
Computational Statistics (2023) 38:217–242
https://doi.org/10.1007/s00180-022-01224-5

ORIG INAL PAPER

An efficient GPU-parallel coordinate descent algorithm for
sparse precision matrix estimation via scaled lasso

Seunghwan Lee1 · Sang Cheol Kim2 · Donghyeon Yu1

Received: 29 June 2021 / Accepted: 28 March 2022 / Published online: 16 April 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
The sparse precision matrix plays an essential role in the Gaussian graphical model
since a zero off-diagonal element indicates conditional independence of the corre-
sponding two variables given others. In the Gaussian graphical model, many methods
have been proposed, and their theoretical properties are given as well. Among these,
the sparse precisionmatrix estimation via scaled lasso (SPMESL) has an attractive fea-
ture in which the penalty level is automatically set to achieve the optimal convergence
rate under the sparsity and invertibility conditions. Conversely, other methods need to
be used in searching for the optimal tuning parameter. Despite such an advantage, the
SPMESL has not been widely used due to its expensive computational cost. In this
paper, we develop a GPU-parallel coordinate descent (CD) algorithm for the SPMESL
and numerically show that the proposed algorithm is much faster than the least angle
regression (LARS) tailored to the SPMESL. Several comprehensive numerical studies
are conducted to investigate the scalability of the proposed algorithm and the estima-
tion performance of the SPMESL. The results show that the SPMESL has the lowest
false discovery rate for all cases and the best performance in the case where the level
of the sparsity of the columns is high.

Keywords Gaussian graphical model · Graphics processing unit · Parallel
computation · Tuning-free

1 Introduction

The covariance matrix and its inverse are of main interest in multivariate analysis to
model dependencies between variables. Traditionally, these two parameters have been

B Donghyeon Yu
dyu@inha.ac.kr

1 Department of Statistics, Inha University, Inchoen, Korea

2 Division of Bio-Medical Informatics, Center for Genome Science, National Institute of Health, Korea
Centers for Disease Control and Prevention, Cheongju, Korea

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00180-022-01224-5&domain=pdf
http://orcid.org/0000-0003-4519-8500

218 S. Lee et al.

estimated by the sample covariance matrix and its inverse based on the maximum
likelihood (ML) estimation. Although these ML estimators are often asymptotically
unbiased and simple to calculate, there are some weaknesses when the number of
variables is greater than that of samples. This circumstance is also known as high-
dimensional low-sample size (HDLSS) data. For HDLSS data, it is known that the
sample covariancematrix becomes inefficient (Yao et al. 2015). In addition, the inverse
of the sample covariancematrix is undefined since the sample covariancematrix is sin-
gular for HDLSS data. For the covariance matrix, many methods have been proposed
under some structural conditions such as bandable structure and sparse structure to
improve the estimation efficiency (Bickel and Levina 2008a, b; Rothman et al. 2009;
Wu and Pourahmadi 2009; Cai et al. 2010; Cai and Liu 2011; Cai and Zhou 2012).

To obtain an estimator of the precision matrix (i.e., inverse covariance matrix)
for HDLSS data, various approaches have been developed by adopting the sparsity
assumption that there are many zero elements in the matrix. The existing methods
can be categorized into four approaches: covariance estimation-induced approach,
ML-based approach, regression approach, and constrained �1-minimization approach.
The covariance estimation-induced approach considers an indirect estimation using
the inversion of the well-conditioned shrinkage covariance matrix estimators and
applies multiple testing procedures to identify nonzero elements of the precision
matrix (GeneNet, Schäfer and Strimmer (2005)). The ML-based approach directly
estimates the precision matrix by maximizing the penalized likelihood function (Yuan
and Lin 2007; Friedman et al. 2008; Witten et al. 2011; Mazumder and Hastie 2012).
The regression approach considers the linear regression model and uses the fact that
the nonzero regression coefficients correspond to the nonzero off-diagonal elements
of the precision matrix (Meinshausen and Bühlmann 2006; Peng et al. 2009; Yuan
2010; Sun and Zhang 2013; Ren et al. 2015; Khare et al. 2015; A et al. 2017). The
constrained �1-minimization (CLIME) approach (Cai et al. 2011) obtains the sparse
precision matrix by solving the linear programming problem with the constraints on
the proximity to the precision matrix where the objective function is the sum of abso-
lute values of the design variables. The adaptive CLIME (Cai et al. 2016) improves
the CLIME and attains the optimal rate of convergence.

Among the existing methods, sparse precision matrix estimation via the scaled
Lasso (SPMESL) proposed by Sun and Zhang (2013) is a tuning-free procedure.
Conversely, other existing methods require searching the optimal tuning parameter,
GeneNet (Schäfer and Strimmer 2005) and the neighborhood selection (Meinshausen
and Bühlmann 2006) require choosing the level of the false discovery rate; other
penalized methods require choosing the optimal penalty level. In addition, SPMESL
supports the consistency of the precision matrix estimation under the sparsity and
invertibility conditions that are weaker than the irrepresentable condition (van de
Geer and Bühlmann 2009; Sun and Zhang 2013). However, it has not been widely
used for the sparse precision matrix estimation due to the inefficiency of the imple-
mented algorithm of the SPMESL using the least angle regression (LARS) algorithm
(Bradely Efron et al. 2004). Even though the LARS algorithm efficiently provides a
whole solution path of the Lasso problem (Tibshirani 1996), its computational cost
is expensive and the SPMESL needs to solve p independent Lasso problems as the
subproblems of the SPMESL. Thus, the scalability of the SPMESL is still challenging.

123

An efficient GPU-parallel coordinate descent algorithm for sparse… 219

In this paper, we found the possibility to improve the computational efficiency of the
SPMESLwith the empirical observation that the SPMESL does not need awhole solu-
tion path of the Lasso problem based on the tuning-free characteristic of the SPMESL
(see details in Sect. 3). Motivated by this empirical observation, we propose a more
efficient algorithm based on the coordinate descent (CD) algorithm and the warm start
strategy for the scaled Lasso and the SPMESL as applied to the standard lasso prob-
lem in Wu and Lange (2008). Moreover, we develop the row-wise updating parallel
CD algorithm using graphics processing units (GPUs) adequate for the SPMESL.
To efficiently implement the proposed parallel CD algorithm, we consider the active
response matrix that consists of columns of active response variables that corresponds
to the error variance estimate not converged at the current iteration. We will show the
efficiency of the proposed algorithms using comprehensive numerical studies. In this
paper, we also provide the numerical comparisons of the estimation performance of
the SPMESL with three different penalty levels, which are theoretically suggested in
previous literature (Sun and Zhang 2012, 2013) but there is no comparison result of
them in terms of the estimation performance.

The remainder of the paper is organized as follows. Sect. 2 introduces the SPMESL
and its original algorithm. We explain the proposed CD algorithm and GPU-parallel
CD algorithm in Sect. 3. Section 4 provides a comprehensive numerical study, includ-
ing the comparisons of computation times and estimation performances with other
existing methods. We provide a summary of the paper and discussion in Sect. 5.

2 Sparse precisionmatrix estimation via scaled lasso

In this section, we briefly introduce the scaled Lasso, the SPMESL, and their algo-
rithms.

2.1 Scaled lasso

The scaled Lasso proposed by Sun and Zhang (2012) is a variant of a penalized
regression model with the Lasso penalty. To be specific, let y ∈ R

n , X ∈ R
n×p,

β ∈ R
p, and σ > 0. Consider a linear regression model y = Xβ + ε, where ε ∼

N (0, σ 2In) and In is the n-dimensional identity matrix. The scaled Lasso considers
the minimization of the following objective function Lλ0(β, σ):

Lλ0(β, σ) = ‖y − Xβ‖22
2nσ

+ σ

2
+ λ0‖β‖1, (1)

where λ0 is a given tuning parameter and ‖x‖1 = ∑p
j=1 |x j | for x ∈ R

p. Thus, the

scaled Lasso simultaneously obtains the estimate β̂ of the regression coefficient β and
the estimate σ̂ of the error standard deviation σ . It is proved that the objective function
Lλ0 is jointly convex in (β, σ) and is strictly convex for σ in Sun and Zhang (2012).
From the convexity of the objective function, the solution (β̂, σ̂) of the scaled Lasso
problem can be obtained by the block CD algorithm as follows:

123

220 S. Lee et al.

(Step 1) With a fixed σ̂ , consider the minimization of σ̂ Lλ0(β, σ̂):

σ̂ Lλ0(β, σ̂) = ‖y − Xβ‖22
2n

+ σ̂ λ0‖β‖1 + σ̂ 2

2
.

Theminimizer β̂ of σ̂ Lλ0(β, σ̂) can be obtained by solving the following standard
lasso problem with λ = σ̂ λ0:

min
β

‖y − Xβ‖22
2n

+ λ‖β‖1. (2)

(Step 2) With a fixed β̂, the minimizer σ̂ of Lλ0(β̂, σ) is easily obtained by

σ̂ = ‖y − Xβ̂‖2√
n

.

(Step 3) Repeat Steps 1 and 2 until convergence occurs.

In the original paper of the scaled Lasso, the standard lasso problem is solved by the
LARS algorithm (Bradely Efron et al. 2004), which provides a whole solution path of
the standard Lasso problem. During the block CD algorithm, the minimizer β̂(σ̂ (r))

of σ̂ (r)Lλ0(β, σ̂ (r)) in Step 1 at the r -th iteration is obtained from the solution path of
the standard Lasso problem with λ = σ̂ (r)λ0.

In addition to the joint estimation ofβ and σ , the scaled Lasso has attractive features
as described in Sun and Zhang (2012). First, the scaled Lasso guarantees the consis-
tency of β̂ and σ̂ under two conditions: the penalty level conditionλ0 > A

√
2n−1 log p

for A > 1 and the compatibility condition, which implies the oracle inequalities for
the prediction and estimation (van de Geer and Bühlmann 2009). Second, the scaled
Lasso estimates are scale-equivariant in y in the sense that β̂(X, αy) = αβ̂(X, y)
and σ̂ (X, αy) = |α|σ̂ (X, y). Finally, the authors suggest using the universal penalty
level λU0 = √

2n−1 log p for λ0 based on their numerical and real-data examples. We
can consider the scaled Lasso with the universal penalty level as a tuning-free proce-
dure. Note that the universal penalty level does not satisfy the theoretical requirement
λ0 > A

√
2n−1 log p for the consistency of σ̂ . The authors of the scaled Lasso provide

several conditions that can weaken the required condition for λ0, in order to justify
using a penalty level smaller than A

√
2n−1 log p for A > 1 (Sun and Zhang 2012).

