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Abstract
There are two commonly encountered problems in survival analysis: (a) recurrent
event data analysis, where an individual may experience an event multiple times over
follow-up; and (b) joint modeling, where the event time distribution depends on a lon-
gitudinally measured internal covariate. The proportional hazards (PH) family offers
an attractive modeling paradigm for recurrent event data analysis and joint modeling.
Although there are well-known techniques to test the PH assumption for standard
survival data analysis, checking this assumption for joint modeling has received less
attention. An alternative framework involves considering an accelerated failure time
(AFT) model, which is particularly useful when the PH assumption fails. Note that
there are AFT models that can describe data with wide ranging characteristics but
have received far less attention in modeling recurrent event data and joint analysis of
time-to-event and longitudinal data. In this paper, we develop methodology to analyze
these types of data using the AFT family of distributions. Fitting these models is com-
putationally and numerically much more demanding compared to standard survival
data analysis. In particular, fitting a joint model is a computationally intensive task as it
requires to approximate multiple integrals that do not have an analytic solution except
in very special cases. We propose computational algorithms for statistical inference,
and develop a software package to fit these models. The proposed methodology is
demonstrated using both simulated and real data.

Keywords Bayesian inference · Joint modeling · Longitudinal data · Recurrent
event · Survival analysis

This work was partially supported by the Natural Sciences and Engineering Research Council of Canada
(NSERC) through Discovery Grant to SA Khan.

B Shahedul A. Khan
khan@math.usask.ca

Nyla Basharat
nyb863@mail.usask.ca

1 Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, SK S7N 5E6,
Canada

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00180-021-01171-7&domain=pdf
http://orcid.org/0000-0002-3400-2798


1570 S. A. Khan, N. Basharat

1 Introduction

Standard survival data analysis involves modeling time to the occurrence of an event,
where the event is assumed to occur once for a given subject over time (Lawless
2003). However, more complicated situations may arise in practice. We consider two
such commonly encountered problems in survival analysis: (a) recurrent event data
analysis (Cook and Lawless 2007), where an individual may experience an event
multiple times over follow-up (e.g., recurrent heart attacks of coronary patients); and
(b) joint modeling for single-event survival data (Wulfsohn and Tsiatis 1997), where
the event time distribution depends on a longitudinally measured internal covariate
(e.g., CD4 cell levels may be recorded longitudinally along with an observation of the
onset of AIDS).

In many clinical and biomedical studies, the survival event may not necessarily be
fatal. Thus, an individual can experience the event repeatedly over time. Such processes
are called recurrent event processes, and the data generated by such processes are
called recurrent event data (for details, see Cook and Lawless 2007). Over the last few
decades, there has been a considerable amount of discussion on methods for recurrent
event data analysis based on an extension of the Cox proportional hazards (PH)model.
A few key ones include methods based on the counting process approach (Andersen
and Gill 1982), methods based on gap times between events (Prentice et al. 1981),
methods for analyzingmultivariate failure time data (Wei et al. 1989), andmethods for
PH frailty models (Therneau and Grambsch 2000). Conventional accelerated failure
time (AFT) models can also be extended to formulate the effects of covariates on
the mean function of the counting process for recurrent events. For example, semi-
parametric methods for AFTmodels were considered by Cheng (2004), Ghosh (2004)
and Lin et al. (1998). A number of authors also considered generalization of the AFT
models for recurrent event data analysis. For example, a general class of accelerated
means regression models was considered by Sun and Su (2008), a class of additive-
acceleratedmeans regressionmodels was proposed by Li et al. (2010), AFTmodelling
strategy that shares the same spirit as quantile regressionwas considered byHuang and
Peng (2009) and Zhao et al. (2016), and AFT-type marginal models were discussed
by Xu et al. (2017).

The other problem considered in this paper is joint modeling, where a longitudinal
response is observed along with an observation of the time to the occurrence of an
event. A typical goal in such studies is to investigate the effect of the longitudinal
response (internal covariate for the event process) on the time to occurrence of the
event. As discussed by Tsiatis and Davidian (2004), some common issues encoun-
tered in such studies include (a) measurement error in the longitudinal response, and
(b) missing information over time (longitudinal response measurements are usually
collected only intermittently over time, leading to missing observations). Failure to
account these issues leads to biased estimates of the regression parameters (Rizopou-
los 2012). The modern approach to analyze these types of data involves two separate
models: a model that takes into account measurement error and missing data in the
internal time-dependent covariate to construct the complete longitudinal history for
each individual (longitudinal model), and another model that uses the longitudinal
history of each individual to quantify association between the internal covariate and
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the time to the occurrence of the event (time-to-event model). The motivating idea
behind the joint modeling techniques is to link the longitudinal model with the time-
to-event process through shared random effects (Henderson et al. 2000; Rizopoulos
2012; Tsiatis and Davidian 2004; Wulfsohn and Tsiatis 1997). There has been a con-
siderable amount of discussion on methods for joint modeling over the last few years.
For example, the EM or the Monte Carlo EM algorithm was developed to estimate
parameters in the jointmodels (Tseng et al. 2005;Wu et al. 2010; Zhang andWu2019);
the Bayesian method was also developed for estimation (Rizopoulos et al. 2014); the
dependence of longitudinal measurements on the survival process through rescaling
the time index was considered by Cai et al. (2017); the use of some latent features of
the longitudinal component in the survival submodel instead of the whole longitudinal
component as a covariate was discussed by Dong et al. (2019); joint modeling for a
nonlinear mixed-effects model with missing data was considered by Wu et al. (2010);
and extensions to the survival submodels were considered by Elashoff et al. (2008)
for competing risks problems, Chi and Ibrahim (2006) to model cure fractions, and
(Chen et al. 2004; Tseng et al. 2005 to go beyond PH models.

