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Abstract
In this work, we derive a geometric goodness-of-fit index similar to R2 using geomet-
ric data analysis techniques. We build the alpha shape complex from the data-cloud 
projected onto each variable and estimate the area of the complex and its domain. 
We create an index that measures the difference of area between the alpha shape and 
the smallest squared window of observation containing the data. By applying ideas 
similar to those found in the closest neighbor distribution and empty space distribu-
tion functions, we can establish when the characterizing geometric features of the 
point set emerge. This allows for a more precise application for our index. We pro-
vide some examples with anomalous patterns to show how our algorithm performs.

Keywords  Goodness-of-fit · Alpha shape complex · Empty space distribution · 
Closest neighbor distribution · Area estimation · CSR process

Mathematics Subject Classification  62B86 · 52C35 · 55N35

1  Introduction

Data point cloud recognition is an essential task in any statistical procedure. Find-
ing a pattern into the data exposes the inherent characteristics of the phenomena we 
want to model. Tools used to achieve this are described in the literature, like linear 
regression or clustering (Hastie et al. 2009). Other research branches use data visu-
alization techniques to highlight features hidden in the data (Tufte 2001; Myatt and 
Johnson 2009; Buja et al. 2005).
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Professionals in computational modeling aim to reduce their models by choosing 
their problems’ most relevant factors. One way to achieve this is through goodness-
of-fit measures, used to find the relevance of certain chosen models to explain a 
variable. One classic way to determine whether some variables fit inside a model is 
using the determination coefficient R2 . This quantity measures the amount of vari-
ance explained by some model against the variance explained by the model formed 
only by a constant. It measures how preferable it would be to fit a model against fit-
ting a constant. If R2 is nearly one, then the model fits well into the data. Otherwise, 
when R2 is closer to zero, it is better to adjust to a constant.

The R2 method has been controversial since its origins (Barrett 1974). For exam-
ple, we can increase the R2 score by adding new variables to the model. Even if they 
are unnecessary to the problem the R2 will increase. As a general rule, high R2 does 
not imply causation between covariance and outcome.

Some authors have proposed some extensions and properties of this score 
throughout the years. The work of  Barten (1962) presents a bias-reduced R2 . 
In Press and Zellner (1978) they conducted a Bayesian analysis. In Cramer (1987) 
the authors showed that in small samples, the R2 score is higher. Even with those 
constraints, Barrett (1974) concludes how useful these measures are in applied 
research.

These goodness-of-fit measures overlook the geometric arrangement of the data. 
They build the statistical relation between X and Y and then present it in the form of 
an indicator. Depending on this simplification, they do not consider the geometric 
properties of the data. For example, most indices will not recognize the geometric 
structure when the input variable is zero-sum, treating it as random noise.

Two classical methods used to describe the intrinsic geometry of the data are 
Principal Components Analysis (PCA) and Multidimensional Scaling (MDS). 
PCA transforms the data into a smaller linear space, preserving the euclidean dis-
tance between points but maximizing the total variance of points. MDS extends 
this method to any metric space. Methods like the ISOMAP algorithm developed 
by Tenenbaum (2000) and expanded by Bernstein et  al. (2000) and Balasubrama-
nian (2002) unify these two concepts to allow reconstruction of a low-dimensional 
variety for non-linear functions. Using geodesic distance, ISOMAP identifies the 
corresponding manifold and searches lower dimensional spaces.

Recently, new theoretical developments have used ideas in geometry for data 
analysis. A well-studied tool to find patterns within the data comes from a spatial 
point analysis, whether it is from visualization or analytical techniques, such as in 
Baddeley et al. (2016).

In this work we connect the concept of goodness of fit with geometric analysis of 
data through a geometrical R2 index. By doing this, it will be possible to determine 
what variables have structured patterns using the geometric information extracted 
from the data. Also, we will be able to detect those patterns even for non-correlated 
and noisy variables.

For this aim, in this paper we use an alpha shape construction as a proxy of the 
geometric information in the data. These objects are straightforward to build and we 
can use their area properties to build our index. Interesting applications to alpha shapes 
have been developed in the literature. For example, determining the complexity in 3D 
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shapes (Gardiner et al. 2018), modeling human faces (Bouchaffra 2012), and exploring 
hydrological models (Guerrero et al. 2013).