2.2 Sparse precisionmatrix estimation via scaled Lasso

Let Σ = (σ jk)1≤ j,k≤p and Ω = Σ−1 = (ω jk)1≤ j,k≤p be a covariance matrix and
a corresponding precision matrix, respectively. Suppose that x(i) = (Xi1, . . . , Xip)

for i = 1, 2, . . . , n are independently drawn from the multivariate normal distribution
with mean 0 and covariance matrix Σ . Let X ∈ R

n×p be a data matrix and xk =
(X1k, . . . , Xnk)

T be the kth column ofX. Consider following linear regressionmodels
for k = 1, . . . , p:

123

An efficient GPU-parallel coordinate descent algorithm for sparse… 221

Xik =
∑

l �=k

βlk Xil + εik, (3)

where εiks are independent and identically distributed random variables drawn from
the normal distribution with mean 0 and variance σ 2

k . As applied in the regression
approach for the sparse precision matrix estimation, the elements of the precision
matrix can be represented into the regression coefficient and the error variance by
using the following relationships:

ω jk = −β jk

σ 2
k

, ωkk = 1

σ 2
k

for 1 ≤ j �= k ≤ p. (4)

As the scaled Lasso simultaneously estimates the regression coefficients (β jk) and the
error standard deviation σk as described in Sect. 2.1, we can use the scaled Lasso to
estimate the precision matrix. Thus, the SPMESL considers solving the scaled Lasso
problems column-wise and defines the SPMESL estimator that combines the estimates
from the p scaled Lasso problems.

To be specific, let B = (b jk)1≤ j,k≤p be a matrix of the regression coefficients
such that b jk = β jk for j �= k and b j j = −1 for j = 1, . . . , p. Denote b(j) =
(b j1, . . . , b jp) andbk = (b1k, . . . , bpk)T as the j th row and the kth column of amatrix
B, respectively. We further let S = (s jk) be the sample covariance matrix. Subse-
quently, the precision matrix can be represented with B andD = diag(σ−2

1 , . . . , σ−2
p)

as follows:

Ω = −BD = (−σ−2
1 b1, . . . ,−σ−2

p bp).

To obtain the estimate of Ω , the SPMESL solves the following p independent scaled
Lasso problems first: for k = 1, . . . , p,

(b̂k, σ̂k) = argmin
βk∈Rp :βkk=−1,σk>0

‖Xk − ∑
j �=k β jkX j‖22

2nσk
+ σk

2
+ λ0

∑

j �=k

|β jk |. (5)

Note that the SPMESL in Sun and Zhang (2013) originally considers λ0
∑

j �=k
√
s j j

|β jk | instead of λ0
∑

j �=k |β jk | to penalize the coefficients on the same scale. In this
paper, we assume that the columns of the data matrix X are centered and scaled to
XT
k Xk = n for k = 1, . . . , p. Thus, s j j = 1 for j = 1, . . . , p. This assumption does

not affect the estimation performance of the precision matrix as the scaled Lasso has
the scale-equivariant property in the response variable as explained in the previous
section. We can easily recover the estimate Ω̂

o = (ω̂o
jk)1≤ j,k≤p from the data in the

original scale by the following Proposition 1:

Proposition 1 Let X ∈ R
n×p and X̃ = XC be a data matrix and the scaled data

matrix with C = diag(s−1/2
11 , . . . , s−1/2

pp), where s j j > 0 for j = 1, . . . , p. Denote

Ω̂
o
as the estimate of the precision matrix by applying the scaled Lasso in (5) with the

123

222 S. Lee et al.

penalty term λ0
∑

j �=k
√
s j j |β jk | column by column with X. Similarly, denote Ω̂

C =
(ω̂C

jk)1≤ j,k≤p as the estimate by the scaled Lasso in (5) with X̃. Then, Ω̂
o = CΩ̂

C
C.

Proof By the definition of X̃, the kth column of X̃ is X̃k = Xk/
√
skk . Let B̂C =

(b̂Cjk)1≤ j,k≤p and (σ̂k,C)1≤k≤p be the solutions of the p scaled Lasso problem in (5)

with X̃. We further let B̂o = (b̂ojk)1≤ j,k≤p and (σ̂k,o)1≤k≤p be the solutions of the
following scaled Lasso problems: for k = 1, . . . , p,

(b̂ok , σ̂k,o) = argmin
βk∈Rp :βkk=−1,σk>0

‖Xk − ∑
j �=k β jkX j‖22

2nσk
+ σk

2
+ λ0

∑

j �=k

√
s j j |β jk |.

(6)

By substituting X̃ with XC in (5) and the reparameterization with β̃ jk = β jk/
√
s j j

for j �= k, the kth scaled Lasso problem becomes

(b̂Ck , σ̂k,C) = argmin
β̃k∈Rp :β̃kk=−1,σk>0

‖Xk/
√
skk − ∑

j �=k β̃ jkX j‖22
2nσk

+σk

2
+ λ0

∑

j �=k

√
s j j |β̃ jk |. (7)

From the forms of the problems (6) and (7), the relationship b̂ok = √
skk b̂Ck and

σ̂k,o = √
skk σ̂k,C hold by the scale equivariant property of the scaledLasso. In addition,

by the reparameterization, b̂ojk = √
skk/s j j b̂Cjk for 1 ≤ j, k ≤ p. Combining the

above relationships, the (j, k)th element ω̂o
jk of the precision matrix estimate Ω̂

o
is

represented as

ω̂o
jk = −b̂ojk σ̂

−2
k,o = −(s j j skk)

−1/2b̂Cjk σ̂
−2
k,C = (s j j skk)

−1/2ω̂C
jk .

Hence, Ω̂
o = CΩ̂

C
C. �	

Note that the result Ω̂
o = CΩ̂

C
C in Proposition 1 is consistent with the property

of (Var(Az))−1 = A−TVar(z)−1A−1 for a p-dimensional random vector z and a
nonsingular matrix A ∈ R

p×p.
After solving p independent scaled Lasso problems, the estimate Ω̂1 = −B̂D̂ =

(ω̂ jk,1)1≤ j,k≤p of the precision matrix is obtained. However, the estimate Ω̂1 is not
symmetric in general. To find the symmetric estimate of the precision matrix using the
current estimate Ω̂1, the SPMESL considers solving the following linear programming
problem as in Yuan (2010):

Ω̂ = argmin
M:MT =M

‖M − Ω̂1‖1. (8)

123

An efficient GPU-parallel coordinate descent algorithm for sparse… 223

Remark that the authors of the SPMESL consider the above linear programming
problem for the symmetrization step in Sun and Zhang (2013), but they applied the
following symmetrization step in the implemented R package scalreg:

ω̂ jk = ω̂k j = ω̂ jk,1 I (|ω̂ jk,1| ≤ |ω̂k j,1|) + ω̂k j,1 I (|ω̂ jk,1| > |ω̂k j,1|), (9)

which is applied in the CLIME and the theoretical properties are developed on this
symmetrization (Cai et al. 2011). In addition, for the high-dimensional data, the sym-
metrization applied in the CLIME is favorable as its computational cost is cheap and
it is easily parallelizable. For these reasons, we apply the symmetrization step (9) in
the proposed algorithm.

As stated in the previous section, the scaled Lasso guarantees the consistency of the
regression coefficients and the error variance under the compatibility condition. Thus,
the SPMESL also guarantees column-wise consistency of Ω̂1 under the compatibility
conditions, which is independently defined in each column of Ω̂1, as the SPMESL
applies the scaled Lasso column wise. To derive the overall consistency of Ω̂ , the
authors of theSPMESLconsiders the capped �1 sparsity and the invertibility conditions
as follows.

(i) Capped �1 sparsity condition: For a certain ε0, λ∗
0 not depending on j and an index

set Tj ⊂ {1, 2, . . . , p} \ { j}, the capped �1 sparsity of the j th column with t j > 0
is defined as

|Tj | +
∑

k �= j,k /∈S j

|ωk j |√σkk

(1 − ε0)
√

ω j jλ
∗
0

≤ a j .

(ii) Invertibility condition: Let W = diag(σ11, . . . , σpp) and R = W−1/2ΣW−1/2.
Further, let Tj ⊆ Q j ⊆ {1, 2, . . . , p} \ { j}. The invertibility condition is defined
as

inf
j

{
uTR− j,− ju

‖uQ j ‖22
: u ∈ R

p,uQ j �= 0, 1 ≤ j ≤ p

}

≥ c∗

with a fixed constant c∗ > 0. Note that the invertibility condition holds if the
spectral norm of R−1 = D1/2ΩD1/2 is bounded (i.e., ‖R−1‖2 ≤ c−1∗).

With some modifications on the capped �1 sparsity and the invertibility conditions,
the authors of the SPMESL derive several conditions on λ∗

0 that guarantees the esti-
mation consistency of the precision matrix under the spectral norm. Among them, for
practical usage, we consider two conditions on a penalty level λ0 ≥ λ∗

0 as follows:

– Union bound for p applications of the scaled Lasso (Theorem 2 in Sun and Zhang
(2013)):

λ0 = A
√
4n−1 log p for A > 1. (10)

– Probabilistic error bound (Theorem 13 in Sun and Zhang (2013)):

λ0 = ALn(k/p) for 1 < A ≤ √
2, (11)

123

224 S. Lee et al.

Fig. 1 Plots of k − L41(k/p) + 2L21(k/p) for p = 100, 1000. Vertical red lines denote the solutions of

k − L41(k/p) + 2L21(k/p) = 0 obtained by the bisection method

where k is a real solution of k = L4
1(k/p)+2L2

1(k/p), Ln(t) = n−1/2Φ−1(1− t),
and Φ−1(t) is the standard normal quantile function.

