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Abstract
Uniformdesign is one of themost frequently useddesigns of experiment, and all factors
are usually regarded as equally important in the existing literature of uniform design. If
some prior information of certain factors is known, the potential importance of factors
should be distinguished. In this paper, by assigning differentweights to factorswith dif-
ferent importance, the weighted wrap-around L2-discrepancy is proposed to measure
the uniformity of design when some prior information of certain factors are known.
The properties of weighted wrap-around L2-discrepancy are explored. Accordingly,
the weighted generalized wordlength pattern is proposed to describe the aberration
of these kinds of designs. The relationship between the weighted wrap-around L2-
discrepancy and weighted generalized wordlength pattern is built, and a lower bound
ofweightedwrap-around L2-discrepancy is obtained.Numerical results show that both
weighted wrap-around L2-discrepancy and weighted generalized wordlength pattern
are precisely to capture the difference of importance among the columns of design.

Keywords Lower bound · Prior information of factor · Uniform design · Weighted
generalized wordlength pattern · Weighted wrap-around L2-discrepancy

1 Introduction

Uniform design has been frequently used in physical and computer experiments (see
Fang et al. 2006, 2018). Uniform design scatters its experimental points uniformly
throughout the design domain under some discrepancy criteria. As a measure of uni-
formity, discrepancy plays a key role in uniform design. Various discrepancies have
been proposed by using the tool of reproducing kernel Hilbert space. The widely used
discrepancies include, centered L2-discrepancy and symmetric L2-discrepancy (Hick-
ernell 1998a), wrap-around L2-discrepancy (Hickernell 1998b), discrete discrepancy

B Zujun Ou
ozj9325@mail.ccnu.edu.cn

1 College of Mathematics and Statistics, Jishou University, Jishou 416000, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00180-022-01193-9&domain=pdf
http://orcid.org/0000-0002-3412-738X


2718 B. Luo et al.

(Hickernell and Liu 2002; Qin and Fang 2004), Lee discrepancy (Zhou et al. 2008),
generalized discrete discrepancy (Chatterjee and Qin 2011) and mixture discrepancy
(Zhou et al. 2013). To overcome the drawbacks in projection uniformity measured
by symmetric L2-discrepancy, the projection weighted symmetric L2-discrepancy is
proposed by He et al. (2020).

The general problem considered in design of experiment is how to select the “best"
fractional factorial designs. In situations where we have little or no knowledge about
the effects that are potentially important, it is appropriate to select designs using the
minimum aberration criterion (Fries and Hunter 1980) or its generalization based on
(generalized) wordlength pattern. The minimum aberration criterion has been fre-
quently used in the selection of regular fractional factorial designs (Mukerjee and Wu
2006; Wu and Hamada 2009). In order to compare general factorial designs, Tang and
Deng (1999) and Xu and Wu (2001) proposed the generalized minimum aberration
criterion. They further justified the criterion for designs with qualitative factors under
anANOVAmodel.Meanwhile, theminimumgeneralized aberration criterionwas pro-
posed by Ma and Fang (2001) based on code theory. Motivating by the desire to unify
minimum aberration and minimum β-aberration criteria, the concept of wordlength
enumerator is proposed by Tang andXu (2020) for general fractional factorial designs.

Usually, all factors are regarded as equally important in the existing literature of uni-
form design. In fact, not all factors are equally important in the design of experiment. If
some knowledge or information indicates that certain effects are potentially important
or unimportant, the potential importance of factors should be carefully distinguished.

Developing a newuniformitymeasure ismotivated by the desire to reflect the impor-
tance of each factor that some important or unimportant factors are detected. Based on a
sound statistical principle, the new concept of weighted wrap-around L2-discrepancy
is proposed in this paper, which is capable of measuring the uniformity of design
with some potentially important or unimportant factors. Some properties of weighted
wrap-around L2-discrepancy are further explored. Accordingly, the weighted gener-
alized wordlength pattern is proposed to describe the aberration of design with some
potentially important or unimportant factors. The relationship between the weighted
wrap-around L2-discrepancy and weighted generalized wordlength pattern is built,
and a lower bound of weighted wrap-around L2-discrepancy is obtained. Numerical
results show that both weighted wrap-around L2-discrepancy and weighted general-
ized wordlength pattern performwell in capturing the difference of importance among
experimental factors. We will focus our discussion on two-level designs. However,
most of our arguments are quite general.

This paper is organized as follows. Some notations and preliminaries are described
in Sect. 2. The weighted wrap-around L2-discrepancy is defined in Sect. 3, and
the projection property of weighted wrap-around L2-discrepancy is also studied in
this section. In Sect. 4, the weighted generalized wordlength pattern is defined, the
relationship between the weighted wrap-around L2-discrepancy and weighted gen-
eralized wordlength pattern is built, and a lower bound of weighted wrap-around
L2-discrepancy is obtained. Some numerical examples are provided in Sect. 5 to illus-
trate the theoretical results. Section 6 concludes this paper with some remarks and
future work.
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2 Notations and preliminaries

Consider a class of n runs and m factors with q levels U -type designs, denoted as
U(n; qm). A design d in U(n; qm) can be presented as an n × m matrix with entries
0, 1, . . . , q − 1, and each element occurs equally often in each column. Let d be a
design in U(n; qm), and d is regarded as a set of m columns d = (x1, . . . , xm), where
x j = (x1 j , . . . , xnj )

′ is the j-th column of d, j = 1, . . . , m. Each rowof d corresponds
to a run and each column of d to an experimental factor in the design.

It is to be noted that any treatment combination (xi1, . . . , xim) in design d ∈
U(n; qm) can be mapped to (ui1, . . . , uim), where ui j = 2xi j +1

2q , i = 1, . . . , n, j =
1, . . . , m. Traditionally, the uniformity of design d ∈ U(n; qm) is measured by the
wrap-around L2-discrepancy, due to Hickernell (1998b), given by

[W D(d)]2 = −
(
4

3

)m

+ 1

n2

n∑
i,l=1

m∏
j=1

(
3

2
− α

j
il

)
, (1)

where α
j
il = ∣∣ui j − ul j

∣∣ − ∣∣ui j − ul j
∣∣2 , j = 1, . . . , m; i, l = 1, . . . , n.

In particular, for two-level U -type designs d ∈ U(n; 2m), another formulation
of wrap-around L2-discrepancy is presented in Fang et al. (2003) based on the row
distance as follows

[W D(d)]2 = −
(
4

3

)m

+ 1

n2

(
5

4

)m n∑
i, j=1

(
6

5

)hi j

, (2)

where hi j is the coincidence number between the i-th and j-th rows of design d.
Moreover, a lower bound of [W D(d)]2 for d ∈ U(n; 2m) is obtained in their paper as
follows

[W D(d)]2 ≥ −
(
4

3

)m

+ 1

n

(
3

2

)m

+ n − 1

n

(
5

4

)m (
6

5

)λ

, (3)

where λ = m(n−2)
2(n−1) .

