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Abstract

Estimation and hypothesis tests for the covariance matrix in high dimensions is a
challenging problem as the traditional multivariate asymptotic theory is no longer
valid. When the dimension is larger than or increasing with the sample size, standard
likelihood based tests for the covariance matrix have poor performance. Existing high
dimensional tests are either computationally expensive or have very weak control
of type I error. In this paper, we propose a test procedure, CRAMP (covariance
testing using random matrix projections), for testing hypotheses involving one or more
covariance matrices using random projections. Projecting the high dimensional data
randomly into lower dimensional subspaces alleviates of the curse of dimensionality,
allowing for the use of traditional multivariate tests. An extensive simulation study
is performed to compare CRAMP against asymptotics-based high dimensional test
procedures. An application of the proposed method to two gene expression data sets
is presented.

Keywords High dimension - Covariance matrix - Hypothesis testing - Random
projections

1 Introduction

In multivariate analysis, hypothesis tests involving the first two moments - mean and
covariance matrix have been extensively studied. Consider a random variable X with
mean p = E(X) and covariance matrix ¥ = E {(X — p)(X — u) " }. There is a vast
amount of literature for inference involving the mean g, starting with the Hotelling’s
T? statistic. Refer to Ayyala (2020), Hu and Bai (2016) for an extensive review of
methods for the mean vector testing. In this article, we focus on inference on the
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covariance matrix. Given arandom sample from a p-dimensional Gaussian distribution
with mean p and variance X, we are interested in testing the hypothesis

Hy: X =% VS. Hy X # X, (1)

for some known p x p matrix Xg. Of specific interest is when X corresponds to a
particular geometric shape: ¢ = 027 p.0 € R for a spherical normal distribution
or X = diag(oy, ..., 0p) for independent components. Other forms, such as block
diagonal can be helpful in testing the presence of subgroups of elements of X that
are independent. In the two sample case, it is of interest to compare the covariance
matrices X1 and X, of two populations X and Y respectively. Equality of covariance
matrices implies the distributions of X and Y have the same shape, but are centered
at different locations. Importance of the problem of testing equality of covariance
matrices for Gaussian models lies in the network interpretation of the covariance
matrix. The inverse of the covariance matrix, called the precision matrix is used to
construct undirected graphical network models with elements of the variable as nodes
(Cai et al. 2012; Zhao et al. 2014).

For both the one and two sample hypotheses, traditional likelihood ratio tests are
developed and studied in great detail (Anderson 2003). However the tests are valid
only when p < n and p is fixed. For high dimensional data, i.e. when p increases
with n or when p > n, the asymptotic properties of these tests are no longer valid.
This is because the sample covariance matrix S has rank min(p, n — 1), where n is
the sample size. Therefore unconstrained estimation will lead to rank-deficient and
inconsistent estimators when p > n. To avoid this problem, test statistics can be con-
structed based on a real-valued functional of S. This approach is very commonly used
in high dimensional inference for the mean (Ayyala 2020). The main idea is to have
the functional equal to zero under Hp and non-zero under H,4. For example in the
one-sample hypothesis in (1), f(X) = tr (¥ — ¥0)? can be used as the functional.
The rejection region is determined by studying the asymptotic properties of the sam-
pling distribution of f(S). Appropriate functionals for the two-sample case can be
constructed similarly.

An approach that is gaining prominence in other domains of high dimensional infer-
ence but has not been implemented explicitly in covariance matrix testing is the use of
random projections. A computationally intensive approach, a random projection (RP)
based inference involves embedding the original p-dimensional data into a lower k-
dimensional space using linear projections. Dimension of the embedded space k can
be chosen to be smaller than n, thereby upholding the assumptions of traditional mul-
tivariate methods. Validity of this method is guaranteed by the Johnson-Lindenstrauss
lemma (Johnson and Lindenstrauss 1984).

In recent times, there is increasing interest in using random projections in various
data mining and machine learning problems. Random projection methods have been
used in ensemble machine learning methods such as classification (Schclar and Rokach
2009; Cannings and Samworth 2017; Cannings 2021). In linear regression, (Thanei
et al. 2017) studied theoretical properties of RP based linear regression models and
how they perform compared to ridge and principal component regression. In statistical
inference, random projections have been used for the mean vector testing problem
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(Lopes et al. 2011; Srivastava et al. 2014). For the two sample covariance matrix
testing problem, Wu and Li (2020) proposed a test procedure by randomly projecting
the data into a one-dimensional space. The one-sample problems of test for sphericity
and uniformity have not been addressed.

In this paper, we propose CRAMP - covariance matrix testing using random matrix
projections. The rest of the article is organized as follows. In Sect. 2, we introduce
two specific one sample tests and the two sample test hypotheses. A literature review
of existing test procedures in both traditional and high-dimensional settings is also
provided. Random projection based tests is introduced in Sect. 3. Theoretical details
and algorithms for the one and two sample tests are also explicitly described. In
Sect. 4, an extensive simulation study comparing the different methods is presented.
We applied CRAMP to test equivalence of gene networks, which are represented by
the covariance matrices using gene expression data. Results from the analysis of these
data sets are presented in Sect. 5.

2 Hypotheses for covariance matrices
2.1 One sample tests

Consider a random sample Xj, ..., X,, from a p-dimensional continuous distribution
Fp with mean w and variance X. The parameter of interest for this study is X, the
covariance matrix. We are interested in testing the hypotheses

Hop: X =1, VS. Hy X #71,, )
Hos: £ =0T, vs. Hys:3Z#0°T,, (3)

where 7, is the identity matrix of dimension p and o > 0 is an unknown parameter.
The hypotheses in Eqs. (2) and (3) are commonly referred to as tests for identity and
sphericity respectively. The general test for Hy : ¥ = X for some known matrix Xo
can be viewed as a test for identity when the data is transformed as X +— X 12x.
The hypotheses can be equivalently stated in terms of the eigenvalues of X as follows.
If A1, ..., A, denote the eigenvalues of X, then Eqgs. (2) and (3) can be stated as

Ho:Ai=1Vi vS. Hi; : A; <1 for at least one i,
Hos:Ap=...=Axp, Vs Hys : A; # X for some i # j.