Note that a real solution of the equation k − L4
1(k/p) + 2L2

1(k/p) = 0 can easily
be found by applying the bisection method. For instance, we demonstrate two real
solutions for p = 100, 1000 in Fig. 1 with the values of k − L4

1(k/p) + 2L2
1(k/p).

For p = 1000 and n = 100, λub = √
4n−1 log p ≈ 0.5257 and λpb = √

2Ln(k/p) ≈
0.2810 with k = 23.4748 while λuniv = √

2n−1 log(p − 1) ≈ 0.3717, where λub
is the penalty level derived by the union bound, λpb is the penalty level derived by
the probabilistic error bound, and λuniv is the universal penalty level used in the
scaled lasso. In the paper of Sun and Zhang (2013), the penalty level derived by
the probabilistic error bound is suggested for the SPMESL. However, there are no
comparison results for the three penalty levels λuniv , λub, and λpb. We conduct a
comparison of performances for identifying the nonzero elements of Ω by the three
penalty levels above in Sect. 4 to provide a guideline for the penalty level λ0.

3 Efficient coordinate descent algorithm for SPMESL and its
GPU-parallelization

The original algorithm for the scaled Lasso and the SPMESL adopt the LARS algo-
rithm, which provides the whole solution path of the Lasso regression problem, and its
implemented R package scalreg is available in the Comprehensive R Archive Net-
work (CRAN) repository. As mentioned in the Introduction, we empirically observed
that the block CD algorithms for the scaled Lasso and the SPMESL do not need
a whole solution path of the standard Lasso problem in their sub-problems, where
the sub-problem denotes the minimization problem in Step 1 of the scaled Lasso
problem. To describe our empirical observation, we consider an example with a lin-

123

An efficient GPU-parallel coordinate descent algorithm for sparse… 225

Fig. 2 Plots of the estimates of σ̂ for σ = 3, 5 along with the number of iterations

ear regression model yi = xTi β + εi and εi ∼ N (0, σ 2) for i = 1, 2, . . . , 250,
where the true parameter β = (βT

2 ,βT−1,β
T
0)T ∈ R

500, β2 = (2, . . . , 2)T ∈ R
5,

β−1 = (−1, . . . ,−1)T ∈ R
5, β0 = (0, . . . , 0)T ∈ R

490, and σ = 3, 5. We set the
initial value of (β, σ) as (0500×1, 1). As shown in Fig. 2, the numbers of iterations
for the convergence of σ̂ are less than 10 when the true parameter σ = 3, 5 and
λ0 = √

2n−1 log p. This implies that we do not need to obtain the whole solution
paths of p lasso problems with respect to all λ values.

Thus, the calculation of the whole solution path by the LARS algorithm is inef-
ficient for the scaled Lasso and the SPMESL. In addition, the scaled Lasso and the
SPMESL iteratively solve the lasso problemwith the penaltyλr = σ̂ (r)λ0 in their inner
iteration, where λr denotes the penalty level at the r th iteration. As σ̂ (r) converges to
the minimizer of (1), the difference between λr and λr−1 decreases as the iteration
proceeds. This denotes that the Lasso estimate in the current iteration is not far from
that in the next iteration. From this observation, the warm start strategy, which denotes
that the solution in the previous iteration is used as an initial value of the next itera-
tion, is favorable and can efficiently accelerate the algorithm for the Lasso regression
problem in the inner iteration.

To fully utilize the warm start strategy, we consider the coordinate descent (CD)
algorithm for the Lasso regression problem in the inner iteration. This is because
it is known that the CD algorithm with the warm start strategy is efficient for the
Lasso regression problem and has an advantage for memory consumption (Wu and
Lange 2008). In addition, the SPMESL needs solving p independent scaled Lasso
problems to obtain the estimate of the precision matrix. We develop the GPU-parallel
CD algorithm for the SPMESL, which updates p coordinates simultaneously with
GPUs. In the following subsections,we introduce theCDalgorithm for the subproblem
of the scaled Lasso and GPU-parallel CD algorithm for the SPMESL in detail.

123

226 S. Lee et al.

3.1 CD algorithm for subproblem of the scaled Lasso

In this subsection, we focus on the following subproblem of the scaled Lasso with a
given λ0:

β̂
(r) = argmin

β

1

2n
‖y − Xβ‖22 + λ(r−1)‖β‖1, (12)

where y ∈ R
n is a response vector, X ∈ R

n×p is a design matrix, λ(r−1) = σ̂ (r−1)λ0,
and σ̂ (r−1) = ‖y − Xβ̂(r−1)‖2/√n is the iterative solution for σ at the (r − 1)th
iteration. For the notational simplicity, we use β̂ to denote the r th iterative solution

β̂
(r)
, and β̂

[cur]
and β̂

[next]
denote the current and the next iterative solution in the

CD algorithm, respectively. To apply the warm start strategy, we set the initial value

β̂
[cur]

for β̂ to β̂
(r−1)

. In this paper, we consider the cyclic CD algorithm with an
ascending order (i.e., coordinate-wise update from the smallest index to the largest
index). Subsequently, for j = 1, . . . , p, the CD algorithm updates β̂

[next]
j by following

equations:

e j = y −
∑

l< j

Xl β̂
[next]
l −

∑

l> j

Xl β̂
[cur]
l , a j = xTj e j/n + β̂

[cur]
j , β̂

[next]
j = Softλ(a j),

where Softλ(a j) = sign(a j)(|a j | − λ)+ is the soft-thresholding operator and (x)+ =
max(x, 0). The CD algorithm repeats the cyclic updates until the convergence occurs,
where the common convergence criterion is the L∞-norm of the difference between

β̂
[cur]

and β̂
[next]

(i.e., ‖β̂[next] − β̂
[cur]‖∞). The whole CD algorithmwith warm start

strategy for the scaled Lasso is summarized in Algorithm 1.

3.2 CD algorithm for SPMESL

As described in Sect. 2.2, the SPMESL estimates the precision matrix by solving the p
scaledLasso problems,where each columnof the observed datamatrix is considered as
the response variable and the other columns are considered as the exploratory variables.
To be specific, let (x(i))T = (Xi1, Xi2, . . . , Xip)

T ∼ N (0,Ω−1) be the i th random
sample andΩ = Σ−1 be the precisionmatrix. Furthermore, let xk = (X1k, . . . , Xnk)

T

be the kth column vector of the observed data matrix X = (x1, . . . , xp) ∈ R
n×p. The

CD algorithm with the warm start strategy for the SPMESL independently applies
the CD algorithm in Sect. 3.1 to the subproblem (5) for k = 1, 2, . . . , p. The main
procedures in the CD algorithm for the SPMESL are summarized in the following two
steps:

– Updating β̂−k for 1 ≤ k ≤ p: Applying the CD algorithm with the warm-start
strategy for the following lasso subproblem: for k = 1, 2, . . . , p,

β̂−k = argmin
β−k : βkk=0

‖xk − X β−k‖22
2n

+ σ̂ jλ0‖β−k‖1, (13)

123

An efficient GPU-parallel coordinate descent algorithm for sparse… 227

Algorithm 1 CD algorithm with warm start strategy for the scaled Lasso

Input: y, X, λ0, σ̂ (0) = 1, β̂
(0) = 0, convergence tolerance δ.

1: repeat r = 0, 1, 2 . . .

2: λ ← σ̂ (r)λ0 � Initialization of lasso subproblem

3: β̂
[cur] ← β̂

(r)
, β̂

[next] ← β̂
[cur] � Warm start strategy

4: repeat m = 0, 1, 2, . . .

5: β̂
[cur] ← β̂

[next]

6: for j = 1, · · · , p do

7: e j = y − ∑
l< j Xl β̂

[next] − ∑
l> j Xl β̂

[cur]

8: a j = XT
j e j /n + β̂

[cur]
j

9: β̂
[next]
j = Softλ(a j)

10: end for

11: until ‖β̂[next] − β̂
[cur]‖∞, < δ � End of lasso subproblem

12: β̂
(r+1) ← β̂

[next]

13: σ̂ (r+1) = ‖y − Xβ̂
(r+1)‖2√
n

14: until |σ̂ (r+1) − σ̂ (r)| < δ

Output: β̂ ← β̂
(r+1)

, σ̂ ← σ̂ (r+1)

where β−k = (β1,k, . . . , βk−1,k, 0, βk+1,k, . . . , βp,k)
T ∈ R

p.
– Updating σ̂k for 1 ≤ k ≤ p: For given λ0 and β̂−ks, σ̂ks are obtained by the
equation

σ̂k = ‖xk − X β̂−k‖2√
n

, (14)

where β̂−k = (β̂1,k, . . . , β̂k−1,k, 0, β̂k+1,k, . . . , β̂p,k)
T is the solution to the prob-

lem (13).

The CD algorithm for the SPMESL independently repeats the updating β̂−k and σ̂k
until convergence occurs for k = 1, 2, . . . , p. After solving the p scaled Lasso prob-
lems, the final estimate Ω̂ of the precision matrix by the SPMESL is obtained by
the symmetrization (9). The whole CD algorithm with warm start strategy for the
SPMESL is summarized in Algorithm 2.

3.3 Parallel CD algorithm for SPMESL using GPU

As we described in Sect. 3.2, the CD algorithm for the SPMESL solves p independent
scaled Lasso problems. From this independence structure, p elements in B = (β jk)

can be updated in parallel, where (p − 1) elements can simultaneously be updated in
practice sinceβkk = 0 is fixed. In addition, the computation of σ̂ is independent aswell
in the sense that the update equation for σ̂k only needs information of β̂−k . To describe
the proposed parallel CD algorithm, we consider the following joint minimization

123

228 S. Lee et al.

Algorithm 2 CD algorithm with warm start strategy for the SPMESL

Input: X, λ0, σ̂ (0) = 1, B = (β̂
(0)
i j) = (β̂

(0)
−1, . . . , β̂

(0)
−p) = 0, convergence tolerance δ.

