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Abstract
Estimation and hypothesis tests for the covariance matrix in high dimensions is a
challenging problem as the traditional multivariate asymptotic theory is no longer
valid. When the dimension is larger than or increasing with the sample size, standard
likelihood based tests for the covariance matrix have poor performance. Existing high
dimensional tests are either computationally expensive or have very weak control
of type I error. In this paper, we propose a test procedure, CRAMP (covariance
testing using randommatrixprojections), for testing hypotheses involving one ormore
covariance matrices using random projections. Projecting the high dimensional data
randomly into lower dimensional subspaces alleviates of the curse of dimensionality,
allowing for the use of traditional multivariate tests. An extensive simulation study
is performed to compare CRAMP against asymptotics-based high dimensional test
procedures. An application of the proposed method to two gene expression data sets
is presented.

Keywords High dimension · Covariance matrix · Hypothesis testing · Random
projections

1 Introduction

In multivariate analysis, hypothesis tests involving the first two moments - mean and
covariance matrix have been extensively studied. Consider a random variable X with
mean µ = E(X) and covariance matrix � = E

{
(X − µ)(X − µ)�

}
. There is a vast

amount of literature for inference involving the mean µ, starting with the Hotelling’s
T 2 statistic. Refer to Ayyala (2020), Hu and Bai (2016) for an extensive review of
methods for the mean vector testing. In this article, we focus on inference on the
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1112 D. N. Ayyala et al.

covariancematrix.Given a randomsample froma p-dimensionalGaussian distribution
with mean µ and variance �, we are interested in testing the hypothesis

H0 : � = �0 vs. HA : � �= �0, (1)

for some known p × p matrix �0. Of specific interest is when �0 corresponds to a
particular geometric shape: �0 = σ 2Ip, σ ∈ R for a spherical normal distribution
or �0 = diag(σ1, . . . , σp) for independent components. Other forms, such as block
diagonal can be helpful in testing the presence of subgroups of elements of X that
are independent. In the two sample case, it is of interest to compare the covariance
matrices �1 and �2 of two populations X and Y respectively. Equality of covariance
matrices implies the distributions of X and Y have the same shape, but are centered
at different locations. Importance of the problem of testing equality of covariance
matrices for Gaussian models lies in the network interpretation of the covariance
matrix. The inverse of the covariance matrix, called the precision matrix is used to
construct undirected graphical network models with elements of the variable as nodes
(Cai et al. 2012; Zhao et al. 2014).

For both the one and two sample hypotheses, traditional likelihood ratio tests are
developed and studied in great detail (Anderson 2003). However the tests are valid
only when p < n and p is fixed. For high dimensional data, i.e. when p increases
with n or when p > n, the asymptotic properties of these tests are no longer valid.
This is because the sample covariance matrix S has rank min(p, n − 1), where n is
the sample size. Therefore unconstrained estimation will lead to rank-deficient and
inconsistent estimators when p > n. To avoid this problem, test statistics can be con-
structed based on a real-valued functional of S. This approach is very commonly used
in high dimensional inference for the mean (Ayyala 2020). The main idea is to have
the functional equal to zero under H0 and non-zero under HA. For example in the
one-sample hypothesis in (1), f (�) = tr (� − �0)

2 can be used as the functional.
The rejection region is determined by studying the asymptotic properties of the sam-
pling distribution of f (S). Appropriate functionals for the two-sample case can be
constructed similarly.

An approach that is gaining prominence in other domains of high dimensional infer-
ence but has not been implemented explicitly in covariance matrix testing is the use of
random projections. A computationally intensive approach, a random projection (RP)
based inference involves embedding the original p-dimensional data into a lower k-
dimensional space using linear projections. Dimension of the embedded space k can
be chosen to be smaller than n, thereby upholding the assumptions of traditional mul-
tivariate methods. Validity of this method is guaranteed by the Johnson-Lindenstrauss
lemma (Johnson and Lindenstrauss 1984).