Let S = n 130 (X; —X) (Xi — X)T denote the sample covariance matrix,
where X = n~! Y71 X; is the sample mean. When F, is the Gaussian distribution,
S is the maximum likelihood estimator which follows a Wishart distribution. The
likelihood ratio test statistics for the two hypotheses are given by

1 2
LRT; =(n—1) {1 e (2p+ 1— m)} [—log(ISD) + r(S) — p].
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2p% + p+2 - -
LRTS:_{n_l_%}|:plogp+2]0g)\,‘—p10g Z)‘i .

i=1 i=1
“)

Under the null hypothesis, LRT; and LRTs are approximately distributed as a 2
distribution with degrees of freedom v = p(p + 1)/2 and v = p(p + 1)/2 — 1,
respectively (Rencher and Christensen 2012).

Another approach to test the hypotheses is to construct a functional of the covariance
matrix which will be zero under the null hypothesis and non-zero under the alternative.
For sphericity and identity, it is straightforward to see that the functionals

1 p3 2 1 2
U= —-tr{——-TI,f .V=—-tu{Z-TI,}",
p (uX/p p

are non-negative and are equal to zero under Hyps and Hy; respectively. Using these
functionals, John (1972) and Nagao (1973) proposed the following test statistics by
plugging in the sample covariance matrix estimate to test Hos and Hy; respectively:

U _ltr{ : 1}2 V, _ltr{S 1}2 35)
John = —try—— — ) N =— - .
onn p trS/p P agao p P

It is shown that under the null hypothesis, Ujon, and Vyggao are asymptotically dis-
tributed as chi-squared random variables with p(p + 1)/2 — 1 degrees of freedom.
When the sample size is small, Nagao (1973) also provided second-order corrections
to the p-values for both test statistics. While these tests are constructed assuming
normality of the samples, they are applicable even when S is singular, unlike the like-
lihood ratio tests which involves inverting the sample covariance matrix. However,
these tests fail when the data is high-dimensional, i.e. when p is larger than n. While
the tests can be applied in practice, the asymptotic properties fail to hold unless p is
assumed to be fixed with respect to n.

Under high dimensional setting, Ledoit and Wolf (2002) studied the properties of
Ujonn and Viyggqo for high-dimensional models when p/n — ¢ € (0, 00). They
observed that Uj,p, is consistent for high-dimensional data, whereas Viggqo fails
when p increases with n. Modifying Viyagao, they proposed

p

1 2 S )? p
VLW = ;tr{S—Ip} —;{—}

+ —. (6)
p

n

Under Ho;, Vpw is shown to asymptotically follow a x 2 distribution with p(p + 1)/2
degrees of freedom. The asymptotic distribution is derived under a normal distribution
model for the observations.

With increased interest in high dimensional inference, several other tests have been
proposed for the hypotheses in Egs. (2) and (3). By modifying the estimators of tr¥®
and tr2? in I/ and V, Srivastava et al. (2014) proposed a test statistic is given by
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n—1 32 n—lA ~
Usyk = 5 |:a71—1:|, Vsyk = [ay — 2a; + 1], @)

where @] = tr (S) /p, @ = {pn(n — D(n —2)(n — 3)}~! |:(n — D3(n - 2)uS? —

n(n — 3t (D?S) +(n—1)%tr (82) i| and Dg = diag(S) denotes the diagonal of the

sample covariance matrix. The test statistics are shown to be asymptotically normally
distributed under Hys and Hy; respectively. The statistics in (7) are based on comparing
the arithmetic means of the eigenvalues of - for k = 1, 2. Extending the result to
higher order powers, Fisher (2012), Fisher et al. (2010) expanded it to the fourth
powers of ¥ and Qian et al. (2020) extended the results to the sixth power.

Chen et al. (2010) used Hoeffding’s U -statistics to estimate trX and tr=2. Their
test statistics are given by

T2,n 1 2
Uczz=pr\—= |- L Vezz=—Ton— —Tin+1, )
T p p

1,n

where 7y, = n~ ' Y0 XTX; — fn(n — D} Y, XX is the U-estimator for
tr¥ and

2
o i (KTX) 2% X XX X
2 T =) n(n— Hn —2)
Zi;éjyékgél XzTX/XI—chI
nn—1)m—2)(n—3)

is the U-estimator for tr=2. Under the null hypotheses, the test statistics nUczz /2
and nVczz/2 both asymptotically follow a standard normal distribution.

2.2 Two sample tests

In the two sample case, our interest lies in comparing the covariance matrices of two
independent populations. Let X1, ..., X, and Y1, ..., Y, be random samples drawn
from p-dimensional distributions ), and G, respectively. Denoting the covariances
of the two populations by ¥ and ¥, respectively, the hypothesis of interest is

H()T . E] = 22 VS. H]T : 21 7& 22. (9)

LetS) =n~1Y" (X, —X) (X, = X) and S, =m~' Y, (Vi = Y) (Y = V)"
denote the sample covariance matrices of the two populations respectively. Let
Spi = (nS1 + mSy)/(n 4+ m) denote the pooled sample covariance matrix. When
p < min(m, n) and both ¥, and G, are assumed to be Gaussian, the likelihood ratio
test is constructed using
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s s

(10)
|Spl|n+m72

Under Hyr, T = —2(1 — ¢1) M is asymptotically x 2-distributed with p(p + 1)/2
2

degrees of freedom, where c; = (1/n+1/m —1/(n+ m))%. This test, called

the Box’s M-test, also has an approximation yielding an F d]i7stribution in the limit.

For lower dimensional models (p < n), a Wald-type test can also be constructed as

nm

1 2 —1)?
s = e 550" e (555 ) -

tr (SIS;ZISZS;II) ] (11)

which follows a x? distribution asymptotically with p(p + 1)/2 degrees of freedom
under Hyr.