1: for k = 1, . . . , p do

2: (β̂−k , σ̂k) ← Apply Algorithm 1 with (xk ,X−k = (x1, . . . , xk−1, xk+1, . . . , xp), λ0)

3: end for
4: for j = 1, . . . , p do � Calculation of initial estimate of Ω

5: ω̂ j j = σ̂−2
j

6: for k = 1, . . . , p do

7: if k �= j then

8: ω̂ jk = −β̂ jk ω̂kk

9: end if

10: end for
11: end for

12: for j = 1, . . . , p − 1 do � Symmetrization of Ω

13: for k = j + 1, . . . , p do

14: if |ω̂ jk | > |ω̂k j | then
15: ω̂ jk ← ω̂k j
16: else
17: ω̂k j ← ω̂ jk

18: end if
19: end for
20: end for
Output: Ω̂ = (ω̂ jk)

problem, which combines p scaled Lasso problems:

(B̂, σ̂) = argmin
{β−k ,σk }pk=1

p∑

k=1

{‖xk − Xβ−k‖22
2nσk

+ σk

2
+ λ0‖β−k‖1

}
, (15)

where B = (β−1, . . . ,β−p) and β−k = (β1,k, . . . , βk−1,k, 0, βk+1,k, . . . , βp,k)
T . As

the updating equation (14) for σ̂k is simple and easily parallelizable, we focus on the
update for B̂ in this subsection. For the given iterative solution σ̂

(r) = (σ̂
(r)
1 , . . . , σ̂

(r)
p),

the subproblem for updating B̂(r+1) can be represented as follows:

B̂(r+1) = argmin
β−1,...,β−p

p∑

k=1

g
(
β−k; σ̂

(r)
k , λ0

)
=

p∑

k=1

{‖xk − Xβ−k‖22
2n

+ λk‖β−k‖1
}

= argmin
B:bkk=0,1≤k≤p

f (B; σ̂
(r)

, λ0) = 1

2n

∥
∥X − XB

∥
∥2
F +

p∑

k=1

λk‖β−k‖1,
(16)

where ‖A‖F = tr(ATA) = (∑
i, j a

2
i j

)1/2 is the Frobenius norm of a matrix A and

λ j = σ̂
(k)
j λ0. For the notational simplicity, hereafter, we denote f (B; σ̂

(r)
, λ0) and

B̂(r+1) as f (B) and B̂, respectively. As f (B) is the sum of the smooth function of B
(the square of the Frobenius norm) and non-smooth convex functions, f (B) satisfies

123

An efficient GPU-parallel coordinate descent algorithm for sparse… 229

the conditions of Theorem 4.1 in Tseng (2001). Thus, the iterative sequence {B̂(r)} in
the CD algorithmwith cyclic rule converges to the stationary point of f (B), where B̂(r)

denotes the iterative solution of the CD algorithm at the r th iteration, and each iteration
is counted when one cycle is finished (i.e., β12, . . . , βp−1,p have been updated.).

To develop the parallel CD (PCD) algorithm, we consider a row-wise update for
B̂, which is one of the possible orderings in the cyclic rule. The main idea of the
parallel CD algorithm is that the p Lasso subproblems are independent in the sense

that β j,k does not need information (β j,l) for l �= k. To be specific, let β̂
(j),[cur] =

(β̂
[cur]
j,1 , . . . , β̂

[cur]
j, j−1, 0, β̂

[cur]
j, j+1, . . . , β̂

[cur]
j,p) and β̂

(j),[next]
be the j th row of the current

and next iterative solutions of B̂, respectively. The following Proposition 2 shows that
the row of B̂ can be updated in parallel.

Proposition 2 Let E = (e1, . . . , ep) be a current residual matrix defined with ek =
xk − Xβ̂

[cur]
−k , and let B̂[cur] and B̂[next] be the current and next iterative solution for

the coefficient of the joint Lasso subproblem, respectively. Suppose we update the rows

of B̂[next] from the first row to the last row. Then, each row β̂
(j),[next]

of B̂[next] for
j = 1, . . . , p can simultaneously be updated by following updating equations:

a j = (a jk)
p
k=1 = xTj E/n + β̂

(j),[cur]
, a j j ← 0, β̂

(j),[next]

= Sλ1,...,λp (a j), E ← E + x j (β̂
(j),[cur] − β̂

(j),[next]
),

where Sλ1,...,λp (x) = (Softλ j (x j))1≤ j≤p, Softλ(x) = sign(x)(|x | − λ)+, and (x)+ =
max(x, 0).

Proof As described in Sect. 3.1, the CD algorithm updates each element β̂
[next]
j,k in

β̂
(j),[next]

by

ek =xk−
∑

l<k

xl β̂
[next]
−l −

∑

l>k

xl β̂
[cur]
−l , a jk =xTj ek/n + β̂

[cur]
j,k , β̂

[next]
j,k =Softλ(a jk).

Consider updating the first rowof B̂(next) by theCDalgorithm. Then, for k = 2, . . . , p,
the above updating equations becomes

ek = xk −
p∑

l=2

xl β̂
[cur]
−l , a1k = xT1 ek/n + β̂

[cur]
1,k , β̂

[next]
1,k = Softλ(a1k).

The update for β̂
[next]
1,k only needs information on the current residual vector ek and

β̂
[cur]
1,k . Hence, the updates of β̂

[next]
1,k and β̂

[next]
1,l for k �= l are independent in the sense

that β̂[next]
1,k does not depend on β̂

[next]
1,k , and vice versa. Combining these equations for

j = 2, . . . , p, we can represent (p − 1) updating equations with the following vector
form:

(0, β̂[next]
12 , . . . , β̂

[next]
1p) = (0,Softλ2(a12), . . . ,Softλp (a1p)),

123

230 S. Lee et al.

where λ j = σ̂ jλ0 and aT1 = (0, eT2 x1/n, . . . , eTp x1/n) + (0, β̂[cur]
1,2 , . . . , β̂

[cur]
1,p) =

xT1 E/n + β̂
(1),[cur] − (xT1 e1/n)i1, where β̂

[cur]
1,1 = 0 and i j is the j th row of p-

dimensional identity matrix. After updating β̂
(1),[next]

, the current residual matrix is

also updated by E ← E + X1(β̂
(1),[cur] − β̂

(1),[next]
). Then, the updated ek becomes

xk −x1β̂
[next]
1,k −∑p

l=2 xl β̂
[cur]
l,k . Using these equations, we can express a general form

of updating equations as

a j = (a jk)
p
k=1 = xTj E/n + β̂

(j),[cur]
, a j j ← 0, β̂

(j),[next]

= Sλ1,...,λp (a j), E ← E + x j

(
β̂

(j),[cur] − β̂
(j),[next])

,

where, for computational simplicity, we calculate a j by xTj E/n + β̂
(j),[cur]

and then
set a j j = 0. Applying this sequence of updating equations from the first row (j = 1)
to the last row (j = p) of B̂[next] is equivalent to the cyclic CD algorithm for the joint
Lasso subproblem. �	

In Proposition 2, the row-wise updating equations consist of basic linear algebra
operations such as matrix-matrix multiplication and element-wise soft-thresholding,
which are adequate for parallel computation using GPUs. To fully utilize the GPUs,
we use the cuBLAS library for linear algebra operations and develop CUDA kernel
functions for the element-wise soft-thresholding, parallel update for σ̂ , and sym-
metrization of Ω̂ . We refer this CD algorithm to the parallel CD (PCD) algorithm in
the sense of that p elements in each row of B̂ are simultaneously updated if p GPUs
(i.e., p CUDA cores) are available. Note that β̂ j j for j = 1, . . . , p are fixed with 0 in
the PCD algorithm,which is handled explicitly in the implementation. Thewhole PCD
algorithm with warm start strategy for the SPMESL is summarized in Algorithm 3. In
Algorithm 3, we use a convergence criterion ‖B(r+1) −B(r)‖∞ < δ to check the con-
vergence ofB(r), which is different to the convergence criterion ‖β(r+1)

− j −β
(r)
− j‖∞ < δ

in the CD algorithm. To ensure that the CD and the PCD algorithm provide the same
solution, we show that the PCD algorithm obtains a solution that is sufficiently close
to the solution of the CD algorithm if two algorithms use the same initial values in the
following Theorem 1:

Theorem 1 For a given vector (σ̂1, . . . , σ̂p), a tuning parameterλ0, and a convergence

tolerance δ > 0, let β
(r)
−k and b(r)

k be iterative solutions at the rth iteration by the

CD algorithm with a convergence criterion ‖β(r+1)
−k − β

(r)
−k‖∞ < δ and the PCD

algorithm with a convergence criterion ‖B(r+1) − B(r)‖∞ < δ, respectively. Let β̂− j

and b̂ j be the solutions of the CD and the PCD that satisfy the given convergence
criteria. Suppose that the CD and the PCD algorithms use the same initial point

(β̂
(0)
−k = b̂(0)

k , 1 ≤ j ≤ p). Then, ‖b̂k − β̂−k‖∞ is also bounded by δ.