The most popular approach for recurrent event data analysis and joint modeling is
to assume a PH model to describe the event process, where the covariates act multi-
plicatively on the hazard function (Kalbfleisch and Prentice 2002; Lawless 2003). For
example, the semi-parametric Cox PH model (Cox 1972) is widely used for recur-
rent event data analysis, whereas parametric PH models are commonly considered
to describe the time-to-event process for joint modeling. Note that the use of the
semi-parametric Cox PH in joint modeling usually leads to an underestimation of
the standard errors of the parameter estimates (Hsieh et al. 2006; Rizopoulos 2012),
and therefore most methods for joint modeling are based on parametric response
distributions (Hwang and Pennell 2014). The key assumption in the PH model is the
proportionality assumption concerning the effects of the covariates. Although there are
well-known techniques to test the proportionality assumption for the Cox PH model
(e.g., Schoenfeld 1980), checking this assumption for joint modeling has received
less attention in the literature. An alternative framework involves considering an AFT
model, where the covariates act multiplicatively on time (i.e., the effect of covariates
is to accelerate or decelerate event time). Since an AFT model is formulated to allow
the influence of the outcome by the entire covariate process, it is also considered as
an excellent alternative to the PH model for time-varying covariates (Zhang and Wu
2019). The AFT models are also in general less restrictive (Cook and Lawless 2007).
The general framework of recurrent event models based on the AFT family of dis-
tributions has been discussed in Cook and Lawless (2007), though these models are
not in common use perhaps because of the lack of implementation and computing
resources. For joint modeling, Tseng et al. (2005) described the maximum likelihood
approach under the AFT assumption, and highlighted some challenges of modeling
the baseline hazard function in a likelihood setting. To circumvent this problem, they
considered a piecewise constant baseline hazard function.

TheWeibull, log-logistic and log-normal distributions are the most commonly used
AFT models for time-to-event data analysis. The log-logistic and log-normal distribu-
tions are useful tomodel unimodal hazard shapes, whereas theWeibullmodel is widely
used to characterize monotone increasing and decreasing hazard functions (Lawless
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Table 1 Survival functions and hazard functions for some common AFTmodels for a non-negative random
variable T (the inverse-scale parameter is denoted by ρ, and the shape parameters are denoted by κ and γ )

Model Survival function, S(t) Hazard/intensity function, λ(t)

Weibull ρ > 0, κ > 0 e−(ρt)κ κρ(ρt)κ−1

Log-logistic ρ > 0, κ > 0 1
1+(ρt)κ

κρ(ρt)κ−1

1+(ρt)κ

Log-normal ρ > 0, κ > 0 1 − Φ(κ log(ρt)) f (t)
S(t)

Generalized gamma ρ > 0, κ > 0, γ > 0 1 − Iγ ((ρt)κ )
f (t)
S(t)

Exponentiated Weibull ρ > 0, κ > 0, γ > 0 1 − (1 − e−(ρt)κ )γ
κγρ(ρt)κ−1(1−e−(ρt)κ )γ−1e−(ρt)κ

1−(1−e−(ρt)κ )γ

Φ(·) is the standard normal cdf, Iγ (s) = 1
�(γ )

∫ s
0 xγ−1e−x dx is the incomplete gamma integral

2003). The generalized gamma (GG) distribution (Stacy 1962) is a more flexible AFT
model, which includes the Weibull, gamma and log-normal distributions as special
cases. It accommodates all four standard shapes of the hazard function (increasing,
decreasing, unimodal and buthtub shape), and can be used to model data with wide
ranging characteristics. Mudholkar and Srivastava (1993, 1995) proposed the expo-
nentiated Weibull (EW) distribution that also accommodates all four standard shapes
of the hazard function. It includes the Weibull, exponentiated exponential and Burr
type X distributions as special cases. Cox and Matheson (2014) showed that the EW
could be a convenient alternative to the GG distribution, and suggested further investi-
gation to have a deeper understanding of the EW distribution as a lifetime model. For
completeness of description, a summary of these distributions is presented in Table 1.

As far as computational resources are concerned, theeha package (Broström 2018)
in R has implemented only the basic AFT models for recurrent event data analysis
(Weibull, log-logistic and log-normal), whereas the main focus of the JM package
(Rizopoulos 2010) for joint modeling is on the PH models (only one AFT model has
been implemented, which is the Weibull AFT). As described above, there are richer
AFT models (e.g., generalized gamma, exponentiated Weibull) that can describe data
withwide ranging characteristics but have received far less attention inmodeling recur-
rent event data and joint analysis of time-to-event and longitudinal data. Note that the
maximum likelihood method is convenient and easy to implement for recurrent event
data analysis. On the other hand, fitting joint models is a computationally intensive
task as it requires to approximate multiple integrals that do not have an analytic solu-
tion except in very special cases. In particular, numerical methods such as Gaussian
quadratures can be computationally very intensive and may offer non-convergence
(Zhang and Wu 2019). Hence, it may be advantageous to apply a Bayesian approach
for joint modeling and themaximum likelihoodmethod for recurrent event analysis. In
the Bayesian paradigm, asymptotic approximations are not necessary, model assess-
ment is more straightforward, and computational implementation is typically much
easier (Gould et al. 2015).

In this article, we develop methods for recurrent event data analysis and joint mod-
eling by considering the AFT models of Table 1 to describe the event process. In
particular, we consider two very flexible AFT models (generalized gamma and expo-
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nentiated Weibull), which, to our knowledge, have never been discussed extensively
for recurrent event data analysis and joint modeling. Note that many authors have
shown the benefits of undertaking a flexible parametric analysis while gaining the
advantages of a parametric approach (e.g., the flexible modeling of the hazard func-
tion and of time-dependent effects, and estimation of the survival probabilities). For
joint modeling, AFT models are biologically meaningful and allows the entire covari-
ate history to influence subject-specific risk (Tseng et al. 2005). In the light of our
discussion above, we consider the maximum likelihood method for recurrent event
analysis and Bayesian approach for joint modeling. We also develop computational
algorithms for statistical inference, implemented in the R statistical software (Core
2020). Finally, an R package has been developed to fit these models, which includes
several utility functions that can extract useful information from fitted models. This
work can be seen as a complement to the existing work on recurrent event data analysis
and joint modeling.

In Sect. 2,we present themodeling framework,maximum likelihoodmethod for sta-
tistical inference, model diagnostics and computational techniques for recurrent event
data analysis. Joint modeling techniques in the Bayesian framework are described in
Sect. 3. A Monte Carlo simulation study is presented in Sect. 4, investigating the rel-
ative performance of the models for recurrent event data analysis and joint modeling.
In Sect. 5, the practical relevance of these models is demonstrated with applications
to two real datasets. We conclude in Sect. 6 by summarizing our findings.