However, the above two tests fail for high dimensional models with p > n. Similar
to the one-sample tests, one way to avoid specifying a distribution model to the two
groups is by constructing a functional of ¥ and X, which is zero under Hpr and non-
zero otherwise. The Wald-test in (11) can be thought of as being based on this principle

with tr (21 %y 1) as the functional. However in high dimensional inference, sample

covariance matrices are singular and hence matrix inversion is usually avoided. Instead,
a more commonly used functional to compare covariance matrices is tr (X; — 22)2,
the Frobenius norm of the difference X1 — X».

When the samples are normally distributed, Schott (2007) proposed a test statistic
when p/n — b € [0, 00). Under the assumption that lim tr(Ef‘)/p =b € (0, co) for
i=1,2andk =1, ..., 8, the test statistic

= ~S5) = L _ _ 2 _ 2
Tsen =tr (S — S)) " TD0-D H(n D(n — 3)tr (81> + (n — Dtr (Sy) }
m—2 5 2 5
_ —(m Y ’(m — D(m — 3)tr (82) + (m — 1)°tr (Sp) ] (12)

is shown to be asymptotically normal under Hyr. This test statistic is still restrictive
in terms of the distributional assumption required to derive the asymptotic properties.

Relaxing the normality assumption, Srivastava et al. (2014) considered a factor
linear model of the form X = u + Fu, for some p x m matrix F and m x 1
random vector u. The distributional assumption on X is replaced by conditions on
the moments of elements of u. The test statistic, which is constructed based on the
function tr (S; — S»)?, is given by

A+ Ay =2p7r (81852)
1 1 (n—DA+(m—1DA,
2 (m + _> T m—

Tsyx = (13)

m—1 n+m-—2

@ Springer



Covariance matrix testing in high dimension using random projections 117

where

{01 = 120 = 2t (87) = micne = D% (D3, ) + 0 = 12 (8002
A == ’
‘ (prx(nic = Dk = 2)(n = 3))

for k = 1, 2 with n;y = n and n, = m. The dimension is allowed to increase at a
polynomial rate with respect to the sample size, p = O(n’) for 1/2 < § < 1. Under
Hyr, the test statistic is shown to converge to a standard normal distribution.

Using tr (X1 — %,)? as the functional, Li and Chen (2012) developed a test statistic.
The main idea behind the test statistic is to use Hoeffding’s U -statistics to construct
unbiased estimators for the functional. Asymptotic properties of this estimator are
used to develop the test procedure. The test statistic is given by

-An,l + Am,2 - 2Cnm

Trc = (14)
On,m
where forh =1, 2,
Ap = L > (XTX;1~>2 R > XX X X
T p(n — 1) &= \THT n(n—1)(n —2) &= “HTTh
i#] i#j#k
1
+ Z X0 X0 X X
nn—1)n—2)(n—3) Weri¥,
with X{; = X; and Xy; = Y; and
Com = iizm:(xTY»)z— ;ZZXTY XY
T £ 4 i nn — lym &~ A
i=1 j=I i#j k
1 1
3V XY X+ —————— > X/ Y,X] Y.
m(m — 1)n i nn—1)m@m—1) ey

Under regularity conditions on the covariance matrices, 77 ¢ is asymptotically normal
under Hor. One of the main advantages of T7¢ over Tsyg and Ts,, is that a direct
relationship between n and p has been relaxed.

In the above two test statistics, the aggregate difference between X, and % is
measured using the Frobenius norm. Cai et al. (2013) proposed a test based on the
maximum difference between elements. The test statistic, given by

2
(S1ij = S2.ij)
By i
Terx = max ——g—a—, (15)
I=i<j=p P

_ 4 5a 2 _
where a)l,ij =n 1 ZZ:] {(in — X,‘)(ij — Xj) — 81’1‘]’} and 0)2,1']‘ =m 1 ka=1

{(Yii = YD) (Yij — Y)) — S }2. Under Hyr, the limiting distribution of T¢yx is
shown to be an extreme value distribution of type I. In comparison with the Frobenius
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norm based tests, Tcr x is shown to be more powerful at detecting difference between
the covariance matrices when the differences are sparse, i.e. they differ in very small
number of elements.

3 Projection based test

Conventional methods discussed for testing equality of covariance matrices usually
fail in high-dimensional data settings because the sample covariance matrix does not
converge to its population counterpart. Test statistics comparing covariance matri-
ces are mainly based on matrix functions, such as eigenvalues, trace, Frobenius norm,
etc., which also lose consistency in high dimensions. Thus performance of methods for
comparison of covariance matrices worsens with increasing dimension. Test methods
for covariance matrices in lower case enjoy many appealing properties. For example,
U jonn test is invariant and is also the locally most powerful. The high dimensional
methods are shown perform well, but they fail to achieve the theoretical properties of
U jonn- The LRT in the two sample case is also robust and has good asymptotic prop-
erties when the dimension is smaller than the sample size. To preserve the properties
of traditional multivariate methods, an attractive approach is to embed the data and
model into a lower dimension such that the hypothesis and inference are preserved.

When embedding data into lower-dimensional subspaces for parametric inference,
the mapping should be such that the local topology of the data is preserved. Since
the parameter of interest is the covariance matrix, which is a measure of spread, the
mapping should preserve pairwise distances between observations. The existence of
such a mapping is given by the Johnson-Lindenstrauss lemma (Johnson and Linden-
strauss 1984), which says that any linear mapping from the original space into the
lower-dimensional space satisfies this condition. Hence we consider linear projection
mappings from R” into R¥ for k < p of the form X — RX where R € RF*P is
the projection matrix. This paper’s main motivation is to develop test methods for
covariance matrices for high-dimensional data that enjoy the appealing properties of
tests for covariance matrices for lower dimensional data. The most natural path to
mimic the tests for covariance matrices for lower data, such as U, test is to project
high-dimensional data onto a space of dimension smaller than the sample size.