Proof As the function g(β−k; σ̂k, λ0) is convex with respect to β−k , it is easy to
show that the coordinate-wise minimization of g(β−k; σ̂k, λ0) satisfies the condi-
tions (B1)–(B3) and (C1) in Tseng (2001). To see this, let η = (η1, . . . , ηp−1)

T =

123

An efficient GPU-parallel coordinate descent algorithm for sparse… 231

(β1k, . . . , βk−1,k, βk+1,k, . . . , βpk)
T , τ = (τ1, . . . , τp−1)

T , and τm = λm for
1 ≤ m ≤ k − 1 and τm = λm+1 for k ≤ m ≤ p − 1. We further let
f0(η) = 1

2n ‖x j − X− jη‖22 and fm(ηm) = τm |ηm | for 1 ≤ m ≤ p − 1, where
X− j = (x1, . . . , x j−1, x j+1, . . . , xp). Then, we can represent g(β−k; σ̂k, λ0) as

f (η) = f0(η) + ∑p−1
m=1 fm(ηm). With this representation, it is trivial that f0 is con-

tinuous on dom f0 (B1) and f0, f1, . . . , f p−1 are lower semi-continuous (B3). As
f0, f1, . . . , f p−1 are convex functions, the function ηm �→ f (η1, . . . , ηp−1) for each
m ∈ {1, . . . , p − 1} and (ηl)l �=m is also convex and hemivariate (B2). The function
f0 also satisfies that dom f0 is open and f0 tends to ∞ at every boundary point of
dom f0 because the domain of f0(η) is R

p−1 and f0(η) is the sum of squares of
errors. Thus, by Theorem 5.1 in Tseng (2001), the cyclic CD algorithm guarantees
that β(r)

−k converges to a stationary point of g(β−k; σ̂k, λ0). As the same updating order
(1 → 2 → · · · → p) and equation are applied with the same initial values in the
proposed CD and PCD algorithms, the sequence {b(r)

k } by the PCD is equivalent to the

sequence {β(r)
−k}. That is, β(r)

−k = b(r)
k for r ≥ 0. Let KCD and KPCD be the iteration

numbers that satisfies the convergence criteria of the CD and the PCD, respectively.
As ‖β(r)

−k − β
(r−1)
−k ‖∞ = ‖b(r)

k − b(r−1)
k ‖∞ ≤ ‖B(r) − B(r−1)‖∞, it is satisfied that

KPCD ≥ KCD . As the p-dimensional Euclidean space with L∞-norm is Banach
space, the convergent sequence {β(r)

−k} and {b(r)
k } is a Cauchy sequence. Thus, from

the definition of the Cauchy sequence, for a given δ > 0, there exists K such that
‖β(u)

−k −β
(v)
−k‖∞ < δ for u, v ≥ K . Take K = KCD , u = KCD , and v = KPCD . Then,

β
(KCD)
−k = β̂−k and β

(KPCD)
−k = b̂k . Hence, the L∞-norm of the difference of β̂−k and

b̂k is bounded by δ. �	
For convergence of σ j , we also use the same convergence criterion |σ (r)

j −σ
(r−1)
j | < δ

as in the CD algorithm. To reduce the computational costs in the PCD algorithm, at
each iteration, we remove some columns of B in the problem if the corresponding
σ j satisfies the convergence criterion |σ (r)

j − σ
(r−1)
j | < δ. This additional procedure

needs the rearrangement of the coefficient matrix B. In the implementation, we use an
index vector and a convergence flag vector to implement the additional rearrangement
procedure efficiently. Thus, the PCDalgorithm requiresmore computational costs than
the CD algorithm for the SPMESL as the CD algorithm runs consequently for j =
1, . . . , p and does not need the rearrangement procedure. In the next section, however,
we numerically show that the PCD algorithm becomes more efficient compared to
the CD algorithm when either the number of variables or the sample size increases,
although the PCD has more computational costs.

4 Numerical study

4.1 Data construction and simulation settings

In this section, we numerically investigate the computational efficiency of the pro-
posed CD and PCD algorithms and the estimation performance of the SPMESL with
comparisons to other existing methods. To proceed the comparison on various circum-

123

232 S. Lee et al.

Algorithm 3 Parallel CD algorithm with warm start strategy for the SPMESL

Input: X, λ0, σ̂ (0) = 1, B(0) = (β̂
(0)
i j) = (β̂

(0)
−1, . . . , β̂

(0)
−p) = 0, convergence tolerance δ.

1: Set nc = p, I = (1, . . . , p), and F = (1, . . . , 1)
2: repeat r = 0, 1, 2 . . .

3: λ ← (σ̂
(r)
I1

λ0, . . . , σ̂
(r)
Inc

λ0) � Initialization of joint lasso subproblem

4: B̂[cur] ← B̂(r), B̂[next] ← B̂[cur] � Warm start strategy

5: E = (xI1 , . . . , xInc) − XB̂[cur]
6: repeat m = 0, 1, 2, . . .

7: B̂[cur] ← B̂[next]
8: for j = 1, · · · , p do

9: a = xTj E/n + β̂
(j),[cur]

10: a j ← 0

11: β̂
(j),[next] = Sλ1,...,λp (a)

12: E = E + xi (β̂
(j),[cur] − β̂

(j),[next]
)

13: end for

14: until ‖B̂[next] − B̂[cur]‖∞, < δ � End of joint lasso subproblem

15: B̂(r+1) ← B̂[next]

16: Update σ̂
(r+1)
I j

=
‖xI j − Xβ̂

(r+1)
−I j ‖2√

n
in parallel

17: Calculate Fj = I (|σ̂ (r+1)
j − σ̂

(r)
j | ≥ δ) in parallel

18: Set l = 0

19: for j = 1, · · · , nc do

20: if Fj = 1 then

l ← l + 1, Il ← j

end if
21: end for
22: Set nc = l, B̂[next] ← (β̂

[next]
−I1 , . . . , β̂

[next]
−Inc

)

23: until nc = 0

24: Calculate ω̂ j j = σ̂−2
j and ω̂ jk = −β̂ jk σ̂

−2
k in parallel � Initial estimate for Ω

25: Update ω̂ jk in parallel � Symmetrization

if |ω̂ jk | > |ω̂k j | then
ω̂ jk ← ω̂k j

else
ω̂k j ← ω̂ jk

end if

Output: Ω̂ = (ω̂ jk)

123

An efficient GPU-parallel coordinate descent algorithm for sparse… 233

stances, we first consider four network structures for the precision matrix defined as
follows:

– AR(1): AR(1) network is also known as a chain graph.We define a precisionmatrix
Ω for AR(1) as

Ω = (ωi j)1≤i, j≤p =
⎧
⎨

⎩

1 if i = j
0.48 if |i − j | = 1
0 otherwise

– AR(4): In AR(4) network, each node is connected to neighborhood nodes whose
distance is less than or equal to 4, where the distance of two nodes i and j is defined
as d(i, j) = |i − j |. The precision matrix Ω corresponding to AR(4) network is
defined as

Ω = (ωi j)1≤i, j≤p =
{
0.6|i− j | if |i − j | ≤ 4
0 otherwise

– Scale-free: Degrees of nodes follow the power-law distribution having a form
P(k) ∝ k−α , where P(k) is a fraction of nodes having k connections and α

is a preferential attachment parameter. We set α = 2.3, which is used in Peng
et al. (2009), and we generate a scale-free network structure by using the Barabási
and Albert (BA) model (Barabási and Albert 1999). With the generated network
structure G = (V , E), we define a precision matrix corresponding to G = (V , E)

by following the steps applied in (Peng et al. 2009):

(i) Ω̃ = (ω̃i j)1≤i, j≤p =
⎧
⎨

⎩

1 if i = j
U if (i, j) ∈ E
0 otherwise

, U ∼ U([−1,−0.5] ∪ [0.5, 1]).

(i i) Ω = (ωi j)1≤i, j≤p = ω̃i j

1.5
∑

k �=i |ω̃ik |
(i i i) Ω = (Ω + ΩT)

/
2

(iv) ωi i = 1 for i = 1, 2, . . . , p
– Hub: Following (Peng et al. 2009), for p = 100, a hub network consists of 10
hub nodes whose degrees are around 15 and 90 non-hub nodes whose degrees lie
between 1 and 3. Edges in the hub network are randomly selected with the above
conditions. With the given network structureG = (V , E), we generate a precision
matrix by the procedure described in the scale-free network generation.

To avoid nonzero elements having considerably small magnitudes (i.e., the abso-
lute value of element), we generate (p/100) subnetworks, each of which consists of
100 nodes, and set nonzero elements having magnitudes less than 0.1 to 0.1 (i.e.,
sign(ωi j)/10) for the scale-free and hub networks. For example, we generate five
subnetworks having 100 nodes when p = 500 for the scale-free and hub networks.
We depict the generated four network structures in Fig. 3 for p = 500. Among four
networks, AR(1) and AR(4) networks correspond the circumstances that the variables
are measured in a specific order, and the hub and scale-free networks are frequently
observed in real-world problems such as the gene regulatory networks and functional
brain networks.

123

234 S. Lee et al.

(a) (b)

(c) (d)

Fig. 3 Four network structures of precisionmatrix: aAR(1), bAR(4), c Scale-free (SF), and dHub-network
(Hub). Nodes in black denote nodes whose degrees are more than 9

For comparison of the computational efficiency, we consider the number of vari-
ables p = 1000, and sample size n = 250, 500. To provide a benchmark of the
computational efficiency, we also consider the well-known existing methods such as
the CLIME (Cai et al. 2011), graphical lasso (GLASSO) (Friedman et al. 2008), and
convex partial correlation estimation method (CONCORD) (Khare et al. 2015). As the
computation times of the algorithms are affected by the level of sparsity on the estimate
of the precision matrix, we set λ0 = √

4n−1 log p for LARS-CPU (SPMESL-LARS)
andCD-CPU (SPMESL-CD). Further, we search the tuning parameters for othermeth-
ods to obtain the level of sparsity similar to the one obtained by the SPMESL. For
example, for AR(1) and AR(4) networks with p = 1000, the averages of the estimated
edges of all methods are around 1000, which is 0.2% of the total possible edges. With
the chosen penalty levels, the computation time for each method is measured in CPU

123

An efficient GPU-parallel coordinate descent algorithm for sparse… 235

time (seconds) by using a workstation (Intel(R) Xeon(R) W-2175 CPU (base: 2.50
GHz, max-turbo: 4.30 GHz) and 128 GB RAM) with NVIDIA GeForce GTX 1080
Ti. We measure the average computation times and standard errors over 10 datasets.