2 Recurrent event modeling

Let {z(t), t ≥ 0} be a left-continuous p × 1 covariate process which includes only
external covariates, with z(t) = (z1(t), z2(t), . . . , z p(t))′. The intensity function of
the AFT model can be expressed as

λ(t) = λ0(g(t)) exp{−z′(t)β}, (1)

where β is the vector of regression coefficients of the same length as z(t), λ0(·) is the
baseline intensity function (corresponds to an individual for whom z(t) = 0 for all
t ≥ 0), and g(t) = ∫ t

0 exp{−z′(u)β}du (Cook and Lawless 2007). Note that g(t) can
be considered as a transformed time scale defined by the covariate process, and hence
(1) is commonly known as a time transformmodel. The corresponding mean function
is

�(t) = �0(g(t)), (2)

where �0(t) = ∫ t
0 λ0(u)du. We assume that λ0(t) takes the form of a Weibull, log-

logistic, log-normal, EW or GG intensity function (see Table 1).

2.1 Maximum likelihoodmethod

Suppose m subjects are each under observation from time t0 = 0 to a censoring or
stopping time. For the i th subject (i = 1, 2, . . . ,m), the time-dependent covariates
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are assumed to be constant between assessment times 0 = ti0 < ti1 < . . . < tini = ti .
Let zi jk be the value of the kth covariate (k = 1, 2, . . . , p) for the i th subject in the
j th interval (ti, j−1, ti j ], j = 1, 2, . . . , ni , with zi j = (zi j1, zi j2, . . . , zi jp)′. Using (1),
the intensity function for subject i at time ti j can be written as

λi (ti j ) = λ0(ti j exp(−z′
i jβ)) exp(−z′

i jβ). (3)

Let di j be the event status (1 = failure, 0 = censored) for the i th subject in the j th time
interval (ti, j−1, ti j ]. Letting θ be the full vector of parameters, the likelihood function
based on data from m independent individuals is

L(θ) =
m∏

i=1

Li (θ),

where

Li (θ) =
ni∏

j=1

[

λi (ti j ) exp

{

−
∫ ti j

ti, j−1

λi (s)ds

}]di j
×

[

exp

{

−
∫ ti j

ti, j−1

λi (s)ds

}]1−di j

=
ni∏

j=1

[
λ0(ti j exp(−z′

i jβ)) exp(−z′
i jβ)

]di j × exp

{

−
∫ ti j e

−z′i j β

ti, j−1e
−z′i j β

λ0(u)du

}

=
ni∏

j=1

[
λ0(gi (ti j )) exp(−z′

i jβ)
]di j × exp{�0(gi (ti, j−1)) − �0(gi (ti j ))},

(4)

with gi (ti j ) = ti j exp (−z′
i jβ). As an example, the log-likelihood function using the

EW hazard function can be written as

	(θ) =
m∑

i=1

ni∑

j=1

di j
{
log κ + log γ + κ log ρ + (κ − 1) log(gi (ti j ))

+ (γ − 1) log(1 − e−(ρgi (ti j ))κ ) − (ρgi (ti j ))
κ

− log[1 − (1 − e−(ρgi (ti j ))κ )γ ] − z′
i jβ

}

−
m∑

i=1

ni∑

j=1

log

{
1 − (1 − e−(ρgi (ti, j−1))

κ
)γ

1 − (1 − e−(ρgi (ti j ))κ )γ

}

, (5)

where ρ > 0 is the inverse-scale parameter and κ, γ > 0 are the shape parameters
of the EW distribution, and θ = (ρ, κ, γ,β ′)′. Other models where λ0(t) takes the
form of a Weibull, log-normal, log-logistic or a GG distribution hazard function can
similarly be handled.

Tests and interval estimates for the model parameters are based on the approximate
normality of the maximum likelihood estimators (Cook and Lawless 2007): (θ̂ −
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θ) ∼ N (0, I−1(θ̂)), where I (θ̂) is the observed information matrix evaluated at θ̂ .
An alternative is to use the likelihood ratio method, which is particularly useful to
test hypotheses concerning nested models. For example, the Weibull model is nested
within the EW and GG models, and hence the likelihood ratio test can be employed
to check the adequacy of the Weibull fit with respect to the EW or GG fit. Note that
the Akaike information criterion (AIC) (Akaike 1974) is also useful for comparisons
between a number of possible models.

The counting process format is useful for numerical computations, involving multi-
ple lines of data for each subject. This approach considers dividing the total follow-up
time for each subject into smaller time intervals to allow for recurrent events. In par-
ticular, there are two time points specified in each line for a subject: ti, j−1 and ti j ,
representing the start time and stop time for subject i in interval j , respectively.
Note thatstart andstop contain the left truncation times and event/censoring times,
respectively, whereas status (censoring indicator) indicates which times are event
times. General optimization software can be employed to maximize 	(θ) to obtain the
maximum likelihood estimate θ̂ . The simplest computational approach is to maximize
	(θ) using an optimization software that does not require expressions for derivatives,
and gives an estimate of the asymptotic covariance matrix of θ̂ using numerical differ-
entiation. We have written an R package, JMR, that fits recurrent event models using
the Weibull, log-logistic, log-normal, EW and GG distributions (the package is avail-
able in GitHub, https://github.com/sa4khan/JMR). It also has some useful functions,
implementing the likelihood ratio test to check the adequacy of the Weibull fit with
respect to the EW or GG fit, the computation of AIC, and residual plots (see below).

2.2 Generalized residuals

If all covariates are external, then the random variable

Ei j =
∫ Ti j

Ti, j−1

λi (u)du, j = 1, 2, . . . , ni (6)

has a standard exponential distribution with survivor function exp(−u), u > 0, where
Ti, j−1 and Ti j are the start and stop times for subject i in interval j . Generalized
residuals Êi j are obtained by replacing Ti j with the observed time ti j and λi (u) with
the maximum likelihood estimate λ̂i (u) in (6). For sufficiently large samples, the Êi j

should be similar to independent standard exponential random variables if the speci-
fications λi (u) are correct (Cook and Lawless 2007). Thus, a plot of − log SKM(Êi j )

versus Êi j should be roughly a straight line with unit slope when the model is ade-
quate, where SKM(·) denotes the Kaplan-Meier estimate (Kaplan and Meier 1958) of
the survivor function.
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3 Joint modeling

Henderson et al. (2000) proposed a flexible joint model, linking the linear random-
effects model for longitudinal data with the Cox PHmodel for survival data via a latent
bivariate process. The maximum likelihood method was considered for statistical
inference. Considering AFT models to describe the event process, we propose a fully
Bayesian version of the joint modeling approach of Henderson et al. (2000), including
its implementation via Markov Chain Monte Carlo (MCMC) methods.

