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Abstract
This paper introduces the hhsmm R package, which involves functions for initial-
izing, fitting, and predication of hidden hybrid Markov/semi-Markov models. These 
models are flexible models with both Markovian and semi-Markovian states, which 
are applied to situations where the model involves absorbing or macro-states. The 
left-to-right models and the models with series/parallel networks of states are two 
models with Markovian and semi-Markovian states. The hhsmm also includes 
Markov/semi-Markov switching regression model as well as the auto-regressive 
HHSMM, the nonparametric estimation of the emission distribution using penalized 
B-splines, prediction of future states and the residual useful lifetime estimation in 
the predict function. The commercial modular aero-propulsion system simula-
tion (C-MAPSS) data-set is also included in the package, which is used for illustra-
tion of the application of the package features. The application of the hhsmm pack-
age to the analysis and prediction of the Spain’s energy demand is also presented.

Keywords Continuous time sojourn · EM algorithm · Forward-backward · Mixture 
of multivariate normals · Viterbi algorithm · R

1 Introduction

The package hhsmm, developed in the R language (R Development Core Team 
2010), involves new tools for modeling multivariate and multi-sample time series 
by hidden hybrid Markov/semi-Markov models, introduced by Guédon (2005). A 
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hidden hybrid Markov/semi-Markov Model (HHSMM) is a model with both Mark-
ovian and semi-Markovian states. This package is available from the Comprehen-
sive R Archive Network (CRAN) at https:// cran.r- proje ct. org/ packa ge= hhsmm.

The hidden hybrid Markov/semi-Markov models have many applications for the 
situations in which there are absorbing or macro-states in the model. These flex-
ible models decrease the time complexity of the hidden semi-Markov models, pre-
serving their prediction power. Another important application of the hidden hybrid 
Markov/semi-Markov models is in the genetics, where we aim to analysis of the 
DNA sequences including long interionic zones.

Several packages are available for modeling hidden Markov and semi-Markov models. 
Some of the packages developed in the R language are depmixS4 (Visser and Speeken-
brink 2010), HiddenMarkov (Harte 2006), msm (Jackson 2007), hsmm (Bulla et  al. 
2010) and mhsmm (ÓConnel and Højsgaard 2011). The packages depmixS4, Hidden-
Markov and msm only consider hidden Markov models (HMM), while the two packages 
hsmm and mhsmm focus on hidden Markov and hidden semi-Markov (HSMM) models 
from single and multiple sequences, respectively. These packages do not include hidden 
hybrid Markov/semi-Markov models, which are included in the hhsmm package. The 
mhsmm package has some tools for fitting the HMM and HSMM models to the multiple 
sequences, while the hsmm package has not such a capability. Such a capability is pre-
served in the hhsmm package. Furthermore, the mhsmm package is equipped with the 
ability to define new emission distributions, by using the mstep functions, which is also 
preserved for the hhsmm package. In addition to all these differences, the hhsmm pack-
age is distinguished from hsmm and mhsmm packages in the following features:

• Some initialization tools are developed for initial clustering, parameter estima-
tion, and model initialization;

• The left-to-right models, which are the models in which the process goes from a state 
to the next state and never comes back to the previous state, such as the health states 
of a system and the states of a phoneme in speech recognition, are considered;

• The ability to initialize, fit and predict the models based on data sets containing 
missing values, using the EM algorithm and imputation methods, is involved;

• The regime Markov/semi-Markov switching linear and additive regression model 
as well as the auto-regressive HHSMM are involved;

• The nonparametric estimation of the emission distribution using penalized 
B-splines is added;

• The prediction of the future states is involved;
• The estimation of the residual useful lifetime (RUL), which is the remaining time 

to the failure of a system (the last state of the left-to-right model, considered for 
the health of a system), is developed for the left-to-right models used in the reli-
ability theory applications;

• The continuous sojourn time distributions are considered in their correct form;
• The Commercial Modular Aero-Propulsion System Simulation (CMAPSS) data 

set is included in the package.

There are also tools for modeling HMM in other languages. For instance, the 
hmmlearn library in Python or hmmtrain and hmmestimate functions in 

https://cran.r-project.org/package=hhsmm


1285

1 3

hhsmm: an R package for hidden hybrid Markov/semi‑Markov…

Statistics and Machine Learning Toolbox of Matlab are available for modeling 
HMM, while none of them are not suitable for modeling HSMM or HHSMM.

The remainder of the paper is organized as follows. In Sect.  2, we introduce 
the hidden hybrid Markov/semi-Markov models (HHSMM), proposed by Guédon 
(2005). Section 3 presents a simple example of the HHSMM model and the hhsmm 
package. Section 4 presents special features of the hhsmm package including tools 
for handling missing values, initialization tools, the nonparametric mixture of 
B-splines for estimation of the emission distribution, regime (Markov/semi-Markov) 
switching regression, and auto-regressive HHSMM, prediction of the future state 
sequence, residual useful lifetime (RUL) estimation for reliability applications, con-
tinuous-time sojourn distributions, and some other features of the hhsmm package. 
Finally, the analysis of two real data sets is considered in Sect. 5, to illustrate the 
application of the hhsmm package.

2  Hidden hybrid Markov/semi‑Markov models

Consider a sequence of observations {Xt} , which is observed for t = 1,… , T  . 
Assume that the distribution of Xt depends on an un-observed (latent) variable St , 
called state. If the sequence {St} is a Markov chain of order 1, and for any t ≥ 1 , Xt 
and Xt+1 are conditionally independent, given St , then the sequence {(St,Xt)} forms a 
hidden Markov model (HMM). A graphical representation of the dependence struc-
ture of the HMM is shown in Fig. 1.

The parameters of an HMM are the initial probabilities of the states, the transi-
tion probability matrix of states, and the parameters of the conditional distribution 
of observations given states, which is called the emission distribution.

The time spent in a state is called the sojourn time. In the HMM model, the 
sojourn time distribution is simply proved to be geometric distribution. The hidden 
semi-Markov model (HSMM) is similar to HMM, while the sojourn time distribu-
tion can be any other distribution, including discrete and continuous distributions 
with positive support, such as Poisson, negative binomial, logarithmic, nonparamet-
ric, gamma, Weibull, log-normal, etc.

The hidden hybrid Markov/semi-Markov model (HHSMM), introduced by Gué-
don (2005), is a combination of the HMM and HSMM models. It is defined, for 
t = 0,… , � − 1 and j = 1,… , J , by the following parameters: 

1. Initial probabilities �j = P(S0 = j),
∑

j �j = 1,
2. Transition probabilities, which are

Fig. 1  A graphical representa-
tion of the dependence structure 
of the HMM
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• for a semi-Markovian state j, 

• for a Markovian state j, 

   By the above definition, any absorbing state, which is a state j with pjj = 1 , is 
Markovian. This means that if we want to conclude an absorbing state along with 
some semi-Markovian states in the model, we need to use the HHSMM model.

3. Emission distribution parameters, � , for the following distribution function 

4. The sojourn time distribution is defined for semi-Markovian state j, as follows 

 where Mj stands for an upper bound to the time spent in state j. Also, the sur-
vival function of the sojourn time distribution is defined as Dj(u) =

∑
�≥u dj(�).