For comparison of the estimation performance, we consider evaluating the
estimation performance of the SPMESL with λpb = √

2Ln(k/p), λuniv =√
2n−1 log(p − 1), and λub = √

4n−1 log p as there are three different suggestions
for λ0 without a comparison of the estimation performance, where k is a real solution
of k = L4

1(k/p) + 2L2
1(k/p), Ln(t) = n−1/2Φ−1(1 − t), and Φ−1(t) is the stan-

dard normal quantile function. Here, we denote the SPMESL with λpb, λuniv , λub as
SPMESL-P, SPMESL-2, SPMESL-4, respectively. As described in the computational
efficiency comparison,we apply the three existingmethods (CLIME,GLASSO,CON-
CORD) to provide a benchmark of the estimation performance. Hereafter, we referred
these three methods to the tuning-search methods. To measure the estimation perfor-
mance, we consider five performance measures– sensitivity (SEN), specificity (SPE),
false discovery rate (FDR), miss-classification error rate (MISR), and Matthew’s cor-
relation coefficients (MCC)–for identifying the true edges and the Frobenius norm of
Ω0 − Ω̂ for estimation error, where Ω0 and Ω̂ denote the true precision matrix and
the estimate of the precision matrix, respectively. The five performance measures for
identification of the true edges are defined as follows:

SEN ≡ TP

(TP + FN)
,SPE ≡ TN

(TN + FP)
,FDR ≡ FP

(TP + FP)
,

MISR ≡ (FP + FN)

p(p − 1)/2
,MCC(Ω̂,Ω0) ≡ TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
,

where TP = ∑
j<k I (ω̂ jk �= 0, ω0

jk �= 0), FP = ∑
j<k I (ω̂ jk �= 0, ω0

jk = 0),

TN = ∑
j<k I (ω̂ jk = 0, ω0

jk = 0), and FN = ∑
j<k I (ω̂ jk = 0, ω0

jk �= 0),
In the comparison of the estimation performance, we set the number of variables

and sample size as 500 and 250, respectively. We generate samplesX1,X2, . . . ,Xn ∼
N (0,Σ), where Σ = Ω−1 and Ω is from a given network structure. Unlike the
comparison of computational efficiency, we need to choose criteria for the selection
of the optimal tuning parameter of the CLIME, GLASSO, and CONCORD. For a fair
comparison, we adopt the Bayesian information criterion (BIC), which is widely used
in model selection, and search the optimal tuning parameter over an equally spaced
grid (0.10, 0.12, . . . , 0.88, 0.90). We generate 50 datasets, each of which we search
the optimal tuning parameters for the CLIME, GLASSO, and CONCORD and apply
λpb, λuniv , λub for the SPMESL.

In this numerical study, we implement R package cdscalreg for the CD algo-
rithmwith awarm start strategy for the scaledLasso andSPMESL,which is available at
https://sites.google.com/view/seunghwan-lee/software. For the other methods in this
study, we use R packages fastclime for FASTCLIME, glasso for GLASSO,
gconcord for CONCORD, scalreg for the original algorithm for SPMESL. Note
that consider FASTCLIME (Pang et al. 2014) for the CLIME, which obtains the
CLIME estimator efficiently and provides a solution path of the CLIME applying the
parametric simplex method. It is also worth noting that the GPUs we used are more

123

https://sites.google.com/view/seunghwan-lee/software

236 S. Lee et al.

Table 1 The averages of the computation times (sec.) over 10 datasets. Numbers in the parentheses denote
the standard errors

Network p n scalreg CD-CPU PCD-GPU PCD-MPI FASTCLIME GLASSO CONCORD

AR(1) 1000 250 937.7358 8.5027 4.4356 18.8599 241.0991 0.7091 6.4348

(4.4662) (0.0519) (0.0749) (0.7913) (4.0303) (0.0081) (0.1541)

500 4345.7155 13.9459 4.2743 21.4523 227.3807 1.2521 12.4249

(3.9313) (0.0335) (0.0397) (0.8523) (2.2561) (0.1210) (0.0830)

AR(4) 1000 250 803.3684 5.9992 1.7896 19.2027 233.5897 0.8030 3.4643

(0.9841) (0.0158) (0.0274) (1.0094) (1.9512) (0.0460) (0.0410)

500 4043.0187 8.6698 2.2892 20.0631 259.5524 8.9721 7.5435

(4.4534) (0.0220) (0.0317) (0.8708) (2.0104) (0.2280) (0.2210)

Scale-Free 1000 250 790.8713 5.1367 3.0949 18.8765 238.7474 0.6852 3.5295

(0.6122) (0.0376) (0.0545) (1.3815) (1.7989) (0.0010) (0.0481)

500 3819.9712 9.1574 3.0781 19.2749 246.0107 0.7945 7.0473

(8.2088) (0.0190) (0.0255) (0.7189) (1.2268) (0.0014) (0.0775)

Hub 1000 250 787.6731 4.7785 7.3326 18.8566 245.2853 0.7512 6.1875

(0.8286) (0.0247) (0.1355) (1.3197) (1.6676) (0.0099) (0.1024)

500 3769.7531 9.2215 7.7584 18.7167 250.2303 2.2454 12.7924

(23.6487) (0.0458) (0.1942) (0.5727) (2.0064) (0.1917) (0.2707)

efficient for conducting operations with single-precision values than double-precision
values, but theRprogramming language only supports the double-precision thatmakes
the efficiency of the GPU-parallel computation decrease. Although this PCD imple-
mentation could decrease its computational efficiency, we develop an R function for
the PCD algorithm to provide an efficient and convenient tool for R users. If read-
ers want to utilize GPU-parallel computation maximally, PyCUDA (Klöckner et al.
2012) is one of the convenient and favorable ways to implement CUDA GPU-parallel
computation.

4.2 Comparison results for computational efficiency

Table 1 reports the average computation times and standard errors over 10 datasets.
From Table 1, we numerically verify that the proposed algorithm based on the CD
with warm-start strategy is more efficient than the original algorithm based on the
LARS, where the proposed algorithm (CD-CPU) is 110.2 and 466.3 times faster than
LARS-CPU for the worst case (AR(1), n = 250) and the best case (AR(4), n = 500),
respectively. For comparison of efficiency with other methods, overall, the CD-CPU
is faster than FASTCLIME and slower than GLASSO and CONCORD. GLASSO is
the most efficient algorithm in our numerical study. Its efficiency is from the sub-
procedure that reduces the computational cost by the pre-identification procedure for
nonzero block diagonals of the estimate that rearranges the order of variables for a
given tuning parameter described in Witten et al. (2011). The CONCORD is faster
than the CD-CPU in general because the CD algorithm for the CONCORD is applied

123

An efficient GPU-parallel coordinate descent algorithm for sparse… 237

to minimize its objective function directly. However, the CD algorithm in the CD-CPU
is repeatedly applied to solve the lasso subproblems. Even though the GLASSO and
CONCORD are faster than the CD-CPU, the GLASSO and CONCORD are tuning-
search methods while the CD-CPU is not. Thus, the CD-CPU becomes the most
efficient when the GLASSO and CONCORD need to evaluate more than five tuning
parameters. For the efficiency of the PCD-GPU, we can see that the PCD-GPU is
faster than CD-CPU for all cases except for the case of (Hub, n = 250). In addition,
Table 1 also shows that the efficiency of the PCD-GPU increases as the sample size
increases. For example, all computation times of CD-CPU significantly increase when
the sample size increases from 250 to 500. However, there is no significant difference
on the computation times of PCD-GPU between the sample sizes 250 and 500. This
might show that the GPU device has idle processing units when n = 250. Note that
the estimator of the SPMESL can be obtained by solving p scaled Lasso problems
independently on multi CPU cores instead of on GPUs. However, the cost per core of
CPU is more expensive than that of GPU. Moreover, the average computation times
of the parallel computation of the CD-CPU with 16 CPU cores with the R package
doParallel (PCD-MPI in Table 1) are around 20 seconds, which are worse than
CD-CPU. This inefficiency might be from the communication cost and the number of
CPU cores not enough for large p.

To verify the efficiency of PCD-GPU compared to CD-CPU, we conduct addi-
tional numerical studies for CD-CPU and PCD-GPUwith p = 500, 1000, 2000, 5000
and n = 250, 500, 1000. Table 2 reports the average computation times and stan-
dard errors measured in CPU time (seconds) for CD-CPU and PCD-GPU. As
shown in Table 2, PCD-GPU becomes more efficient than CD-CPU when either
the number of variables or the sample size increases. For example, CD-CPU is
1.05∼1.94 times faster than PCD-GPU only for the Hub-network cases of (p, n) =
(500, 250), (500, 500), (1000, 250); however, PCD-GPU outperforms CD-CPU for
all the other cases and 4.71∼11.65 times faster than CD-CPU when p = 5000. In
Table 2, we also find an advantage of the GPU-parallel computation. Originally, the
parallel computation in PCD-GPU applied to reduce the computational cost depends
on the number of variables. However, the additional numerical studies support that
the parallel computation in PCD-GPU also reduces the computation times when the
number of samples increases for a fixed p. This advantage is from the efficiency of the
GPU-parallel computation for the matrix-matrix and matrix-vector multiplications.
Thus, the additional numerical studies show that PCD-GPU is favorable for the cases
where either p or n is sufficiently large.