Let there be m subjects with lifetimes denoted by T1, T2, . . . , Tm . Assuming that
the data are subject to right censoring, we observe ti = min(Ti ,Ci ), where Ci > 0
corresponds to a potential censoring time for subject i . Letting δi = I(Ti ≤ Ci )

that equals 1 if Ti ≤ Ci and 0 otherwise, the observed data for individual i consist
of {ti , δi , zi }, i = 1, 2, . . . ,m, where ti is a lifetime or censoring time according to
whether δi = 1 or 0, respectively, and zi is a p×1 vector of baseline covariates. Also,
assume that the i th subject provides a set of longitudinal quantitative measurements
{yi j , j = 1, 2, . . . , ni } at times {si j , j = 1, 2, . . . , ni }. As proposed by Henderson
et al. (2000),we consider to jointlymodel the longitudinal and the event data via a latent
zero-mean bivariate Gaussian process {Ui , Vi }, which is assumed to be independent
across different subjects. This latent process is assumed to drive a pair of linked sub-
models as described below.

– Longitudinal Model. We model the longitudinal response yi j at time si j by the
relationship

yi j = μi (si j ) +Ui (si j ) + εi j , (7)

where μi (si j ) is the mean response, Ui (si j ) incorporates subject-specific random
effects, and εi j ∼ N (0, σ 2) is a sequence of mutually independent measure-
ment errors. We assume that the mean response at time s is characterized by a
linear model μi (s) = x′

i (s)α, where xi (s) is a vector of covariates (possibly time-
dependent) and α is the corresponding vector of regression coefficients (fixed
effects). For Ui (s), we assume a linear random effects model Ui (s) = w′

i (s)bi ,
where wi (s) is the design vector for the random effects bi ∼ N (0, 
b). In our
formulation, flexible representations of xi (s) andwi (s)may be considered using a
vector of functions of time, expressed in terms of polynomials or splines. Such rep-
resentations are particularly useful in applications where the longitudinal profiles
exhibit nonlinearity over time.

– Time-to-Event Model.We consider an AFT model to describe the event intensity
process at time t (Cox and Oakes 1984), expressed as

λi (t) = λ0(gi (t)) exp(−z′
iβ − Vi (t)), (8)

where gi (t) = ∫ t
0 exp(−z′

iβ − Vi (u))du, λ0(·) is the baseline intensity function
specified by the Weibull, log-logistic, log-normal, EW or GG distribution (see
Table 1), zi is a vector of baseline covariates with a corresponding vector of
regression coefficients β (no intercept term is included), and Vi (t) is specified in a
similar way toUi (t). In our implementation, dependence between the longitudinal
and time-to-event sub-models is captured through Vi (t) = φUi (t) so that φ is the
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measure of association induced by the fitted longitudinal values. Note that zi may
or may not have elements in common with xi of the longitudinal model. The
model (8) implies that an individual ages on an accelerated schedule, gi (t), under
a baseline survival function S0(gi (t)), which is biologicallymeaningful as it allows
the entire covariate history to influence subject-specific risk (Tseng et al. 2005).

Bayesian inference is carried out by MCMC, where we sample from the posterior
distribution by the HamiltonianMonte Carlo algorithm (Gelman et al. 2013). The pos-
terior distribution of the model parameters is derived under the assumptions that given
the random effects, (a) the longitudinal process is independent of the time-to-event
process, and (b) longitudinal responses of each subject are mutually independent.
Let ζ be the parameter vector of the chosen time-to-event distribution (ζ = (ρ, κ)′
for Weibull, log-logistic and log-normal, and ζ = (ρ, κ, γ )′ for EW and GG),
θ t = (ζ ′,β ′, φ)′ the parameter vector of the time-to-event process, θ l = (α′, σ 2)′
the parameter vector for the longitudinal process, θb the unique parameters of the
random-effects covariance matrix 
b, and θ = (θ ′

t , θ
′
l , θ

′
b)

′ the full parameter vec-
tor. Letting yi = (yi1, yi2, . . . , yini )

′, b = (b′
1,b

′
2, . . . ,b

′
m)′, and denoting a density

function by p(·), the posterior density under the above assumptions takes the form

p(θ,b) ∝
m∏

i=1

p(yi |bi , θ l)p(ti , δi |bi , θ t )p(bi |θb)p(θ), (9)

where

p(yi |bi , θ l) =
ni∏

j=1

p(yi j |bi , θ l),

p(yi j |bi , θ l) = 1

σ
√
2π

exp
{

− 1

2σ 2 (yi j − x′
i (si j )α − w′

i (si j )bi )
2
}
, (10)

p(ti , δi |bi , θ t ) = {λ0(gi (ti )) exp(−z′
iβ − φw′

i (ti )bi )}δi × S0(gi (ti )), (11)

p(bi |θb) = 1√|
b|(2π)nb
exp

(
− 1

2
b′
i


−1
b bi

)
, (12)

p(θ) represents the prior specifications for θ ,λ0(·) and S0(·) are, respectively, the base-
line intensity function and baseline survivor function of an AFT model (see Table 1),
gi (ti ) = ∫ ti

0 exp(−z′
iβ − φw′

i (u)bi )du, and nb is the dimensionality of the random-
effects vectorbi . For theEWandGG time-to-eventmodels, our choices of distributions
for the relevant quantities allow us to rewrite the joint model as
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[yi j |bi , θ l ] ∼ N (x′
i (si j )α + w′

i (si j )bi , σ
2),

[0|bi , θ t ] ∼ Poisson(− log p(ti , δi |bi , θ t )),
[bi |θb] ∼ N (0, 
b),

[

−1

b |ν, Ψ
]

∼ Wishart(Ψ , ν),
[
α|μα,
α

] ∼ N (μα,
α),
[
β|μβ,
β

] ∼ N (μβ,
β),

[φ|a0, a1] ∼ N (a0, a1),
[
σ−2|b0, b1

] ∼ Gamma(b0, b1),[
ρ−2|c0, c1

] ∼ Gamma(c0, c1),
[
κ2|d0, d1

] ∼ Gamma(d0, d1),[
γ 2|e0, e1

] ∼ Gamma(e0, e1),

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(13)

where the hyperparametersΨ , ν,μα ,
α ,μβ ,
β , a0, a1, b0, b1, c0, c1, d0, d1, e0 and e1
are all assumed known. Some remarks are necessary for the hierarchical formulation
(13).

