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Abstract
We give examples of data-generating models under which Breiman’s random forest
may be extremely slow to converge to the optimal predictor or even fail to be consistent.
The evidence provided for these properties is based on mostly intuitive arguments,
similar to those used earlier with simpler examples, and on numerical experiments.
Although one can always choose models under which random forests perform very
badly, we show that simple methods based on statistics of ‘variable use’ and ‘variable
importance’ can often be used to construct a much better predictor based on a ‘many-
armed’ random forest obtained by forcing initial splits on variables which the default
version of the algorithm tends to ignore.

Keywords Statistical prediction · Random forests · Convergence · Consistency

1 Introduction

Breiman’s random forest Breiman (2001) is a feasible and flexible algorithm for con-
structing nonparametric statistical predictors. Nowadays it is acknowledged to be easy
to use and to perform very well in general, even in problems involving many predictor
variables (see the survey by Biau and Scornet 2016 or the introduction to Scornet et al.
2015)—so well, indeed, that several authors have posed and studied the question of
its consistency (see Biau et al. 2008; Wager 2014; Scornet et al. 2015, and the ref-
erences provided by these authors). ‘Universally consistent’ nonparametric statistical
predictors have been known for a long time (Nadaraya 1964; Watson 1964; Stone
1977; Devroye and Wagner 1980; Devroye et al. 1996; Györfi et al. 2002), but their
computer implementations tend to be slow, especially when dealing with many vari-
ables (e.g. Devroye et al. 1996, p. 62). In view of their accuracy and of the high speed
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of their implementations, random forests would become even more attractive if they
were shown to be consistent under general data-generating mechanisms. In particular,
consistency, in addition to accuracy, is indispensable in applications of statistical pre-
diction to the estimation of ‘causal effects’ based on observational data (pp. 120–1,
167–9 and subsection 4.1 of Ferreira 2015). The simplest and clearest general con-
sistency result on Breiman’s random forest seems to be theorem 1 of Scornet et al.
(2015), which in essence states that if the ‘response’ follows an additive regression
model (e.g. a linear regression model) then random forests are consistent in mean-
square if the number of terminal nodes (‘leaves’) of the constituent trees increases to
infinity at a slower rate than the size of the subsamples on which they are grown and if
those subsamples, rather than being bootstrap samples, are drawnwithout replacement
from the full sample.1 This is encouraging, but the counterexample in proposition 8 of
Biau et al. (2008) shows that one particular version of random forest is not consistent in
complete generality. Moreover, the arguments around figure 5 of Kim and Loh (2001)
and figure 1 of Biau et al. (2008) and those in subsection 2.2 of Zhu et al. (2015) show
that random forests can perform badly, and suggest that they may be inconsistent in
some of their versions, under certain so-called ‘checkerboard-type’ models.

The main purpose of this note is to exhibit two classes of models for which random
forests may be extremely slow to converge to the optimal predictor or even be incon-
sistent. One such class generalizes the checkerboard-type just mentioned; the other
is much more general. In both classes, if the response variable Y is a nonconstant
function of each of X1, X2, . . . , Xd (d > 2) but is independent of each of X1 and X2,
then Breiman’s random forest typically fails to use both variables to the full even when
(X1, X2) is the strongest predictor of Y . This is a consequence of the ‘one-dimensional
greed’ of random forest: each split in a tree is based on the variable that ‘best explains’
Y out of a randomly drawn subset of predictor variables; but if Y is independent of
each of X1 and X2 and repeated conditioning on some of X3, . . . , Xd continues to
provide information on Y (typically the case when (X3, . . . , Xd) has a positive density
on an open rectangle) then the algorithm will tend to split at a variable other than X1
and X2 and most trees tend to make little use of (X1, X2); cf. subsection 2.2 of Zhu
et al. (2015). Although this argument applies only to random forests with tree splits
done on one among two or more randomly selected variables, i.e. to those in which
the parameter usually referred to as mtry (e.g. in the R package randomForest of
Liaw andWiener 2002) is ≥ 2, the algorithm typically requires many splits before X1
and X2 get to be used together in a tree, which can only hinder convergence, even if
convergence is to the optimal predictor.