The outline of this study is as follows: Section 2 deals with key notions, both in 
goodness-of-fit analysis and geometric tools for pattern recognition. In Sect.  2.1 we 
review and comment on classic methods to determine the R2 . We finish this Sect. with 
an example that motivated the work in this paper. Section  2.2 describes the alpha shape 
complex. Section  2.3 deals with spatial functions, in particular nearest neighbor and 
empty Space distribution functions. Section  2.4 deals with the concept of intensity of 
a distribution and defines the Complete Spatial Randomness Process (CSR). Section  3 
explains the method used to create our sensitivity index; Section  3.1 constructs the 
neighborhood graph, and deals with different topics such as the importance of scale, 
the Ishigami Model and presents programming code to determine the radius of proxim-
ity. It also compares our proposed method with spatial point analysis, in particular ana-
lyzes how our index relates to the empty space distribution function. Section  3.2 deals 
with hypothesis testing and Monte-Carlo envelopes. Section  4 describes our results, it 
describes the software and packages used to run our theoretical examples. Section 4.1 
is a full description of each theoretical example with visual aids, such as graphics and 
tables describing the results. Section 5 contains our conclusions and explores scenarios 
for future research.

2 � Preliminary aspects

In this section, we will discuss the context and tools needed to implement our geomet-
ric goodness-of-fit.

2.1 � Measuring goodness‑of‑fit

Let (X1,X2,… ,Xp) ∈ ℝ
p for p ≥ 1 and Y ∈ ℝ two random variables. Define the non-

linear regression model as

where � is random noise independent of (X1,X2,…Xp) . The unknown function 
� ∶ ℝ

p
↦ ℝ describes the conditional expectation of Y given (X1,X2,…Xp) . Sup-

pose as well that (Xk1,Xk2 …Xkp, Yk) , for k = 1,… , n , is a size n sample for the ran-
dom vector (X1,X2 …Xp, Y).

If p ≫ n the model  (1) suffers from the curse of dimensionality term introduced 
in Bellman (1957) and  Bellman (1961), where is shown that the sample size n, required 
to fit a model increases with the number of variables p. Model selection techniques 
solve this problem using indicators as the AIC or BIC, or more advanced techniques 
such as Ridge or Lasso regression. For the interested reader, there is a comprehensive 
survey in Hastie et al. (2009).

Suppose in the context of the linear regression we have the model

(1)Y = �(X1,X2,… ,Xp) + �,

� = �� + �
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where

and � is a noisy vector with mean (0,… , 0)⊤ and identity covariance.
The least-square solutions to find the best coefficients are

If p = 1 the problem reduces to the equations,

Notice that in the particular case p = 0 (the null model) the estimated parameter 
simplifies into b̂0i = Ȳ .

The following identity holds in our context,

One of the most used quantities to quantify if one covariate (or a set of them) is use-
ful to explain an output variable is the statistic R2 ∈ [0, 1] . We estimate it as

This value indicates how much the variability of the regression model explains the 
variability of Y  . If R2 is close to zero, the squared residuals of the fitted variables are 
similar to the residuals of a null model formed only by a constant. Otherwise, the 
residuals of the null model are greater than the residuals of the fitted values, mean-
ing that the selected model does better at approximating the observed values of the 
sample.

The R2 has the deficiency that it increases if we add new variables to the model. 
A better statistic to measure the goodness of fit but penalizing the inclusion of nui-
sance variables is the Adjusted R2,

These measures can detect if a data point cloud could be fitted through a function. 
However, if the structure of the data has anomalous patterns R2 could be insufficient.
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For example Fig. 1 presents this phenomenon for two data sets. We adjusted 
thin plate regression splines to each set (Wood 2006). The Ishigami model pre-
sents strong non-linearity in its second variable. The model was able capture the 
relevant pattern of the data and we got a R2 = 0.42 (panel (c)). This tells us that 
we captured around 42% of the total variability of the data. In panels (a), (b) 
and (d) the R2 is near to zero. The chosen model is inflexible to the geometric 
pattern in the data. In particular, the “Doughnut” model requires a better under-
standing of the anomalous geometry of the data cloud. The next section explores 
how to better determine the geometric structure of the data to overcome this 
shortcoming.

 (a) R^2: 0.00

 (c) R^2: 0.42

 (b) R^2: 0.00

 (d) R^2: 0.00
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Fig. 1   Linear regression Y = a
0
+ a

1
X + � with a Ishigami model, and b Doughnut model. Spline regres-

sion, Y = g(X
1
) + � where g is a thin-plate spline smoother. c: Ishigami model d: Doughnut model
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2.2 � Alpha shapes

The base of our algorithm is the construction of alpha shapes in the data. These 
objects are a continued version of the data-points set extending its features. In this 
section we will define some specific concepts necessary to develop our algorithm.

First let S be a finite set of points in ℝ2 . For each point s, we define the set

where ‖ ⋅ ‖ is the Euclidean norm. The set Vs is called the Voronoi region of s. The 
set of points that satisfy Vs are the intersection of finitely many half-planes and 
therefore form a convex polygon. We call the Voronoi diagram of S the set of Voro-
noi regions Vs.