1. For theWeibull, log-logistic and log-normal time-to-eventmodels, the last equation
for γ 2 is redundant.

2. Gauss-Kronrod or Gauss-Legendre quadrature rule (Press et al. 2007) can be used
to evaluate the integral gi (ti ) in (11).

3. The so-called “zeros-trick” (Spiegelhalter et al. 2003) is used to specify the dis-
tribution of (ti , δi ) (Eq. 11), as it is not of a standard form. The idea behind this
technique is that the contribution of a Poisson(ξ ) observation of zero is exp(−ξ);
if we set ξi = − log p(ti , δi |bi , θ t ), i = 1, 2, . . . ,m, with observed data a vector
of 0’s, then we get the correct contributions (see the second equation of (13)).

4. For the gamma and Wishart distributions in (13), we consider the parameteriza-
tions implemented in the STAN software (Stan 2020). For example, b0 and b1 are,
respectively, the shape and inverse-scale parameters of the Gamma(b0, b1) distri-
bution, and Ψ and ν are, respectively, the scale matrix and degrees of freedom of
the Wishart distribution Wishart(Ψ , ν).

5. Our R package JMR can fit the joint models as formulated above. The MCMC
algorithm is implemented in RStan (Stan 2020) using fairly vague, minimally
informative priors. Gauss-Legendre 5-point quadrature rule is used to evaluate
the integral gi (ti ). Note that JMR has options to replace the default values of the
hyperparameters in (13), and the default specification of 5-point Gauss-Legendre
quadrature with a 7, 15, 21, 31, or 41-point Gauss-Kronrod quadrature. In addi-
tion, this package can be used for dynamic predictions, residual analysis and model
comparison.

Henceforth, the joint models with Weibull, log-logistic, log-normal, EW and GG
time-to-event processes will be interchangeably referred to asModelsW, LL, LN, EW
ang GG, respectively.

3.1 Dynamic predictions

Based on a fitted joint model, we are interested to make a prediction for a new subject i
from the same population. With yi (s) = {yi (u), 0 ≤ u ≤ s}, xi (s) = {xi (u), 0 ≤ u ≤
s} and zi known, the conditional survival probability P(Ti ≥ t |Ti ≥ s, yi (s), xi (s), zi )
for t ≥ s is of particular interest in medical research. Note that the longitudinal
measurements are typically recorded up to a specified time, implying that the subject
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is event-free up to that time point. Therefore, it is more relevant to focus on conditional
subject-specific predictions. For estimation, we first consider a Monte Carlo approach
similar to the algorithm proposed by Rizopoulos (2012) to construct a subject’s profile
given survival up to time s. The algorithm is described as follows.

1. Randomly take a realization from the posterior simulations of the joint model
parameters. Denote it by θ (1).

2. Given θ (1), the history of the longitudinal response, covariate information, and
survival up to time s, simulate a realization of the random-effects vector, say b(1)

i ,
from its posterior distribution. For this step Rizopoulos (2012) used a Metropolis-
Hastings algorithm with independent proposals from a properly centered and
scaled multivariate t distribution (implemented in R). We consider here a different
approach: draw a random sample from the posterior distribution of the joint model
(13) with m = 1, event time = s and δ = 0, given θ (specified by θ (1)), yi (s),
xi (s) and zi . This is equivalent to drawing bi from its posterior distribution given
θ (1), and is relatively straightforward to implement in STAN (i.e., after sufficient
adaptation and burn-in iterations, draw only a single sample from the posterior
distribution).

3. Compute P(Ti ≥ t |Ti ≥ s, yi (s), xi (s), zi ) using
S(t |zi ,b(1)

i ,θ (1))

S(s|zi ,b(1)
i ,θ (1))

.

4. Repeat steps 1-3 M times.

We can now derive posterior summaries of the conditional probabilities (e.g., mean,
median, and 95% credible interval) from the MCMC sample of size M as constructed
using the above algorithm.

3.2 Hazard-based residuals

Hazard-based residuals, R̂i , are defined as the estimated cumulative hazard function
evaluated at each observed event time ti , where the cumulative hazard function at ti is
given by

Ri = − log S0(gi (ti )) = − log S0
( ∫ ti

0
exp(−z′

iβ − φw′
i (u)bi )du

)
. (14)

For sufficiently large samples, the R̂i should be similar to independent standard expo-
nential random variables if the model is correct (Rizopoulos 2012). Thus, a plot of
− log SKM(R̂i ) versus R̂i should be roughly a straight line with unit slope when the
model is adequate, where SKM(·) denotes the Kaplan-Meier estimate of the survivor
function. Note that θ and bi each has its own posterior distribution, inducing a poste-
rior distribution for Ri at each observed ti . Therefore, we regard the MCMC sample
mean of Ri as an estimate of the cumulative hazard function at ti , denoted by R̂i .
Kaplan-Meier estimate of the survivor function is then obtained based on R̂i .
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3.3 Model comparison

Bayesian models can be compared in several ways. Methods based on an estimate
of prediction accuracy from a fitted Bayesian model are particularly popular. These
include the deviance information criterion (DIC) (Spiegelhalter et al. 2002) and the
widely applicable information criterion (WAIC) (Watanabe 2010). Note that the pre-
dictive accuracy is estimated using the expected log predictive density function.

For WAIC, the measure of predicted accuracy is defined as the expected log point-
wise predictive density (elppd), estimated using

̂elppdWAIC =
m∑

i=1

log

(
1

K

K∑

k=1

p
(
ti , δi , yi |θ (k),b(k)

i

)
)

− pWAIC, (15)

where {θ (k),b(k)
i ; k = 1, 2, . . . , K } is the usual posterior simulations, and pWAIC is

the effective number of parameters, computed from posterior simulations as follows:

pWAIC =
m∑

i=1

var
(
log p

(
ti , δi , yi |θ (k),b(k)

i

))
, (16)

where var(ak) = 1
K−1

∑K
k=1(ak− ā)2.WAIC is then defined in terms of the deviance:

WAIC = −2 × ̂elppdWAIC. (17)

Note that WAIC is based on pointwise predictive density, and therefore it has an
explicit connection to the cross-validation technique. For this reason, although com-
putationally expensive, WAIC is the preferred choice for Bayesian model comparison
(see Gelman et al. 2014 for a comprehensive review of predictive information criteria
from a Bayesian perspective, including WAIC and DIC).