In recent times, there is increasing interest in using random projections in various
data mining and machine learning problems. Random projection methods have been
used in ensemblemachine learningmethods such as classification (Schclar andRokach
2009; Cannings and Samworth 2017; Cannings 2021). In linear regression, (Thanei
et al. 2017) studied theoretical properties of RP based linear regression models and
how they perform compared to ridge and principal component regression. In statistical
inference, random projections have been used for the mean vector testing problem
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Covariance matrix testing in high dimension using random projections 1113

(Lopes et al. 2011; Srivastava et al. 2014). For the two sample covariance matrix
testing problem, Wu and Li (2020) proposed a test procedure by randomly projecting
the data into a one-dimensional space. The one-sample problems of test for sphericity
and uniformity have not been addressed.

In this paper, we proposeCRAMP - covariancematrix testing using randommatrix
projections. The rest of the article is organized as follows. In Sect. 2, we introduce
two specific one sample tests and the two sample test hypotheses. A literature review
of existing test procedures in both traditional and high-dimensional settings is also
provided. Random projection based tests is introduced in Sect. 3. Theoretical details
and algorithms for the one and two sample tests are also explicitly described. In
Sect. 4, an extensive simulation study comparing the different methods is presented.
We applied CRAMP to test equivalence of gene networks, which are represented by
the covariance matrices using gene expression data. Results from the analysis of these
data sets are presented in Sect. 5.

2 Hypotheses for covariancematrices

2.1 One sample tests

Consider a random sample X1, . . . ,Xn from a p-dimensional continuous distribution
Fp with mean µ and variance �. The parameter of interest for this study is �, the
covariance matrix. We are interested in testing the hypotheses

H0I : � = Ip vs. H1I : � �= Ip, (2)

H0S : � = σ 2Ip vs. H1S : � �= σ 2Ip, (3)

where Ip is the identity matrix of dimension p and σ > 0 is an unknown parameter.
The hypotheses in Eqs. (2) and (3) are commonly referred to as tests for identity and
sphericity respectively. The general test for H0 : � = �0 for some known matrix �0

can be viewed as a test for identity when the data is transformed as X �→ �
−1/2
0 X.

The hypotheses can be equivalently stated in terms of the eigenvalues of� as follows.
If λ1, . . . , λp denote the eigenvalues of �, then Eqs. (2) and (3) can be stated as

H0I : λi = 1 ∀ i vs. H1I : λi ≤ 1 for at least one i,

H0S : λ1 = . . . = λp vs. H1S : λi �= λ j for some i �= j .

Let S = n−1 ∑n
i=1

(
Xi − X

) (
Xi − X

)�
denote the sample covariance matrix,

where X = n−1 ∑n
i=1 Xi is the sample mean. When Fp is the Gaussian distribution,

S is the maximum likelihood estimator which follows a Wishart distribution. The
likelihood ratio test statistics for the two hypotheses are given by

LRTI = (n − 1)

{
1 − 1

6n − 7

(
2p + 1 − 2

p + 1

)} [− log(|S|) + tr(S) − p
]
,
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1114 D. N. Ayyala et al.

LRTS = −
{
n − 1 − 2p2 + p + 2

6p

}[

p log p +
p∑

i=1

log λi − p log

( p∑

i=1

λi

)]

.

(4)

Under the null hypothesis, LRTI and LRTS are approximately distributed as a χ2

distribution with degrees of freedom ν = p(p + 1)/2 and ν = p(p + 1)/2 − 1,
respectively (Rencher and Christensen 2012).

