposed estimation methods. 
Indeed, the changes are the results of testing �k = 0 , k = 1, 2, 3, 4 . Testing �1 = 0 
is not statistically significant by using the SIPW, JCL, MI1, MI2, and MICE esti-
mation methods. Testing �2 = 0 is not statistically significant by using the CC, 
SIPW, and VL estimation methods. In addition, the ASEs of all the estimators 
are increased, especially the CC estimators of all the parameters, and the SIPW 
and VL estimators of �1 and �2 . The ASEs of the two proposed MI estimators are 
changed less compared to the other estimators. The (absolute) estimates of �0 and 
�3 are increased, and those of �2 are decreased for almost all the estimation meth-
ods. The estimates of �1 are increased based on the first three estimation methods 
and decreased based on the last four estimation methods. Again, the parameter 
estimates based on the MI1 and MI2 estimation methods are changed less com-
pared to the JCL and MICE estimation methods.

In summary, the two real data sets are used to evaluate the applicability of the 
seven estimation methods and confirm the results in the simulation study section. 
When the logistic regression model includes all categorical/discrete variables and 
has two covariates MAR separately or simultaneously, the analytical results are 
highly consistent with the conclusions in the simulation studies. The biases and 
ASEs of the MI1, MI2, and JCL estimators are indeed slightly similar and better 
than those of the SIPW and VL estimators. The results also imply that one may 
make mistakes in obtaining the fitted logistic regression model if using the CC or 
MICE (from mice package) approach. For instance, in real data example 1, the 
CC estimation method concludes that DZ1 and DZ2 are insignificant; in real data 
example 2, the MICE estimation method suggests that X1 is not effective at the 
significance level 5%. Furthermore, the analysis of the artificial cable TV data 
example shows that the two proposed methods provide more stable results than 
the other estimation methods.

Table 15   Results of logistic regression analysis of cable TV data with artificial missing values

Values in parentheses are asymptotic standard errors (ASEs)
X1 ( 1 = Yes; 0 = No): response to question “Have you been given a discount on cable TV?”.
X2 ( 0 = the number of children under 12 years old is equal 0; 1 = the number of children under 12 years 
old is ≥ 1 ): response to question “How many children under the age of 12 live with you?”.
Z ( 1 = Yes; 0 = No): response to question “Are you paying for the fourth channel?”

Variable Parameters �̂
C

�̂
W

�̂
V

�̂
J

�̂
M1

�̂
M2

�̂
ME

Intercept �
0

−1.9245 −1.8308 −1.8504 −1.7588 −1.8015 −1.7884 −1.7943
(0.1959) ( 0.1562) ( 0.1551) ( 0.1343) (0.1322) (0.1303) (0.1343)

X
1

�
1

0.4529 0.4196 0.4568 0.2101 0.3152 0.3078 0.2420
(0.2256) (0.2304) (0.2251) (0.1925) (0.1731) (0.1666) (0.1762)

X
2

�
2

− 0.4187 − 0.4486 − 0.4289 −0.4544 −0.4154 −0.4450 −0.3707
(0.2409) (0.2488) (0.2417) (0.1805) (0.1668) (0.1703) (0.1763)

Z �
3

0.5046 0.5485 0.5604 0.5597 0.5561 0.5547 0.5655
(0.2187) (0.1390) (0.1395) (0.1372) (0.1372) (0.1374) (0.1371)
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6 � Conclusion

Two different types of MI methods have been proposed to estimate the param-
eters of logistic regression with covariates missing separately or simultaneously. 
Based on the idea of Wang and Chen (2009), for each type MI estimation method 
we have proposed three empirical CDFs to generate the random values for miss-
ing data and estimated the logistic regression parameters by using the estimat-
ing equations of Fay (1996), which are more convenient in practice than those 
of Rubin (1987) because they are solved only once. The simulation studies have 
showed that the two proposed MI methods’ performances were comparable with 
the JCL method, but they had shorter computing time than the JCL and MICE 
estimation methods, and are easily implemented. The two proposed MI methods 
overall outperformed the CC, SIPW, VL, and MICE methods. Two real data sets 
have been used to illustrate the practical use of the two proposed MI methods.

Although we have focused on the case where covariates are categorical/dis-
crete, one can also consider the case of continuous covariates by using the non-
parametric kernel approach of Wang and Chen (2009) to construct the empirical 
CDFs. For example, assume that �1 and �2 are continuous covariate vectors and 
MAR separately or simultaneously, Z is a categorical/discrete covariate vector 
and always observed, �1 and �2 are categorical/discrete surrogate vectors of �1 and 
�2 , respectively, and, hence, V = (ZT ,WT )T is a categorical/discrete covariate vec-
tor. The MI2 method still works for the case. For the MI1 method, to impute the 
missing values of �1i and �2i , one can construct the empirical CDFs of �1i given 
(�2i, Yi,Vi) and �2i given (�1i, Yi,Vi) as follows:

Here Hs is a ps × ps , s = 1, 2 , symmetric positive definite matrix and depends on n 
for p1 = r2 = length(�2) and p2 = r1 = length(�1) . KHs

(�) = |Hs|1∕2Ks(H
−1∕2
s

�) for 
Ks(⋅) being a ps-variate kernel with ∫ Ks(�)d� = 1 and H1∕2

s
 the bandwidth matrix. 