4 Simulations

4.1 Recurrent event analysis

We considered two scenarios: (1) theWeibull is the true survival model with ρ = 0.25
and κ = 2 (increasing hazard), and (2) the log-logistic is the true survival model with
ρ = 0.25 and κ = 2 (unimodal hazard). Two baseline covariates were considered
in all simulations: one continuous covariate (z1) generated from the standard normal
distribution, and one binary covariate (z2) generated from the Bernoulli(0.5) distri-
bution. Regression parameter values were chosen to be β1 = 0.5 and β2 = −0.5
corresponding to z1 and z2, respectively. Let zi = (zi1, zi2)′ be the covariate vector
for individual i , and β = (0.5,−0.5)′. To generate recurrent event data for individual
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i , we set

Ei j =
∫ ti, j−1+Qi j

ti, j−1

λ0(u exp(−z′
iβ)) exp(−z′

iβ), (18)

which has a standard exponential distribution (Cook and Lawless 2007). Thus, given
ti, j−1, we generated qi j (a realization of Qi j ) by drawing a random number from
the standard exponential distribution and solving (18) for Qi j . By repeating this for
j = 1, 2, . . .,wegenerated successive event times ti j = ti, j−1+qi j . The timeorigin for
each individual was set to ti0 = 0, and the maximum follow-up time was generated
from the uniform(3, 5) distribution. For each scenario, we generated 500 data sets
(each with m = 100), and then fitted the Weibull, log-logistic, log-normal, EW and
GG recurrent event models to each of these simulated data sets. We considered bias
and mean squared error (MSE) to evaluate the performance of a fit.

Numerical results are summarized in Table 2. As expected, we see superior perfor-
mance of the true model (Weibull for increasing hazard, and log-logistic for unimodal
hazard) in terms of bias and MSE. Limitations of the Weibull, log-logistic and log-
normal models are also evident in our simulation results: we see relatively poor
performance of the log-logistic and log-normal models when the hazard shape is
increasing, and relatively poor performance of the Weibull model when the hazard
shape is unimodal. These results are expected because, theoretically, the log-logistic
and log-normalmodels are useful to describe only unimodel hazard functions, whereas
the Weibull model can describe only monotone increasing and decreasing hazard
shapes. However, the EW and GG models are more flexible as highlighted in Sect. 1;
it is evident from our simulation study that the performance of the EW and GGmodels
is quite comparable to that of the true model in terms of bias andMSE. Thus, when the
shape of the hazard function is unknown, we recommend EW or GG-based estimators
for recurrent event data analysis.

4.2 Joint modeling

For joint modeling, we considered a similar setup for the time-to-event process: (a)
two simulation scenarios as described in Sect. 4.1, (b) two baseline covariates z1
and z2 with regression coefficients β1 = 0.5 and β2 = −0.5, respectively, and (c)
m = 100. In addition, we considered one internal covariate with regression coefficient
φ = −0.25. The longitudinal model was taken to be

yi j = α0 + α1xi1 + α2si j + bi0 + bi1si j + εi j , (19)

withα0 = 10, α1 = 1, α2 = −1, x1 a fixed time-independent covariate generated from
the Bernoulli(0.5) distribution, si j = 0, 1, 2, 3, 4 (time points at which longitudinal
measurements are planned to be taken), σ 2 = 0.5 (i.e., εi j ∼ N (0, 0.5)), σ11 =
sd(bi0) = 0.5, σ22 = sd(bi1) = 0.1, and r12 = corr(bi0, bi1) = −0.2. The random-
effects covariance matrix, 
b, was derived using σ11, σ22 and r12. For individual i ,
the following algorithm was then used to simulate data.
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1. Generate bi = (bi0, bi1)′ from N (0, 
b).
2. Take

S0(gi (Ti )) = S0
( ∫ Ti

0
exp(−z′

iβ − φw′
i (u)bi )du

)

= S0
( ∫ Ti

0
exp[−(0.5zi1 − 0.5zi2) + 0.25(bi0 + bi1u)]du

)
,

and solve the equation S0(gi (Ti )) = G for Ti , where G is a random number from
the uniform(0, 1) distribution.

3. Generate censored time Ci from the exponential distribution with rate parameter
ρ∗.

4. Take event time ti = min(Ti ,Ci ).
5. For si j < ti , obtain repeated measurements yi j using (19), where εi j ∼ N (0, 0.5).

Note that the rate parameter of the exponential distribution, ρ∗, was chosen such that
the average fraction of censored data to be around 30%.

For each simulation, 500 data sets were generated. Posterior summaries were aver-
aged over the 500 sets for each parameter, and the bias and MSE were calculated.

Numerical results are summarized in Tables 3 and 4 for scenarios 1 and 2, respec-
tively.We see that all themodels perform verywell to describe the longitudinal process
(MSEs are almost identical for each of the parameters of the longitudinal process),
though we see some differences in the estimation of the survival model parameters.
Overall, we see superior performance of the truemodel (Weibull for scenario 1/increas-
ing hazard, and log-logistic for scenario 2/unimodal hazard) in terms of MSE. For
increasing hazard (Table 3), the performance of the EW and GG models is compa-
rable to that of the Weibull model, whereas the performance of the log-logistic and
log-normal models is close but less accurate in terms of MSE. On the other hand,
for unimodal hazard (Table 4), we see superior performance of the log-logistic and
log-normal models. For this scenario, the EW andGGmodels also perform reasonably
well in terms of MSE. All these results are expected and desirable, suggesting that
the proposed methodology works very well for joint modeling of longitudinal and
time-to-event data.