On the other hand, the generalized minimum aberration (GMA) criterion is pro-
posed by Xu andWu (2001) for comparing fractional factorial designs. For any design
d ∈ U(n; qm) and j = 0, . . . , m, define

B j (d) = 1

n
|{(a, b)|dH (a, b) = j, a ∈ d, b ∈ d}| , (4)

wherea andb are two runs ofd, anddH (a, b) is theHammingdistance betweena andb,
namely, the number of placeswhere they differ. The vector (B0(d), B1(d), . . . , Bm(d))

is called as the distance distribution of design d. The generalized wordlength pattern
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of d ∈ U(n; qm) is defined by (A0(d), A1(d), . . . , Am(d)), where

Ai (d) = 1

n

m∑
j=0

Pi ( j; m, q)B j (d), i = 0, . . . , m, (5)

and Pi ( j; m, q) = ∑i
r=0(−1)r

( j
r

)(m− j
i−r

)
is the Krawtchouk polynomial,

(s
k

) = s(s −
1) · · · (s − k + 1)/k! and (s

k

) = 0 for s < k. By the orthogonality of the Krawtchouk
polynomials, it is easy to show that

B j (d) = n

qm

m∑
i=0

Pj (i; m, q)Ai (d), j = 0, . . . , m. (6)

The generalized minimum aberration criterion for selecting optimal design is to
sequentially minimize Ai (d) for i = 1, . . . , m. One can refer to Xu and Wu (2001)
for more details.

Meanwhile, Ma and Fang (2001) proposed the minimum generalized aberration
(MGA) criterion based on the generalized wordlength pattern, which is similar to
the ones defined in Xu and Wu (2001). In particular, the two generalized wordlength
patterns in Ma and Fang (2001) and Xu and Wu (2001) are exactly the same for
two-level design d ∈ U(n; 2m). Furthermore, the relationship between wrap-around
L2-discrepancy and generalizedwordlength pattern for two-level design d ∈ U(n; 2m)

is obtained in Ma and Fang (2001) as follows

[W D(d)]2 = −
(
4

3

)m

+
(
11

8

)m m∑
j=0

A j (d)

11 j
. (7)

3 Weighted wrap-around L2-discrepancy

Under the assumption that each factor is equally important, the wrap-around L2-
discrepancy is commonly used to measure the uniformity of designs. When some
prior information about the importance of factors is obtained before experiment, it is
not appropriate to use only the wrap-around L2-discrepancy tomeasure the uniformity
of the design. The following uniformdesignmeasured bywrap-around L2-discrepancy
is a heuristic example, it is shown that the importance of each factor is not equally
important.

Example 1 Consider the two-level design d1 = (x1, . . . , x8) ∈ U(8; 28) given below,
it is a uniform design in U(8; 28) under the wrap-around L2-discrepancy. There are
eight factors in design d1 and its factor correlation graph is given in Fig. 1.
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Fig. 1 Factor correlation graph of design d1

d1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 1 0 0
1 0 0 0 1 1 1 0
0 0 0 1 0 0 1 0
1 1 1 1 1 0 0 0
0 1 0 0 1 0 0 1
1 0 1 0 0 0 1 1
0 1 1 1 1 1 1 1
1 1 0 1 0 1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In Fig. 1, the main effects of experimental factors x1, . . . , x8 are respectively rep-
resented by 1, …, 8, and the two-factor interactions between factors a and b are
denoted by a ∗ b, where a, b ∈ {1, . . . , 8} and a < b. The correlations among
all the 8 main effects and 28 two-factor interactions of design d1 are visualized
in Fig. 1. The largest absolute correlations for the two-factor interactions equal 1,
and they are marked by the darkest off-diagonal cells. From Fig. 1, it is shown
that there are 4 factor main effects (4, 5, 7, 8) and 12 two-factor interactions
(1 ∗ 4, 1 ∗ 5, 1 ∗ 7, 1 ∗ 8, 3 ∗ 4, 3 ∗ 5, 3 ∗ 7, 3 ∗ 8, 4 ∗ 6, 5 ∗ 6, 6 ∗ 7, 6 ∗ 8) that
have significant correlations with factor x2, and the degree of correlation of factor
x2 with the main effects and two-factor interactions is significantly higher than the
other 7 factors. Therefore, Fig. 1 provides some prior information about importance of
factors in design d1, and the importance of factor x2 in design d1 is obviously weaker
than the rest factors from the perspective of aberration. On the other hand, there is
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not factor main effect and there are only 7 two-factor interactions that have significant
correlations with factors x1, x3, x6. Thus, the importance of factors x1, x3, x6 in design
d1 are obviously stronger than the rest factors.

To reflect the importance of each factor, the factors could be weighted such that the
importance of each factor is represented by the value of itsweight. Inspired byExample
1, a factor-weighted approach is proposed in this section, which can overcome the lack
of sensitivity of factor importance in the uniform designs measured by wrap-around
L2-discrepancy. A new concept of weighted wrap-around L2-discrepancy is defined
as follows. The resulted uniform designs measured by weighted wrap-around L2-
discrepancy are able to distinguish the importance of each factor without changing the
overall uniformity, which is specifically reflected in the degree of aberration among
factor effects.

Definition 1 Let d ∈ U(n; qm), w = (w1, . . . , wm) be the weight vector of design
d, where 0 ≤ w j < 6 is the weight of the j-th factor, j = 1, . . . , m. The weighted
wrap-around L2-discrepancy of design d with weight vector w is defined as

[W W D(d)]2 = −
(
4

3

)m

+ 1

n2

n∑
i,l=1

m∏
j=1

(
3

2
− w jα

j
il

)
, (8)

where α
j
il ’s are defined in (1).

Remark 1 If there is some prior information about the experimental factors obtained
before the experiment, the weights of these factors could be taken value larger or
smaller than 1, and the weights of rest factors without prior information are assigned
as 1. In Definition 1, the more important of the j-th factor, the larger its weight w j

takes, j = 1, . . . , m. In order to guarantee 3
2 − w jα

j
il > 0, the weight w j of the

j-th factor should be less than 6. The tighter upper bound on w j also depends on the
number of weighted factors, whichwill be discussed inmore details later. In particular,
when all the w j ’s are equal to 1, the weighted wrap-around L2-discrepancy is just the
wrap-around L2-discrepancy defined in (1).

The relationship between the weighted wrap-around L2-discrepancies of design
d ∈ U(n; qm) and its (m − 1)-dimension projection design is given in Theorem 1 as
follows. In addition, it will be helpful to rapidly search uniform designs measured by
weighted wrap-around L2-discrepancy.

Theorem 1 Let d ∈ U(n; qm), d(−k) be any (m − 1)-dimension projection design of
d obtained by deleting the k-th column of d, k = 1, . . . , m, w = (w1, . . . , wm) is the
weight vector of design d. Then the weighted wrap-around L2-discrepancy of design
d with weight vector w can be rewritten as

[W W D(d)]2 = 3

2
[W W D(d(−k))]2 + 1

6

(
4

3

)m−1

− 1

n2

n∑
i,l=1

wkα
k
il

m∏
j=1, j �=k

(
3

2
− w jα

j
il

)
. (9)

123



Uniform design with prior information of factors under… 2723

Proof Without loss of generality, we only consider the case of (m − 1)-dimension
projection design d(−m) of design d obtained by deleting the last column of d, since
the order of columns in design d is interchangeable. Thus, from the definition of
[W W D(d)]2 in (8)

[W W D(d)]2

= −
(
4

3

)m

+ 1

n2

n∑
i,l=1

m∏
j=1

(
3

2
− w jα

j
il

)

= −
(
4

3

)m

+ 1

n2

n∑
i,l=1

m−1∏
j=1

(
3

2
− w jα

j
il

)(
3

2
− wmαm

il

)