For a Markovian state j, the sojourn time distribution is the geometric distribution 
with the following probability mass function

 The parameter estimation of the model is performed via the EM algorithm (Dempster 
et al. 1977). The EM algorithm consists of two steps. In the first step, which is called 
the E-step, the conditional expectation of the unobserved variables (states) is computed 
given the observations, which are called the E-step probabilities. This step utilizes the 
forward-backward algorithm to calculate the E-step probabilities. The second step is 
the maximization step (M-step). In this step the parameters of the model are updated by 
maximizing the expectation of the logarithm of the joint probability density/mass func-
tion of the observed and unobserved data. A brief description of the EM and forward-
backward algorithms, as well as the Viterbi algorithm, is given in the Appendix. The 
Viterbi algorithm obtains the most likely state sequence, for the HHSMM model.

2.1  Examples of hidden hybrid Markov/semi‑Markov models

Some examples of HHSMM models are as follows:

• Models with macro-states: The macro-states are series or parallel networks of 
states with common emission distribution. A semi-Markovian model can not be 
used for macro-states and a hybrid Markov/semi-Markov model is a good choice 

pjk = P(St+1 = k|St+1 ≠ j, St = j), ∀k ≠ j;
∑

k≠j
pjk = 1; pjj = 0

p̃jk = P(St+1 = k|St = j);
∑

k

p̃jk = 1

fj(xt) = f (xt|St = j; �)

dj(u) =P(St+u+1 ≠ j, St+u−� = j, � = 0,… , u − 2|St+1 = j, St ≠ j),

u = 1,… ,Mj,

dj(u) = (1 − p̃jj)p̃
u−1
jj

, u = 1, 2,⋯
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in such situations (see Cook and Russell 1986; Durbin et  al. 1998; Guédon 
2005).

• Models with absorbing states: An absorbing state is Markovian by definition. 
Thus, a model with an absorbing state can not be fully semi-Markovian.

• Left to right models: The left-to-right models are useful tools in the reliabil-
ity analysis of failure systems. Another application of these models is in speech 
recognition, where the feature sequence extracted from a voice is modeled by 
a left to right model of states. The transition matrix of a left to right model is 
an upper triangle matrix with its final diagonal element equal to one, since the 
last state of a left-to-right model is absorbing. Thus, a hidden hybrid Markov/
semi-Markov model might be used in such cases, instead of a hidden fully semi-
Markov model.

• Analysis of DNA sequences: It is observed that the length of some interionic 
zones in DNA sequences are approximately, geometrically distributed, while the 
length of other zones might deviate from the geometric distribution (Guédon 
2005).

3  A simple example

To illustrate the application of the hhsmm package for initializing, fitting, and pre-
diction of a hidden hybrid Markov/semi-Markov model, we first propose a simple 
example. We emphasize that the aim of this example is not comparing different 
models, while this is an example to show how can we use the flexible options of the 
package hhsmm for initializing and fitting different models.

To do this, we define a model, with two Markovian and one semi-Markovian 
state, and 2, 3, and 2 mixture components in states 1–3, respectively, as follows. 
The sojourn time distribution for the semi-Markovian state is considered to be the 
gamma distribution (see Sect. 4.8). The Boolean vector semi is used to define the 
Markovian and semi-Markovian states. Also, the mixture component proportions are 
defined using the parameter list mix.p.



1288 M. Amini et al.

1 3

Now, we simulate train and test data sets, using the simulate func-
tion. The remission argument is considered to be rmixmvnorm, which is 
a function for random sample generation from mixture of multivariate normal 
distributions. The data sets are plotted using the plot function. The plots of 
the train and test data sets are presented in Figs.  2 and 3, respectively. 
Different states are distinguished with different colors in the horizontal axis.

In order to initialize the parameters of the HHSMM model, we first obtain an 
initial clustering of the train data set, using the initial_cluster function. 
The nstate argument is set to 3, and the number of mixture components in the 
three states is set to c(2,2,2). The ltr and final.absorb arguments is set to 
FALSE, which means that the model is not left-to-right and the final element of each 
sequence is not in an absorbing state. Thus, the kmeans algorithm (Lloyd 1982) is 
used for the initial clustering.

Fig. 2  The plots for 4 sequences of train data set
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Now, we initialize the model parameters using the initialize_model func-
tion. The initial clustering output clus is used for estimation of the parameters. 
The sojourn time distribution is set to "gamma" distribution. First, we use the 
true value of the semi vector for modeling. Thus, the initialized model is a hidden 
hybrid Markov/semi-Markov model.

The model is then fitted using the hhsmmfit function as follows. The initialized 
model initmodel1 is used as the start value.

The log-likelihood trend can also be extracted and plotted as follows. This plot is 
presented in Fig. 4.

One can observe, for instance, the estimated initial probabilities, transition 
matrix, and the estimated parameters of the sojourn distribution as follows.

Fig. 3  The plots for 4 sequences of test data set
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The state sequence is now predicted using the default method "viterbi" of the 
predict function for the test data set. Because of the displacement property of 
the states, the homogeneity of the predicted states is computed using the homoge-
neity function for three states. Since the states are indeed clusters, the homogene-
ity measures, which are used for clustering, are useful for measuring the homogene-
ity of two sequences of state. The homogeneity of a specified cluster (state) in two 
sequences, is defined as the percentage of members of both sequences that are in the 
same cluster (state) in both sequences. The output of the homogeneity function 
shows the homogeneity percent of two sequences of states.

Fig. 4  The log-likelihood trend during the model fitting
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Now, we initialize and fit a fully Markovian model (HMM) by setting semi to 
c(FALSE,FALSE,FALSE). The same clustering output clus can be used here.

The model is again fitted using hhsmmfit function.

We can compare some of the estimated parameters of this model with those of 
the previous one.

Now, we predict the state sequence of the fitted model and compute its homoge-
neity with the true state sequence.

Finally, we initialize and fit a full semi-Markov model (HSMM) to the train 
data set, by setting semi to c(TRUE,TRUE,TRUE). The "gamma" distribution is 
considered as the sojourn time distribution for all states.
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The prediction and homogeneity computation for this model is done as follows.

4  Special features of the package

The hhsmm package has several special features, which are described in the follow-
ing subsections.

4.1  Handling missing values

The hhsmm package is equipped with tools for handling data sets with missing 
values. A special imputation algorithm is used in the initial_cluster func-
tion. This algorithm, imputes a completely missed row of the data with the aver-
age of its previous and next rows, while if some columns are missed, the pre-
dictive mean matching method of the function mice from package mice (Van 
Buuren and Groothuis-Oudshoorn 2011), with m = 1 , is used to initially impute 
the missing values. After performing the initial clustering and initial estimation 
of the parameters of the model, the miss_mixmvnorm_mstep function is con-
sidered, as the M-step function of the EM algorithm, for initializing and fitting 
the model. The function miss_mixmvnorm_mstep includes computation of 
the conditional means and conditional second moments of the missing values 
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given observed values in each iteration of the EM algorithm and updating the 
parameters of the Gaussian mixture emission distribution, using the cov.miss.
mix.wt function. Furthermore, an approximation of the mixture component 
weights using the observed values and conditional means of the missing values 
given observed values is used in each iteration. The values of the emission den-
sity function, used in the E-step of the EM algorithm are computed by replacing 
the missing values with their conditional means given the observed values.