The argument alone is not sufficient to prove the lack of consistency of random
forests even in the case where mtry ≥ 2, because if a forest is sufficiently large and
the trees in it grow sufficiently tall—say until each of their terminal nodes contains
fewer than a fixed number of distinct observations—then X1 and X2 are likely to be

1 Duroux and Scornet (2018) show that the number of terminal nodes and the size of the subsamples can
have a substantial effect on the finite-sample performance of random forests, and that if the size of the
subsamples is about 1− e−1 of that of the full sample then random forests with trees based on subsamples
perform very similarly to Breiman’s random forests with trees based on bootstrap samples. Wager (2014)
presents results of wider scope concerning other variants of random forests under conditions which to us
seem more restrictive or more difficult to verify.
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picked at a ‘late’ stage during the construction of some of the trees, and one cannot
deny that even very late splits on those two variables may compensate for their having
been ignored earlier. In fact, it is easy to see (and must be well known, the observation
having been used earlier by Ishwaran and Kogalur 2010) that if X1, X2, . . . , Xd are
all binary then a tree predictor grown until each of its terminal nodes contains only
observations with the same data on (X1, X2, . . . , Xd) (which implies that at certain
splits all the predictor variables must be tried) is consistent, and so is a random forest
of trees grown in that way; and the same is true, of course, if each of X1, X2, . . . , Xd

takes a finite number of values. Accordingly, our examples are not meant for situations
in which (X1, X2, . . . , Xd) has finite range, because as soon as the observations in a
node all have the same data on (X3, . . . , Xd) the next two splits along that node will
involve X1 and X2 and eventually the partition corresponding to the resulting tree will
be equivalent to a partition which would have started with splits on X1 and X2. It is
evident, moreover, that if the X j s have finite range then the partitions generated by
such trees are asymptotically equivalent to those obtained by splitting the data without
recourse to a criterion involving data on the (X j ,Y )s—i.e. they amount to partitions
with the so-called ‘X-property’, and the corresponding trees amount to ‘partitioning
estimates’ for which more general consistency results are available (section 20.1 of
Devroye et al. 1996, section 4.1 of Györfi et al. 2002).

Rather, the examples given in Sect. 2 are meant for situations in which the random
forest algorithm is properly greedy in one-dimension, i.e. uses data on (X j ,Y ) for
some j to create a split; they do not apply to the variant proposed and shown to be
consistent in section 20.14 ofDevroye et al. (1996) and in section 6 ofBiau et al. (2008),
whose rules for splitting are based on data on (X1, X2, . . . , Xd ,Y ). The arguments
we are able to provide in favour of a very slow rate of convergence are intuitive, but
they are easily seen to be supported by simple numerical experiments, as illustrated
in Sect. 3.

Although the properties we identify imply that random forests can perform very
badly compared to the optimal predictor, it is not at all our intention to put random
forests in a bad light (which would be difficult to do in view of their good record in
applications and of the scarcity of methods of comparable scope and success). In fact,
our second purpose is to show that simple methods based on statistics of ‘variable
importance’ and ‘variable use’ can help to determine whether the bad performance of
a random forest is due to the presence of predictor variables such as the X1 and X2 just
mentioned and to construct a ‘many-armed’ version of random forest that performs
much better; this too is explained in Sect. 2 and illustrated by simulation in Sect. 3.
Section 4 offers some perspective on our results and considers open questions.

2 The examples; consequences for applications

The following is a textbook example, often attributed to S.N. Bernstein (e.g. Burrill
1972, p. 241), of three dependent random variables that are pairwise independent: Let
B1, B2 and B3 be independent Bernoulli random variables of parameter 1/2 and set

X0 := 1{B1=B2}, X1 := 1{B1=B3}, X2 := 1{B2=B3}.
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Then X0 is a function of X1 and X2, namely X0 = 1{X1=X2} = δX1,X2 ,

P(X j = x j , Xk = xk) = 1
4 = P(X j = x j )P(Xk = xk) ( j �= k),

but

P(X0 = x0, X1 = x1, X2 = x2) �= P(X0 = x0)P(X1 = x1)P(X2 = x2) = 1
8

for x0, x1, x2 ∈ {0, 1}, so X0, X1 and X2 are pairwise independent but not independent.
Now put

Y := δX1,X2 f (X3, . . . , Xd , ε) + (1 − δX1,X2)g(X3, . . . , Xd , ζ ) +
h(X3, . . . , Xd , η), (1)

where ε, ζ , η are random variables and (X3, . . . , Xd) is a random vector, all four
independent and also independent of (X0, X1, X2), and f , g and h are real-valued
functions. Writing X = (X1, X2,X′), X′ = (X3, . . . , Xd), and, for real numbers
x1, x2, . . . , xd , x = (x1, x2, x′), x′ = (x3, . . . , xd), we have