5 Examples

5.1 Recurrent event analysis of rehospitalization data

González et al. (2005) described a study where 403 patients diagnosed with colorectal
cancer between January 1996 and December 1998 were followed up until 2002. The
study took place in the Hospital de Bellvitge, Barcelona, Spain. The data are available
in the frailtypack package (Rondeau et al. 2019) in R, and contain rehospitaliza-
tion times after surgery in patients diagnosed with colorectal cancer (colorectal cancer
patients may have several readmissions after discharge). For recurrent event analysis,
we consider an AFT model of the form
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Table 5 Recurrent event analyses—Andersen–Gill (AG), Weibull AFT (W), log-logistic AFT (LL),
log-normal AFT (LN), exponentiated Weibull AFT (EW) and generalized gamma AFT (GG) fits for rehos-
pitalization data

β1 β2 β3 β4

(sex) (chemo) (charl1) (charl2) log ρ log κ log γ

AG Estimate 0.530 -0.353 0.441 0.817 − − −
SE 0.101 0.100 0.203 0.107 − − −
p-value <0.01 <0.01 0.029 <0.01 − − −

W Estimate -0.750 0.473 –0.624 –1.178 –7.256 –0.339 −
SE 0.144 0.143 0.285 0.152 0.140 0.043 −
p-value <0.01 <0.01 0.028 <0.01 <0.01 <0.01 −

LL Estimate –0.820 0.465 –0.959 –1.181 –6.680 0.021 −
SE 0.162 0.161 0.355 0.184 0.157 0.041 −
p value <0.01 <0.01 <0.01 <0.01 <0.01 0.609 −

LN Estimate –0.861 0.496 –0.875 –1.167 –6.614 –0.529 −
SE 0.166 0.165 0.337 0.192 0.158 0.036 −
p value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 −

EW Estimate –0.815 0.493 –0.755 –1.237 –5.802 –0.857 0.976

SE 0.155 0.153 0.312 0.171 0.707 0.178 0.366

p value <0.01 <0.01 0.015 <0.01 <0.01 <0.01 <0.01

GG Estimate –0.816 0.494 –0.752 –1.234 –2.965 –1.109 1.326

SE 0.156 0.154 0.311 0.171 3.140 0.321 0.579

p value <0.01 <0.01 0.016 <0.01 0.345 <0.01 0.022

The Andersen–Gill approach uses the Cox PH model

λ(t) = λ0
(
t exp [−(β1sex + β2chemo + β3charl1 + β4charl2)]

)

exp [−(β1sex + β2chemo + β3charl1 + β4charl2)],

where sex = I(male), chemo = I(chemotherapy), charl1 = I(1 ≤ Charlson’s index ≤
2), and charl2 = I(Charlson’s index ≥ 3). Note that Charlson’s index (a higher score
indicates a greater burden of comorbidity) is taken as a time-dependent covariate.

First, we fit the Andersen–Gill (AG) model to the rehospitalization data (Table 5).
Note that the Andersen–Gill approach uses the Cox PH model, which can be fitted
easily using the coxph function of the survival package (Therneau and Gramb-
sch 2000) in R. Tests of the PH assumption for the covariates, carried out using the
R function cox.zph, give significant evidence of nonproportionality in the effect of
Charlson’s index (p-value = 0.043). One approach to overcome this problem is to fit
the Andersen–Gill model by taking into account an interaction between Charlson’s
index and time. Alternatively, we may consider an AFT model to analyze the rehos-
pitalization data as described below.

The fits of the Weibull, log-logistic, log-normal, EW and GG AFT models are
summarized in Table 5 (the use of our R package to fit these models is illustrated in
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Fig. 1 Recurrent event analyses of rehospitalization data-residual plots along with 95% pointwise con-
fidence intervals (dashed lines) for the Weibull AFT, log-logistic AFT, log-normal AFT, exponentiated
Weibull AFT and generalized gamma AFT fits

supp. material Section S1). Our analyses indicate clear superiority of the EW and GG
over theWeibull, log-logistic and log-normal fits in describing these data. In particular,

– the smallest AIC value is obtained for the EW and GG fits (AIC = 6972, 6975,
6974, 6964 and 6964 for theWeibull, log-logistic, log-normal, EWandGGmodels,
respectively);

– the likelihood ratio statistic to test the goodness of fit of Weibull as a submodel of
the EW is χ2 = 9.40 on 1 df, with p-value < 0.01 (significant evidence against
the Weibull model relative to the EW in describing the rehospitalization data);

– the likelihood ratio statistic to test the goodness of fit of Weibull as a submodel of
the GG is χ2 = 9.78 on 1 df, with p-value < 0.01 (significant evidence against
the Weibull model relative to the GG);

– the residual plots (Fig. 1) indicate clear superiority of the EW and GG over the
Weibull, log-logistic and log-normal fits.

Our analyses based on theEWandGGfits reveal that (a) each of the covariates under
study is highly significant, (b) the time to rehospitalization of a male is speeded by a
factor of about e−(−0.82) = 2.3 relative to a female (i.e, males with colorectal cancer
are of higher risk of rehospitalization after surgery), (c) the time to rehospitalization
of a colorectal cancer patient who received chemotherapy is decelerated by a factor
of about e−0.49 = 0.61 relative to a patient who did not receive chemotherapy (i.e,
there is a negative association between I(chemotherapy) and rehospitalization time),
(d) the time to rehospitalization of a patient with Charlson’s index between 1 and
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2 is accelerated by a factor of about 2.1 relative to a patient with no comorbidities
(i.e., Charlson’s index = 0), and (e) the time to rehospitalization of a patient with
Charlson’s index ≥ 3 is accelerated by a factor of about 3.4 relative to a patient with
no comorbidities.

5.2 Joint modeling of AIDS data

Rizopoulos (2012) described a study involving 467 human immunodeficiency virus
(HIV) infected patients who had failed orwere intolerant to zidovudine therapy (AZT).
The main objective was to compare two antiretroviral drugs to prevent the progression
of HIV infections: didanosine (ddI) and zalcitabine (ddC). Patients were randomly
assigned to receive either ddI or ddC and followed until death or the end of the study,
resulted in 188 complete and 279 censored observations. It was also of interest to
quantify the association between CD4 cell counts (internal time-dependent covariate)
and time to death. The data are available in the JM package (Rizopoulos 2010) in R.
Letting y = √

CD4, we consider a joint model to analyze these data, with

yi j = α0 + α1si j + α2(si j × drugi ) + α3sexi + α4prevOIi + α5AZTi

+ bi0 + bi1si j + εi j ,

λi (ti ) = λ0

( ∫ ti

0
exp[−z′

iβ − φ(bi0 + bi1u)]du
)
exp[−z′

iβ − φ(bi0 + bi1ti )],
z′
iβ = β1drugi + β2sexi + β3prevOIi + β4AZTi ,

where si j is the j thmeasurement occasion for individual i , drug = I(ddI), sex = I(male),
prevOI = I(previous opportunistic infection), and AZT = I(AZT failure). To fit a joint
model, we consider two chains to approximate the posterior distributions, each with
2,500 MCMC iterations after adaptation, burn-in and thinning.