4.3 Comparison results for estimation performance

Tables 3 and 4 report the averages of the number of estimated edges (|Ê |) and the
six performance measures over 50 data sets for AR(1), AR(4), Scale-free, and Hub
networks. From the results in Tables 3 and 4, we can find several interesting features.
First, focusing on comparing SPMESL-P, SPMESL-2, and SPMESL-4, the SPMESL-
P obtains the smallest estimation error in Frobenius norm, and the SPMESL-4 has the
largest estimation error for all network structures. The estimation error of SPMESL-

123

238 S. Lee et al.

Table 2 The averages of the computation times (sec.) over 10 datasets. Numbers in the parentheses denote
the standard errors

Network n p = 500 p = 1000 p = 2000 p = 5000

CD PCD CD PCD CD PCD CD PCD

AR(1) 250 2.2800 1.9528 8.7067 4.4149 38.1056 12.0651 297.7769 60.1581

(0.0224) (0.0414) (0.0268) (0.0765) (0.0841) (0.1121) (0.2836) (0.9851)

500 3.4519 1.7117 13.8964 4.2744 59.2341 12.8309 436.7230 64.4670

(0.0134) (0.0330) (0.0419) (0.0445) (0.0736) (0.1152) (2.7395) (0.7545)

1000 5.8935 1.7364 23.5556 4.9784 99.7887 15.8946 700.8538 85.5756

(0.0265) (0.0217) (0.0636) (0.0561) (0.1460) (0.1447) (1.0246) (0.6645)

AR(4) 250 1.4538 0.8794 6.1486 1.7679 27.9208 4.9945 232.7940 20.9527

(0.0077) (0.0258) (0.0265) (0.0271) (0.0666) (0.2905) (0.2484) (0.3062)

500 2.1363 0.9950 8.5920 2.2517 37.8047 6.2053 305.4613 26.2313

(0.0116) (0.0177) (0.0254) (0.0372) (0.0777) (0.2523) (0.3319) (0.6105)

1000 6.1868 1.5552 21.5172 4.1366 80.3323 12.1282 499.1462 57.1606

(0.0312) (0.0155) (0.1308) (0.0284) (0.3212) (0.0558) (2.8728) (0.7015)

Scale-Free 250 1.2493 1.1620 4.9605 2.9021 22.1757 6.8921 186.5103 35.0760

(0.0067) (0.0328) (0.0227) (0.0426) (0.0362) (0.0762) (0.2680) (0.6203)

500 2.1820 1.1572 8.7524 2.9931 38.4489 8.3851 300.9288 44.9643

(0.0094) (0.0109) (0.0196) (0.0276) (0.0646) (0.1162) (0.6319) (0.5134)

1000 3.7781 1.2210 15.0969 3.6376 65.1003 11.1231 479.8427 63.4638

(0.0074) (0.0122) (0.0141) (0.0298) (0.1194) (0.0762) (1.4722) (0.9511)

Hub 250 1.2021 2.3266 4.5724 6.9508 19.9179 11.6372 168.9348 35.8963

(0.0075) (0.0434) (0.0207) (0.1257) (0.0456) (0.2135) (0.2214) (0.6634)

500 2.2632 2.3915 8.9738 7.6092 38.4337 15.7290 300.2697 53.2606

(0.0078) (0.0335) (0.0220) (0.1866) (0.0630) (0.3070) (0.4684) (0.4222)

1000 3.9263 2.6366 15.6040 9.6065 66.8115 21.4761 492.7247 77.6366

(0.0108) (0.0342) (0.0279) (0.1127) (0.1204) (0.1523) (1.1698) (0.4552)

2 is located near the middle of an interval defined by the estimation errors of the
SPMESL-P and SPMESL-4. However, for the performance in the identification of the
true edges, the SPMESL-4 has the smallest SEN and FDR for all network structures,
and the SPMESL-2 obtains the lowest MISR and the highest MCC for Scale-free and
Hub networks while the SPMESL-P has the highest MISR and the lowest MCC for all
network structures. For AR(1) and AR(4) network structures, the MISR and the MCC
of the SPMESL-2 are worse than those of the SPMESL-4, but the differences of the
SPMESL-2 and the SPMESL-4 are small. For example, the difference in the MCC
of the SPMESL-2 and the SPMESL-4 are 0.0195 and 0.0095 in an original scale for
AR(1) and AR(4), respectively.

Second, by comparing the SPMESL and the tuning-search methods (CLIME,
GLASSO, CONCORD), the SPMESL-2 and SPMESL-4 obtain considerably small
FDRs compared to the tuning-search methods. For example, the FDRs by the tuning-
search methods are over 27% for all cases, but the FDRs by the SPMESL-2 and the
SPMESL-4 are less than 6.2%. The SPMESL-P has the lowest MCC and the highest

123

An efficient GPU-parallel coordinate descent algorithm for sparse… 239

Table 3 For AR(1) and AR(4) networks with p = 500 and n = 250, the averages of the number of
estimated edges, the five performance measures and the Frobenius norms of difference of the estimate and
true precision matrix over 50 datasets. Numbers in the parentheses denote the standard errors

Network Method |Ê | SEN SPE FDR MISR MCC ‖Ω̂ − Ω‖F
AR(1) (|E | = 499) CLIME 897.80 100.00 99.68 44.33 0.32 74.48 9.17

(5.20) (0.00) (0.00) (0.31) (0.00) (0.21) (0.02)

GLASSO 2134.48 100.00 98.68 76.57 1.31 48.07 12.74

(14.52) (0.00) (0.01) (0.16) (0.01) (0.17) (0.02)

CONCORD 722.16 100.00 99.82 30.84 0.18 83.08 4.96

(2.93) (0.00) (0.00) (0.29) (0.00) (0.17) (0.01)

SPMESL-P 649.28 100.00 99.88 23.12 0.12 87.62 3.65

(1.68) (0.00) (0.00) (0.20) (0.00) (0.11) (0.01)

SPMESL-2 524.74 100.00 99.98 4.90 0.02 97.51 4.55

(0.77) (0.00) (0.00) (0.14) (0.00) (0.07) (0.01)

SPMESL-4 504.40 100.00 100.00 1.07 0.00 99.46 6.39

(0.36) (0.00) (0.00) (0.07) (0.00) (0.04) (0.01)

AR(4) (|E | = 1990) CLIME 908.58 32.55 99.79 28.70 1.29 47.65 22.35

(2.66) (0.08) (0.00) (0.15) (0.00) (0.08) (0.01)

GLASSO 988.96 28.86 99.66 41.66 1.47 40.36 23.17

(10.79) (0.07) (0.01) (0.52) (0.01) (0.17) (0.01)

CONCORD 979.40 33.03 99.74 32.86 1.33 46.52 18.46

(3.33) (0.08) (0.00) (0.19) (0.00) (0.10) (0.01)

SPMESL-P 1206.32 36.31 99.61 40.09 1.40 45.99 18.40

(2.97) (0.07) (0.00) (0.16) (0.00) (0.09) (0.01)

SPMESL-2 545.30 25.71 99.97 6.18 1.21 48.77 20.57

(0.94) (0.02) (0.00) (0.15) (0.00) (0.05) (0.01)

SPMESL-4 499.00 25.05 100.00 0.11 1.20 49.72 22.72

(0.17) (0.01) (0.00) (0.02) (0.00) (0.01) (0.01)

FDR for Scale-free and Hub networks and obtains the second-lowest MCC and the
second-highest FDR for AR(4) networks, where only the GLASSO is worse than the
SPMESL-P in terms of the MCC and FDR. For AR(1) network, the SPMESL with all
penalty levels are better than the tuning-search methods for identifying the true edges,
and the estimation errors of the SPMESL-P and SPMESL-2 are less than those of the
tuning-search methods.

Finally, we compare the estimation performance of the tuning-search methods. For
the estimation error in the Frobenius norm, the CONCORD outperforms CLIME and
GLASSO for all cases, where the CONCORD obtains similar estimation errors to the
SPMESL-P for AR(4), Scale-free, and Hub networks. However, for the identification
of the true edges, the CLIME obtains slightly better performance than the CONCORD
for all networks except the AR(1) network. For the AR(1) network, the CONCORD
outperforms CLIME and GLASSO for estimation error and identification of the true
edges. In our numerical study, the CONCORD is favorable among the three tuning-
search methods we consider. Note that we adopt the BIC for three tuning-search

123

240 S. Lee et al.

Table 4 For Scale-Free and Hub networks with p = 500 and n = 250, the averages of the number of
estimated edges, the five performance measures and the Frobenius norms of differences of the estimate and
true precision matrix over 50 datasets. Numbers in the parentheses denote the standard errors

Network Method |Ê | SEN SPE FDR MISR MCC ‖Ω̂ − Ω‖F
Scale-Free (|E | = 495) CLIME 643.08 91.38 99.85 29.63 0.19 80.10 8.33

(2.19) (0.16) (0.00) (0.24) (0.00) (0.17) (0.01)

GLASSO 810.52 92.84 99.72 43.08 0.31 72.53 7.79

(7.21) (0.19) (0.01) (0.52) (0.01) (0.31) (0.02)

CONCORD 682.36 93.04 99.82 32.39 0.21 79.20 5.33

(4.00) (0.17) (0.00) (0.40) (0.00) (0.23) (0.01)

SPMESL-P 1022.56 94.60 99.55 54.18 0.47 65.66 5.15

(3.66) (0.14) (0.00) (0.17) (0.00) (0.14) (0.01)

SPMESL-2 457.88 87.94 99.98 4.92 0.07 91.40 6.57

(1.06) (0.15) (0.00) (0.16) (0.00) (0.11) (0.01)

SPMESL-4 348.34 70.33 100.00 0.06 0.12 83.79 8.83

(0.85) (0.17) (0.00) (0.02) (0.00) (0.10) (0.01)

Hub (|E | = 551) CLIME 644.02 84.36 99.86 27.80 0.21 77.93 8.43

(2.31) (0.23) (0.00) (0.21) (0.00) (0.17) (0.01)

GLASSO 881.76 87.44 99.68 45.03 0.38 69.10 7.89

(10.37) (0.27) (0.01) (0.59) (0.01) (0.31) (0.02)

CONCORD 731.22 89.03 99.81 32.73 0.24 77.24 5.55

(5.43) (0.19) (0.00) (0.51) (0.00) (0.27) (0.01)

SPMESL-P 1094.14 91.32 99.52 53.99 0.51 64.62 5.37

(3.33) (0.14) (0.00) (0.14) (0.00) (0.12) (0.01)

SPMESL-2 474.36 81.22 99.98 5.64 0.10 87.49 6.78

(1.55) (0.22) (0.00) (0.15) (0.00) (0.13) (0.01)

SPMESL-4 319.72 57.96 100.00 0.11 0.19 76.02 8.90

(1.20) (0.21) (0.00) (0.02) (0.00) (0.14) (0.01)

methods for a fair comparison, but the comparison results might be changed if we
apply other model selection criteria.

From the results of the estimation performance comparison, we recommend the
SPMESL with the universal penalty level λuniv if the target problem can accept the
FDR level around 5%; the uniform-bound penalty level is only preferred when the
problem only accepts the small FDR less than 1%. Note that we do not recommend
using the probabilistic bound λpb as the SPMESL-P has the highest FDR among three
penalty levels for the SPMESL, which are over 50% for Scale-free and Hub networks,
although the SPMESL-P obtains the lowest estimation error in Frobenius norm.