= −
(
4

3

)m

+ 1

n2

n∑
i,l=1

m−1∏
j=1

3

2

(
3

2
− w jα

j
il

)

+ 1

n2

n∑
i,l=1

(−wmαm
il

) m−1∏
j=1

(
3

2
− w jα

j
il

)

= −
(
4

3

)m

+ 1

n2

n∑
i,l=1

m−1∏
j=1

3

2

(
3

2
− w jα

j
il

)
− 3

2

(
4

3

)m−1

+ 3

2

(
4

3

)m−1

− 1

n2

n∑
i,l=1

wmαm
il

m−1∏
j=1

(
3

2
− w jα

j
il

)

= 3

2
[W W D(d(−m))]2 + 1

6

(
4

3

)m−1

− 1

n2

n∑
i,l=1

wmαm
il

m−1∏
j=1

(
3

2
− w jα

j
il

)
,

which completes the proof. �	

When all the w j ’s in the weight vector w are equal to 1, the relationship between
uniform design d and (m −1)-dimension projection d(−k) of design d is established in
Theorem 1. Following the line of Theorem 1, [W W D(d(−k))]2 can also be expressed
as the weighted wrap-around L2-discrepancy of the (m − 2)-dimension projection of
design d(−k), and so on. If there are k elements of w j ’s in the weight vector w are
equal to 1, k = 1, . . . , m − 2, that is, there are k factors (e.g. {xi1 , . . . , xik }) of design
d with weight 1, the k-dimension projection design could be taken as the subdesign
dk = (xi1 , . . . , xik ), and the weighted wrap-around L2-discrepancy [W W D(d)]2 of
design d could be expressed as the wrap-around L2-discrepancy [W D(dk)]2 of the
k-dimension projection design dk as the following theorem.

Theorem 2 Let d = (x1, . . . , xm) ∈ U(n; qm). Suppose there are k factors
{xi1 , . . . , xik } of design d with weight 1, and the other (m −k) factors {x j1 , . . . , x jm−k }
of design d with weight w jl �= 1, k = 1, . . . , m − 2 and l = 1, . . . , m − k. Let
dk = (xi1 , . . . , xik ) be the k-dimension projection design of d. Then the weighted

123



2724 B. Luo et al.

wrap-around L2-discrepancy of design d with weight vector w can be rewritten as

[W W D(d)]2 =
(
3

2

)m−k

[W D(dk)]2 +
(
4

3

)k (
3

2

)m−k

−
(
4

3

)m

− 1

n2

m−k−2∑
t=0

n∑
i,l=1

(
3

2

)t

w jt+1α
jt+1
il

∏
j∈{i1,...,ik }

(
3

2
− α

j
il

) m−k∏
g=t+2

(
3

2
− w jg α

jg
il

)

− 1

n2

n∑
i,l=1

(
3

2

)m−k−1

w jm−k α
jm−k
il

∏
j∈{i1,...,ik }

(
3

2
− α

j
il

)
. (10)

Proof According to Definition 1,

[W W D(d)]2

= −
(
4

3

)m

+ 1

n2

n∑
i,l=1

m∏
j=1

(
3

2
− w jα

j
il

)

= −
(
4

3

)m

+ 1

n2

n∑
i,l=1

∏
j∈{i1,...,ik }

(
3

2
− α

j
il

) m−k∏
g=1

(
3

2
− w jg α

jg
il

)

= −
(
4

3

)m

+ 3

2

1

n2

n∑
i,l=1

∏
j∈{i1,...,ik }

(
3

2
− α

j
il

) m−k∏
g=2

(
3

2
− w jg α

jg
il

)

− 1

n2

n∑
i,l=1

w j1α
j1
il

∏
j∈{i1,...,ik }

(
3

2
− α

j
il

) m−k∏
g=2

(
3

2
− w jg α

jg
il

)

= −
(
4

3

)m

+
(
3

2

)2 1

n2

n∑
i,l=1

∏
j∈{i1,...,ik }

(
3

2
− α

j
il

) m−k∏
g=3

(
3

2
− w jg α

jg
il

)

− 1

n2

n∑
i,l=1

w j2α
j2
il

∏
j∈{i1,...,ik }

(
3

2
− α

j
il

) m−k∏
g=3

(
3

2
− w jg α

jg
il

)

− 1

n2

n∑
i,l=1

w j1α
j1
il

∏
j∈{i1,...,ik }

(
3

2
− α

j
il

) m−k∏
g=2

(
3

2
− w jg α

jg
il

)

= −
(
4

3

)m

+
(
3

2

)m−k 1

n2

n∑
i,l=1

∏
j∈{i1,...,ik }

(
3

2
− α

j
il

)

− 1

n2

m−k−2∑
t=0

(
3

2

)t n∑
i,l=1

w jt+1α
jt+1
il

∏
j∈{i1,...,ik }

(
3

2
− α

j
il

) m−k∏
g=t+2

(
3

2
− w jg α

jg
il

)

− 1

n2

(
3

2

)m−k−1 n∑
i,l=1

w jm−k α
jm−k
il

∏
j∈{i1,...,ik }

(
3

2
− α

j
il

)
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=
(
3

2

)m−k
⎡
⎣−

(
4

3

)m−k

+ 1

n2

n∑
i,l=1

∏
j∈{i1,...,ik }

(
3

2
− α

j
il

)⎤
⎦

+
(
4

3

)k (
3

2

)m−k

−
(
4

3

)m

− 1

n2

m−k−1∑
t=0

(
3

2

)t n∑
i,l=1

w jt+1α
jt+1
il

∏
j∈{i1,...,ik }

(
3

2
− α

j
il

) m−k∏
g=t+2

(
3

2
− w jg α

jg
il

)

− 1

n2

(
3

2

)m−k−1 n∑
i,l=1

w jm−k α
jm−k
il

∏
j∈{i1,...,ik }

(
3

2
− α

j
il

)

=
(
3

2

)m−k

[W D(dk)]2 +
(
4

3

)k (
3

2

)m−k

−
(
4

3

)m

− 1

n2

m−k−1∑
t=0

n∑
i,l=1

(
3

2

)t

w jt+1α
jt+1
il

∏
j∈{i1,...,ik }

(
3

2
− α

j
il

) m−k∏
g=t+2

(
3

2
− w jg α

jg
il

)

− 1

n2

(
3

2

)m−k−1 n∑
i,l=1

w jm−k α
jm−k
il

∏
j∈{i1,...,ik }

(
3

2
− α

j
il

)
,

which completes the proof. �	

Remark 2 When k = m, [W W D(d)]2 = [W D(d)]2, that is, the weighted wrap-
around L2-discrepancy is exactly as the wrap-around L2-discrepancy. When k =
m−1, it is a special case ofTheorem1, and the relationship between theweightedwrap-
around L2-discrepancy [W W D(d)]2 of design d and the wrap-around L2-discrepancy
[W D(dk)]2 of dk can be directly obtained by Theorem 1.

4 One factor has prior information in two-level designs

Before carrying out an experiment, weighting the factors is considered onlywhen there
is some prior information of specific factors obtained or in some special circumstances,
which reflects the difference between factors with prior information or special factors
and other factors.