Here, we provide a simple example to examine the performance of the afore-
mentioned method. First, we define a model with three states and two variables.

Now, we simulate the complete train and test data sets.

First, we initialize and fit the model with complete data sets. To do this, we 
first use the initial_cluster to provide an initial clustering of the train 
data set.

Now, we initialize and fit the model.
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Finally, we predict the state sequence of the test data set, using the predict.
hhsmm function and the default "viterbi" method.

To examine the tools for modeling the data sets with missing values, we ran-
domly select some elements of the train and test data sets and replace them 
with NA, as follows.

Now, we provide the initial clustering of the incomplete train data set using 
the initial_cluster function.

We can observe that the output of the initial_cluster function contains 
a flag that indicates the missingness in the data set.
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Now, we initialize and fit the model for the incomplete data set.

Similarly, we predict the state sequence of the incomplete test data set, using the 
predict.hhsmm function.

We can observe that the homogeneity of the predictions of the complete and 
incomplete data sets are very close to each other.

4.2  Tools and methods for initializing model

To initialize the HHSMM model, we need to obtain an initial clustering for the 
train data set. For a left to right model (option ltr = TRUE of the initial_
cluster function), we propose Algorithm  2, which uses Algorithm  1, for a 
left to right initial clustering, which are included in the function ltr_clus of 
the hhsmm package. These algorithms use Hotelling’s T-squared test statistic 
as the distance measure for clustering. The simulations and real data analysis 
show that the starting values obtained by the proposed algorithm perform well 
for a left to right model (see Sect.  5 for a real data application). If the model 
is not a left to right model, then the usual K-means algorithm is used for clus-
tering. Furthermore, the K-means algorithm is used within each initial state to 
cluster data for mixture components. The number of mixture components can 
be determined automatically, using the option nmix = "auto", by analysis 
of the within sum of squares obtained from the kmeans function. The number 
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of starting values of the kmeans is set to 10, for the stability of the results. The 
initial clustering is performed using the initial_cluster function.

After obtaining the initial clustering, the initial estimates of the parameters of 
the mixture of multivariate normal emission distribution are obtained. Further-
more, the parameters of the sojourn time distribution is obtained by running the 
method of moments estimation algorithms on the time duration observations of 
the initial clustering of each state. If we set sojourn = "auto" in the ini-
tialize_model function, the best sojourn time distribution is selected from 
the list of available sojourn time distributions, using the Chi-square goodness of 
fit testing on the initial cluster data of all states.
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4.3  Nonparametric mixture of B‑splines emission

Usually, the emission distribution belongs to a parametric family of distributions. 
Although the mixture of multivariate normals is shown to be a good choice in 
many practical situations, there are also examples in which this class of emis-
sion distribution fails to model the skewness and tail weight of the data set. Fur-
thermore, the choice of the number of components of the mixture distribution in 
each state is a challenge of using mixture of multivariate normals as the emis-
sion distribution. As an alternative to parametric emission distribution, HMMs 
and HSMMs with non-parametric estimates of state-dependent distributions are 
shown to be more parsimonious in terms of the number of states, easier to inter-
pret, and well fitted to the data (Langrock et  al. 2015; Adam et  al. 2019). The 
proposed nonparametric estimation approach of Langrock et al. (2015) and Adam 
et al. (2019) is based on the idea of representing the densities of the emission dis-
tributions as linear combinations of B-spline basis functions, by adding a smooth-
ing penalty term to the quasi-log-likelihood function. In this model, the emission 
distribution is defined as follows

where {�−K(⋅),… ,�K(⋅)} is a sequences of B-splines and {aj,k} is the sequences of 
unknown coefficients to be estimated. These parameters are estimated in the M-step 
of the EM algorithm, by maximizing the following penalized quasi-log-likelihood 
function

in which LHHSMM(�) the quasi-likelihood of the HHSMM model, � is the parameters 
of the model, Δak = ak − ak−1 , Δ2ak = Δ(Δak) , and �1,… , �J are the smoothing 
parameters, which are estimated as follows (Schellhase and Kauermann 2012)

where p is the dimension of the data,

and H(â;𝜆) is the hessian matrix of the log-quasi-likelihood at â with the specified 
value of �.

To illustrate the application of the hhsmm package with a nonparametric mix-
ture of B-splines emission distribution, we present a simple simulated data exam-
ple. To do this, we first simulate data from an HHSMM model with a mixture of 
multivariate normals as the emission distribution, as follows.

(1)fj(x) =

K∑

k=−K

aj,k�k(x), j = 1,… , J,

(2)�
HHSMM
P

(�, �) = log(LHHSMM(�)) −
1

2

J∑

j=1

�j

K∑

k=−K+2

(Δ2aj,k)
2,

�̂�j =
df(�̂�j) − p

∑K

k=−K+2
(Δ2âj,k)

2
,

df(�̂�j) = tr
(
H−1(âj;𝜆j = �̂�j)H(âj;𝜆j = 0)

)
,
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Now, we obtain an initial clustering of the data set using the initial_clus-
ter function. Note that for a nonparametric emission distribution, we have no mix-
ture components and we should use the option nmix = NULL.

In order to initialize a HHSMM with non-parametric estimates of the emis-
sion distribution, we use the initialize_model function with the arguments 
mstep = nonpar_mstep and dens.emission = dnonpar, as follows.

Now, we can use the hhsmmfit function to fit the model.
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Finally, we predict the state sequence of the test data and compute the homogeneity 
of the predicted sequence and the reals sequence as follows.

As one can see from the output of the homogeneity function, the fitted model has 
a high precision for the prediction of the state sequence of the new data set.

4.4  Regime (Markov/semi‑Markov) switching regression model

Kim et al. (2008) considered the following Gaussian regime-switching model

where yt is the response variable, xt is a vector of covariates, which may include 
lagged values of yt (auto-regressive HHSMM, see the next subsection), st is the 
state, and �t is the regression error, which is assumed to be distributed as standard 
normal distribution, for t = 1,… , T  . Model (3) can easily be extended to the case 
of multivariate responses and also to the case of mixture of multivariate normals. 
The difference between the regime-switching model (3) and the HHSMM model is 
that, instead of using the density of yt given st in the likelihood function, we use the 
conditional density of yt given xt and st . A graphical representation of the regime-
switching model is presented in Fig.  5. The parameters of the regime switching 
regression model can be estimated using the EM algorithm.

Langrock et  al. (2018) considered an extension of the model (3) to the following 
additive regime-switching model

(3)yt = xT
t
�st + �st�t,

(4)yt = �st
+

p∑

j=1

fj,st (xj,t) + �st�t,

Fig. 5  Graphical representation 
of the regime-switching model
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where fj,st (⋅), j = 1, ..., p are unknown regression functions for p covariates. They 
utilized the penalized B-splines for estimation of the regression functions.

The estimation of extensions of models (3) and (4) is considered in hhsmm pack-
age, using the mixlm_mstep and additive_reg_mstep functions, respec-
tively, as the M-step estimation and dmixlm and dnorm_additive_reg func-
tions, respectively, which define mixture of multivariate normals and multivariate 
normal densities, respectively, as the conditional density of the responses given the 
covariates. The response variables are determined using the argument resp.ind 
in all of these functions, with its default value equal to one, which means that the 
first column of the input matrix x, is the univariate response variable.