Given a Voronoi diagram of S ⊂ ℝ
2 , the Delaunay triangulation consists of con-

necting two points by a straight line if their respective Voronoi regions share a com-
mon boundary. Three Voronoi regions can intersect in a point. Here, there are three 
pairwise intersections in the Voronoi regions creating a triangle. Some regularity 
conditions must always have a set of triangles. They can be reviewed in Edelsbrun-
ner (2014).

Now, for 𝛼 > 0 , define as Ds(�) the closed disk with center s and radius � . For 
each site s ∈ S we define Rs(�) = Ds(�) ∩ Vs and note that this is a convex set 
because it is the intersection of convex sets. Also, define US(�) =

⋃
s∈S Rs(�) . Here, 

US is a subset of the Voronoi diagram of S. In the same way we defined the Delaunay 
triangulation, we now connect two points with a straight edge if they share a bound-
ary in the US(�) set. We denote this new triangulation as AS(�) or A(�) if the data 
points are understood. Two neighboring points are separated for at most 2� units. 
Any point beyond this value is considered far away and they are excluded from the 
triangulation. The set of triangles A(�) is known as the alpha complex of S. The 
union of the alpha complexes as � increases is the alpha shape of S.

Figure 2 presents an example of the alpha complex and its respective shape of the 
model of a circle with a hole at different � values. As � grows, we can pass from a 
shattered shape ( � = 0.04 ) to a unified figure without internal information ( � = 0.6 ). 

Vs =
�
u ∈ ℝ

2 ∣ ‖u − s‖ ≤ ‖u − t‖,∀t ∈ S
�

alpha = 0.04 alpha = 0.09 alpha = 0.6

−1.0 −0.5  0.0  0.5  1.0−1.0 −0.5  0.0  0.5  1.0−1.0 −0.5  0.0  0.5  1.0
−1.0

−0.5

 0.0

 0.5

 1.0

Fig. 2   Alpha shape construction as � increases
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At some point, we capture the right amount of information to describe the real object 
( � = 0.09 ). The changes in the empty space, when � changes, can allow us to detect if 
some variable is correlated with others.

Note that in our setting the distance r between connecting points is set to be equal to 
�∕2.

2.3 � Spacing functions on data sets

For the current section we refer to Baddeley et al. (2016). As it is well known, a major 
motivation for analyzing point patterns in data is to determine whether the points are 
placed independently of each other or whether there is some interdependence between 
them. Classically, we use correlation as the statistical tool for determining dependence, 
it is reasonably easy to calculate, and it is a powerful tool.

The statistical correlation has its shortcomings, it is a number that summarizes sta-
tistical associations, it cannot characterize dependence or casualty, for example it does 
not allow discriminating between different plausible causes for clustering.

One can gather extra information about the point pattern by measuring spacing and 
shortest distances within a set. The mathematical theory tells us that the shortest dis-
tances in a pattern provide information complementary to the correlation structure. 
Assume S to be a data set on a plane, sl elements of such set. Basic functions for such 
measures are the following: 

1.	 Pairwise distance: dlm = ||sl − sm|| , between two different points sl, sm.
2.	 Nearest neighbor distance: dl = minl≠m dlm
3.	 Empty space distance: d(u) = minl ||u − sl|| , where u is an arbitrary location 

within the plane that contains the dataset.

The nearest neighbor and empty space distance have several applications in field obser-
vations, such as in seed dispersion and natural distribution of trees of a given species 
within a forested area (Baddeley et al. 2016, Chapter 8).

Graphic techniques allow for visual exploration of data patterns. An example would 
be Dirichlet tiles, which are convex polygons that arise from the nearest neighbor 
function.

Since there is valuable information within the Nearest neighbor and empty space 
distance, one would like to condense or code its whole bulk within a single function, 
this would allow for big picture approach to the information conveyed within each 
function cumulatively.

Recall that a point process is called stationary when we view a section of the data, 
and its statistical properties do not depend on the section chosen.

Assume a stationary process for a data set S, then the cumulative distribution func-
tion of the empty space distance is given by

F(r) = ℙ{d(u) ≤ r}
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where u is an arbitrary location within the window that contains the dataset and 
r ≥ 0 . The values of F are probabilities that increase as r increases. For this, such 
processes F are always differentiable.

Again assuming a stationary process and a dataset S the cumulative distribution 
of the neighbor distance function is given by

The values of G are probabilities and are non-decreasing as a function of r since the 
process is stationary the definition is not dependent on the location on which we are 
measuring each time. In general G is not differentiable and hence it might not have a 
probability density.