We fit five joint models to the AIDS data with the time-to-event process described
by an AFT model: W, LL, LN, EW and GG (the use of our R package is illustrated
in supp. material Section S1). For the sake of comparison, we also fit the Weibull PH
(WPH) jointmodel, where the time-to-event process is described by the PHmodelwith
thebaseline hazard specifiedby theWeibull distribution. Someposterior characteristics
of the parameters are given in Tables 6 and 7.We see that the Gelman-Rubin diagnostic
(Gelman and Rubin 1992) values (Rc) are all very close to 1, indicating convergence
of MCMC output. In addition, the trace plots of the parameters show no pattern (i.e.,
the MCMC chains appear to converge well), and the density plots appear smooth with
no indication of multimodality (as an example, the trace and density plots of Model
W parameters are presented in supp. material Section S2).

TheWAIC for Models WPH, W, LL, LN, EW and GG are 7526, 7527, 7550, 7562,
7533 and 7530 respectively, suggesting that the WPH and W fits are superior to the
fits of the other four models. The results show almost identical goodness of fit for the
WPH and W models. We also see slightly more support for the WPH and W over the
GG and EW fits (perhaps no significant difference). On the other hand, the LL and LN
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Fig. 2 Jointmodeling ofAIDS data-residual plots for the time-to-event submodels. A random sample of size
200 is drawn from the posterior simulations, and the Cox–Snell residuals are computed for each sample. The
estimate of the posterior expectation is obtained as theMCMCsamplemean of the residuals at each observed
time point. A plot of residual vs. estimated cumulative hazard is then produced (solid circles). Uncertainty
in the plot can be assessed through the 200 sets of residuals obtained from the posterior simulations (grey
lines)

fits are comparable, but provide far less support compared to the other four models.
These results are also evident in the residual plots of Fig. 2.

Based on the 95% credible intervals, time (s) and PrevOI are statistically significant
for the longitudinal process (Table 6),whereas prevOI andCD4cell counts (the internal
time-dependent covariate) are significant for the time-to-event process (Table 7). Note
that these results are consistent with those of Guo and Carlin (2004), who used a PH
model to describe the event process in analyzing these data.

With the Weibull AFT fit, the estimate of φ (coefficient for CD4) is 0.159 with
95% credible interval (0.117, 0.205), suggesting a positive association between CD4
cell counts and event time (high CD4 count leads to better health status). It is also
supported by theWeibull PH fit: the estimate ofφ is−0.248with 95% credible interval
(−0.319,−0.182); and the estimate e−φ is 1.28, suggesting that a unit decrease in
the marker corresponds to a 1.28-fold increase in the risk for death. To illustrate, we
consider dynamic predictions for two patients with different CD4 cell levels, adjusted
for the other factors (i.e., same drug, sex, prevOI, AZT and censoring status; data for
these two patients are given in supp. material Section S3). One patient (id# 404) has
lower CD4 cell levels, and the other patient has relatively higher CD4 cell levels (id#
409). Note that s = 12 is the last observed time at which a longitudinal measurement
is available (i.e., both these patients have survived up to time s = 12). With this
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Fig. 3 Dynamic predictions (using theWeibull AFT joint model) for two AIDS patients with different CD4
cell levels, adjusted for the other factors (i.e., same drug, sex, prevOI, AZT and censoring status). a and
b Show plots of the survival curves (right panel), with the predictions displayed by the solid line and the
pointwise Bayesian intervals displayed by the dashed lines; the corresponding fitted longitudinal profiles
are included in the left panel. c Shows a comparison of survival probabilities of these two patients (survival
curves of a and b are superimposed on the same plot). Data for these two patients are given in supp. material
Section S3; one patient (id# 404) has lower CD4 cell levels, and the other patient has relatively higher CD4
cell levels (id# 409)

information, we estimate the conditional survival probabilities P(T > t |T > 12) for
t ≥ 12 with the Weibull AFT fit. The survival curves for these two patients are given
in Fig. 3 (numerical results along with 95% pointwise credible intervals are given in
supp. material Section S3). The left panels of Fig. 3a, b show the fitted longitudinal
profiles (patient 404 has lower CD4 cell levels), whereas the right panels display
the survival curves (predictions are displayed by the solid lines, and the pointwise
Bayesian intervals are displayed by the dashed lines). We also present Fig 3c, where
a comparison of survival probabilities of these two patients are displayed (survival
curves of Fig. 3a and b are superimposed on the same plot). We see higher survival
rates for patient 409, suggesting a positive association between CD4 cell counts and
event time (a negative association between CD4 cell counts and the risk of death). We
obtained similar predictions using the Weibull PH fit (results are not shown here).
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6 Conclusion

The key assumption in the PH model is the proportionality assumption concerning
the effects of covariates. The assumption of PH is strong and it is important that it be
checked. The AFT model is widely viewed as an alternative to the PH model, and it
turns out to be particularly useful when the PH assumption fails. Although the AFT
model is a well-known alternative to the PH model in standard survival data analysis,
it has seldom been utilized in recurrent event data analysis and joint modeling. In
this article, we have demonstrated applications of AFT models in recurrent event
data analysis and joint modeling. In addition to the commonly used AFT models
(Weibull, log-logistic, log-normal), we have also introduced two flexible models (EW
and GG) that can describe data with ranging characteristics. Indeed, the flexibility of
these two models is evident in our simulations and real data analyses. This work will
serve as a complement to the existing work on recurrent event data analysis and joint
modeling. Note that we assumed the typical setup of joint modeling, where there is
only one internal time-dependent covariate and a set of baseline (time-independent)
covariates. It would be interesting to allow time-varying covariates under the setup of
joint modeling for recurrent event data. Extensions of our joint modeling framework
may thus be desirable.
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org/10.1007/s00180-021-01171-7.
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