To illustrate usage of these functions in the hhsmm package, we present the fol-
lowing simple simulated data example. First, we simulate data using the function 
simulate.hhsmmspec, using the argument remission = rmixlm, covar 
= list(mean = 0, cov = 1). The argument covar is indeed an argument 
of the rmixlm function, which is either a function which generates the covariate 
vector or a list containing the mean vector and the variance-covariance matrix of 
covariates to be generated from multivariate normal distribution. The rmixlm is a 
function for generation of the data from mixture of linear models, for each state. The 
list of parameters of this emission distribution consist of the following items:

• intercept, a list of the intercepts of the regression models for each state and 
each mixture component,

• coefficient, a list of the coefficient vectors/matrices of the regression models 
for each state and each mixture component,

• csigma, a list of the conditional variances/variance-covariance matrices of the 
response for each state and each mixture component,

• mix.p, a list of mixture component probabilities for each state.

First, we define the model parameters and simulate the data as follows.

Now, we obtain an initial clustering of the data using initial_cluster 
function, with the argument regress = TRUE, which is essential for estimation 
the parameters of the regime switching regression models. By letting regress = 
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TRUE and ltr = FALSE the initial_cluster function uses an algorithm 
similar to that of Lloyd (1982) for the K-means method, by fitting linear regres-
sion models instead of computing simple means, in each iteration of an algorithm. 
When using regress = TRUE and ltr = TRUE, an algorithm similar to that, 
described in Sect. 4.2 is used for left-to-right clustering, by using regression coef-
ficients instead of mean vectors, and the associated Hotteling’s T-square statistic.

We initialize the model, using the initialize_model function, with argu-
ments mstep = mixlm_mstep, which is a function for M-step estimation of the 
EM algorithm in the regime switching regression model, and dens.emission 
= dmixlm, which is a function for computation of the probability density function 
of the mixture Gaussian linear model, for a specified observation vector, a speci-
fied state and a specified model’s parameters. Next, we fit the model, by using the 
hhsmmfit function.

The plots of the clustered data as well as the estimated regime-switching regres-
sion model lines are then plotted as follows. The resulting plot is shown in Fig. 6.

To fit the regime-switching additive regression model to the train data, 
we make an initial clustering of the data, using the initial_cluster func-
tion, by letting nstate = 3, nmix = NULL and regress = TRUE. 
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Using the argument nmix = NULL is essential in this case, since the param-
eters of the regime switching additive regression model does not involve mixture 
components.

Now, we initialize the model using the function initialize_model, with 
arguments mstep = additive_reg_mstep and dens.emission = 
dnorm_additive_reg. Note that here, we only consider a full-Markovian 
model and thus we let semi = rep(FALSE, 3) and sojourn = NULL, 
while one can also consider HSMM or HHSMM models by considering different 
semi and sojourn arguments.

Next, we fit the model by calling the hhsmmfit function.

Fig. 6  The regime Markov switching example
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Again, we plot the data to add the fitted lines. The colors of the points show 
the true states, while the characters present the predicted states.

To obtain the predicted values of the response variable, we use the addreg_
hhsmm_predict function as follows.

We add the predicted curves to the plot. The resulting plot is shown in Fig. 7.

As one can see from Fig. 7, the curves have a proper fit to the data points.

Fig. 7  The Markov regime-switching additive regression fit
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4.5  Auto‑regressive HHSMM

A special case of the regime-switching regression models (3) and (4) is the auto-
regressive HHSMM model, in which we take xt = (yt−1,… , yt−�) , for a specified 
lag � ≥ 1 . Here, we present a simulated data example, to illustrate this special 
case.

The model specification of the auto-regressive HHSMM is similar to that of 
the regime-switching regression model, noting that the dimension of xt is always 
� times the dimension of yt . So, we specify the model as follows.

To simulate the data using the simulate.hhsmm function, we have to use 
the argument emission.control = list(autoregress = TRUE). 
We, then, plot the simulated data by using plot.hhsmmdata as follows. The 
resulting plot is shown in Fig. 8.

Fig. 8  The ARHMM example simulated train data set



1305

1 3

hhsmm: an R package for hidden hybrid Markov/semi‑Markov…

To prepare the data for fitting the regime-switching regression model, we should 
first construct the lagged data matrix by using the function lagdata as follows. 
The default of the parameter lags of this function is equal to 1, which is the num-
ber of lags to be calculated.

The resulting lagged data set is then used for obtaining the initial clustering, using 
the argument regress = TRUE and resp.ind = 2 in the initial_clus-
ter function as follows.

Now, we initialize and fit the model as before. Note that we should use the argu-
ment resp.ind = 2 in place of ... in both functions (see the manual of the 
hhsmm package https:// cran.r- proje ct. org/ web/ packa ges/ hhsmm/ hhsmm. pdf)

To test the performance of the fitted model for prediction of the future time 
series, we need to simulate a test data set and then right-trim the test data set, using 
the train_test_split, and by setting train.ratio = 1, trim = TRUE 
and trim.ratio = 0.9, as follows. As one can see, the length of the sequences 
in trimmed_test$trimmed is 90% of the associated lengths in test data set.

The option train.ratio = 1 means that we do not wish to split the 
test samples into new train and test subsets and we only need to right trim the 

https://cran.r-project.org/web/packages/hhsmm/hhsmm.pdf
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sequences. Now, we have both trimmed sequences in trimmed object and the 
complete test samples in test data set, so that we can compare the true and 
predicted states. The object tc contains the number of trimmed items in each 
sequence, which has to be predicted.

Now, we use the estimated parameters of the ARHMM to predict the future 
values of the sequence. To do this, we predict the state sequence of the lagged 
trimmed test data set using the predict.hhsmm function and then we obtain 
the linear predictors for the future values as follows.

The resulting plot is presented in Fig.  9. The colored lines are the predicted 
values.

We try to apply the regime-switching additive regression model to fit the AR-
HMM model. Again, the only difference of the initial clustering using the ini-
tial_cluster function is to set nmix = NULL.
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We initialize the model using the function initialize_model by setting 
mstep = additive_reg_mstep and dens.emission = dnorm_addi-
tive_reg. The difference here is that we pass the parameters of these function to the 
initialize_model function through the argument control. In the following, 
we pass the response indicator and the degree of the B-splines by setting the argument 
control = list(resp.ind = 2, K = 7).

Now, we fit the model by calling the hhsmmfit function, as follows.

Finally, we provide the prediction plots, through the following codes.

Fig. 9  Trimmed test data set and the predicted values
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The resulting plots are presented in Fig. 10. The colored lines are the predicted 
values. By comparing the Figs. 9 and 10 one can see that the regime-switching 
additive regression model results in more accurate prediction especially for the 
second sequence of the test data set.