2.4 � Poisson processes and intensity

This section refers to Baddeley et  al. (2016) chapter five. We can characterize a 
Complete Spacial Randomness process (CSR), also known as a homogenous Pois-
son point process by the homogeneity where the points lack spatial preference, and 
Independence where the information conveyed within one region of space has no 
influence over the information conveyed in other regions. The CSR processes are 
important for a variety of reasons, since they appear naturally as physical phenom-
ena, such as radioactivity and signal scattering. In this sense they are a good model 
for pure noise.

Both conditions together, homogeneity and independence, imply that the number 
of points falling within a sub-region of the observation window W follows a Poisson 
distribution.

The homogeneity assumption means that the expected number of points that fall 
within a specific sub-region B of W should be a function of its area |B|. This means

where � is the intensity of the process.
The independence assumption means that there is an orderly condition, implying 

the probability of two points lying on top of each other is negligible.
CSR processes are usually fixed to be null models in statistics to be contrasted 

against.
In data analysis the inference of the intensity of the point pattern is primordial, it 

is a basic characteristic of the process being studied. We are interested in homogene-
ity: the intensity of data points is not a function of spatial location, this is expressed 
in Equation (2).

The intensity � then is the expected number of points per unit of area. The empir-
ical intensity would then be given by the following:

G(r) = ℙ{di ≤ r}

(2)�[n(S ∩ B)] = �|B|

(3)� =
n(S)

|W|
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With n(S) is the number of points of our dataset S and W is the window of observa-
tion. Since for a Poisson process the variance equals the mean we have that

3 � Methodology

Recall the equation  (1). The model function � distorts the random variables 
(X1,… ,Xp) into a new shape. Our aim is to measure how much each of the Xi influ-
ence this distortion, i.e. we want to determine which variables were most affected 
by the distortion. To this end, we will build a curve representing the space filling 
process inside the squared domain of the data. The curve will spotlight changes over 
different radii scales, allow us to quantify the effect of the data transformation.

We will use the ideas developed in Sect. 2.2 about alpha-shapes construction. The 
alpha-shape geometry performs the filling as the radius � grows. Besides, we can 
infer the geometry of the data through the behavior of this curve.

Recall that an alpha-shape is a subset of the triangulation of Delanauy. We can 
interpret this object as a continued version of the data-points given a fixed � . While 
� is small, we observe sparse patches depending on the concentration of data in the 
plane. As � becomes larger those patches also become larger, and will eventually 
unite to form one large polyhedron. During the triangulation process the geometric 
pattern of the data emerges.

For each construction, we will estimate the geometric correlation between the 
two-dimensional point clouds. This index is based on the proportion of empty space 
between the domain and the alpha-shape.

Finally, we estimate the geometric correlation for each � . This will generate a 
curve that unveils the large features of the data.

3.1 � Geometrical goodness‑of‑fit construction

In this study, the null model is the box containing a CSR process of homogenous 
intensity � equal to the empirical intensity � of the process we want to analyze. We 
are comparing our process against random noise of the same intensity. This is how 
the data can be enveloped in the most basic form. The built alpha shape serves as the 
model itself. It gives us a representation of our data as an identifiable structure.

The patterns in the data emerge through the empty spaces in the projection space 
generated by each individual variable. When the point-cloud fills the whole domain, 
the unknown function � applied to Xi produces erratic Y  values. Otherwise, the func-
tion yields a structural pattern which can be recognized geometrically.

The alpha shape R estimates the geometric structure of the data by filling the voids 
in-between close points. We then estimate the area of the created object. This value will 
not yield too much information about the influence of the variable within the model. 
Therefore, we must estimate the area of the minimum rectangle containing the entire 

Var
(
�

)
=

�

|W| .
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object, the reader will immediately recognize that an CSR process of the same inten-
sity � as our pattern will tend to fill this box with some uniformity. If an input variable 
presents a weak correlation with the output variable, its behavior will be almost random 
with uniformly distributed points into the rectangular box, our null model. For the other 
cases, when there is some relevant correlation, it will create a pattern causing empty 
spaces to appear across the box.

To clarify the notation, we denote as Ri,� the alpha shape generated by the pair of 
variables (Xi, Y) and radius � . We also denote the geometrical area of the object formed 
by the alpha shape Ri,� by Area�(Ri,�).

We define the rectangular box for the projection the data (Xi, Y) as

The geometrical area of Bi will be denoted by Area(Bi).
We define our measure as

The index R2
Geom,i,�

 can be interpreted as the proportion of empty space remaining in 
the box containing the data as a function of � . This index is decreasing by definition 
because Area(Ri,�) ≤ Area(Bi) and Area(Ri,�) is increasing as � → ∞ . If the R2

Geom
 

is close to zero, then we observe an object which shape cannot be set apart from that 
of the null model. Here, its structure has become noise like within the box. Other-
wise, if the value is greater than zero, the object and the null model differ signifi-
cantly. In this scenario we can observe emerging patterns in the data, the converse 
would also be true.