Suppose that there are m2 factors of d existing prior information and the rest m1
(=m − m2) factors without prior information. For convenience, all these kinds of two-
level design d are denoted by U(n; 2m1 ·2m2). First, the distance distribution of design
d ∈ U(n; 2m1 ·2m2)when some factors of d existing prior information are introduced.
For any run a of design d ∈ U(n; 2m1 ·2m2), it can be split into two parts, for example,
a = (a1, a2), where a1 is the part with the first m1 elements of a and a2 is the part
with the last m2 elements of a. For i = 0, 1, . . . , m1 and j = 0, 1, . . . , m2, define

Bi j (d) = 1

n
|{(a, b)|dH (a1, b1) = i, dH (a2, b2) = j,
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a = (a1, a2), b = (b1, b2), a, b ∈ d}|

as the distance distribution of design d ∈ U(n; 2m1 · 2m2). Furthermore, following the
line of Chatterjee et al. (2005), theMacWilliams transforms of the distance distribution
{Bi j (d)} of design d ∈ U(n; 2m1 · 2m2) are

Agh(d) = 1

n

m1∑
i=0

m2∑
j=0

Pg(i; m1, 2)Ph( j; m2, 2)Bi j (d), (11)

where g = 0, 1, . . . , m1; h = 0, 1, . . . , m2.
In most cases, the factors with known prior information are rarely detected. In

this section, the one factor weighted wrap-around L2-discrepancy [W W D(d)]2 of
two-level design d ∈ U(n; 2m−1 · 21), that is, there is only one factor that has prior
information, which will be explored in detail. Without loss of generality, the spe-
cial factor with prior information is arranged in the last column of design d. For
simplicity, the one factor weighted wrap-around L2-discrepancy of two-level design
d ∈ U(n; 2m−1 · 21) is denoted by OW W D2(d).

Fang et al. (2003) expressed the wrap-around L2-discrepancy of two-level design
d ∈ U(n; 2m) as the coincidence numbers between rows of d, which is reviewed in
(2). Similarly, the one factor weighted wrap-around L2-discrepancy OW W D2 of two-
level design d ∈ U(n; 2m−1 · 21) can also be expressed as the coincidence numbers
between rows of projection design of d as follows.

Theorem 3 Let d ∈ U(n; 2m−1 · 21), d(−m) be the projection design of d by deleting
the last column of d, w = (1m−1, wm) be the weight vector of design d, where 1m−1
is the 1 × (m − 1) vector with all elements unity, 0 ≤ wm < 6 and wm �= 1. The one
factor weighted wrap-around L2-discrepancy OW W D2 of design d can be expressed
as

[OW W D2(d)]2 = −
(
4

3

)m

+ 3

2n2

(
5

4

)m−1 n∑
i,l=1

(
6

5

)h′
il

− wm

4n2

(
5

4

)m−1 n∑
i,l=1

δ(uim − ulm)

(
6

5

)h′
il

, (12)

where

δ(x) =
{
0, x = 0,

1, x �= 0,
(13)

and h′
il ’s are the coincidence numbers between the i-th and l-th rows of design d(−m).

Proof According to Theorem 1,

[OW W D2(d)]2 = 3

2
[W W D(d(−m))]2 + 1

6

(
4

3

)m−1
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− 1

n2

n∑
i,l=1

wmαm
il

m−1∏
j=1

(
3

2
− w jα

j
il

)
.

Since the first (m −1) elements in the weight vector w are all equal to 1, the weighted
wrap-around L2-discrepancy [W W D(d(−m))]2 of d(−m) is just the wrap-around L2-
discrepancy [W D(d(−m))]2 of d(−m), that is, [W W D(d(−m))]2 = [W D(d(−m))]2.
When q = 2, ui j can only take 1

4 or 3
4 , thus

3
2 − α

j
il can only take 3

2 or 5
4 . Therefore,

through expressing [W D(d(−m))]2 as the form of (2)

[OW W D2(d)]2

= 3

2
[W D(d(−m))]2 + 1

6

(
4

3

)m−1

− 1

n2

n∑
i,l=1

wmαm
il

m−1∏
j=1

(
3

2
− w jα

j
il

)

= 3

2

⎡
⎣−

(
4

3

)m−1

+ 1

n2

(
5

4

)m−1 n∑
i,l=1

(
6

5

)h′
il

⎤
⎦ + 1

6

(
4

3

)m−1

− 1

n2

n∑
i,l=1

wmαm
il

m−1∏
j=1

(
3

2
− w jα

j
il

)

= −
(
4

3

)m

+ 3

2n2

(
5

4

)m−1 n∑
i,l=1

(
6

5

)h′
il − wm

n2

n∑
i,l=1

αm
il

(
3

2

)h′
il

(
5

4

)m−1−h′
il

= −
(
4

3

)m

+ 3

2n2

(
5

4

)m−1 n∑
i,l=1

(
6

5

)h′
il

− wm

4n2

(
5

4

)m−1 n∑
i,l=1

δ(uim − ulm)

(
6

5

)h′
il

,

which completes the proof. �	
Based on the expression of [W D(d)]2 in (2), a lower bound of wrap-around L2-

discrepancy [W D(d)]2 of design d is obtained in Fang et al. (2003), which is given in
(3). Following the line of Fang et al. (2003), a lower bound of the one factor weighted
wrap-around L2-discrepancy [OW W D2(d)]2 of two-level design d ∈ U(n; 2m−1 ·21)
is provided in the following theorem.

Theorem 4 Let d ∈ U(n; 2m−1 · 21), w = (1m−1, wm) be the weight vector of design
d, where 0 ≤ wm < 6 and wm �= 1. Then [OW W D2(d)]2 ≥ L B1, where

L B1 = −
(
4

3

)m

+ 1

n

(
3

2

)m

+ n − 1

n

(
5

4

)m−γ (
3

2
− wm

4

)γ (
6

5

)λ

, (14)

where γ = 1− n−2
2(n−1) , λ = m(n−2)

2(n−1) . When wm = 1, the lower bound L B1 of OW W D2
in (14) is the same as the ones in (3), which is obtained by Fang et al. (2003).
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Proof Let tm
il = δ(uim −ulm) be the number of different element between the i-th and

l-th rows in the m-th column of design d. According to Definition 1,

[OW W D2(d)]2 = −
(
4

3

)m

+ 1

n2

n∑
i,l=1

m∏
j=1

(
3

2
− w jα

j
il

)

= −
(
4

3

)m

+ 1

n2

n∑
i,l=1

(
3

2

)hil
(
5

4

)m−hil−tm
il

(
3

2
− wm

4

)tm
il

= −
(
4

3

)m

+ 1

n

(
3

2

)m

+ 1

n2

n∑
i=1

n∑
l( �=i)=1

(
3

2

)hil
(
5

4

)m−hil−tm
il

(
3

2
− wm

4

)tm
il

= −
(
4

3

)m

+ 1

n

(
3

2

)m

+ 1

n2

n∑
i=1

n∑
l( �=i)=1

(
6

5

)hil
(
5

4

)m−tm
il

(
3

2
− wm

4

)tm
il

.