F̃∗
Xi

(�|Yi,Vi) is equal to F̃
Xi
(�|Yi,Vi) in (17). We can use the MI1 procedure in 

Secti.  4.1 to estimate the parameters. The simulation studies demonstrate the two 
proposed MI methods still work well for this case; simulation results are not 
reported.

Furthermore, to build the MI1 method for the case where both �1 and �2 are con-
tinuous covariate vectors and MAR separately or simultaneously, Z is a continuous 
covariate vector, and �1 and �2 are continuous surrogate vectors of �1 and �2 , respec-
tively, one can construct the following empirical CDFs of �1i given (�2i, Yi,Vi) , �2i 
given (�1i, Yi,Vi) , and Xi given (Yi,Vi):

F̃∗
�1i
(�1��2i, Yi,Vi) =

n�
k=1

�
�k1I(Yk = Yi,Vk = Vi)KH1

(�2k − �2i)∑n

s=1
�s1I(Ys = Yi,Vs = Vi)KH1

(�2s − �2i)

�
I(�1k ≤ �1),

F̃∗
�2i
(�2��1i, Yi,Vi) =

n�
k=1

�
�k1I(Yk = Yi,Vk = Vi)KH2

(�1k − �1i)∑n

s=1
�s1I(Ys = Yi,Vs = Vi)KH2

(�1s − �1i)

�
I(�2k ≤ �2).
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Here Hs is a qs × qs , s = 1, 2, 3 , symmetric positive definite matrix and 
depends n for q1 = r2 + length(V) , q2 = r1 + length(V) , and q3 = length(V) . 
KHs

(�) = |Hs|1∕2Ks(H
−1∕2
s

�) for Ks(⋅) being a qs-variate kernel with ∫ Ks(�)d� = 1 
and H1∕2

s
 the bandwidth matrix. Similarly, to develop the MI2 method for this case, 

one can form the empirical CDFs of �1i given (�2i, Yi,Vi) , �2i given (�1i, Yi,Vi) , and 
Xi given (Yi,Vi) as follows:

Here H is a q3 × q3 symmetric positive definite matrix and depends n. 
KH(�) = |H|1∕2K(H−1∕2

�) for K(⋅) being a q3-variate kernel with ∫ K(�)d� = 1 and 
H

1∕2 the bandwidth matrix.
Finally, as an extension, the two proposed MI methods can be applied to estimate 

the parameters of logistic regression with outcome and covariates missing separately 
or simultaneously, and to estimate the parameters of a multinomial logit model with 
the same missing issue. These tasks are future research.

Acknowledgements  The authors thank two referees and an Associate Editor for their constructive com-
ments that improved the presentation. The research of S.M. Lee and T.N. Le was supported by Ministry 
of Science and Technology (MOST) Grant of Taiwan, ROC, MOST-109-2118-M-035-002-MY3.

References

Breslow NE, Cain KC (1988) Logistic regression for two-stage case-control data. Biometrika 75:11–20
Buuren SV, Groothuis-Oudshoorn K (2011) Mice: multivariate imputation by chained equations in R. J 

Stat Softw 45(3):1–67
Dong Y, Peng CYJ (2013) Principled missing data methods for researchers. Springer, Berlin
Fay RE (1996) Alternative paradigms for the analysis of imputed survey data. J Am Stat Assoc 

91:490–498

F̃∗∗
�1i
(�1��2i, Yi,Vi) =

n�
k=1

�
�k1I(Yk = Yi)KH1

(�2k − �2i,Vk − Vi)∑n

s=1
�s1I(Ys = Yi)KH1

(�2s − �2i,Vs − Vi)

�
I(�1k ≤ �1),

F̃∗∗
�2i
(�2��1i, Yi,Vi) =

n�
k=1

�
�k1I(Yk = Yi)KH2

(�1k − �1i,Vk − Vi)∑n

s=1
�s1I(Ys = Yi)KH2

(�1s − �1i,Vs − Vi)

�
I(�2k ≤ �2),

F̃∗∗
Xi
(��Yi,Vi) =

n�
k=1

�
�k1I(Yk = Yi)KH3

(Vk − Vi)∑n

s=1
�s1I(Ys = Yi)KH3

(Vs − Vi)

�
I(Xk ≤ �).

̃̃
F
∗∗

�1i
(�1�Yi,Vi) =

n�
k=1

�
(�k1 + �k3)I(Yk = Yi)KH(Vk − Vi)∑n

s=1
(�s1 + �s3)I(Ys = Yi)KH(Vs − Vi)

�
I(�1k ≤ �1),

̃̃
F
∗∗

�2i
(�2�Yi,Vi) =

n�
k=1

�
(�k1 + �k2)I(Yk = Yi)KH(Vk − Vi)∑n

s=1
(�s1 + �s2)I(Ys = Yi)KH(Vs − Vi)

�
I(�2k ≤ �2),

̃̃
F
∗∗

Xi
(��Yi,Vi) =

n�
k=1

�
�k1I(Yk = Yi)KH(Vk − Vi)∑n

s=1
�s1I(Ys = Yi)KH(Vs − Vi)

�
I(Xk ≤ �).