Another approach to test the hypotheses is to construct a functional of the covariance
matrix which will be zero under the null hypothesis and non-zero under the alternative.
For sphericity and identity, it is straightforward to see that the functionals

U = 1

p
tr

{
�

tr�/p
− Ip

}2

,V = 1

p
tr

{
� − Ip

}2
,

are non-negative and are equal to zero under H0S and H0I respectively. Using these
functionals, John (1972) and Nagao (1973) proposed the following test statistics by
plugging in the sample covariance matrix estimate to test H0S and H0I respectively:

UJohn = 1

p
tr

{ S
trS/p

− Ip

}2

, VNagao = 1

p
tr

{S − Ip
}2

. (5)

It is shown that under the null hypothesis, UJohn and VNagao are asymptotically dis-
tributed as chi-squared random variables with p(p + 1)/2 − 1 degrees of freedom.
When the sample size is small, Nagao (1973) also provided second-order corrections
to the p-values for both test statistics. While these tests are constructed assuming
normality of the samples, they are applicable even when S is singular, unlike the like-
lihood ratio tests which involves inverting the sample covariance matrix. However,
these tests fail when the data is high-dimensional, i.e. when p is larger than n. While
the tests can be applied in practice, the asymptotic properties fail to hold unless p is
assumed to be fixed with respect to n.

Under high dimensional setting, Ledoit and Wolf (2002) studied the properties of
UJohn and VNagao for high-dimensional models when p/n → c ∈ (0,∞). They
observed that UJohn is consistent for high-dimensional data, whereas VNagao fails
when p increases with n. Modifying VNagao, they proposed

VLW = 1

p
tr

{S − Ip
}2 − p

n

{
trS
p

}2

+ p

n
. (6)

Under H0I , VLW is shown to asymptotically follow a χ2 distribution with p(p+1)/2
degrees of freedom. The asymptotic distribution is derived under a normal distribution
model for the observations.

With increased interest in high dimensional inference, several other tests have been
proposed for the hypotheses in Eqs. (2) and (3). By modifying the estimators of tr�
and tr�2 in U and V , Srivastava et al. (2014) proposed a test statistic is given by
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Covariance matrix testing in high dimension using random projections 1115

USY K = n − 1

2

[
â2
â1

− 1

]
, VSY K = n − 1

2
[̂a2 − 2̂a1 + 1] , (7)

where â1 = tr (S) /p, â2 = {pn(n − 1)(n − 2)(n − 3)}−1
[
(n − 1)3(n − 2)trS2 −

n(n − 1)3tr
(D2

S
) + (n − 1)2tr

(S2
) ]

and DS = diag(S) denotes the diagonal of the

sample covariance matrix. The test statistics are shown to be asymptotically normally
distributed under H0S and H0I respectively. The statistics in (7) are based on comparing
the arithmetic means of the eigenvalues of �k for k = 1, 2. Extending the result to
higher order powers, Fisher (2012), Fisher et al. (2010) expanded it to the fourth
powers of � and Qian et al. (2020) extended the results to the sixth power.

Chen et al. (2010) used Hoeffding’s U -statistics to estimate tr� and tr�2. Their
test statistics are given by

UCZZ = p

(
T2,n
T 2
1,n

)

− 1, VCZZ = 1

p
T2,n − 2

p
T1,n + 1, (8)

where T1,n = n−1 ∑n
i=1 X

�
i Xi − {n(n − 1)}−1 ∑

i �= j X
�
i X j is the U -estimator for

tr� and

T2,n =
∑

i �= j

(
X�
i X j

)2

n(n − 1)
− 2

∑
i �= j �=k X

�
i X jX�

j Xk

n(n − 1)(n − 2)

+
∑

i �= j �=k �=l X
�
i X jX�

k Xl

n(n − 1)(n − 2)(n − 3)

is the U -estimator for tr�2. Under the null hypotheses, the test statistics nUCZZ/2
and nVCZ Z/2 both asymptotically follow a standard normal distribution.