The estimation of R2
Geom

 for a given � gives only partial information about the whole 
structure of the point cloud. By letting � → ∞ and observing how our index evolves, 
we can identify the curves defined by the map

Each curve fi detects large geometric features in the data. In a sense, it corresponds 
to a discrete version of the converse to the empty space distribution function F(�) 
defined in Sect.  2.3.

Our reasoning is our function unveils more information related to the geometric fea-
tures within the dataset than 1 − F does. Nonetheless, it will be close to 1 − F when 
our pattern is an CSR. For this case, we note that

where B(u, �) is the ball centered at u with radius �.

Bi =

[
min

k=1,…,n
(Xki), max

k=1,…,n
(Xki)

]
×

[
min

k=1,…,n
(Yk), max

k=1,…,n
(Yk)

]
.

R2
Geom,i,�

= 1 −
Area(Ri,�)

Area(Bi)
.

(4)fi ∶ ℝ
+
→ [0, 1]; � ⟼ R2

Geom,i,�

1 − F(�) = P{d(u) ≥ �}

d(u) > 𝛼 iff n(S ∩ B(u, 𝛼)) = 0
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Since for a ball B(u, �) we have |B| = ��2 and for an CSR process of intensity � 
the functional form of the distribution within a region B is exp (−�|B|) we have that

In this study, we identify 4 main patterns within each curve fi , each of which point 
to relevant geometric features on the data. We classified each feature as either exter-
nal (E) or internal (I). The main characteristics for each feature are given in Table 1 
and Table 2, respectively.

The external features allow us to identify whether the model is close to an CSR 
process or not. Any data classified as E1 will have a large empty space around the 
points. To be more specific, the value where the curve fi tends in the case E1 is the 
proportion of empty space between the square domain and the convex hull of the 
points. For example, consider data-points spread in the shape of a circle with center 
in (0, 0) and radius 1. Creating the alpha shape, we will have a structure E1 and the 
convergence value of fi to 1 − Area(Ri,∞)∕Area(Bi) ≈ 1 − �∕4 ≈ 0.21 . If the data 
points are spread in a square, then fi tends to 1 − Area(Ri,∞)∕Area(Bi) ≈ 0.

The internal structures are more subtle to interpret. Our interpretation for the I1 
scenario is that there are geometric features in the alpha shape of the data that per-
sist for the given intervals in which the plateaus are observed.

As an example imagine a disc with a hole in its center, at first the alpha shape will 
fill the area contained within the data somewhat rapidly as � grows, at some point �1 
it will stabilize and stay that way until it reaches a value �2 , big enough to allow our 
process to start connecting points across the hole, after that it continues to fill the 
whole disc, leaving no trace of the hole whatsoever. This behavior will be identified 
in the curve fi as follows: First starts at 1 and rapidly descend, stabilize around a 
given value �1 for a while, then, at �2 jump down abruptly. Then stabilize again until 
infinite.

Clearly all the shapes constructed in the interval (�1, �2) for which the function 
plateaus will stay almost the same. Therefore, under the mentioned conditions, the 

1 − FCSR(�) = exp (−���2)

Table 1   External features

Classification Characteristic

E
1

The curve starts at 1 and becomes flat at some value much 
greater than 0 when � is large

E
2

The curve starts at 1 tends to approximately 0 when � is large

Table 2   Internal features

Classification Characteristic

I
1

The curve has plateaus or pieces where f ′ is approximately zero
I
2

The curve decreases without plateaus at a slow rate
I
3

The curve decreases without plateaus at a fast rate



1242	 A. J. Hernández, M. Solís 

1 3

R2
Geom

 will vary little over this interval and the plateau emerges in the curve. For ref-
erence see Figs.  4 and  8

The structures I2 and I3 refer to solid objects without internal features or holes 
within the domain. Therefore, we can expect our function fi to be strictly decreasing. 
The I3 structure has rate of change or derivative f ′

i
 with large negative values that 

rapidly increase toward zero.
We can infer regularity in the distribution. This is because the triangles in the 

alpha shape increase their size equally along the domain. Otherwise, for the I2 struc-
ture, there are sections where the triangles increase faster, causing a general slow 
rate for fi.

3.2 � Hypothesis testing and monte‑carlo envelopes

As stated in (Baddeley et al. 2016, Chapter10), a Monte-Carlo test for a spatial point 
pattern, be it data sets, can be performed using any summary function applied to it. 
In the case of this study, the summary function applied to our data sets is the R2

Geom
 

function.
Since our score function is in some sense a discrete version of the function 1 − F 

we believe it makes more sense to apply a pointwise envelope test to validate its per-
formance. To estimate a Monte-Carlo envelope we apply the following procedure: 

1.	 Determine the empirical intensity for each variable using equation (3).
2.	 Determine the expected number of points n = � |W|.
3.	 Generate a number N ∼ Poisson(n).
4.	 Generate N values X ∼ Uniform(0, 1) and Y ∼ Uniform(0, 1).
5.	 Estimate the function fi(r) for X and Y  according to Sect. 3.1.
6.	 Repeat 40 times the steps 3–5.