Based on Jenssen’s inequality,

1

n(n − 1)

n∑
i=1

n∑
l( �=i)=1

(
6

5

)hil

≥
(
6

5

)λ

,

thus,

[OW W D2(d)]2

≥ −
(
4

3

)m

+ 1

n

(
3

2

)m

+ 1

n2

(
5

4

)m−γ (
3

2
− wm

4

)γ (
6

5

)λ

n(n − 1)

= −
(
4

3

)m

+ 1

n

(
3

2

)m

+ n − 1

n

(
5

4

)m−γ (
3

2
− wm

4

)γ (
6

5

)λ

,

which completes the proof. �	
By adding nonnegativity constraint on the lower bound L B1 of [OW W D2(d)]2

obtained in Theorem 4, an upper bound ofwm in the one factor weighted wrap-around
L2-discrepancy OW W D2 is provided as follows

wm ≤ 6 − 4

{
n

n − 1

(
4

5

)m−γ (
5

6

)λ [(
4

3

)m

− 1

n

(
3

2

)m]} 1
γ

� Uw. (15)

The following lemma will be helpful in establishing another lower bound of the
one factor weighted wrap-around L2-discrepancy OW W D2.

Lemma 1 (Hu et al. 2020) Suppose
∑n

i=1 xi = c1 and
∑n

i=1 yi = c2, where xi and yi

are nonnegative real numbers. Let zi = axi +byi for i = 1, . . . , n, and c = ac1+bc2,
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where a > 0, b > 0. Denote z(1), . . . , z(l) as the ordered arrangements of the distinct
possible values of z1, . . . , zn, where 1 ≤ l ≤ n. Then for any positive integer t

n∑
i=1

zt
i ≥ pzt

(k) + qzt
(k+1),

where k is the largest integer such that z(k) ≤ c/n ≤ z(k+1), p and q are nonnegative
real numbers such that p + q = n and pz(k) + qz(k+1) = c.

A new lower bound of the one factor weighted wrap-around L2-discrepancy
OW W D2 can be obtained from Lemma 1, which is given in the following theorem.

Theorem 5 Let d ∈ U(n; 2m−1 ·21), w = (1m−1, wm) be the weight vector of design d,
where wm ∈ [0, Uw] and wm �= 1. Define zil = ah′

il +bhm
il for i, l = 1, . . . , n and i �=

l, where a = ln( 65 ), b = ln( 6
6−wm

). Denote z(1), . . . , z(s) the ordered arrangements of

the distinct possible values of {zil}, where 1 ≤ s ≤ n(n −1), Then [OW W D2(d)]2 ≥
L B2, where

L B2 = −
(
4

3

)m

+ 1

n

(
3

2

)m

+ 6 − wm

4n2

(
5

4

)m−1

[pez(k) + qez(k+1) ], (16)

k is the largest integer such that z(k) ≤ c
n(n−1) < z(k+1), p and q are nonnegative real

numbers such that p + q = n(n − 1) and pz(k) + qz(k+1) = c = 1
2n(n − 2)(m −

1)a + 1
2n(n − 2)b.

Proof Let hm
il = 1 − tm

il , where tm
il is defined in proof for Theorem 4. According to

Definition 1,

[OW W D2(d)]2 = −
(
4

3

)m

+ 1

n2

n∑
i,l=1

m∏
j=1

(
3

2
− w jα

j
il

)

= −
(
4

3

)m

+ 1

n

(
3

2

)m

+ 6 − wm

4n2

(
5

4

)m−1 n∑
i=1

n∑
l( �=i)=1

(
6

5

)h′
il

(
6

6 − wm

)hm
il

= −
(
4

3

)m

+ 1

n

(
3

2

)m

+ 6 − wm

4n2

(
5

4

)m−1 n∑
i=1

n∑
l( �=i)=1

eah′
il+bhm

il

= −
(
4

3

)m

+ 1

n

(
3

2

)m

+ 6 − wm

4n2

(
5

4

)m−1 n∑
i=1

n∑
l( �=i)=1

∞∑
t=0

zt
il

t !

= −
(
4

3

)m

+ 1

n

(
3

2

)m

+ 6 − wm

4n2

(
5

4

)m−1 ∞∑
t=0

1

t !
n∑

i=1

n∑
l( �=i)=1

zt
il .
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It is easy to verify that
∑n

i=1
∑n

l( �=i)=1 h′
il = c1 = 1

2n(n − 2)(m − 1) and∑n
i=1

∑n
l( �=i)=1 hm

il = c2 = 1
2n(n − 2). From Lemma 1,

n∑
i=1

n∑
l( �=i)=1

zt
il ≥ pzt

(k) + qzt
(k+1).

Thus,

[OW W D2(d)]2

≥ −
(
4

3

)m

+ 1

n

(
3

2

)m

+ 6 − wm

4n2

(
5

4

)m−1 ∞∑
t=0

1

t !
[

pzt
(k) + qzt

(k+1)

]

= −
(
4

3

)m

+ 1

n

(
3

2

)m

+ 6 − wm

4n2

(
5

4

)m−1 [
pez(k) + qez(k+1)

]
,

which completes the proof. �	
From Theorems 4 and 5, an improved lower bound of one factor weighted wrap-

around L2-discrepancy OW W D2 can be obtained in the following.

Theorem 6 Let d ∈ U(n; 2m−1 ·21), w = (1m−1, wm) be the weight vector of design d,
where wm ∈ [0, Uw] and wm �= 1. Then [OW W D2(d)]2 ≥ max{L B1, L B2} � L B,
where L B1 and L B2 are the lower bounds of OW W D2 obtained in Theorems 4 and
5, respectively.

The following theorem provides the relationship between [OW W D2(d)]2 and the
distance distribution {Bi j (d)} of design d ∈ U(n; 2m−1 · 21).
Theorem 7 Let d ∈ U(n; 2m−1 · 21), w = (1m−1, wm) be the weight vector of design
d, where wm ∈ [0, Uw] and wm �= 1. Then [OW W D2(d)]2 can be expressed as

[OW W D2(d)]2 = −
(
4

3

)m

+ 1

n

(
3

2

)m m−1∑
i=0

1∑
j=0

(
5

6

)i (
6 − wm

6

) j

Bi j (d)

= −
(
4

3

)m

+ 1

n

(
3

2

)m m−1∑
i=0

(
5

6

)i

Bi0(d) + 6 − wm

6n

(
3

2

)m m−1∑
i=0

(
5

6

)i

Bi1(d).

Proof According to Definition 1 and the definition of Bi j ’s, [OW W D2(d)]2 can be
rewritten as

[OW W D2(d)]2

= −
(
4

3

)m

+ 1

n2

n∑
i,l=1

m∏
j=1

(
3

2
− w jα

j
il

)

= −
(
4

3

)m

+ 1

n

(
3

2

)m m−1∑
i=0

1∑
j=0

(
3

2

)m−1−i (
5

4

)i (
3

2

)1− j (
6 − wm

4

) j

Bi j (d)
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= −
(
4

3

)m

+ 1

n

(
3

2

)m m−1∑
i=0

1∑
j=0

(
5

6

)i (
6 − wm

6

) j

Bi j (d)

= −
(
4

3

)m

+ 1

n

(
3

2

)m m−1∑
i=0

(
5

6

)i

Bi0(d)

+1

n

(
3

2

)m (
6 − wm

6

) m−1∑
i=0

(
5

6

)i

Bi1(d),

which completes the proof. �	
For design d ∈ U(n; 2m−1 · 21), the relationship between [OW W D2(d)]2 and the

MacWilliams transforms {Agh(d)} of the distance distribution {Bi j (d)} is built in the
following theorem.