2.2 Two sample tests

In the two sample case, our interest lies in comparing the covariance matrices of two
independent populations. Let X1, . . . ,Xn and Y1, . . . ,Ym be random samples drawn
from p-dimensional distributions Fp and Gp respectively. Denoting the covariances
of the two populations by �1 and �2 respectively, the hypothesis of interest is

H0T : �1 = �2 vs. H1T : �1 �= �2. (9)

Let S1 = n−1 ∑n
i=1

(
Xi − X

) (
Xi − X

)�
and S2 = m−1 ∑m

i=1

(
Yi − Y

) (
Yi − Y

)�

denote the sample covariance matrices of the two populations respectively. Let
Spl = (nS1 + mS2)/(n + m) denote the pooled sample covariance matrix. When
p < min(m, n) and both Fp and Gp are assumed to be Gaussian, the likelihood ratio
test is constructed using
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M = |S1|n−1 |S2|m−1

∣∣Spl
∣∣n+m−2 . (10)

Under H0T , T = −2(1 − c1)M is asymptotically χ2-distributed with p(p + 1)/2

degrees of freedom, where c1 = (1/n+1/m −1/(n+m))
2p2+3p−1
6(p+1) . This test, called

the Box’s M-test, also has an approximation yielding an F distribution in the limit.
For lower dimensional models (p < n), a Wald-type test can also be constructed as

TWald = 1

2

[
ntr

(S1Spl
)2 + mtr

(
S2S−1

pl

)2 − nm

(n + m)
tr

(
S1S−1

pl S2S−1
pl

) ]
, (11)

which follows a χ2 distribution asymptotically with p(p + 1)/2 degrees of freedom
under H0T .

However, the above two tests fail for high dimensional models with p > n. Similar
to the one-sample tests, one way to avoid specifying a distribution model to the two
groups is by constructing a functional of�1 and�2 which is zero under H0T and non-
zero otherwise. TheWald-test in (11) can be thought of as being based on this principle

with tr
(
�1�

−1
2

)
as the functional. However in high dimensional inference, sample

covariancematrices are singular andhencematrix inversion is usually avoided. Instead,
a more commonly used functional to compare covariance matrices is tr (�1 − �2)

2,
the Frobenius norm of the difference �1 − �2.

When the samples are normally distributed, Schott (2007) proposed a test statistic
when p/n → b ∈ [0,∞). Under the assumption that lim tr(�k

i )/p = b ∈ (0,∞) for
i = 1, 2 and k = 1, . . . , 8, the test statistic

TSch = tr (S1 − S2)
2 − n − 2

(n + 1)(n − 1)

{
(n − 1)(n − 3)tr

(
S2
1

)
+ (n − 1)tr (S1)

2
}

− m − 2

(m + 1)(m − 1)

{
(m − 1)(m − 3)tr

(
S2
2

)
+ (m − 1)2tr (S2)

2
}

(12)

is shown to be asymptotically normal under H0T . This test statistic is still restrictive
in terms of the distributional assumption required to derive the asymptotic properties.

Relaxing the normality assumption, Srivastava et al. (2014) considered a factor
linear model of the form X = µ + Fu, for some p × m matrix F and m × 1
random vector u. The distributional assumption on X is replaced by conditions on
the moments of elements of u. The test statistic, which is constructed based on the
function tr (S1 − S2)

2, is given by

TSY K = �1 + �2 − 2p−1tr (S1S2)

2
(

1
n−1 + 1

m−1

)
(n−1)�1+(m−1)�2

n+m−2

, (13)

123



Covariance matrix testing in high dimension using random projections 1117

where

�k =
{
(nk − 1)3(nk − 2)tr

(S2
k

) − nk(nk − 1)3tr
(
D2
Sk

)
+ (nk − 1)2tr (Sk)

2
}

{pnk(nk − 1)(nk − 2)(nk − 3)} ,

for k = 1, 2 with n1 = n and n2 = m. The dimension is allowed to increase at a
polynomial rate with respect to the sample size, p = O(nδ) for 1/2 < δ < 1. Under
H0T , the test statistic is shown to converge to a standard normal distribution.

Using tr (�1 − �2)
2 as the functional, Li and Chen (2012) developed a test statistic.