For every observed data set we estimate the empirical intensity of the process and 
run 40 iterations of the function applied to the null hypothesis with the same inten-
sity as the data to create our envelope.

For each value of the radius � , or for whole intervals at a time, we can infer 
whether our model rejects the null hypothesis. We take into account that for this 
genre of tests the rejection/confirmation of the null hypothesis is not global but lim-
ited to specific values of � and that the statistical significance of such outcomes is in 
practice much lower than the theoretical value of � = 2∕40 = 0.05.

4 � Results

To measure the quality of the index described above, we work concrete examples. 
The software used was R (R Core Team 2020), along with the package sf (Pebesma 
2018) for handling spatial objects and area estimation. Our package containing all 
these algorithms will be available soon in CRAN.
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In all examples we sample n = 1000 points {sl} with the distribution specified in 
each case. To determine the radius in the alpha shape, we take a sequence of 100 
values for a fixed variable i, using two defined values rmin and rmax defined for each 
case. We call the sequence �k with k = 1,… , 100 . We plot each curve fi(rk) against 
this sequence of � values.

4.1 � Theoretical examples

We will consider five unique settings for our examples, each one with different topo-
logical and geometric features. These settings are not exhaustive and there are others 
with interesting features. However, through this sample we do show how our method 
captures the geometrical correlation of the variables, where other classical methods 
have failed to do so.

The examples considered have some simple but outstanding geometrical features. 
The latter will help us interpret the shape of our function fi and its meaning. The 
examples are

–	 Linear: This is a simple setting with 

 where X3 is an independent random variable. We set Xi ∼ Uniform(−2, 2) for 
i = 1, 2, 3 . Figure 3 presents the scatterplot of this model. It is simple enough to 
establish if our algorithm detects –in decreasing order– if a variable has a more 
geometric correlation than following.

–	 Concentric circles with holes: The model consists of three different circles all 
centered at (0, 0) . We set first � ∼ Uniform(0, 2�) and, 

1.	 Circle with radius between 3 and 4: 

Y = 0.6X1 + 0.3X2 + 0.1X3

{
CX
1

= r1 cos(�)

CY
1

= r1 sin(�)

X1 X2 X3

−2 0 2 −2 0 2 −2 0 2
−3

−2

−1

0

1

2

X

Y

Fig. 3   Cloud of data points for linear model
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 where r1 ∼ Uniform(3, 4).
2.	 Circle with radius between 6 and 7: 

 where r2 ∼ Uniform(6, 7).
3.	 Circle with radius between 10 and 11: 

 where r3 ∼ Uniform(10, 11).
	    Now define X1 = (CX

1
,CX

2
,CX

3
) and Y = (CY

1
,CY

2
,CY

3
) as the concatenation of 

three circles and X2 ∼ Uniform(−10, 10) . The cloud of data point is presented in 
Fig. 4. This example will allow us to show how we can capture all the geometric 
feature of the data as r increase.

–	 Two circles and one ellipse with holes: In this case we have two different circles 
and one ellipse. We set first � ∼ Uniform(0, 2�) and, 

1.	 Circle centered at (1.25, 5) with radius between 1 and 1.25: 

 where r1 ∼ Uniform(1, 1.25).
2.	 Circle centered at (3, 1.5) with radius between 0.75 and 1.5: 

 where r2 ∼ Uniform(0.75, 1.5).

{
CX
2

= r2 cos(�)

CY
2

= r2 sin(�)

{
CX
3

= r3 cos(�)

CY
3

= r3 sin(�)

{
CX
1

= r1 cos(�) + 1.25

CY
1

= r1 sin(�) + 5

{
CX
2

= r2 cos(�) + 3

CY
2

= r2 sin(�) + 1.5

X1 X2

−10 −5 0 5 10 −10 −5 0 5 10

−10

−5

0

5

10

X

Y

Fig. 4   Cloud of data points for Concentric circles with holes model
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3.	 Ellipse centered at (6.25, 4) with radius between 1 and 1.5: 

 where r3 ∼ Uniform(1, 4).
	    Now define X1 = (CX

1
,CX

2
,CX

3
) and Y = (CY

1
,CY

2
,CY

3
) as the concatenation of 

three circles and X2 ∼ Uniform(0, 7) . The cloud of data point is presented in 
Fig. 5. Our aim is to detect multiple geometric features at different resolutions. 
As the irregular pattern is filling the space, the curve f will bump downward with 
the same behavior. Also, notice how X2 does not have a CSR pattern due to the 
different spatial point densities.