Theorem 8 Let d ∈ U(n; 2m−1 · 21), w = (1m−1, wm) be the weight vector of design
d, where wm ∈ [0, Uw] and wm �= 1, w̃m = 12−wm

11 . Then [OW W D2(d)]2 can be
expressed as

[OW W D2(d)]2 = −
(
4

3

)m

+ 12 − wm

11

(
11

8

)m m−1∑
g=0

1∑
h=0

(
wm

12 − wm

)h Agh(d)

11g

= −
(
4

3

)m

+
(
11

8

)m
⎡
⎣w̃m

m−1∑
g=0

Ag0(d)

11g
+ wm

m−1∑
g=0

Ag1(d)

11g+1

⎤
⎦ .

Proof Appling the orthogonality of Krawtchouk polynomials to {Agh(d)} defined in
(11), the expression of [OW W D2(d)]2 in Theorem 7 can be rewritten as

[OW W D2(d)]2

= −
(
4

3

)m

+ 1

n

(
3

2

)m m−1∑
i=0

1∑
j=0

(
5

6

)i (
6 − wm

6

) j

Bi j (d)

= −
(
4

3

)m

+ 1

n

(
3

2

)m m−1∑
i=0

1∑
j=0

(
5

6

)i (
6 − wm

6

) j

×
⎡
⎣ n

2m

m−1∑
g=0

1∑
h=0

Agh(d)Pi (g; m − 1, 2)Pj (h; 1, 2)
⎤
⎦

= −
(
4

3

)m

+
(
3

4

)m m−1∑
i,g=0

(
5

6

)i

Pi (g; m − 1, 2)

×
1∑

j,h=0

Pj (h; 1, 2)
(
6 − wm

6

) j

Agh(d)
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= −
(
4

3

)m

+ 12 − wm

6

(
3

4

)m (
11

6

)m−1 m−1∑
g=0

1∑
h=0

(
wm

12 − wm

)h Agh(d)

11g

= −
(
4

3

)m

+ 12 − wm

11

(
11

8

)m m−1∑
g=0

1∑
h=0

(
wm

12 − wm

)h Agh(d)

11g

= −
(
4

3

)m

+ 12 − wm

11

(
11

8

)m m−1∑
g=0

Ag0(d)

11g
+ wm

11

(
11

8

)m m−1∑
g=0

Ag1(d)

11g

= −
(
4

3

)m

+
(
11

8

)m
⎡
⎣w̃m

m−1∑
g=0

Ag0(d)

11g
+ wm

m−1∑
g=0

Ag1(d)

11g+1

⎤
⎦ ,

which completes the proof. �	
In order to define the weighted generalized wordlength pattern of design d ∈

U(n; 2m−1 · 21), the expression of [OW W D(d)]2 in Theorem 8 can be rewritten
as

[OW W D2(d)]2 = −
(
4

3

)m

+
(
11

8

)m

×
⎡
⎣ w̃m A00(d)

110
+ w̃m

m−1∑
g=1

Ag0(d)

11g
+ wm

m−1∑
g=1

A(g−1)1(d)

11(g−1)+1
+ wm A(m−1)1(d)

11m

⎤
⎦

= −
(
4

3

)m

+
(
11

8

)m

×
⎡
⎣ w̃m A00(d)

110
+

m−1∑
g=1

w̃m Ag0(d) + wm A(g−1)1(d)

11g
+ wm A(m−1)1(d)

11m

⎤
⎦

= −
(
4

3

)m

+
(
11

8

)m m∑
g=0

W Ag(d)

11g
, (17)

where

W Ag(d) =
⎧⎨
⎩

w̃m A00(d), g = 0,
w̃m Ag0(d) + wm A(g−1)1(d), g = 1, . . . , m − 1,
wm A(m−1)1(d), g = m,

(18)

= δ(m − g)w̃m Ag0(d) + δ(g)wm A(g−1)1(d), g = 0, 1, . . . , m, (19)

and w̃m is defined in Theorem 8, δ(·) is the delta function defined in (13).
From the definition of w̃m in Theorem 8, it is easy to see that

⎧⎨
⎩

w̃m > 1, when 0 ≤ wm < 1,
w̃m = 1, when wm = 1,
w̃m < 1, when 1 < wm ≤ Uw.
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Thus, from the definition of W Ag(d)’s in (18) or (19), when 0 ≤ wm < 1 leads
to w̃m > 1, it means that W Ag(d) is mainly decided by Ag0(d) and A(g−1)1(d)

plays a relatively minor role in W Ag(d) for unimportant factor xm . Conversely, when
1 < wm ≤ Uw leads to w̃m < 1, it means that W Ag(d) is mainly decided by
A(g−1)1(d) and Ag0(d) plays a relatively minor role in W Ag(d) for important factor
xm . In particular, whenwm = 1 leads to w̃m = 1, it means that Ag0(d) and A(g−1)1(d)

play the same role in W Ag(d) for without prior information factor xm . In brief, the
aberration among factors in design d ∈ U(n; 2m−1 · 21) is precisely captured by
W Ag(d), g = 1, . . . , m.

On the other hand, comparing the equations (7) and (17), the only difference is that
Ag(d) is substituted by W Ag(d) in turn, g = 0, 1, . . . , m. Based on the W Ag(d)’s
defined in (18) or (19), the weighted generalized wordlength pattern of design d ∈
U(n; 2m−1 · 21) is formally defined as follows.

Definition 2 Let d ∈ U(n; 2m−1 · 21), w = (1m−1, wm) be the weight vec-
tor of design d, where wm ∈ [0, Uw] and wm �= 1. The one factor weighted
generalized wordlength pattern (OWGWP) of design d is defined as W A(d) =
(W A0(d), W A1(d), . . . , W Am(d)), where W Ag(d) is defined in (18) or (19).

When wm = 1, the weighted generalized wordlength pattern of design d ∈
U(n; 2m−1 · 21) in Definition 2 is just the same as the generalized wordlength pattern
of design d ∈ U(n; 2m) defined in (5). From the perspective of aberration, the opti-
mality of designs in U(n; 2m−1 · 21) can be measured by sequentially minimizing the
weighted generalized wordlength pattern defined in Definition 2, and it is formally
defined as follows.

Definition 3 Let d1, d2 be two designs in U(n; 2m−1 · 21), if there exists some
k ∈ {1, . . . , m} such that W Ak(d1) < W Ak(d2) and W A j (d1) = W A j (d2),
j = 0, 1, . . . , k−1, then design d1 is said to have less weighted generalized aberration
than design d2. A design d ∈ U(n; 2m−1 ·21) hasminimumweighted generalized aber-
ration if no other design in U(n; 2m−1 · 21) has less weighted generalized aberration
than it.

From the relationship between [OW W D2(d)]2 and {W Ag(d)} given in (17), the
leading factor of W Ag(d) in [OW W D2(d)]2 decrease exponentially with g, thus
design d ∈ U(n; 2m−1·21)which has lessweighted generalized aberration, in the sense
of having small W Ag(d) for small values of g, behaves well in terms of uniformity
measured by [OW W D2(d)]2.