P(Y ≤ y|X = x) = δx1,x2P( f (x′, ε) + h(x′, η) ≤ y) +
(1 − δx1,x2)P(g(x′, ζ ) + h(x′, η) ≤ y). (2)

Evidently, the best predictor of Y based on all the variables except ε, ζ and η is
provided by the function x → P(Y ≤ y|X = x), e.g. in the form of E(Y |X = x) or
med(Y |X = x) when Y is numeric proper. On the other hand, for j = 1, 2

P(Y ≤ y|X j = x j ,X′ = x′) = 1

2
P( f (x′, ε) + h(x′, η) ≤ y) +

1

2
P(g(x′, ζ ) + h(x′, η) ≤ y)

by the independence of X0 and X j . Similarly, for j = 1, 2

P(Y ≤ y|X j = x j ) = 1

2
P( f (X′, ε) + h(X′, η) ≤ y) + 1

2
P(g(X′, ζ ) + h(X′, η) ≤ y)

by the independence of X0, X j and X′. In particular, Y is independent of X1, and
independent of it also conditionally on X′; and likewise Y is independent of X2, and
independent of it also conditionally on X′. Since in general P(Y ≤ y|X j = x j )
and P(Y ≤ y|X j = x j ,X′ = x′) provide predictors of Y that are worse than those
provided by P(Y ≤ y|X = x), which are optimal, any predictor that misses out on
one of X1 and X2 will be suboptimal.

Now each split of each tree involved in a random forest is determined by selecting,
among a random subset of mtry predictors, the variable that ‘best explains’ Y , uncon-
ditionally or conditionally on some of the predictors. If mtry ≥ 2 then, since Y is
independent of each of X1 and X2 separately, unconditionally as well as conditionally
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on some of X3, . . . , Xd , unless one of X1 and X2 has been selected at an earlier split
the random forest algorithm will tend to select none of them again but instead one
of X3, . . . , Xd . Consequently, a large proportion of the trees grown by the algorithm
should involve only predictor variables among X3, . . . , Xd in a large proportion of
their terminal nodes, and the resulting forest is worse than a ‘two-armed’ forest of trees
grown upon a first split based on (X1, X2). When mtry = 1 it is more likely that one
of X1 and X2 be selected at a split, but if d is ‘’large’ then the probability that both X1
and X2 be involved in a terminal node must be < 1 even for very large n, so even for
very large n there should be a non-negligible proportion of the trees that involve only
predictor variables among X3, . . . , Xd in a non-negligible proportion of their terminal
nodes, and again the resulting forest should perform worse than a two-armed forest
and hence worse than the optimum predictor.

Our second class of models features the same type of relations between Y , (X1, X2)

and (X3, . . . , Xd) but is much more general. Consider a random vector (X0, X1, X2)

with probability density function

f (x0, x1, x2) = f0(x0) f1(x1) f2(x2) {1 − ϕ(x0, x1, x2)} (3)

for densities f0, f1 and f2 and some function ϕ not identically equal to zero and
such that ϕ ≤ 1 and

∫
R
f0(x0) f1(x1) f2(x2)ϕ(x0, x1, x2)dx j = 0 for all j , so that

g j,k(x j , xk) := ∫
R
f (x0, x1, x2)dxl = f j (x j ) fk(xk) for j, k, l all different and again

X0, X1 and X2 are pairwise independent without being independent.2 For instance,
one may take X0, X1 and X2 symmetric ( f0, f1 and f2 even) and ϕ(x0, x1, x2) =∏2

j=0 x j (1 + x2j )
−1/2; by transforming the X j s by X̃ j = Tj (X j ), say, one obtains

X̃0, X̃1 and X̃2 with arbitrary marginal distributions that remain pairwise independent
without being independent. Notice that in principle it is easy to simulate (X0, X1, X2)

by the ‘rejection method’.
Assuming that X0, X1 and X2 dependent but pairwise independent have been

defined, one can then set X
′′ ≡ (X

′′
1, X

′′
2) := (X1, X2) and

X
′′
0 = H−1(ξ ;X′′

), (4)

where ξ is a standard uniform variable independent of all the other variables men-
tioned so far and H(x; x1, x2) = P(X0 ≤ x |X′′ = (x1, x2)), H−1(u; x1, x2) =
min {x : H(x; x1, x2) ≥ u} (0 < u < 1), to get a vector (X

′′
0,X

′′
) ≡ (X

′′
0, X

′′
1, X

′′
2)

with the same joint distribution as (X0, X1, X2) in which the first coordinate is a
function of the other two and of ξ . Finally,

Y := �(H−1(ξ ;X′′
),X′, ε), (5)

where X′ is independent of X′′
, ε is independent of all the other variables, and � is

some function, defines amodel in which Y is dependent onX
′′
but independent of each

of its coordinates, and for which a random forest predictor based on data on (X′,X′′
)

may be very slow to converge to the optimum and perhaps even be inconsistent.