933

1 3

Estimation of logistic regression with covariates missing…

Horvitz DG, Thompson DJ (1952) A generalization of sampling without replacement from a finite uni-
verse. J Am Stat Assoc 47:663–685

Hosmer DW, Lemeshow S, Sturdivant RX (2013) Applied logistic regression, 3rd edn. Wiley, New York
Hsieh SH, Lee SM, Shen PS (2010) Logistic regression analysis of randomized response data with miss-

ing covariates. J Stat Plann Infer 140:927–940
Hsieh SH, Li CS, Lee SM (2013) Logistic regression with outcome and covariates missing separately or 

simultaneously. Comput Stat Data Anal 66:32–54
Jiang W, Josse J, Lavielle M, Group T (2020) Logistic regression with missing covariates|parameter esti-

mation, model selection and prediction within a joint-modeling framework. Comput Stat Data Anal 
145:106907

Lee SM, Gee MJ, Hsieh SH (2011) Semiparametric methods in the proportional odds model for ordinal 
response data with missing covariates. Biometrics 67:788–798

Lee SM, Hwang WH, de Dieu Tapsoba J (2016) Estimation in closed capture-recapture models when 
covariates are missing at random. Biometrics 72:1294–1304

Lee SM, Li CS, Hsieh SH, Huang LH (2012) Semiparametric estimation of logistic regression model 
with missing covariates and outcome. Metrika 75:621–653

Lee SM, Lukusa TM, Li CS (2020) Estimation of a zero-inflated Poisson regression model with missing 
covariates via nonparametric multiple imputation methods. Computat Stat 35:725–754

Lipsitz SR, Parzen M, Ewell M (1998) Inference using conditional logistic regression with missing 
covariates. Biometrics 54:295–303

Little RJ (1992) Regression with missing X’s: a review. J Am Stat Assoc 87:1227–1237
Little RJ, Rubin DB (2019) Statistical analysis with missing data, 3rd edn. Wiley, New York
Lukusa TM, Lee SM, Li CS (2016) Semiparametric estimation of a zero-inflated Poisson regression 

model with missing covariates. Metrika 79:457–483
Pahel BT, Preisser JS, Stearns SC, Rozier RG (2011) Multiple imputation of dental caries data using a 

zero-inflated Poisson regression model. J Public Health Dent 71:71–78
Rubin DB (1976) Inference and missing data. Biometrika 63:581–592
Rubin DB (1987) Statistical analysis with missing data. Wiley, New York
Rubin DB (1996) Multiple imputation after 18+ years. J Am Stat Assoc 91:473–489
Rubin DB, Schenker N (1986) Multiple imputation for interval estimation from simple random samples 

with ignorable nonresponse. J Am Stat Assoc 81:366–374
Tran PL, Le TN, Lee SM, Li CS (2021) Estimation of parameters of logistic regression with covariates 

missing separately or simultaneously. Communications in statistics - Theory and methods, in press
Wang CY, Chen JC, Lee SM, Ou ST (2002) Joint conditional likelihood estimator in logistic regression 

with missing covariate data. Statistica Sinica 12:555–574
Wang CY, Wang S, Zhao LP, Ou ST (1997) Weighted semiparametric estimation in regression analysis 

with missing covariate data. J Am Stat Assoc 92:512–525
Wang D, Chen SX (2009) Empirical likelihood for estimating equations with missing values. Ann Stat 

37:490–517
Wang S, Wang CY (2001) A note on kernel assisted estimators in missing covariate regression. Statistics 

and Probability Letters 55:439–449
White IR, Royston P, Wood AM (2011) Multiple imputation using chained equations: issues and guid-

ance for practice. Stat Med 30:377–399
Zhao LP, Lipsitz S (1992) Designs and analysis of two-stage studies. Stat Med 11:769–782

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.



934	 S.-M. Lee et al.

1 3

Authors and Affiliations

Shen‑Ming Lee1   · Truong‑Nhat Le1,2   · Phuoc‑Loc Tran3   · Chin‑Shang Li4 

http://orcid.org/0000-0002-6030-0297
http://orcid.org/0000-0002-1022-1144
http://orcid.org/0000-0001-9373-9522
http://orcid.org/0000-0002-0054-4476

	Estimation of logistic regression with covariates missing separately or simultaneously via multiple imputation methods
	Abstract
	1 Introduction
	2 Assumptions and notations
	3 Review of estimation methods
	3.1 SIPW estimation method
	3.2 VL estimation method
	3.3 JCL estimation method
	3.4 MICE estimation method

	4 Proposed MI estimation methods
	4.1 Type 1 MI (MI1) method
	4.2 Type 2 MI (MI2) method

	5 Simulation and real data studies
	5.1 Simulation studies
	5.2 Examples
	5.2.1 Example 1
	5.2.2 Example 2


	6 Conclusion
	Acknowledgements 
	References