When considering dimension reduction techniques, principal component analysis
(PCA) is the most popular and commonly used. While PCA is used very frequently
for graphical representation and has good geometric properties, it is not ideal for
projection-based hypothesis testing in high dimensions. For example, consider the
two-sample test. When using PCA-based projection, variance of the data projected
onto the first m principal component is given by the first m eigenvalues. While the
data is embedded in the lower dimension, the hypothesis is not preserved. Equality
of the first m eigenvalues does not guarantee that the two covariance matrices are
equal. Extending to include all the p eigenvalues will also not work since the sample
covariance matrix is singular and yields only » — 1 non-zero eigenvalues. Other data-
driven projection methods such as t-SNE (van der Maaten and Hinton 2008) will also
not work for similar reasons. To avoid these shortcomings, random projection (RP) of
data is a popular method to alleviate the curse of dimensionality.
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A random projection matrix R = (7;;) € R¥*P is a matrix with randomly generated
elements, and is not generated from a matrix-valued distribution. The elements r;; are
randomly and independently generated thereby resulting in a much lower computa-
tional cost. Structural constraints such as sparsity and orthogonality can be imposed
later as desired. There are various methods to generate the elements of the random
projection matrix - (Achlioptas 2001; Srivastava et al. 2014) generate sparse projec-
tion matrices by structuring the matrix to have a large proportion of zeros. Another
approach is to impose structure by generating orthogonal matrices to preserve geo-
metrical properties in the data. RP-based inference procedure is along the same lines
as a union-intersection test, where the null hypothesis is equivalently written as the
intersection of a family of hypotheses and the alternative is expressed as a union.
The principle remains the same - we reject the null hypothesis if at least one random
projection presents evidence in favor of rejection.

Using the principle of random projections, Wu and Li (2020) developed a test
procedure by projecting the data onto a one-dimensional space (k = 1). For the one
sample hypothesis of Hél) : ¥ = 7, the chi-squared test statistic can be used on
the projected data. Conditional on the random projection matrix R, the test statistic
will have a chi-squared distribution with 1 degree of freedom. For the two sample
hypothesis in (9), the standard F test statistic was used. To combine the results of M
random projection matrices, the maximum was used. The test statistics for the one and
two sample cases are given by

Ty = max x> (RXi,..., RiXy,),
1<i<M

(16)
Ty nm = 1I<I}§>§WF (RiX1, ..., RiXy; RiY1, ..., RiYy),

where Ry, ..., Ry are independently generated random matrices. The critical values
for rejection Hy are derived using type I extreme value (Gumbel) distribution. Project-
ing into the one-dimensional space is convenient because the standard x> and F test
statistics have exact distributions. However, there are a few limitations to this method.
First, the effect of sample size on the performance of the test statistic is not extensively
studied. The Gumbel distribution can have poor performance when the sample size is
small, n + m < 40. In contrast, the simulation studies reported in Wu and Li (2020)
use n = m = 100. Second, the projected space sounds very restrictive to translate the
entire information from p dimensions to a single dimension.

3.1 Proposed test procedure

Using more than one dimension, we propose projecting the data from p to k dimensions
using a random matrix R € R¥*?, where k > 1 is smaller than sample size n + m.
First consider the one sample hypotheses. For k < p, let R € R¥*? be a projection
matrix and define Xl* = RX;,i = 1,...n as the projected data. If the mean and
variance of X are given by u and X respectively, then we have pu* = E(XY) = Ru
and ¥* = var(X}) = RER". Under the null hypothesis of identity, the variance of
X* becomes var(X*|Hp;) = RERT = RR'. Similarly under the null hypothesis of
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sphericity, we have var(X*|Hos) = 0>RR . If we choose the projection matrix R
to be of full row rank and semi-orthogonal, i.e. RR T = 7, then the null hypotheses
are preserved under the projection. Using X7, ..., X as the data, the hypotheses of
interest will be

H; :X*=1Iy vs. Hij:X%#1Iy,
H(TS X = oQIk VS. His: X" # Uzzk.

If the data X is assumed to follow a normal distribution, the projected observations
X* will also be normally distributed. Hence likelihood ratio tests can be used to
test Hy; and Hjs. Also, the functional based tests, Ujonn and Vyagao in (5) can
be used since the projection ensures k < n. Defining the sample covariance matrix

St=n"'Y0 (XF—X¥) (X) - F)T, we have

. 1 [ s g . (- >
UJohn = Etr trS* /k Tk VNagao = ztl' {S —Ik} . (17)

Asymptotically, these tests will have a chi-squared distribution withv = k(k+1)/2—1
degrees of freedom. Hence the p-values are given by

w0 =3 i) 1 =2 (Vigao) as)

which can be used to reject the null hypotheses.

The equivalence between Hp; and Hjj; (similarly between Hos and H) holds
irrespective of the choice of the projection matrix R. Basing the inference on a single
instance of R may lead to erroneous conclusions. For example, if we take k = p/2

and ¥ = |:Iok g:| for some symmetric positive definite matrix €2, then setting R =
[Ik 0] satisfies HS‘I but not Hy;. To avoid this issue, the cumulative decision based
on multiple random projections needs to be considered. Combining the decisions
of multiple random projections is a common practice when doing random projection
based inference. In mean vector tests, Srivastava et al. (2014) used average p-values to
combine the M projections, while Wu and Li (2020) proposed using the maximum test
statistic of the M projections. We consider the average of p-values to make inference
as the mean is more robust to extreme projections causing extreme p-values, although
they have a very low probability of occurring.

Let R1, ..., Ry be M independent random projection matrices. Let 7y, ..., my
denote the respective p-values for the m projections. We reject the null hypothesis if
the average p-value is small,

ﬁ S C]a,
where ¢, is the a-level critical value of the sampling distribution of 7. Note that the

significance level « is not used directly for comparison against 7, rather the level «
critical is used. This is because the sampling distribution of 7 is not uniform and is
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Covariance matrix testing in high dimension using random projections 1121

unknown. The significance level « can be used directly only when we perform a single
random projection (M = 1). However, as discussed above, multiple projections are
needed to establish equivalence between Hy and H{)"’s. Therefore, we need to use the
distribution of 7 to compute the o-level critical value g .