2 This example must be well known, but we do not recall a textbook where we may have seen it before.
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Evidently, this example may be generalized to more than three variables [e.g. by
adding several independent versions of the right-hand side of (5)], leading to a model
in which the response is dependent on a finite set of random variables but independent
of each of them.

Finally, we can generalize (3) by replacing each of X1 and X2 above by random
vectorsX1 andX2 taking values inRd1 andRd2 such that X0,X1 andX2 are dependent
but pairwise independent, which yields a Y dependent on the corresponding X

′′ =
(X

′′
1,X

′′
2) but independent of each ofX

′′
1 andX

′′
2. In this case, for a tree-based algorithm

to approximate the optimal predictor it must pick ‘sufficiently many’ variables in X
′′
1

andX
′′
2 during the construction of its trees, and thatmay be quite difficult ifmax{d1, d2}

is large and the independent covariates X
′
provide some information on Y .

For a simple, concrete example let φd denote the standard normal density on R
d

and 1d a d-vector of 1s, and let X0, X1 and X2 have density

f (x0, x1, x2) = φ1(x0)φd1(x1)φd2(x2)

×
⎛

⎝1 − x0√
c20 + x20

x1 · 1d1√
c21 + (x1 · 1d1)2

x2 · 1d1√
c22 + (x2 · 1d2)2

⎞

⎠ ,

x1 ∈ R
d1,x2 ∈ R

d2, c0, c1, c2 constants. Then all themarginal distributions are standard
normal, X0 is independent of X1 and independent of X2 but dependent on (X1,X2),
and we can define X

′′
0 and Y by the corresponding versions of (4) and (5) with X

′′ =
(X1,X2) and a d3-vector X′ independent of all the other variables. In the resulting
model the optimal predictor conditional on X1 and on X′ is a function of the latter
vector alone, and so is the optimal predictor conditional on X2 and on X′, while the
optimal predictor is a function of (X1,X2,X′). Thus, depending on the sample size,
on d1, d2 and d3, and on how �(·, x′, ·) varies with x′, an ordinary tree predictor will
tend to use X1 and X2 insufficiently and belatedly; in contrast, ‘many-armed’ tree
predictors and associated random forests made up of an initial partition of the range
of X1 and X2 with trees grown atop will typically perform much better and may have
a chance of approaching the optimal predictor.

2.1 A possible remedy

Now it is clear that in a random forest the coordinates of X1 and X2 in our last model
always have a chance of showing their worth, and the extent to which they are worthy
predictors should become apparent in variable importance statistics irrespectively of
their frequency of occurrence in the trees. If X1 and X2 include strong predictors then
one can check how frequently they are used in the trees by looking at appropriate
statistics such as the proportion of trees making use of them, the average number of
terminal nodes per tree inwhich they are involved, etc.; if such variable usage statistics
show that certain predictors are less frequently used than one might expect given their
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importance, then their use probably needs to be enforced at an earlier stage.3 Expressed
with this latitude, the truth of these statements seems evident to us; but, of course, in any
given problem the extent to which one will be able to identify vectors like X1 and X2
as important predictors worth splitting on beforehand depends on the other elements
involved—sample size, d1, d2 and d3, etc. Thus, in a given problem and with a given
sample size one may or may not be able to recognize the importance of such variables;
but if their importance is found to be substantial then one may as well check the
corresponding usage statistics. Evidently, the combined use of variable importance and
variable usage statistics is not useful only with data that follow exactly a model of the
type considered here; it is plausible that in real-life problems—for instance in genetics,
where haplotypes rather than genotypes can predict phenotypes—there will be sets of
variables that are approximately analogous toX1 andX2 and admit of similar remedies.

It is easy to use our examples to simulate data and illustrate how badly random
forests can perform compared to the optimal predictor, even with very large sample
sizes; the last model especially can present problems to random forests because it
undermines what normally is their strength, namely the possibility of finding advan-
tageous partitions of the range of the predictor variables by trying univariate splits at
a time.4 As said earlier, however, the illustrations provided in this paper are not meant
to show random forests at their worst; they are mostly based on simulation from a
simple version of (1) which is hardly unfavourable to random forest and yet shows a
clear gap between it and the best predictor.