Fig. 10  The predicted values using AR-HMM model, using the regime switching additive regression
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4.6  Prediction of the future state sequence

To predict the future state sequence at times T + 1,… , T + h , first, we use viterbi 
(smoothing) algorithm (see the Appendix) to estimate the probabilities of the most 
likely path �j(t) ( Lj(t) ) for j = 1,… , J and t = 0,… , � − 1 , as well as the current 
most likely state ŝ∗

t
= argmax1≤j≤J 𝛼j(t) ( ̂s∗

t
= argmax1≤j≤J Lj(t) ). Also, we might 

compute the probabilities

Next, for j = 1,… , h , we compute the probability of the next state, by multiplying 
the transition matrix by the current state probability as follows

Then, the jth future state is predicted as

This process continues until the required time T + h . The prediction of the future 
state sequence is done using the function predict.hhsmm function in the hhsmm 
package, by determining the argument future, which is equal to zero by default. 
To examine this ability, we study a simple example as follows. First, we define a 
simple model, just like the model in section 3, and simulate train and test samples 
from this model, as follows.

To examine the prediction performance of the model, we split the test sample 
from the right, using train_test_split function and a trim ratio equal to 0.9, 
as follows.

(5)𝛿t(j) =
𝛼j(t)

∑J

k=1
𝛼k(t)

(𝛿t(j) =
Lj(t)

∑J

k=1
Lk(t)

).

(6)𝛿next =
(
P
)T

𝛿current

(7)ŝ∗
next

= arg max
1≤j≤J 𝛿next(j)
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As in Sect. 3, we initialize and fit an HHSMM model to the train data set, 
as follows.

Now, we predict the future states of each sequence of the test data set, sepa-
rately, using the option future = tc[i]. Then, we print the homogeneity 
of real and predicted state sequences, by using the homogeneity function, as 
follows.

As, on can see from the above homogeneities, the predictions are quite good.
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4.7  Residual useful lifetime (RUL) estimation, for reliability applications

The residual useful lifetime (RUL) is defined as the remaining lifetime of a system at 
a specified time point. If we analyse a reliable system with a hidden Markov or semi-
Markov model, a suitable choice would be a left to right model, with the final state as 
the failure state. The RUL of such model is defined at time t as

We describe a method of RUL estimation (see Cartella et al. 2015), which is used in 
hhsmm package. First, we should compute the probabilities in (5), using the Viterbi 
or smoothing algorithm.

Two different methods are used to obtain point and interval estimates of the RUL 
in the hhsmm package. The first method (the option confidence = "mean" in 
the predict function of the hhsmm package) is based on the method described in 
Cartella et al. (2015). This method computes the average time in the current state as 
follows

where �di
=
∑Mj

u=1
udi(u) is the expected value of the duration variable in state j, and 

d̂t(j) is the estimated states duration, computed as follows (Azimi 2004)

In order to obtain a confidence interval for the RUL, Cartella et al. (2015) also com-
puted the standard deviation of the duration variable in state j, �dj , and

However, to obtain a confidence interval of the specified level 1 − � ∈ (0, 1) , we 
have corrected Eqs. (10) and (11) in the hhsmm package as follows

where z1−�∕2 is the 1 − �∕2 quantile of the standard normal distribution.

(8)RULt = D̃ ∶ St+D̃ = J, St+D̃−1 = i; 1 ≤ i < k ≤ J.

(9)d̃avg(ŝ
∗
t
) =

J∑

j=1

(
𝜇dj

− d̂t(j)
)
𝛿t(j),

d̂t(j) = d̂t−1(j)𝛿t(j), t = 2,… ,Mj, d̂1(j) = 1, j = 1,… , J.

(10)d̃low(ŝ
∗
t
) =

J∑

j=1

(
𝜇dj

− d̂t(j) − 𝜎dj

)
𝛿t(j),

(11)d̃up(ŝ
∗
t
) =

J∑

j=1

(
𝜇dj

− d̂t(j) + 𝜎dj

)
𝛿t(j)

(12)d̃low(ŝ
∗
t
) =

J∑

j=1

(
𝜇dj

− d̂t(j) − z1−𝛾∕2𝜎dj

)
𝛿t(j),

(13)d̃up(ŝ
∗
t
) =

J∑

j=1

(
𝜇dj

− d̂t(j) + z1−𝛾∕2𝜎dj

)
𝛿t(j),
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The probability of the next state is obtained by multiplying the transition matrix 
by the current state probability as follows

while the maximum a posteriori estimate of the next state is calculated as

If Ŝt+d̃(j) coincides with the failure state J, the failure will happen after the 
remaining time at the current state is over and the average estimation of the fail-
ure time is D̃avg = d̃avg(ŝt

∗) , with the lower and upper bounds D̃low = d̃low(ŝt
∗) and 

D̃up = d̃up(ŝt
∗) , respectively, otherwise, the sojourn time of the next state is calcu-

lated as

This procedure is iterated until the failure state is encountered in the prediction of 
the next state. The estimate of the RUL is then calculated by summing all the afore-
mentioned estimated remaining times, as follows

In the second method (the option confidence = "max" in the predict func-
tion of the hhsmm package), we relax the normal assumption and use the mode and 
quantiles of the sojourn time distribution, by replacing the mean �dj

 with the mode 
mdj

= argmax1≤u≤Mj
dj(u) and replacing −z1−�∕2�dj with min{�;

∑�

u=1
dj(u) ≤ �∕2} 

and +z1−�∕2�dj with Mj −min{�;
∑Mj

u=� dj(u) ≤ �∕2} in Eqs. (10), (12), (13), (16), 
(17) and (18).

4.8  Continuous time sojourn distributions

Since the measurements of the observations are always preformed on discrete 
time units (assumed to be positive integers), the sojourn time probabilities of the 

(14)𝛿next =
[
𝛿t+d̃(j)

]

1≤j≤J =
(
P
)T

𝛿t

(15)ŝ∗
next

= ŝ∗
t+d̃

= arg max
1≤j≤J 𝛿t+d̃(j)

(16)d̃avg

(
Ŝ∗
t+d̃

)
=

J∑

j=1

𝜇dj
𝛿t+d̃(j)

(17)d̃low

(
Ŝ∗
t+d̃

)
=

J∑

j=1

(
𝜇dj

− z1−𝛾∕2𝜎dj

)
𝛿t+d̃(j)

(18)d̃up

(
Ŝ∗
t+d̃

)
=

J∑

j=1

(
𝜇dj

+ z1−𝛾∕2𝜎dj

)
𝛿t+d̃(j)

(19)D̃avg =
∑

d̃avg, D̃low =
∑

d̃low, D̃up =
∑

d̃up
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sojourn time distribution with probability density function gj , in state j, is obtained 
as follows

Almost all flexible continuous distributions with positive domain, which are used 
as the lifetime distribution, including gamma, weibull, log-normal, Birnbaum-Saun-
ders, inverse-gamma, Fréchet, Gumbel and many other distributions, might be used 
as the continuous-time sojourn distribution. Some of the continuous sojourn time 
distributions, included in the hhsmm package, are as follows:

• Gamma sojourn: The gamma sojourn time density functions are 

 which result in 

• Weibull sojourn: The Weibull sojourn time density functions are 

 which result in 

• log-normal sojourn: The log-normal sojourn time density functions are 

 which result in 

(20)

dj(u) =P(St+u+1 ≠ j, St+u−� = j, � = 0,… , u − 2|St+1 = j, St ≠ j)

=�
u

u−1

gj(y) dy
/
�

Mj

0

gj(y) dy, j = 1,… , J, u = 1,… ,Mj.

gj(y) =
y�j−1e

−
y

�j

�
�j

j
Γ(�j)