To compute g, an asymptotic approximation for the distribution of 77 can be derived
using the fact that the p-values are independent conditional on the observations. How-
ever, such an approximation can introduce additional error into the test procedure. To
avoid this error, critical values are computed by simulating the empirical distribution of
7 under the null hypothesis. Algorithm 1 outlines the test procedure for Hys. For Hyy,

the algorithm is similar with U7, and 7y replaced by Vy a0 and my respectively.

Algorithm 1: Generating the sampling distribution of the average of p-values to
compute the empirical critical value for the one-sample tests
for w = I:N do
Generate Z1, ..., Z,, under Hyg;
for ¢ = 1:M do
Generate Ry;
compute U7, and 7y ¢ as in (18);

end
Compute 7Ty oy = mean(wy 1, ..., Ty, M)
end
{my 1,.... Ty, N} represents a sample from the distribution of 77 ;

Return gy = 7y, N(1—«)] @S the empirical critical value

Generating data under Hy; is straightforward as the observations are generated
from \V, (0, 7). Under Hys, the Z are generated from A}, (0, 0°Z) for some o € R.
As rejecting or accepting Hys is independent of the sphericity parameter, the choice
of o should not affect the null distribution of 7. The following result establishes
invariance of the distribution of 7Ty under Hpgs. For practical implementation, the
null distribution of Ty can therefore be constructed using Algorithm 1 by generating
Zi,...,Z, from N (0, Zp).

Theorem 1 Let Xy, ..., X, be a random sample from N, (0, 021). LetUj,,, and y
be as defined in (18). Let R1, ..., Ry be independent random projection matrices
of dimension k x p yielding p-values 11, ..., mwy. If we define Ty as the mean of
T, ..., Ty, then the distribution of T is independent of o.

Proof See Appendix O

3.2 Two sample testing

To test the equality of covariance matrices of two normal populations, the likeli-
hood ratio test (10) or the Wald-type test (11) can be used when p < n + m. For
high-dimensional data, these tests can be applied by projecting the data into lower-
dimensional subspace. For a random semi-orthogonal matrix R € Ry, of full row
rank, let X* = RX;,i = 1,...,n and Y;f = RY,,j = 1,...,m denote the pro-
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jected observations from the two populations respectively. The hypothesis of equality
of covariance matrices in (9) can be equivalently stated as Hor : X1 — X7 = 0 ver-
sus Hir : X1 — o # 0. In the projected subspace, the two-sample hypothesis will
become

Hor :R(Z1— )R =0 vs. Hir :R(Z —S)RT £0.

Let S§, S and 8; ; denote the sample covariance matrices of the two groups and the
pooled covariance matrix respectively. Then the projected Box-M test statistic and the
Wald-type test statistic will be

n—1 m—1
o ISt s
- n+m—2 ’
sk
‘ pl
n+m n 2 m N2
Tvais = =3 [n+m“(si‘ )+ (sis)

nm % ol ok ox—!
— mtr (Sl pl 82 pl ) ]
19)

The p-values are calculated using the X% approximation with n = k(k + 1)/2. For
M*, finite-sample correction terms as described in Sect. 2 can be used to improve
performance.

As in the case of one-sample tests, the aggregate decision from multiple random
projections should be used to accept or reject Hyr. For M independent random pro-
jection matrices Ry, £ = 1, ..., M with corresponding p-values my, ..., my, let T
denote the average p-value. To determine the «-level critical value g, the sampling
distribution of @ under Hyr is required. Under the null hypothesis, it is only known
that the two covariance matrices are equal. Thus, the empirical sampling distribution
can be generated using any ¥; = ¥, = ¥ for any symmetric positive definite matrix
%. The following theorem provides invariance of the sampling distribution of 7 to the
choice of parameters under Hyr.

Theorem2 Let X; ~ N (uy, %), i=1,....,nandY; ~N (uy, ), j=1,....m
be two groups of independent observations. Let M™* be as defined in (19) and g
denote the p-value obtained when using the random projection Re, L =1, ..., M. If
T A denotes the average of the M p-values, then the sampling distribution of T a4 is
independent of L1, o and .

Proof See Appendix. O
The above result indicates that random samples from standard normal distribution

can be used to generate the empirical critical value. Implementation of the method is
described in Algorithm 2.
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Algorithm 2: Generating the sampling distribution of the average of p-values to
compute the empirical critical value for the two-sample tests

for w=1:N do
Generate Zx.. 1, ..., Zxn. Lyl -, Zy.y ~ Np(0,1));
for ¢ = 1:M do
Generate R and project the data Z* = R,Z;
Compute Sf = var(Zy. |, ..., Zg,,) and 87 = var(Zy. |, ..., Zy. )
Compute M* and 7ty as defined in (19)
end
Compute TMw = mean(wy, ..., Tp);
end
{m M1s- T M, N} represents a sample from the distribution of 7 a4 ;

Return go, = T A4, N (1—q)] @S the empirical critical value

3.3 Specifying parameters

In Algorithms 1 and 2, there are three parameters which are not data driven and are
user-specified: number of iterations M and N, and dimension of projection space
k. These quantities affect accuracy of the results and the computation cost of the
algorithms.

1. The term N represents the number of random samples drawn when determining
the sampling distribution of the test statistic under Hy. Consequently, it can be
seen as the sample size for determining the empirical distribution and the critical
value under Hy. Using small values of N will yield highly variable critical values.
As N increases, the empirical distribution of the test statistic under Hy becomes
more stable and hence yields consistent critical values.

2. The quantity M is the number of random projections for each set of data, used in
both determining the sampling distribution under Hy as well as calculating the test
statistic. It affects consistency of the average p-value as small values of M may
result in the random projection matrices being generated from different subspaces.
As M increases, the average p-value becomes less variable, resulting in a smaller
sampling effect on the results.