3 Numerical illustration

We consider the following special case of (1):

Y := δX1,X2 f (X3, . . . , Xd , ε) + {1 − δX1,X2}g(X3, . . . , Xd , ζ ) + η, (6)

with d = 10, f (X3, . . . , Xd , ε) = α3X3 + · · · + αd Xd + ε, g(X3, . . . , Xd , ζ ) =
β3X3+· · ·+βd Xd +ζ , α := (α3, . . . , α10) = (1, 2, . . . , 8)/8, β := (β3, . . . , β10) =
3α/4, ε, ζ and η independent standard normal random variables, (X1, X2) as in Sect. 2
and independent of (ε, ζ, η), and (X3, . . . , X10) normally distributed with covariance
matrix  = (2−| j−k|) j,k=1,..,10, mean vector equal to diag(), and independent of all
the other variables.

By the result of Scornet et al. (2015) we might expect random forests constructed
with data (X1, . . . , X10,Y ) such that δX1,X2 = 1 to be consistent for the first branch

3 As far as we know, the implementations of random forests currently available provide no ‘ready-made’
information on variable usage, but some partial information can sometimes be extracted from them, as
illustrated in Sect. 3. We emphasize that measures of variable importance quantify the improvement in
accuracy that results from using the various predictor variables, but they provide no information about how
often a variable is used in relation to its importance.
4 We do not want to suggest that other algorithms perform better on such data; the more classic Nadaraya–
Watson or nearest-neighbour algorithms, for example, will generally not perform better unless d1, d2 and
d3 are ‘small’. A simple R script for simulating data from the last model and comparing the performance
of random forests on it with that of the optimal predictor, as well as scripts that reproduce the results of
Sect. 3, may be obtained from the author.
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of the model, namely f (X3, . . . , Xd , ε), and random forests constructed with data
such that δX1,X2 = 0 to be consistent for the second branch, g(X3, . . . , Xd , ζ ). Thus
we might expect the two-armed random forest predictor that consists of two random
forests, one for predicting the response of new data satisfying δX1,X2 = 1 and the
other for predicting the response of new data satisfying δX1,X2 = 0, to converge in
mean-square to the right-hand side of (6) without the error terms as the size n of the
data set used to construct it increases to infinity; in particular, we might expect its law
givenX = x ∈ R

d to converge to the corresponding right-hand side of (2) as n → ∞,
and the mean-square error of the predictor to approach Var(ε + η) = Var(ζ + η) = 2.
The random forest predictor, on the other hand, may decrease its mean-square error
as n increases but we do not expect it to attain the minimal value.

Figure 1 summarizes the results of two simulations, one based on training and test
samples of sizen = 10,000, the other on training and test samples of sizen = 100,000;
the random forests were constructedwith theR packagerandomForest of Liaw and
Wiener (2002) using 1000 trees and the default settings. The scatter-plots indicate the
agreement between the response of the test set and the corresponding prediction, and
the estimates of mean-square error (mse), mean absolute error (mae) and proportion of
explained variance quantify the accuracy of the predictions. The top left plot of Fig. 1
shows the results obtained with the random forest when n = 10,000; the algorithm,
which of course ignores the model generating the data, performs remarkably well.
The top right plot ranks the predictor variables according to their relative importance:
by our specifications of α and β and of the distribution of (X3, . . . , X10), the rank
of X j for j ≥ 3 is equal to j , and the higher the rank, the higher the importance;
the algorithm ranks the variables correctly except, as we shall see below, for X1 and
X2.5 The bottom panel summarizes the results obtained with the random forest and
with the supposedly consistent two-armed random forest when n = 100,000; while
the two-armed random forest appears to have practically attained the optimum, the
random forest does not seem to improve upon a mean-square error of about 2.5.