5 Illustrative examples

In this section, we give some examples to show our theoretical results.
Example 1 (Continued) Consider the design d1 ∈ U(8; 28) in Example 1 again.
Assuming that only one of the experimental factors has prior information, and the
special factor is arranged in rotation to each column of d1, the corresponding weight
is respectively assigned to 0.5 for unimportant factor and 1.5 for important factor. All
the numerical results are listed in Table 1.
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Table 1 Numerical results of design d1

Weight vector w [OW W D(d1)]2 L B W A(d1)

(1, 1, 1, 1, 1, 1, 1, 1) 2.999591 2.999591 (0, 1, 10, 11, 4, 3, 2, 0)

(1, 1, 1, 1, 1, 1, 1, 0.5) 3.553198 3.514575 (0, 0.9, 8.4, 8.5, 2.8, 1.9, 1.1, 0)

(1, 1, 1, 1, 1, 1, 0.5, 1) 3.553198 3.514575 (0, 0.9, 8.4, 8.5, 2.8, 1.9, 1.1, 0)

(1, 1, 1, 1, 1, 0.5, 1, 1) 3.566073 3.514575 (0, 1.0, 8.3, 8.2, 3.1, 2.0, 1.0, 0)

(1, 1, 1, 1, 0.5, 1, 1, 1) 3.553198 3.514575 (0, 0.9, 8.4, 8.5, 2.8, 1.9, 1.1, 0)

(1, 1, 1, 0.5, 1, 1, 1, 1) 3.553198 3.514575 (0, 0.9, 8.4, 8.5, 2.8, 1.9, 1.1, 0)

(1, 1, 0.5, 1, 1, 1, 1, 1) 3.566073 3.514575 (0, 1.0, 8.3, 8.2, 3.1, 2.0, 1.0, 0)

(1, 0.5, 1, 1, 1, 1, 1, 1) 3.514575 3.514575 (0, 0.5, 8.8, 9.3, 2.0, 1.5, 1.5, 0)

(0.5, 1, 1, 1, 1, 1, 1, 1) 3.566073 3.514575 (0, 1.0, 8.3, 8.2, 3.1, 2.0, 1.0, 0)

(1, 1, 1, 1, 1, 1, 1, 1.5) 2.445983 2.395101 (0, 1.1, 11.6, 13.2, 5.2, 4.1, 2.9, 0)

(1, 1, 1, 1, 1, 1, 1.5, 1) 2.445983 2.395101 (0, 1.1, 11.6, 13.2, 5.2, 4.1, 2.9, 0)

(1, 1, 1, 1, 1, 1.5, 1, 1) 2.433108 2.395101 (0, 1.0, 11.7, 13.8, 4.9, 4.0, 3.0, 0)

(1, 1, 1, 1, 1.5, 1, 1, 1) 2.445983 2.395101 (0, 1.1, 11.6, 13.2, 5.2, 4.1, 2.9, 0)

(1, 1, 1, 1.5, 1, 1, 1, 1) 2.445983 2.395101 (0, 1.1, 11.6, 13.2, 5.2, 4.1, 2.9, 0)

(1, 1, 1.5, 1, 1, 1, 1, 1) 2.433108 2.395101 (0, 1.0, 11.7, 13.8, 4.9, 4.0, 3.0, 0)

(1, 1.5, 1, 1, 1, 1, 1, 1) 2.484606 2.395101 (0, 1.5, 11.2, 12.7, 6.0, 4.5, 2.5, 0)

(1.5, 1, 1, 1, 1, 1, 1, 1) 2.433108 2.395101 (0, 1.0, 11.7, 13.8, 4.9, 4.0, 3.0, 0)

From Table 1, if the special factor existing some prior information indicates that
it is an unimportant factor, and its weight is assigned to 0.5, the corresponding
[OW W D(d1)]2 is minimum and the OWGWP is sequentially minimum when the
special factor is arranged to the 2nd column of d1, when the special factor is arranged
to one of columns 1, 3, 6 of d1, the corresponding [OW W D(d1)]2 and OWGWP are
among the worst performing weighted designs. On the other hand, if the special factor
existing some prior information indicates that it is an important factor, and its weight
is assigned to 1.5, the corresponding [OW W D(d1)]2 is minimum and the OWGWP
is sequentially minimum when the special factor is arranged to one of columns 1, 3, 6
of d1, when the special factor is arranged to the 2nd column of d1, the corresponding
[OW W D(d1)]2 and OWGWP are among the worst performing weighted designs.

In fact, the conclusions obtained above are independent of the choice of weight.
The curves of [OW W D(d1)]2 of design d1 related to wk are given in Fig. 2, where
wk is the weight of the k-th factor of design d1, k = 1, . . . , 8. It is shown that
[OW W D(d1)]2 is a simple linear function of wk for given design d1, and all the lines
of [OW W D(d1)]2 intersect at wk = 1. Especially for k = 2, when 0 ≤ wk < 1,
the line of [OW W D(d1)]2 is under the other lines of [OW W D(d1)]2 for k �= 2;
and when 1 < wk ≤ Uw (Uw = 3.346295), the line of [OW W D(d1)]2 is upon the
other lines of [OW W D(d1)]2 for k �= 2. It means that the 2nd factor is suitable to
arrange unimportant factor and is not suitable to arrange important factor. Similarly,
factors 1, 3, 6 are suitable to arrange important factors and are not suitable to arrange
unimportant factors. All of these are in accord with the numerical results in Table 1
and the factor correlation graph of design d1 in Fig. 1.
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Fig. 2 The curves of [OW W D(d1)]2 of design d1 related to wk for k = 1, . . . , 8

Example 2 Consider an experiment with nine two-level factors and eight runs, uniform
design d2 = (x1, . . . , x9) ∈ U(8; 29) based on wrap-around L2-discrepancy is used
for the experiment. The factor correlation diagram of design d2 is shown in Fig. 3.

d2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 1 0 0 0 0
1 0 0 0 1 1 1 0 0
1 1 0 0 1 0 0 1 1
1 1 1 1 0 1 0 1 0
0 1 1 1 1 1 1 1 1
1 0 1 1 0 0 1 0 1
0 0 1 0 0 1 0 0 1
0 0 0 0 0 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In Fig. 3, the main effects of experimental factors x1, . . . , x9 are respectively repre-
sented by 1, …, 9, and the two-factor interactions between factors a and b are denoted
by a ∗ b, where a, b ∈ {1, . . . , 9} and a < b. The correlations among all the 9 main
effects and 36 two-factor interactions of design d2 are visualized in Fig. 3. The largest
absolute correlations for the two-factor interactions equal 1, and they aremarked by the
darkest off-diagonal cells. From Fig. 3, it is shown that there are 4 factor main effects
(4, 5, 7, 8) and 16 two-factor interactions (1∗4, 1∗5, 1∗7, 1∗8, 3∗6, 3∗7, 3∗8, 3∗
9, 4∗6, 4∗9, 5∗6, 5∗9, 6∗7, 6∗8, 7∗9, 8∗9) that have significant correlations with
factor x2, and there are 4 factor main effects (4, 5, 6, 9) and 16 two-factor interactions
(1∗4, 1∗5, 1∗6, 1∗9, 2∗6, 2∗7, 2∗8, 2∗9, 4∗7, 4∗8, 5∗7, 5∗8, 6∗7, 6∗8, 7∗9, 8∗9)
that have significant correlations with factor x3. The degree of correlation of factors
x2 and x3 with the main effects and two-factor interactions is significantly higher than
the other 7 factors. Therefore, Fig. 3 provides some prior information about impor-
tance of factors in design d2, and the importance of factors x2 and x3 in design d2 are
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Fig. 3 Factor correlation graph of design d2

obviously weaker than the rest factors from the perspective of aberration. On the other
hand, there is not factor main effect and there are 11 two-factor interactions that have
significant correlations with factor x1. Thus, the importance of factor x1 in design d2
is obviously stronger than the rest factors.