3. Dimension of the projected space k is chosen to be smaller than n 4 m so that the
model becomes full rank. Theoretically, the idea of random projections is motivated
by Johnson-Lindenstrauss (J-L) lemma (Johnson and Lindenstrauss 1984). For any
g, > 0, by J-L lemma there exists a constant ¢ > 0 and k > ce? log(1/8) such
that

P[(1 = )IXI3 = IRXI3 = (1 + o)IXIF] > 1 -5,

for any projection matrix R € R¥*”. To compute k, Burr et al. (2018) provide
an optimal bound as k = 4s~21og(1/8). However, the trade-off between error
(e, 8) and dimension (k) is extremely high. For example, to have ¢ = § = 1072,
the projected dimension will be k = 41og(10%) x 10* ~ 1.8 x 10°. Further-
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more, the direct implication of J-L lemma on hypothesis testing is not very clearly
understood.

In our simulation study and data illustrations, we used N = M = 1000. A brief
simulation study demonstrating the effect of the parameters on consistency of critical
values and the type I error are presented in Sect. 4.3.

4 Simulation study

To study the performance of the random projection based tests in comparison against
the high-dimensional tests, we performed an extensive simulation study for both the
one and two sample cases. Type I error and power are computed under different
scenarios, for various values of sample sizes n and m, dimension of the original
sample space p and projected spaces k, respectively. To study the effect of sample size
and dimensions, we set n € {20, 40, 50, 60}, p € {100, 200, 500, 1000, 2000} and
k € {5, 10, 15}. Empirical size and power are computed at the nominal significance
level of @ = 0.05.

4.1 One sample results

For the hypotheses of identity Hy;, we have the three high dimensional test statistics
- Vezz, Viw and Vsyg, and three random projection based tests - LRT7, Vjop, and
Viw. For all the studies, observations are randomly generated from a normal distri-
bution with mean g and covariance matrix ¥ = (07;)1<;, j<p- Elements of the mean
vector were generated uniformly, py ~ Unif(=3,3),i = 1, ..., p. For computing
type I error, the covariance matrix is set as identity matrix of dimension p. Power was
computed under four scenarios (Power [-Power IV) under the alternative, with the
difference from identity matrix defined in two ways—a band matrix with non-zero
diagonal elements and a diagonal matrix with elements different from 1. For Power I
and II, we set 0;; = pl'=il'for |i — j| < B for some bandwidth B and zero otherwise.
For Power III and IV, we define ¥ as diagonal witho;; = 1 fori < Bando;; = 1+¢
for B < i < p. Table 1 presents the type I error for k = 5 and k = 15.

Among the high dimensional tests, only V¢ zz preserves type I error at 5% signifi-
cance level. Both Vgyg and Vi always reject the null hypothesis. When randomly
projecting to k = 5 and k = 15 dimensions, all the three lower-dimensional tests
control type I error rate, with the performance being slightly better for k = 15 than
k = 5. Across all combinations of n and p, the RP-based LRT; and Vj,p, for both
values of k outperform Vczz. As Vsykx and Vi fail to preserve type I error, only
Vczz and the lower dimensional tests are compared in the power studies for the four
scenarios, results of which are presented in Table 2. In Power I and 11, all the tests have
comparable power for small dimensions (p = 100, 200, 500). For fixed sample size,
the power decreases with dimension. The power of the RP-based tests increase when
the projected dimension M is increased. For small sample size, V7w has higher power
than LRT; and Vy,p, , with the likelihood ratio test achieving higher power than V.
as n increases to 50. In Power III and IV, the random projection tests have greater
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power, with Vpw outperforming all the tests. Overall, V7w with random projection
consistently outperforms the other tests across all comparisons.

4.2 Two sample results

For the two sample test in (9), we have four high dimensional tests—7s.j,, Tsyx, Trc
and T¢cpx. For the random projection based tests, we have two standard dimension
tests—Box’s M and Wald’s test; and the high-dimensional Wu-Li test. All the random
samples are generated from p-dimensional normal distributions with means pu; =
I, = 0 and covariance matrices X1 and X;, respectively. For type I error, we set
both ¥ and ¥, to be the identity matrix. The results are presented in Table 3. We
considered a total of 8 settings (Power [-Power VIII) to compare the power of the high
dimensional tests and the RP-based tests. We considered two models for differentiating
the covariance matrices—unequal values along the diagonal and band matrices. For

Power -1V, weset ¥ = 7, and ¥ = diag(o21, ..., 02p), Where oy, = 1fork < [Bp]

and oy ~ I'(4,2) for k = [Bp] + 1, ..., p. The bandwidth B is varied over the 4

scenarios. For Power V-VIII, we set ¥ = diag(o11, ..., 01p) with o1 ~ Unif (1, 3)
1/2 1/2

and ¥p = X,"7QX,"", where Q2 is set as a band matrix with Q;; = p'i_j| for
li — j| < Bp and O otherwise. The parameter B determines the width of the band
matrix 2.

Results for the type I error comparison are presented in Table 3. At the nominal
5% significance level, none of the high dimensional tests preserve type I error for
the chosen combinations of p and n. Amongst the RP-tests, both the Box’s M-test
and Wald test after random projections consistently preserves type I error rate for all
values of k. It is interesting to note that the Wu-Li test, which is also based on random
projections onto one dimension, fails to control type I error. This indicates that RP-
based work well so long as the projected dimension is not very low. Tables 4 and 5
present the power of the Box’s M-test and Wald test respectively for the eight power
scenarios. We did not include the high dimensional methods as they failed to control
type I error.

For all eight scenarios, the RP-based tests seem to achieve reasonable power, with
the power decreasing with increase in p and increasing with increase in n. The trend
with respect for k for a given p is different though - for Power I-1V, the power decreases
whereas for Power V-VIII the power increases. This is because for Power I-1V, the
number of parameters different between X and X is k (only along the diagonal). As
the Box-M test has k(k — 1) /2 degrees of freedom, the power as a function of k can be
perceived as sz(kfl) /z(k) which is a decreasing function of k. For Power V-VIII, X
and X, differ by k(k — 1) parameters, yielding a power of the form x kz(k_ 12 (k(k—1))
which increases with k.