The first panel of Fig. 2 summarizes the results obtained separately with the two
random forests making up the two-armed random forest based on the training data set
of size 100,000. Both random forests appear to be close to reaching the optimum value
of 2 for the mean-square error when n = 100,000. Note that the optimal predictor of
Y based on (X3, . . . , X10) in the sense of mean-square error is γ · (X3, . . . , X10) with
γ = (α + β)/2. If the trees in the random forest would make little use of X1 and X2
one might expect the random forest predictor to be close to it. This is confirmed by
the bottom panel of Fig. 2, which summarizes the performance of γ · (X3, . . . , X10)

and compares the predictions of the latter with those of the forest.
Table 1 shows some estimates of the mean-square error of random forests with

the default value of mtry and with mtry = 1 and of the two-armed random forest.
Although at two decimal places the two-armed random forest does not seem to get
closer to the theoretical optimum with the larger values of n, that must be due to the

5 We use Breiman’s measure of variable importance as implemented in the randomForest package with
scale=TRUE; variable importance is then not really an estimate of the percent worsening of the mean
square error that results from a random permutation of the data on a variable but a scaled version of it. As is
well known, variable importance must be regarded as a relative measure which quantifies how much more
important each variable is relative to the others.
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Models under which random forests perform badly… 1847

Fig. 1 A summary of the results obtained with Breiman’s random forest and with the two-armed random
forest. Top panel: scatter-plot, statistics and variable importance plot summarizing the performance of the
random forest based on a data set of size 10,000. Lower panel: scatter-plots and statistics summarizing the
performance of the two-armed random forest (left) and of the random forest based on a data set of size
100,000

number of trees not being increased beyond 1000 (consistency requiring of course an
infinite number of trees). On the other hand, with the larger values of n the performance
of the random forests remains almost uniformly away from the optimum. Interestingly,
with mtry = 1 the random forest ranks X1 and X2 as the most important variables
already when n ≥ 100,000 (when n = 10,000 they come very close to each other
in third and sixth places), but its performance is worse than with the default value of
mtry = 3. With the latter, X1 and X2 appear slightly above X3 when n ≥ 200, 000.
As shown later, the correct estimation of the importance of X1 and X2 places them
between X7 and X8, not at the top as the choice of mtry = 1 suggests. In any
case, even if the importance of ‘hidden predictors’ such as X1 and X2 is not always
detectable with the standard choice of mtry (depending on the sample size and on
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1848 J. A. Ferreira

Fig. 2 First panel: scatter-plots and statistics summarizing the performance of the two random forests that
make up the two-armed random forest based on a training data set of size 100,000. Second panel: left, scatter-
plot and statistics summarizing the performance of the optimal predictor of Y based on (X3, . . . , X10),
which is expected to perform similarly to the random forest predictor; right, scatter-plot and statistics (mean
square difference, mean absolute difference) comparing the predictions of the random forest with those of
the optimal predictor of Y based on (X3, . . . , X10)

the relative strength of the predictors) it is clear that they have good chances of being
detected with mtry = 1, unless perhaps the number of trees is small compared to the
number of variables.

3.1 Statistics of variable importance and variable usage

The gap between the mean-square error of the random forest and that of the optimal
predictor can be very large provided the two branches of model (6) are very different.
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Table 1 Estimates based on test sets of size n of the mean-square error of two versions of random forest
(RF) and of the two-armed random forest constructed with training sets of size n

n RF with mtry = 3 RF with mtry = 1 Two-armed RF

10,000 2.52 2.81 2.13

100,000 2.45 2.79 2.06

200,000 2.45 2.75 2.06

500,000 2.45 2.75 2.06

For example, when β = −α and α is as above, random forests based on samples of
sizes as large as 100,000 and 200,000 have mean-square errors of about 20, while the
corresponding two-armed random forest has a mean-square error of about 2.07. In
this case the importance of each of X1 and X2 is about two to three times as great
as that of the other variables, but this does not mean that X1 and X2 are used a lot
more in the trees when β = −α than when β = 3α/4 because variable importance
does not account for the number of times a variable has been used to define a terminal
node; rather, it is more a reflection of the fact that distinguishing the two branches of
model (6) is so necessary that whenever splits on X1 and X2 occur they dramatically
improve the accuracy within the descendent terminal nodes. In fact, we observe that
the probability of there occurring a split on X1 or X2 is about 0.05 during most of
the construction of a tree under both versions of the model (it is much lower at the
beginning of the construction, especially when β = 3α/4); this is clear from the first
panel of Fig. 3, which shows the proportion of splits on X1 or X2 as a function of the
order of the node split during the construction of the trees.