–	 Ishigami: The final model is 

 where Xi ∼ Uniform(−�,�) for i = 1, 2, 3 , a = 7 and b = 0.1 . This model is rep-
resented in Fig. 6. This is a popular model in sensitivity analysis because it pre-
sents a strong non-linearity and non-monotonicity with interactions in X3 . Using 
other sensitivity estimators the variables X1 and X2 have great relevance to the 
model, while the third one X3 has almost zero. For further explanation of this 
function, we refer the reader to Sobol and Levitan (1999).

4.2 � Numerical results

To show the effects in the space filling function fi we estimate its discrete derivative. 
We define

{
CX
3

= 0.5 × r3 cos(�) − 6.25

CY
3

= 2 × r3 sin(�) + 4

Y = sinX1 + 7 sin2 X2 + 0.1 X4
3
sinX1

X1 X2

0 2 4 6 0 2 4 6
0

2

4

6

X

Y

Fig. 5   Cloud of data points for the two circles and ellipse with holes model



1246	 A. J. Hernández, M. Solís 

1 3

where h is a small value. This function represents the discrete rate of change of the 
function fi as � increases. As visual help to the reader, we estimate a cubic interpola-
tion through the values of f ′

i
 (represented with a solid line).

The figures presented in this section represent each theoretical example from 
different perspectives. They consist of three panels: 

Upper panel:	� In solid black the function fi in terms of the radius r = �∕2 . In 
dashed red the function 1 − F(r) = exp

(
−��r2

)
 describing the 

CSR process. Furthermore, in light gray the envelopes generated 
by Monte-Carlo simulation.

Middle panel:	� The dots are the pointwise derivative of fi explained before. In 
solid black a spline interpolation just for visual aid.

Bottom panel:	� The function 1 − F(r) estimated with the package spatstat 
(Baddeley et al. 2016). In solid black we present the Kaplan-Meier 
estimation. In dashed red, the CSR process.

For all cases we define a maximum radius r and all the panels are estimated 
using this value.

The linear model in Fig. 7 is simple enough to allow us to directly see that var-
iable X1 decreases rapidly but stabilizes at value near 0.6. We classify this behav-
ior as E1 . The same behavior occurs with the second variable. Here the stabiliza-
tion value is just above 0.25. Finally, the third variable decreased and stabilized 
to values nearly 0. For X3 , we have and E1 structure but depending on the toler-
ance level we can define as E2 . Our scale lacks a proper normalization, nonethe-
less it helps us describe the behavior of our objects.

f �
i
(r) =

fi(r + h) − fi(r − h)

2h
,

X1 X2 X3

−2 0 2 −2 0 2 −2 0 2
−10

0

10

X

Y

Fig. 6   Cloud of data points for Ishigami model
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The internal structure shows for the three variables a fast-paced rate of 
decrease. The middle panels show the first variable is slower than the others. In 
terms of correlation, we can say that the three variables have I3 structures. The 
function f ′ for variable X2 tells the cloud of points is more uniformly distributed 
than X3 . Note that X3 presents a series of micro-bumps in the stabilization phase. 
The behavior indicates small geometric persistence. However, curve approaches 

X1 X2 X3
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Fig. 7   Results for the linear model. Upper panel: Function fi of the alpha shape filled empty space. Mid-
dle panel: Derivative of fi . Lower panel: The solid black line is the Kaplan-Meier estimator of the empty 
space distribution function 1 − F(r) . The red dashed line is the distribution of a Poisson (random) process
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to the CSR process indicating a pure noise pattern. The generated envelopes 
showed that X1 and X2 diverge from the CSR process while X3 approaches to it.

A particular case of the model of concentric circles with holes Fig.  8 was 
discussed in the preliminaries. Recall that in this case, both variables have R2 
scores nearly zero for our model, even if the geometric shape showed two dif-
ferent behaviors. In the external structures, we have E1 and E2 for X1 and, X2 
respectively.

X1 X2
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Fig. 8   Results for the circle with one hole model. Upper panel: Function fi of the alpha shape filled 
empty space. Middle panel: Derivative of fi . Lower panel: The solid black line is the Kaplan-Meier esti-
mator of the empty space distribution function 1 − F(r) . The red dashed line is the distribution of a Pois-
son (random) process
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For the internal structures, notice the first variable has two larger bumps near r = 0.5 
and r = 0.75 . Around r = 1.5 we observe a small jump which complete fully the space. 
This jump is smaller than the others because the previous radii have capture all the geo-
metric information of the data. The function f �(r) , is zero at large portions just before 
the bumps. We see a persistence in data in those segments. We establish an I1 structure 
for X1.