4.3 Effectof Nand M

As described in Sect. 3.3, performance of the test statistics is determined by three
parameters: k, N and M. We have seen in Tables 2, 3, 4 and 5 how k affects the
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Fig.1 The three measures of consistency: standard deviation of critical values, type I and average runtimes
for different values of N and M based on the one sample hypothesis test model. All results are based on
average of 1000 replicates

performance of RP-based tests. To illustrate the effects of N and M, we repeated
the simulation study for one sample hypothesis test described in Sect. 4.1. We fixed
n = 40 and p = 1000 for generating data and k = 5 for the projection dimension.
Critical value under the null distribution, empirical p-value and run-times for different
values of (N, M) are computed. The calculations are repeated 1000 times and three
measures are calculated: (i) standard deviation of critical values for consistency of the
empirical null distribution; (ii) type I error for consistency of the rejection rule; and
(iii) average run time to determine the computational cost. The values of N and M
are chosen from the sets {1, 25, 100, 500, 1000}. The results are presented in Fig. 1.
The two measures of consistency improve as both N and M increases. However, the
computational cost also increases with N and M. From the standard deviation and
type I error plots, we can that N smaller than 100 has particularly poor performance.
Although it is not possible to determine an optimal value for N and M, we would
recommend using large values, e.g. N = M = 1000.

5 Data analysis

To study how RP-based tests and high dimensional test statistics perform when applied
to real data, we considered two data sets. The first data set is a gene expression data
from 62 colon tissues - n = 22 normal and m = 40 tumor samples (Alon et al. 1999).
Gene expression intensities of p = 2000 genes with highest minimal intensity were
reported.! We refer to this data set as col on henceforth For the second illustration, we
have gathered data on breast cancer subjects from the cancer genome atlas (TCGA).?
Gene expression data from the RNA-Seq protocol are downloaded for patients from
Stages IA, IIB and IIIC, resulting in samples of sizes 91, 291 and 70 respectively. The
top p = 2000 genes with highest minimal intensity are kept in the final data set, which
will be called breast henceforth.

1 http://genomics-pubs.princeton.edu/oncology/affydata/index.html.
2 https://portal.gdc.cancer.gov/.

@ Springer


http://genomics-pubs.princeton.edu/oncology/affydata/index.html
https://portal.gdc.cancer.gov/

Covariance matrix testing in high dimension using random projections 1135

Table6 Results for type I error comparing sub-samples within the tumor samples and power for comparison
between tumor and colon samples from the colon data set. The results are based on 1000 bootstrap samples

Test Type I error Colon vs. Tumor p-value/Decision
Tsyk 0.543 0.0006

Tscn 0.035 0

WuLi 0.974 Reject Hy

Tcrx 0.001 Do not reject Hy

TLc 0.041 Do not Reject Hy

Boxtest-k =5 0 Reject Hy

Box test - k = 10 0 Reject Hy

Wald test - k = 5 0 Reject Hy

Wald test - k = 10 0 Reject Hy

5.1 colondata

For the colon data, we did two analyses to compare the type I error rate and power
of the test statistics in detecting differences in covariance matrices. First, the n = 40
tumor samples were randomly divided into two equal groups and tested for equality of
covariance matrices. Since the sub-samples are from the same population, we expect
the tests to not detect a significant difference between the covariance matrices of the
two groups. We repeated this process N = 1000 times and the average number of
false rejections is calculated. Second, we compared the normal and tumor samples. It
is widely accepted that in addition to the signals, co-expression networks also vary with
disease. Hence we expect to detect a significant difference between the two covariance
matrices. Results are presented in Table 6, and we expect a method to have very low
type I error rate under Hpand reject Hy when comparing the two groups. From the
table, type I error calculations indicate that the random projection tests do not falsely
reject the null hypothesis and correctly differentiate between the two groups. T,
also correctly identified the difference between tumor and normal samples, however
it falsely rejected the null hypothesis in a small (3.5%) number of models. The Tsy g
and Wu-Li tests have a very high type I error. Tcr x and 77 ¢ also controls type I error
reasonably, however they could not detect the difference between normal and tumor
samples.

5.2 breast data

In breast data, the samples are divided into three groups based on the cancer stage.
Similar to the colon data, we compared both type I error and power of the tests. First,
we compared the type I error within each stage. Two samples of size 40 each are drawn
to represent the two groups of observations. Since the observations correspond to the
same stage, we expect the tests to not reject the null hypothesis. Proportion of rejections
in N = 1000 repetitions will indicate the type I error within each cancer stage. Second,

@ Springer



1136 D.N. Ayyala et al.

we compared the power of detecting difference between the stages. Using samples
from different stages, power of the tests are similarly calculated. Results for both type
I error and power are presented in Table 7. All the high dimensional methods have
inflated type I error rates whereas the RP-based Box M-test and Wald test have very
low false positives for stages IA and IIIC. It is interesting to note that for Stage 1IB,
all the test procedures have inflated type I error including the RP-based tests. This
is a strong indication that there is potentially high heterogeneity within the samples
resulting in the hypotheses being rejected. The RP-based tests achieve very high power
when comparing between the cancer stages.

6 Conclusion

Hypothesis tests for covariance matrices in high dimension are challenging. RP based
tests are known to be very efficient for mean vector testing in high dimensions. In
this paper, we have developed the random projection based tests for the covariance
matrix for both one and two sample tests. Standard multivariate tests such as LRT
for the one sample test and Box-M and Wald test for the two sample hypothesis
have been studied after random projection into lower-dimensional space. Inference is
based on the average p-value of M random projections, where the rejection region
is determined by the empirical critical values simulated under the null hypothesis
using fixed covariance matrices. Through Theorems 1 and 2, we have shown that
the empirical null distributions can be generated using identity matrices for the fixed
covariance matrices. Simulation results have shown that RP based methods control
type I error rates and achieve very good power over a wide range of models, whereas
high dimensional methods have very inflated type I error rates. For the RP based
methods, increasing the projection dimension k lowers the type I error and increases
power. In our limited simulation study, we have observed that a dimension of k = 15
achieves very good results. We applied the test procedures to two gene expression
data sets with p = 2000 genes. The results show that RP based tests preserve type I
error even in real data applications whereas the current existing test procedures have
inflated type I error rates. An interesting observation in the breast data is that all the
tests have consistently high type I error for Stage IIB breast cancer data. This could
be an indication that there is potentially high levels of heterogeneity in the data that is
not captured by the covariance matrix alone.