It would be interesting to check how often X1 and X2, together or on their own,
are involved in the terminal nodes of a tree, that is, how many cells of the associated
partition represent a restriction on the domain of X1, X2 or (X1, X2). We are unable
to obtain such information from the output of the randomForest function of Liaw
and Wiener (2002), but we can use the R package rpart of Therneau and Atkinson
(2019) to compute the number of terminal nodes involving X1 and X2 together and on
their own in a tree grown as the trees in a random forest except that all the 10 predictor
variables (and not just a random subset of three) are tried for a split at each node; since
the performance of the random forest in our examples remains practically the same
if the 10 variables are tried at each split, this should yield reliable information about
how often trees in a forest with the default value of mtry use X1 and X2. The box
plots of Fig. 3 summarize the distributions of the proportion of terminal nodes in trees
involving X1 and X2, on their own and together, obtained from 1000 trees constructed
with bootstrap samples drawn from samples of size 10,000 simulated according to
the two versions of model (6) we are considering. Typically, fewer than 15% of the
terminal nodes in a tree use one of the two variables, and fewer than 10% use both;
the only essential difference between the two models is that when β = −α there are
a few more trees with a higher percentage of terminal nodes involving both X1 and
X2. It may also be interesting to look at the numbers of observations contained in the
terminal nodes that involve both X1 and X2: on average, fewer than 4% of the data
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Fig. 3 First panel: Proportion of splits on X1 or X2 as a function of the nodes already split or terminated
in 1000 trees grown from a simulated sample of size 10,000 from model (6) with β = 3α/4 (left) and
β = −α: As trees are built, new nodes are appended to them (or else existing nodes are terminated because
they cannot be split any further); these operations, labelled from one to the number of nodes in the largest
tree, are represented by the horizontal axis. At the time of the k-th operation one calculates the proportion
of trees split on X1 or on X2 among all trees split at that operation, and this is represented on the vertical
axis. Second panel: Proportion of times that X1 and X2 together or on their own are used in the terminal
nodes (‘leaves’) of 1000 trees constructed from bootstrap samples of a simulated sample of size 10,000
from model (6) with β = 3α/4 (left) and β = −α. The trees are constructed as in the random forests
(nodes being split as long as they contain five or more distinct observations) except that all the 10 predictor
variables are tried for a split at each node (while in the forests only three randomly chosen variables are
tried)

in the first case (β = 3α/4) and fewer than 7% in the second take advantage of the
values on (X1, X2); in contrast, the two-armed random forest predictor, which appears
to approach the minimum mean-square error, uses the values on (X1, X2) to predict
every response.

Together with the arguments given in Sect. 2, the observations made in this section
suggest that monitoring variable importance in conjunction with the proportion of
terminal nodes involving each variable in a tree is a means of diagnosing the presence
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of variables such as X1 and X2. Such a procedure certainly works in the case β = −α

of the present model because of the great discrepancy between the frequency with
which X1 and X2 are used and their importance; in a case like β = 3α/4 the measure
of variable importance provided by random forest may be misleading (depending on
the sample size) and hide the potentiality of X1 and X2 with the default value of mtry,
but not with mtry = 1.

3.2 The variable importance of X1 and X2

We finish this analysis by determining variable importance in the two-armed random
forest more correctly. In order to do this we note in the first place that the importance
of X j in a predictor � based on (X1, . . . , Xd) may, for example, be defined as the
number

I j (�) = 100 ×
E

[
L

(
Y ,�(X1, . . . , X̃ j , . . . , Xd)

)]
− e(�)

e(�)
,

where e(�) := E [L(Y ,�(X1, . . . , Xd))], L is a loss function (typically L(s, t) =
(s − t)2), and X̃ j has the same distribution as X j but is independent of the other Xi s
(if � depends on a training data set the expectations are conditional on that set).6

Secondly, I j (�) can be estimated from data, say by estimating e(�) with a large test
set and averaging many (say 1000) estimates of E[L(Y ,�(X1, . . . , X̃ j , . . . , Xd))]
computed with perturbed versions of the test set obtained by randomly permuting in
it the data on the j-th predictor variable.7 Finally, note that I j (�) depends on � and
not just on (X1, . . . , Xd), so a suboptimal � need not make the best possible use of
the predictor variables and may unduly deflate or inflate their importance. The optimal
predictor, on the other hand,makes the best possible use of every variable and therefore
I j (�) with � as the optimal predictor provides a more faithful measure of variable
importance, and so does an estimator of it obtained from a consistent predictor when
the estimator and the consistent predictor are based on large samples.