, j = 1,… , J,

dj(u) = ∫
u

u−1

y�j−1e
−

y

�j dy
/
∫

Mj

0

y�j−1e
−

y

�j dy

gj(y) =
�j

�j

(
y

�j

)�j−1

exp

{
−

(
y

�j

)�j
}
, j = 1,… , J,

dj(u) = ∫
u

u−1

y�j−1 exp

{
−

(
y

�j

)�j
}

dy∕∫
Mj

0

y�j−1 exp

{
−

(
y

�j

)�j
}

dy

gj(y) =
1

√
2��j

exp

�
−1

2�2
j

(log y − �j)
2

�
, j = 1,… , J,

dj(u) = ∫
u

u−1

exp

{
−1

2�2
j

(log y − �j)
2

}
dy∕∫

Mj

0

exp

{
−1

2�2
j

(log y − �j)
2

}
dy
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4.9  Other features of the package

There are some other features included in the hhsmm package, which are listed 
below:

• dmixmvnorm: Computes the probability density function of a mixture of 
multivariate normals for a specified observation vector, a specified state, and a 
specified model’s parameters

• mixmvnorm_mstep: The M step function of the EM algorithm for the mix-
ture of multivariate normals as the emission distribution using the observation 
matrix and the estimated weight vectors

• rmixmvnorm: Generates a vector of observations from mixture multivariate 
normal distribution in a specified state and using the parameters of a specified 
model

• train_test_split: Splits the data sets to train and test subsets with an 
option to right trim the sequences

• lagdata: Creates lagged time series of a data
• score: Computes the score (log-likelihood) of new observations using a 

trained model
• homogeneity: Computes maximum homogeneity of two state sequences
• hhsmmdata: Converts a matrix of data and its associated vector of sequence 

lengths to a data list of class "hhsmmdata"

5  Real data analysis

To examine the performance of the hhsmm package, we consider the analysis 
of two real data sets. The first data set is the Spain energy market data set from 
MSwM package and the second one is the Commercial Modular Aero-Propulsion 
System Simulation (CMAPSS) data set from the CMAPSS data package.

5.1  Spain energy market data set

The Spain energy market data set (Fontdecaba et al. 2009) contains the price of 
the energy in Spain with other economic data. The daily data is from January 1, 
2002 to October 31, 2008, during working days (Monday to Friday). This data 
set is available in MSwM package (https:// cran.r- proje ct. org/ packa ge= MSwM), 
in a data-frame named energy and contains 1785 observations on 7 variables: 
Price (Average price of energy in Cent/kwh), Oil (Oil price in Euro/barril), 
Gas (Gas price in Euro/MWh), Coal (Coal price in Euro/T), EurDol (Exchange 
rate between Dolar-Euro in USD-Euro), Ibex35 (Ibex 35 index divided by one 
thousand) and Demand (Daily demand of energy in GWh). This data-set is also 

https://cran.r-project.org/package=MSwM
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analysed in Fontdecaba et al. (2009), using Markov switching regression model. 
The objective of the analysis is to predict the response variable Price, based on 
the information in other variables (covariates).

In order to analyze the energy data set, we load it from MSwM package, and 
transform it into a "hhsmmdata" using hhsmmdata function as follows.

We consider a two-state model. Here, we consider a fully Markovian model 
and thus, we let semi < - rep(FALSE, J). Although an optimal value of K 
might be obtained by minimizing the AIC, BIC or even a cross-validation error, 
we set the degree of the B-splines to K = 20 for this analysis, for the sake of 
briefness.

First, we make an initial clustering for the data set. Again, we point out that 
we should consider nmix = NULL and regress = TRUE in the initial_
cluster function.

To initialize the model, we use the initialize_model function, with argu-
ments mstep = additive_reg_mstep, dens.emission = dnorm_
additive_reg and control = list(K = K).

Next, we fit the model by calling the hhsmmfit function as follows.
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Now, we can obtain the response predictions using the addreg_hhsmm_pre-
dict function as follows.

To visualize the results, first, we add the predicted states to a hhsmmdata set 
made by the response variable. Then, we plot it using the plot.hhsmmspec 
function, as follows.

The resulting plot is presented in Fig. 11. The predicted states are shown by 
two different colors on the horizontal axis.

In the second plot, we want to show the separate predictions for the two states 
along with the true response values. To do this, we use the following lines of 
codes.

Fig. 11  Spain energy data and its estimated states
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The resulting plot is presented in Fig. 12. The predictions associated with the 
two states’ are shown by blue and red lines.

To visualize the nonparametric regression curves, we consider only the covari-
ate Oil Price, which is the second column of the energy data set. In the 
following, we initialize and fit the model to the data set containing only the first 
column as the response and the second column as the covariate.

Again, we obtain the response predictions as follows.

Fig. 12  Two-state prediction of the energy price based on the other variables
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Now, we can plot the corresponding graph as follows.

The resulting plot is presented in Fig. 13. As one can see from Fig. 13, the two 
curves are well-fitted to the data points.

To compare the prediction performance of the above-mentioned model with 
the simple (single state) additive regression model, we can use the additive_
reg_mstep function, with a weight matrix with a single column and all compo-
nents equal to 1.

Fig. 13  Prediction curves for regime swithching nonparametric regression model of energy price on oil 
price
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We compute the sum of squared errors (SSE) of the two competitive models as 
follows.

We plot the predictions of two competitive models by adding their SSE values 
to plots, as follows.

Fig. 14  Comparision with simple additive regression
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Table 1  Sensor description of the C-MAPSS data set (see Li et al. 2019)

No. Symbol Description Units Included in 
the pack-
age?

1 T2 Total Temperature at fan inlet oR ×

2 T24 Total temperature at LPC outlet oR ✓

3 T30 Total temperature at HPC outlet oR ✓

4 T50 Total temperature LPT outlet o R ✓

5 P2 Pressure at fan inlet psia ×

6 P15 Total pressure in bypass-duct psia ×

7 P30 Total pressure at HPC outlet psia ✓

8 Nf Physical fan speed rpm ✓

9 Nc Physical core speed rpm ✓

10 Epr Engine pressure ratio - ×

11 Ps30 Static pressure at HPC outlet psia ✓

12 Phi Ratio of fuel flow to Ps30 pps/psi ✓

13 NRf Corrected fan speed rpm ✓

14 NRc Corrected core speed rpm ✓

15 BPR Bypass ratio − ✓

16 farB Burner fuel-air ratio − ×

17 htBleed Bleed enthalpy − ✓

18 NF dmd Demanded fan speed rpm ×

19 PCNR dmd Demanded corrected fan speed rpm ×

20 W31 HPT coolant bleed lbm/s ✓

21 W32 LPT coolant bleed lbm/s ✓

Table 2  C-MAPSS data set 
overview

FD001 FD002 FD003 FD004

Training Units 100 260 100 249
Testing Units 100 259 100 248
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Fig. 15  The time series plot of 14 variables of the first sequence of the train set for the CMAPSS data 
set
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The resulting plot is given in Fig. 14. As one can see from Fig. 14, the two-
state regime switching additive regression model, performs much better than the 
simple (single state) additive regression model.