For X2 , as expected, we observe a I3 structure consisting of an almost noisy variable. 
The envelopes confirm the pattern from X1 . For X2 is clear that our estimation, the CSR 
process and the envelopes has the same tendency.

Our index extracted the correct structure of the data. If we compare the result with 
the function 1 − F(r) , the results are also consistent. The function 1 − F(r) detects the 
correct spatial pattern. However, notices how the Kaplan-Meier estimator decreases 
smoothly ignoring the geometric hole in the data.

To test our algorithm further, we present the model of "Two circles and one ellipse 
with holes" in Fig. 9. Here we created two circles and one ellipse at different scales and 
positions. We captured the most relevant feature for each projection. The first variable 
again has an E1 structure because we observe some stabilization after r = 1 . Variable X2 
in contrast tends to have an E2 structure.

Our geometric correlation index detected the geometric pattern. However, due to the 
irregularity, the bump are smaller than the case before. In r = 0.25 we notice the first 
circle captured. The second one is near r = 0.5 . Given the relative size of the ellipse, 
in r = 0.75 we observe the bigger bump of the curve. The function f �(r) confirm this 
presenting large negative values at the mentioned points before. We can infer a combi-
nation of I1 and I2 structures. In terms of 1 − F(r) , we noticed a correct identification of 
the spatial point pattern. Our method, as in the previous case, detected the intervals in 
the radius where the geometric features of the data existed.

The final model we consider is the ishigami model. Figure 10 presents the results. 
The pattern in this example is more complex, given the spread of points in the domain. 
The first variable has a compact geometry, being straightforward to identify the pat-
tern. Notice how the function f1 decreases slowly until stabilization. The variable has 
a E1 and I2 structures. For the second variable, the pattern is a “M” shape figure with 
a noisy background. The function f ′ reveals the slowest rate of decreasing among the 
three variables. One aspect to note is the abrupt changes in the derivative function. This 
means that the spatial pattern contains irregularities filled at different rates. In any case, 
the curve describes the rich structure of the data.

The third variable is the most interesting due to it is uncorrelated nature with respect 
to Y. However, our curve fills the space slowly until starting a big bump around 1.25 
and finish it in 1.5. From here, the whole geometry is filled. The structures are E1 and I2 
differing with the statistical behavior in the Kaplan-Meier estimator. We can appreciate 
it has a rich geometry and the method captures it. In the three variables the envelopes 
negate that the presence of CSR pattern in the data.



1250	 A. J. Hernández, M. Solís 

1 3

5 � Conclusions and further research

As mentioned above, we built a goodness-of-fit index relying solely on the geo-
metric features of a data-cloud. Purely analytic or statistical methods cannot rec-
ognize the structure when we project certain variables, primarily when the input 
is of zero-sum, which might be artificial noise. In such cases those projections, or 
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Fig. 9   Results for the two circles and ellipse with hole model. Upper panel: Function fi of the alpha 
shape filled empty space. Middle panel: Derivative of fi . Lower panel: The solid black line is the 
Kaplan-Meier estimator of the empty space distribution function 1 − F(r) . The red dashed line is the dis-
tribution of a Poisson (random) process
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the variables in question, have positive conditional variance that might contribute 
to the model in ways that had not been explored.

Our index proved to be reliable in detecting variability of the data when the vari-
able is of zero-sum, differentiating between pure random noise and well-structured 
inputs. Where the model presents pure noise, our index fully coincides with other 
methods indexes. It also detects relevant structured inputs, in the other cases our 
index shows the structure in the variables, which was the notion we wanted to 
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Fig. 10   Results for the Ishigami model. Upper panel: Function fi of the alpha shape filled empty space. 
Middle panel: Derivative of fi . Lower panel: The solid black line is the Kaplan-Meier estimator of the 
empty space distribution function 1 − F(r) . The red dashed line is the distribution of a Poisson (random) 
process
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explore. We use a subjective scale ( E1 , E2 , I1 , I2 , I3 ) to describe those structures. The 
scale is incomplete and requires more work to be formalized. Nevertheless, it helped 
us describe possible patterns in the data given the trend of the filled space function 
fi.

The study of the filled space function with alpha shapes was insightful to discover 
real patterns in the data. Also, by estimating its derivative, we can describe more 
precisely its behavior. We used a reconstruction of the curve using cubic splines. 
Even if the fit was sufficient, it can be improved.

As a continuation of this research we propose to study and describe the functional 
form of fi . With this, we can estimate precisely where the bumps occur and estimate 
the derivative with more accuracy. Higher order derivatives can also help to reveal 
more patterns.

Our major goal for a future project is to assess whether our model is useful in 
determining the relevance of a variable within a model.
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