5 Conclusion

In this paper, we proposed an efficient coordinate descent algorithm with the warm
start strategy for sparse precision matrix estimation using the scaled lasso motivated
by the empirical observation that the iterative solution for the diagonal elements of

123

An efficient GPU-parallel coordinate descent algorithm for sparse… 241

the precision matrix needs only a few iterations. In addition, we also develop the
parallel coordinate descent algorithm (PCD) for the SPMESL by representing p Lasso
subproblems as the unified minimization problem. In the PCD algorithm, we use a
different convergence criterion ‖B(k+1) −B(k)‖∞ < δ to check the convergence of the
PCD algorithm for the unified minimization problem. We show that the difference in
the iterative solutions of the CD and PCD caused by the difference of the convergence
criteria is also bounded by the convergence tolerance δ.

Our numerical study shows that the proposed CD algorithm is much faster than
the original algorithm of the SPMESL, which adopts the LARS algorithm to solve
the Lasso subproblems.Moreover, the PCD algorithmwith GPU-parallel computation
becomes more efficient than the CD algorithm when either the number of variables
or the sample size increases. For the optimal tuning parameter for the SPMESL,
there are three suggestions without the comparison of the estimation performance. In
the additional simulation, we numerically investigate the estimation performance of
the SPMESL with the three penalty levels and the other three tuning-search meth-
ods. From the comparison results, the SPMESL with the uniform bound level and
the universal penalty level outperform the three tuning-search methods. Specifically,
the probabilistic bound level λpb = √

2Ln(k/p) provides the estimate that has the
smallest estimation error in terms of the Frobenius norm; the uniform bound level
λub = √

4n−1 log(p) provides the estimate that has the smallest FDR less than 1%;
and the universal penalty level λuniv = √

2n−1 log(p − 1) obtains either the best or
second-best in terms of MCC and FDR. Overall, we recommend the SPMESL with
the universal penalty level and apply the CD algorithm if p is less than or equal to
1000 and the PCD algorithm when the target problem has more than 1000 variables
and GPU-parallel computation is available.

Acknowledgements DonghyeonYu’s research was supported by the INHAUNIVERSITYResearch Grant
and the National Research Foundation of Korea (NRF-2020R1F1A1A01048127).

References

Ali A, KhareK, Oh S-Y, RajaratnamB (2017)Generalized pseudolikelihoodmethods for inverse covariance
estimation. In: Proceedings of the 20th international conference on artificial intelligence and statistics
vol 54, pp 280–288

Barabási A, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512. https://doi.
org/10.1126/science.286.5439.509

Bradely Efron B, Hastie T, Johnstone I, Tibshirani R (2004) Least angle regression. Ann Stat 32:407–499.
https://doi.org/10.1214/009053604000000067

Bickel PJ, Levina E (2008) Regularized estimation of large covariance matrices. Ann Stat 36:199–227.
https://doi.org/10.1214/009053607000000758

Bickel PJ, Levina E (2008) Covariance regularization by thresholding. Ann Stat 36:2577–2604. https://doi.
org/10.1214/08-AOS600

Cai TT, Zhang CH, Zhou HH (2010) Optimal rates of convergence for covariance matrix estimation. Ann
Stat 38:2118–2144. https://doi.org/10.1214/09-AOS752

Cai T, Liu W (2011) Adaptive thresholding for sparse covariance matrix estimation. J Am Stat Assoc
106:672–684. https://doi.org/10.1198/jasa.2011.tm10560

Cai TT, LiuW, LuoX (2011) A constrained �1 minimization approach to sparse precisionmatrix estimation.
J Am Stat Assoc 106:594–607. https://doi.org/10.1198/jasa.2011.tm10155

123

https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1214/009053604000000067
https://doi.org/10.1214/009053607000000758
https://doi.org/10.1214/08-AOS600
https://doi.org/10.1214/08-AOS600
https://doi.org/10.1214/09-AOS752
https://doi.org/10.1198/jasa.2011.tm10560
https://doi.org/10.1198/jasa.2011.tm10155

242 S. Lee et al.

Cai TT, ZhouHH (2012)Minimax estimation of large covariancematrices under �1 norm. Stat Sin 22:1319–
1349. https://doi.org/10.5705/ss.2010.253

Cai TT, Liu W, Zhou HH (2016) Estimating sparse precision matrix: optimal rates of convergence and
adaptive estimation. Ann Stat 44:455–488. https://doi.org/10.1214/13-AOS1171

Friedman J, Hastie T, Tibshirani R (2008) Sparse inverse covariance estimation with the graphical Lasso.
Biostatistics 9:432–441. https://doi.org/10.1093/biostatistics/kxm045

Khare K, Oh S-Y, Rajaratnam B (2015) A convex pseudolikelihood framework for high dimensional partial
correlation estimation with convergence guarantees. J R Stat Soc Series B 77:803–825

Klöckner A, Pinto N, Lee Y, Catanzaro B, Ivanov P, Fasih A (2012) PyCUDA and PyOpenCL: a scripting-
based approach to GPU run-time code generation. Parallel Comput 38:157–174. https://doi.org/10.
1016/j.parco.2011.09.001

Mazumder R, Hastie T (2012) The graphical lasso: new insights and alternatives. Electr J Stat 6:2125–2149.
https://doi.org/10.1214/12-EJS740

Meinshausen N, Bühlmann P (2006) High dimensional graphs and variable selection with the Lasso. Ann
Stat 34:1436–1462. https://doi.org/10.1214/009053606000000281

Pang H, Liu H, Vanderbei R (2014) The FASTCLIME package for linear programming and large-scale
precision matrix estimation in R. J Mach Learn Res 15:489–493

Peng J, Wang P, Zhou N, Zhu J (2009) Partial correlation estimation by joint sparse regression models. J
Am Stat Assoc 104:735–746. https://doi.org/10.1198/jasa.2009.0126

Ren Z, Sun T, Zhang C-H, Zhou HH (2015) Asymptotic normality and optimalities in estimation of large
Gaussian graphical model. Ann Stat 43:991–1026. https://doi.org/10.1214/14-AOS1286

Rothman AJ, Levina E, Zhu J (2009) Generalized thresholding of large covariance matrices. J Am Stat
Assoc 104:177–186. https://doi.org/10.1198/jasa.2009.0101

Schäfer J, Strimmer K (2005) A shrinkage approach to large-scale covariance matrix estimation and impli-
cations for functional genomics. Stat Appl Genet Mol Biol 4:32. https://doi.org/10.2202/1544-6115.
1175

Sun T, Zhang CH (2012) Scaled sparse linear regression. Biometrika 99:879–898. https://doi.org/10.1093/
biomet/ass043

Sun T, Zhang CH (2013) Sparse matrix inversion with scaled lasso. J Mach Learn Res 14:3385–3418
Tibshirani R (1996) Regression shrinkage and selection via the Lasso. J Roy Stat Soc B 58:267–288. https://

doi.org/10.1111/j.2517-6161.1996.tb02080.x
Tseng P (2001) Convergence of a block coordinate descent method for nondifferentiable minimization. J

Optim Theory Appl 109:475–494. https://doi.org/10.1023/A:1017501703105
van de Geer S, Bühlmann P (2009) On the conditions used to prove oracle results for the Lasso. Electr J

Stat 3:1360–1392. https://doi.org/10.1214/09-EJS506
Witten D, Friedman J, Simon N (2011) New insights and faster computations for the graphical lasso. J

Comput Graph Stat 20:892–900. https://doi.org/10.1198/jcgs.2011.11051a
Wu TT, Lange K (2008) Coordinate descent algorithms for lasso penalized regression. Ann Appl Stat

2:224–244. https://doi.org/10.1214/07-AOAS147
Wu WB, Pourahmadi M (2009) Banding sample autocovariance matrices of stationary processes. Stat Sin

19:1755–1768
Yao J, Zheng S, Bai Z (2015) Large sample covariance matrices and high-dimensional data analysis.

Cambridge University Press, New York, NY. https://doi.org/10.1017/CBO9781107588080
Yuan M, Lin Y (2007) Model selection and estimation in the Gaussian graphical model. Biometrika 94:19–

35. https://doi.org/10.1093/biomet/asm018
Yuan M (2010) Sparse inverse covariance matrix estimation via linear programming. J Mach Learn Res

11:2261–2286

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.5705/ss.2010.253
https://doi.org/10.1214/13-AOS1171
https://doi.org/10.1093/biostatistics/kxm045
https://doi.org/10.1016/j.parco.2011.09.001
https://doi.org/10.1016/j.parco.2011.09.001
https://doi.org/10.1214/12-EJS740
https://doi.org/10.1214/009053606000000281
https://doi.org/10.1198/jasa.2009.0126
https://doi.org/10.1214/14-AOS1286
https://doi.org/10.1198/jasa.2009.0101
https://doi.org/10.2202/1544-6115.1175
https://doi.org/10.2202/1544-6115.1175
https://doi.org/10.1093/biomet/ass043
https://doi.org/10.1093/biomet/ass043
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1023/A:1017501703105
https://doi.org/10.1214/09-EJS506
https://doi.org/10.1198/jcgs.2011.11051a
https://doi.org/10.1214/07-AOAS147
https://doi.org/10.1017/CBO9781107588080
https://doi.org/10.1093/biomet/asm018

	An efficient GPU-parallel coordinate descent algorithm for sparse precision matrix estimation via scaled lasso
	Abstract
	1 Introduction
	2 Sparse precision matrix estimation via scaled lasso
	2.1 Scaled lasso
	2.2 Sparse precision matrix estimation via scaled Lasso

	3 Efficient coordinate descent algorithm for SPMESL and its GPU-parallelization
	3.1 CD algorithm for subproblem of the scaled Lasso
	3.2 CD algorithm for SPMESL
	3.3 Parallel CD algorithm for SPMESL using GPU

	4 Numerical study
	4.1 Data construction and simulation settings
	4.2 Comparison results for computational efficiency
	4.3 Comparison results for estimation performance

	5 Conclusion
	Acknowledgements
	References