5.2  RUL estimation for the C‑MAPSS data set

The turbofan engine data is from the Prognostic Center of Excellence (PCoE) of 
NASA Ames Research Center, which is simulated by the Commercial Modular 
Aero-Propulsion System Simulation (C-MAPSS). Only 14 out of 21 variables are 
selected, by a method mentioned by Li et al. (2019) and are included in the hhsmm 
package. A list of all 21 variable, as well as a description and the selected 14 vari-
ables are tabulated in Table  1. The train an test lists are of class "hhsm-
mdata". The original data set contains the subsets FD001-FD004, which are con-
catenated in the CMAPSS data set. These sets are described in Table 2. This table is 
presented in CMAPSS$subsets in the CMAPSS data set.

We load the data set and extract the train and test sets as follows.

To visualize the data set, we plot only the first sequence of the train set. To 
do this, this sequence is converted to a data set of class "hhsmmdata", using the 
function hhsmmdata as follows. The plots are presented in Fig. 15.

Initial clustering of the states and mixture components is obtained by the ini-
tial_cluster function. Since, the suitable reliability model for the CMAPSS 
data set is a left to right model, the option ltr = TRUE is used. Also, since the 
engines are failed in the final time of each sequence, the final time of each sequence 
is considered the absorbing state (final state of the left to right model). This assump-
tion is given to the model by the option final.absorb = TRUE. The number of 
states is assumed to be 5 states, which could be one healthy state, 3 levels of damage 
state, and one failure state in the reliability model. The number of mixture compo-
nents is computed automatically using the option nmix = "auto".
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Now, we initialize the model using the initialize_model function. The 
sojourn time distribution is assumed to be "gamma" distribution.

Fig. 16  Graphical representation of the reliability left to right model
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As a result, the initial estimates of the parameters of the sojourn time distribution 
and initial estimates of the transition probability matrix and the initial probability 
vector are obtained as follows.

Now, we fit the HHSMM model, using hhsmmfit function. The option lock.
init=TRUE is a good option for a right to left model since the initial state is the 
first state (healthy system state in the reliability model) in such situations with 
probability 1. Graphical visualization of such a model is given in Fig. 16.



1325

1 3

hhsmm: an R package for hidden hybrid Markov/semi‑Markov…

The estimates of the transition probability matrix, the sojourn time probability 
matrix, the initial probability vector, and the AIC and BIC of the model, are extracted 
as follows.

Fig. 17  The estimated gamma sojourn time density functions
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We can plot the estimated gamma sojourn probability density functions as follows.

The resulted plot is shown in Fig. 17.
Now, we obtain the estimates of the RULs, as well as the confidence intervals, 

by four different methods as follows. These four methods are obtained by combina-
tion of two different methods "viterbi" and "smoothing" for the prediction 
and two different methods "mean" and "max" for RUL estimation and confidence 
interval computation. The option "viterbi" uses the Viterbi algorithm to find the 
most likely state sequence, while the option "smoothing" uses the estimates of 
the state probabilities, using the emission probabilities of the test data set. On the 
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other hand, in the "mean" method, the mean sojourn time and its standard devia-
tion are used for estimation and confidence interval, while in the "max" method, 
the maximum probability sojourn time and its quantiles are used (see Sect. 4.7).

As a competitor, we fit the hidden Markov model (HMM) to the data set, which 
means that we consider all states to be Markovian. To de this, we try fitting the 
HMM to the train set, using the option semi = rep(FALSE,J) of the 
hhsmmfit function of the hhsmm package. We use the same initial values of the 
parameters, while we need to use dens.emission = dmixmvnorm in the 
hhsmmspec function, and set the mixture components probabilities equal to 1 (for 
one mixture component in each state).

For the fitted HMM model, we estimate the RULs using the aforementioned options.
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Now, we use the real values of the RULs, stored in test$RUL to compute the cov-
erage probabilities of the confidence intervals of HHSMM and HMM models.

As one can see from the above results, the HHSMM model’s coverage probabili-
ties are much better than the HMM ones.

To visualize the results of RUL estimation, we plot the RUL estimates and RUL 
bounds as follows.
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The resulting plots are presented in Fig. 18. From Fig. 18 and the above coverage 
probabilities, one can see that the “smoothing" and “max" methods perform better 
than other methods, in this example.

6  Concluding remarks

This paper presents several examples of the R package hhsmm. The scope of 
application of this package covers simulation, initialization, fitting, and predic-
tion of HMM, HSMM, and HHSMM models, for different types of discrete and 
continuous sojourn distribution, including shifted Poisson, negative binomial, 
logarithmic, gamma, Weibull, and log-normal. This package contains density and 
M-step function for estimation of the emission distribution for different types of 
emission distribution, including the mixture of multivariate normals and penal-
ized B-spline estimator of the emission distribution, the mixture of linear and 
additive regression (conditional multivariate normal distributions of the response 
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given the covariates; regime-switching regression models) as well as the abil-
ity to define another emission distributions by the user. As a special case of the 
regime-switching regression models, the auto-regressive HHSMM models can be 
modeled by the hhsmm package. The left to right models are considered in the 
hhsmm package, especially in the initialization functions. The hhsmm package 
uses the EM algorithm to handle the missing values when the mixture of multi-
variate normals is considered as the emission distribution. The ability to predict 
the future states, residual useful lifetime estimation for the left to right models, 
computation of the score of new observations, computing the homogeneity of two 
sequences of states, and splitting the data to train and test sequences by the abil-
ity to right-trim the test sequences, are other useful features of the hhsmm pack-
age. The current version 0.3.2 of this package is now available on CRAN (https:// 
cran.r- proje ct. org/ packa ge= hhsmm), while the future improvements of this pack-
age are also considered by the authors. Any report of the possible bugs of the 
hhsmm package are welcome through https:// github. com/ morta mini/ hhsmm/ 
issues and we welcome the users’ offers for any needed feature of the package in 
the future.

Appendix

Forward‑backward algorithm for the HHSMM model

Denote the sequence {Yt,… , Ys} by Yt∶s and suppose that the observation sequence 
X0∶�−1 with the corresponding hidden state sequence S0∶�−1 is observed. The for-
ward-backward algorithm is an algorithm to compute the probabilities

Fig. 18  RUL estimates (solid blue lines) and RUL bounds (dashed red lines) using four different methods 
for the CMAPSS test data set

https://cran.r-project.org/package=hhsmm
https://cran.r-project.org/package=hhsmm
https://github.com/mortamini/hhsmm/issues
https://github.com/mortamini/hhsmm/issues
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within the E-step of the EM algorithm. The above probabilities are computed in the 
backward recursion of the forward-backward algorithm.

For a semi-Markovian state j, and t = 0,… , � − 2 , the forward recursion com-
putes the following probabilities (Guédon 2005),

and

where the normalizing factor Nt is computed as follows

For a Markovian state j, and for t = 0,

and for t = 1,… , � − 1

The log-likelihood of the model is then

which is used as a criteria for convergence of the EM algorithm and the evaluate the 
quality of the model. The backward recursion is initialized by

Lj(t) = P(St = j|X0∶�−1 = x0∶�−1)

(A.21)

Fj(t) =P(St+1 ≠ j, St = j|X0∶t = x0∶t)

=
fj(xt)

Nt

[ t∑

u=1

{ u−1∏

�=1

fj(xt−�)

Nt−�

}
dj(u)

∑

i≠j
pijFi(t − u)

+

{ t∏

�=1

fj(xt−�)

Nt−�

}
dj(t + 1)�j

]
,

(A.22)

Fj(� − 1) =P(S�−1 = j|X0∶�−1 = x0∶�−1)

=
fj(x�−1)

N�−1

[�−1∑

u=1

{ u−1∏

�=1

fj(x�−1−�)

N�−1−�

}
Dj(u)

∑

i≠j
pijFi(� − 1 − u)

+

{ �−1∏

�=1

fj(x�−1−�)

N�−1−�

}
Dj(�)�j

]
.