RP based methods are known to be computationally intensive - with the compu-
tational cost being linear in N and M. Typically, N = M = 1000 is large enough
to obtain consistent results. Efficient methods for generating random matrices and
parallelization can reduce the computational cost significantly. In spite of involving a
matrix decomposition step, orthogonal random matrix generation is efficient since the
matrix being decomposed is of low dimension (k x k) and the projected dimension k is
generally chosen to be smaller than the sample size. Parallelizing the computations for
different random projections matrices can achieve a significant reduction in the overall
computational time. To this effect, we have developed an R package cramp, which
is available to download from https://github.com/dnayyala/cramp. Through efficient
parallelization, cramp achieves very good computation times. Table 8 present the
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Table 8 Computation times (in seconds) of the RP-based test statistics for different values of n, p and k
based on K = 103 random projections

plk— n =20 n =40 n =50

5 10 15 5 10 15 5 10 15
100 2.65 3.16 3.46 2.64 3.22 3.64 2.62 3.29 3.6
200 2.69 3.66 3.61 2.76 3.06 3.52 2.66 3.52 3.95
500 2.73 3.55 3.18 2.76 3.74 3.23 2.7 343 3.35
1000 2.78 3.6 3.95 2.71 3.15 3.63 2.69 3.36 3.61
2000 2.8 3.73 10.97 3.51 3.52 10.82 3.75 4.09 10.83

run times to calculate the average p-values of the two sample RP-based test statistics
for different combinations of n, p and k based on N = 103 random projections. All
computations were done on R (ver. 4.0.2) running on a 3.6 GHz AMD Ryzen7 1800X
processor with 64 GB RAM, parallelized on 12 cores. The runtime increases very slow
with respect to all three quantities, with the maximum time being 10.97 seconds.

Appendix

Proof of Theorem 1 The proof of Theorem 1 is along the same lines as the proof of
Theorem 2 in Srivastava et al. (2014). To show that the distribution of 77 is indepen-
dent of o, define an;i =RpX;,i=1,...,n,m=1,..., M as the projection of the
i!" observation using the m™ random projection matrix. Then we have

var (X1 -« s Xon) = Sty = RuSR,
where S and S are the sample covariance matrices of the original and projected

observations respectively. From equation (17), the p-values based on M i.i.d. random
projection matrices are

1 S* 2
S (v B TR
m X kr{trS;;/k "}

Firstly since the random matrices are independent, conditional on the data X' =
{X1,...,X}and Y = {Yy, ..., Yu}, the p-values 7y, ..., my are independent and
identically distributed. This is because of the orthogonality of the projection matrices
which preserves the covariance matrix structure (R (a 27 p) RT = 0%7T}). Addition-
ally, we can write

Plw <u]l =Ex y{PrI7T < ulX, YV}, (A.20)

where the expected value is with respect to the distribution of the observations and the
probability is with respect to the randomness of the projection matrix.
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By the conditional independence of 7y, ..., my and the central limit theorem, we
have a normal approximation to the probability in (A.20)

(A.21)
varg [u|X, V]

lim ‘P[ﬁ<u]—®(M>‘=0.

Hence the probability P [T < u] can be approximated only using the moments of
U|X, Y. Under the null hypothesis Hygs, the variable U|X, Y is defined as

S* 2
= — 2 = — m —
UIX,Y=1-x2(UIX.Y)=1-F, <tr {trs;;/k Ik} |X,y>

~ Unif (0, 1). (A.22)

The uniform distribution is from the standard property of p-value under the null
hypothesis, which is independent of o2, Using this property, we shall show that the
distribution of ER [U|X, V] and varg [U|X, Y] with respect to X', ) are also inde-
pendent of 0.

Let W denote the expected value of U|X, ) with respect to R,

W:ER[U|X,y]:[udPR

S 2
:[|:1—vaz (tr{trs;z/k —Ik} |X, y)} dPr (A.23)

where the integral is with respect to the distribution of the random projection matrix
‘R. While the exact integral is not of importance, it should be noted that from equation
(A.22), the integrand is independent of o2, As the random projection matrices are
generated independent of the distribution of the observations, we can conclude that
the variable W is independent of 2. For any m > 1, the mth moment of W is given
by

Exy[W"] :/W’” dFyy = /ER [U|X, V1" dFx.y

=/ER[U|X,37]X~~XER[U|X,J)] dFyxy

:/{/URI dPRl}“-{/URmdPRm} dFxy

Interchanging the integrals by Fubini’s theorem, we have

Exy[W"] =/[ {/UR1 .. Ug,, dFX,y} dPR,---dPg, (A.24)
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By the construction of U in equation (A.22), the integral { [ Ug, ...Ug,, dFx y} is
independent of o2, Therefore, all moments of W are independent of o> which implies
that the distribution of W is independent of o-2.

Similarly, it can be shown that the distribution of varg (U|X, )) is also independent
of o2, From the independence of the mean and variance, we have the distributions of

cp[”_]ER{U'X’y}} and E;(y{cp[”_ER{U'X’y}“ (A.25)
varg {U|X, )V} ’ varg {U|X, YV}

are independent of o2. Finally, combining this independence with equation (A.21),
we have

Jim P (71X, ) = @ [” —Er UIX, y}} ,

varg {U|X, V}

with the right hand side independent of o2. Taking expected values with respect to X
and ), we have

(A.26)

Mlim P[ﬁ<’4]=]EX’y{q;[”—ER{U'X’y}]}_

varg {U|X, V}

By equation (A.25), the right hand side in (A.26) is also independent of o2, completing
the proof. O

Proof of Theorem 2 Invariance of the distribution of the two-sample test statistic can
be shown similar to the above proof. Besides computation of the test statistic, rest of
the argument remains the same since the Box M test statistic also follows a standard
uniform distribution under the null hypothesis. Hence in Algorithm 2, 7r,,, ~ Unif (0, 1)
under Hy, which is independent of the choice of X. O
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