Assuming that only one of the experimental factors has prior information, and the
special factor is arranged in rotation to each column of d2, the corresponding weight
is respectively assigned to 0.5 for unimportant factor and 1.5 for important factor. All
the numerical results are listed in Table 2.

From Table 2, if the special factor existing some prior information indicates that
it is an unimportant factor, and its weight is assigned to 0.5, the corresponding
[OW W D(d2)]2 is minimum and the OWGWP is sequentially minimum when the
special factor is arranged to one of columns 2, 3 of d2, when the special factor is
arranged to the 1st column of d2, the corresponding [OW W D(d2)]2 and OWGWP are
among the worst performing weighted designs. On the other hand, if the special factor
existing some prior information indicates that it is an important factor, and its weight
is assigned to 1.5, the corresponding [OW W D(d2)]2 is minimum and the OWGWP
is sequentially minimum when the special factor is arranged to the 1st column of d2,
when the special factor is arranged to one of columns 2, 3 of d2, the corresponding
[OW W D(d2)]2 and OWGWP are among the worst performing weighted designs.
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Table 2 Numerical results of design d2

Weight vector w [OW W D(d2)]2 L B W A(d2)

(1, 1, 1, 1, 1, 1, 1, 1, 1) 4.747966 4.683593 (0, 2, 14, 18, 12, 10, 6, 1, 0)

(1, 1, 1, 1, 1, 1, 1, 1, 0.5) 5.507568 5.408512 (0, 2.0, 11.9, 14.3, 9.3, 6.8, 3.5, 0.6, 0)

(1, 1, 1, 1, 1, 1, 1, 0.5, 1) 5.507568 5.408512 (0, 2.0, 11.9, 14.3, 9.3, 6.8, 3.5, 0.6, 0)

(1, 1, 1, 1, 1, 1, 0.5, 1, 1) 5.507568 5.408512 (0, 2.0, 11.9, 14.3, 9.3, 6.8, 3.5, 0.6, 0)

(1, 1, 1, 1, 1, 0.5, 1, 1, 1) 5.507568 5.408512 (0, 2.0, 11.9, 14.3, 9.3, 6.8, 3.5, 0.6, 0)

(1, 1, 1, 1, 0.5, 1, 1, 1, 1) 5.491475 5.408512 (0, 1.8, 12.2, 14.5, 8.7, 6.9, 3.8, 0.5, 0)

(1, 1, 1, 0.5, 1, 1, 1, 1, 1) 5.491475 5.408512 (0, 1.8, 12.2, 14.5, 8.7, 6.9, 3.8, 0.5, 0)

(1, 1, 0.5, 1, 1, 1, 1, 1, 1) 5.456069 5.408512 (0, 1.5, 12.5, 15.0, 8.2, 6.6, 4.1, 0.5, 0)

(1, 0.5, 1, 1, 1, 1, 1, 1, 1) 5.456069 5.408512 (0, 1.5, 12.5, 15.0, 8.2, 6.6, 4.1, 0.5, 0)

(0.5,1 , 1, 1, 1, 1, 1, 1, 1) 5.526880 5.408512 (0, 2.1, 11.9, 13.9, 9.3, 7.2, 3.5, 0.5, 0)

(1, 1, 1, 1, 1, 1, 1, 1, 1.5) 3.988365 3.898798 (0, 2.0, 16.1, 21.7, 14.7, 13.2, 8.5, 1.4, 0)

(1, 1, 1, 1, 1, 1, 1, 1.5, 1) 3.988365 3.898798 (0, 2.0, 16.1, 21.7, 14.7, 13.2, 8.5, 1.4, 0)

(1, 1, 1, 1, 1, 1, 1.5, 1, 1) 3.988365 3.898798 (0, 2.0, 16.1, 21.7, 14.7, 13.2, 8.5, 1.4, 0)

(1, 1, 1, 1, 1, 1.5, 1, 1, 1) 3.988365 3.898798 (0, 2.0, 16.1, 21.7, 14.7, 13.2, 8.5, 1.4, 0)

(1, 1, 1, 1, 1.5, 1, 1, 1, 1) 4.004458 3.898798 (0, 2.2, 15.8, 21.5, 15.3, 13.1, 8.2, 1.5, 0)

(1, 1, 1, 1.5, 1, 1, 1, 1, 1) 4.004458 3.898798 (0, 2.2, 15.8, 21.5, 15.3, 13.1, 8.2, 1.5, 0)

(1, 1, 1.5, 1, 1, 1, 1, 1, 1) 4.039863 3.898798 (0, 2.5, 15.5, 21.0, 15.8, 13.4, 7.9, 1.5, 0)

(1, 1.5, 1, 1, 1, 1, 1, 1, 1) 4.039863 3.898798 (0, 2.5, 15.5, 21.0, 15.8, 13.4, 7.9, 1.5, 0)

(1.5, 1, 1, 1, 1, 1, 1, 1, 1) 3.969053 3.898798 (0, 1.9, 16.1, 22.1, 14.7, 12.8, 8.5, 1.5, 0)

As a matter of fact, the conclusions obtained above are independent of the choice of
weight. The curves of [OW W D(d2)]2 of design d2 related to wk are given in Fig. 4,
where wk is the weight of the k-th factor of design d2, k = 1, . . . , 9. It is shown
that [OW W D(d2)]2 is a simple linear function of wk for given design d2, and all
the lines of [OW W D(d2)]2 intersect at wk = 1. Especially for k ∈ {2, 3}, when
0 ≤ wk < 1, the line of [OW W D(d2)]2 is under the other lines of [OW W D(d2)]2
for k ∈ {1, 4, 5, 6, 7, 8, 9}; and when 1 < wk ≤ Uw (Uw = 3.67039), the line of
[OW W D(d2)]2 is upon the other lines of [OW W D(d2)]2 for k ∈ {1, 4, 5, 6, 7, 8, 9}.
It means that the factors 2, 3 are suitable to arrange unimportant factors and are not
suitable to arrange important factors. Similarly, the 1st factor is suitable to arrange
important factor and is not suitable to arrange unimportant factor. All of these are in
accord with the numerical results in Table 2 and the factor correlation graph of design
d2 in Fig. 3.

6 Concluding remarks

When some potentially important or unimportant factors are detected before exper-
iment, it becomes very important to distinguish the potential importance of factors.
In this paper, the new concept of weighted wrap-around L2-discrepancy is defined
to measure the uniformity of design with some potentially important or unimportant
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Fig. 4 The curves of [OW W D(d2)]2 of design d2 related to wk for k = 1, . . . , 9

factors. To capture the aberration of design with some potentially important or unim-
portant factors, the weighted generalized wordlength pattern is accordingly proposed.
The relationship between the weighted wrap-around L2-discrepancy and weighted
generalizedwordlength pattern is built, and the projection properties ofweightedwrap-
around L2-discrepancy is discussed. Besides, a lower bound of weighted wrap-around
L2-discrepancy is obtained, which can be as a benchmark tomeasure the uniformity of
designwith some potentially important or unimportant factors.We showed that the dif-
ference of importance among the columns of design can precisely be captured by both
weighted wrap-around L2-discrepancy and weighted generalized wordlength pattern.
Furthermore, the conclusions in this paper are independent of the choice of weight.
Both weighted wrap-around L2-discrepancy and weighted generalized wordlength
pattern are recommended to detect the potentially important or unimportant columns
of design or reflect the difference importance among factors in practice.
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