Nt = P(Xt = xt|X0∶t−1 = x0∶t−1) =
∑

j

P(St = j,Xt = xt|X0∶t−1 = x0∶t−1)

F̃j(0) = P(S0 = j|X0 = x0) =
fj(x0)

N0

𝜋j

(A.23)F̃j(t) = P(St = j|X0∶t = x0∶t) =
fj(xt)

Nt

∑

i

p̃ijF̃i(t − 1)

logP(X0∶�−1 = x0∶�−1;�) =

�−1∑

t=0

logNt,
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For a semi-Markovian state j, we have

and for t = � − 2,… , 0,

where

and

with

For a Markovian state j and for t = � − 2,… , 0

Furthermore, if a mixture of multivariate normal distributions with probability den-
sity function

is considered as the emission distribution, then the following probabilities of the 
mixture components are computed in the E-step of the (s + 1) th iteration of the EM 
algorithm

where �(s)
kj

 , �(s)

kj
 and Σ(s)

kj
 are the sth updates of the emission parameters in the M-step 

of the sth iteration of the EM algorithm.

Lj(𝜏 − 1) = P(S𝜏−1 = j|X0∶𝜏−1 = x0∶𝜏−1) = Fj(𝜏 − 1) = F̃j(𝜏 − 1).

Lj(� − 1) = P(S�−1 = j|X0∶�−1 = x0∶�−1) = Fj(� − 1),

(A.24)Lj(t) =L1j(t) + Lj(t + 1) − Gj(t + 1)
∑

i≠j
pijF̃i(t),

(A.25)L1j(t) =
∑

k≠j
Gk(t + 1)pjkFj(t),

Gj(t + 1) =

�−1−t∑

u=1

Gj(t + 1, u)

Gj(t + 1, u) =

{
�−2−t∏

�=0

fj(x�−1−�)

N�−1−�

}
Dj(� − 1 − t).

(A.26)Lj(t) =L1j(t)

(A.27)fj(x) =

Kj∑

k=1

�kjNp(x;�kj,Σkj), j = 1,… , J,

(A.28)�
(s+1)

kj
(t) =

�
(s)

kj
Np(xt;�

(s)

kj
,Σ

(s)

kj
)

fj(xt)
,
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The M‑step of the EM algorithm

In the M-step of the EM algorithm, the initial probabilities are updated as follows

For a semi-Markovian state i, the transition probabilities are updated as follows

and for a Markovian state i

If we consider the mixture of multivariate normals, with the probability density 
function (A.27), as the emission distribution, then its parameters are updated as 
follows

Also, the parameters of the sojourn time distribution are updated by maximization 
of the following quasi-log-likelihood function

where

and u� = min(u, �).

�
(s+1)

j
= P(S0 = j|X0∶�−1 = x0∶�−1;�

(s)) = Lj(0),

(A.29)p
(s+1)

ij
=

∑�−2

t=0
Gj(t + 1)p

(s)

ij
Fi(t)

∑�−2

t=0
L1i(t)

(A.30)p̃
(s+1)

ij
=

∑𝜏−2

t=0
G̃j(t + 1)p̃

(s)

ij
F̃i(t)

∑𝜏−2

t=0
Li(t)

�
(s+1)

kj
=

∑�−1

t=0
�
(s)

kj
(t)L

(s)

j
(t)

∑Kj

m=1

∑�−1

t=0
�
(s)

mj
(t)L

(s)

j
(t)

=

∑�−1

t=0
�
(s)

kj
(t)L

(s)

j
(t)

∑�−1

t=0
L
(s)

j
(t)

,

�
(s+1)

kj
=

∑�−1

t=0
�
(s)

kj
(t)L

(s)

j
(t)xt

∑�−1

t=0
�
(s)

kj
(t)L

(s)

j
(t)

,

Σ
(s+1)

kj
=

∑�−1

t=0
�
(s)

kj
(t)L

(s)

j
(t)(xt − �

(s+1)

kj
)(xt − �

(s+1)

kj
)T

∑�−1

t=0
�
(s)

kj
(t)L

(s)

j
(t)

Q̃d({dj(u)}|𝜃(s)) =
Mj∑

u=1

�̃�
(s)

j,u
log dj(u),

�̃�j,u =

𝜏−2∑

t=0

Gj(t + 1, u)
∑

i≠j
pijFi(t) + A(u)dj(u)𝜋j

u∏

v=1

fj(xu𝜏−v)

Nu𝜏−v

,

A(u) =

{
L1j(u−1)

Fj(u−1)
, u ≤ 𝜏 − 1

1, u > 𝜏 − 1,
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Viterbi algorithm and smoothing for the HHSMM model

The Viterbi algorithm (Viterbi 1967) is an algorithm to obtain the most likely 
state sequence, given the observations and the estimated parameters of the model.

For a semi-Markovian state j, and for t = 0,… , � − 2 , the probability of the 
most probable state sequence is obtained by the Viterbi recursion as follows

and

For a Markovian state j, the Viterbi recursion is initialized by

and for t = 1,… .� − 1,

After obtaining the probability of the most probable state sequence, the current most 
likely state is obtained as ŝ∗

t
= argmax1≤j≤J 𝛼j(t).

Another approach for obtaining the state sequence is the smoothing method, 
which uses the backward probabilities Lj(t) instead of �j(t).

Acknowledgements The authors would like to thank the two anonymous referees and the associate editor 
for their useful comments and suggestions, which improved an earlier version of the hhsmm package and 
this paper.

(A.31)

�j(t) = max
s0,…,s�−1

P(St+1 ≠ j, St = j, S0∶t−1 = s0∶t−1,X0∶t = x0∶t)

=fj(xt)max

[
max
1≤u≤t

[{ u−1∏

�=1

fj(xt−�)

}
dj(u)max

i≠j {pij�i(t − u)}

]
,

×

{ t∏

�=1

fj(xt−�)

}
dj(t + 1)�j

]
,

(A.32)

�j(� − 1) = max
s0,…,s�−2

P(S�−1 = j, S0∶�−2 = s0∶�−2,X0∶�−1 = x0∶�−1)

=fj(x�−1)max

[
max

1≤u≤�−1

[{ u−1∏

�=1

fj(x�−1−�)

}
Dj(u)max

i≠j {pij�i(� − 1 − u)}

]
,

×

{ �−1∏

�

fj(x�−1−�)

}
Dj(�)�j

]
,

�̃�j(0) = P(S0 = j,X0 = x0) = fj(x0)𝜋j

(A.33)�̃�j(t) = max
s0,…,st−1

P(St = j, St−1
0

= st−1
0

,X0∶t = x0∶t)

(A.34)=fj(xt)max
i
{p̃ij�̃�i(t − 1)}.
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