Of course, in real-life problems one ignores the optimal predictor and is often unsure
about the consistency of the predictor in hand, so one can seldom be completely sure
of estimating the correct variable importance, which here we take to be represented
by I j (�) with � as the optimal predictor. But in our case we know that the optimal
predictor under model (6) is �∗(X1, . . . , Xd) = δX1,X2(α3X3 + · · · + αd Xd) +
{1 − δX1,X2}(β3X3 + · · · + βd Xd). Since the two-armed random forest is so close
to the optimal predictor, we trust the variable importance estimated from it much
more than we do the variable importance estimated from a random forest. Figure 4
shows estimates of the I j (�∗)s, computed as indicated in the first paragraph of this
subsection (so that variable importance really represents a percent worsening of the

6 This is just one of the possible definitions of the importance of a variable; for a recent overview of other
definitions and methods of estimating variable importance see Loh and Zhou (2021).
7 This is not the same as the method used in Breiman’s random forest, which for economy computes such
estimates per tree and then averages them, but in our experience the twomethods generally provide a similar
ranking of importance.
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Fig. 4 Variable importance according to the two-armed random forest constructed with a sample of size
10,000. Importance is estimated as the average percent increases in the mean-square error of the predictions
on a test set of size 10,000 that result from perturbing the same test set by 1000 random permutations of
the data on each predictor variable at a time. The ranking of the variables on the left should be compared
with that shown in Fig. 1

predictor’s accuracy that results from random permutations of the data on a variable),
from two-armed random forests constructed with training data sets of size 10,000
simulated according to (6) in the two cases we have been considering. While in the
case β = −α the essential aspect of the ranking coincides with the one proposed by
random forest (except that X1 and X2 are now recognized as even more important than
the rest), in the case β = 3α/4 the new ranking shows that X1 and X2 are much more
important than the random forest had suggested with the default value of mtry (cf.
the top right plot of Fig. 1) and less important than it had suggested with mtry = 1.
Accordingly, the benefit of recognizing the importance of X1 and X2 is not that great
in the latter case and enormous in the former.

4 Discussion

We have seen that there are data-generating models which neutralize a powerful strat-
egy of Breiman’s random forest, namely the one by one identification of the more
predictive variables. Although it is unlikely that real data follow such models closely,
examples from genetics in which haplotypes rather than genotypes predict pheno-
types suggest that some data may follow them approximately. We have seen that
‘many-armed’ random forests can be much better than random forests at predicting
responses from such models, so it is not implausible that many-armed random forests
like the one used in Sect. 3 will perform better than random forests on some real
data sets. Although our exposition has concentrated on the prediction of a numerical
variable, these observations apply as well to the prediction of nominal variables (i.e.
to ‘classification problems’).
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The general approach to constructing a many-armed random forest consists of
identifying ‘hidden predictor variables’, such as the X1 and X2 in the first example of
Sect. 2, or more generally the coordinates of X1 and X2 in the last example, creating
an initial partition on those variables, and constructing a random forest within each
member of that partition. As a means of identifying possible hidden predictors we
propose looking at the usual measures of variable importance in conjunction with
measures of variable usage which keep track of how frequently variables are used in
trees, the motivation for this being that a strong predictor variable that ‘needs help’
from other variables in order to be included in trees may appear as important and
yet be used very little, without this becoming visible from variable importance alone.
Although its success depends on the relative strength of the hidden predictors, on the
number of variables, on the sample size and onmany other things, in applications there
is certainly no harm in monitoring variable usage in addition to variable importance.
There must be ways of combining the two types of measure other than those we have
used in our illustrations of Sect. 3, and better ways should become apparent if statistics
of variable usage be made available in implementations of random forest; as far as
we know, current implementations do not provide ‘ready-made’ statistics of variable
usage, but we think that they could easily do so without substantial changes in their
code and functionality.

In our illustrations of Sect. 3 the hidden predictors are binary and the initial four-part
partition on them is essentially given. When the hidden variables are many and/or take
a large number of values the procedure is necessarily more complicated and there are
various ways of specifying the initial partition, not all of them being equally feasible
nor leading to equally accurate results. For example, one might think of creating
partitions of ‘k-cells’ whenever there are k potential hidden predictors and choosing
the one yielding more accurate predictions on a training data set (as in the variant
of tree and forest predictors proposed in section 20.14 of Devroye et al. 1996 and in
section 6 of Biau et al. 2008, already mentioned in our introduction). Or one might
take the much simpler and faster approach of splitting each of the potential hidden
predictors at their medians or quartiles and using the resulting partition of k-cells.
Finding ways of performing feasible and favourable initial partitions constitutes a
research project in itself and has not even been attempted here. As far as we know,
the implementations of random forest currently available do not permit the creation of
initial partitions based on a list of variables provided by the user; our results suggest
that possibilities for doing this may sometimes be useful.
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