The main idea behind the test statistic is to use Hoeffding’s U -statistics to construct
unbiased estimators for the functional. Asymptotic properties of this estimator are
used to develop the test procedure. The test statistic is given by

TLC = An,1 + Am,2 − 2Cnm
σn,m

, (14)

where for h = 1, 2,

An,h = 1

n(n − 1)

∑

i �= j

(
X�
hiXh j

)2 − 2

n(n − 1)(n − 2)

∑

i �= j �=k

X�
hiXh jX�

hiXhk

+ 1

n(n − 1)(n − 2)(n − 3)

∑

i �= j �=k �=	

X�
hiXh jX�

hkXh	,

with X1i = Xi and X2i = Yi and

Cn,m = 1

nm

n∑

i=1

m∑

j=1

(
X�
i Y j

)2 − 1

n(n − 1)m

∑

i �= j

∑

k

X�
i YkX�

j Yk

− 1

m(m − 1)n

∑

i �= j

∑

k

Y�
i XkY�

j Xk + 1

n(n − 1)m(m − 1)

∑

i �=k

∑

j �=	

X�
i Y jX�

k Y	.

Under regularity conditions on the covariance matrices, TLC is asymptotically normal
under H0T . One of the main advantages of TLC over TSY K and TSch is that a direct
relationship between n and p has been relaxed.

In the above two test statistics, the aggregate difference between �1 and �2 is
measured using the Frobenius norm. Cai et al. (2013) proposed a test based on the
maximum difference between elements. The test statistic, given by

TCLX = max
1≤i< j≤p

(S1,i j − S2,i j
)2

ω1,i j
n + ω2,i j

m

, (15)

where ω1,i j = n−1 ∑n
k=1

{
(Xki − Xi )(Xk j − X j ) − S1,i j

}2
and ω2,i j = m−1 ∑m

k=1{
(Yki − Yi )(Yk j − Y j ) − S2,i j

}2
. Under H0T , the limiting distribution of TCLX is

shown to be an extreme value distribution of type I. In comparison with the Frobenius

123



1118 D. N. Ayyala et al.

norm based tests, TCLX is shown to be more powerful at detecting difference between
the covariance matrices when the differences are sparse, i.e. they differ in very small
number of elements.

3 Projection based test

Conventional methods discussed for testing equality of covariance matrices usually
fail in high-dimensional data settings because the sample covariance matrix does not
converge to its population counterpart. Test statistics comparing covariance matri-
ces are mainly based on matrix functions, such as eigenvalues, trace, Frobenius norm,
etc., which also lose consistency in high dimensions. Thus performance ofmethods for
comparison of covariance matrices worsens with increasing dimension. Test methods
for covariance matrices in lower case enjoy many appealing properties. For example,
UJohn test is invariant and is also the locally most powerful. The high dimensional
methods are shown perform well, but they fail to achieve the theoretical properties of
UJohn . The LRT in the two sample case is also robust and has good asymptotic prop-
erties when the dimension is smaller than the sample size. To preserve the properties
of traditional multivariate methods, an attractive approach is to embed the data and
model into a lower dimension such that the hypothesis and inference are preserved.

When embedding data into lower-dimensional subspaces for parametric inference,
the mapping should be such that the local topology of the data is preserved. Since
the parameter of interest is the covariance matrix, which is a measure of spread, the
mapping should preserve pairwise distances between observations. The existence of
such a mapping is given by the Johnson-Lindenstrauss lemma (Johnson and Linden-
strauss 1984), which says that any linear mapping from the original space into the
lower-dimensional space satisfies this condition. Hence we consider linear projection
mappings from R

p into R
k for k < p of the form X �→ RX where R ∈ R

k×p is
the projection matrix. This paper’s main motivation is to develop test methods for
covariance matrices for high-dimensional data that enjoy the appealing properties of
tests for covariance matrices for lower dimensional data. The most natural path to
mimic the tests for covariance matrices for lower data, such asUJohn test is to project
high-dimensional data onto a space of dimension smaller than the sample size.

When considering dimension reduction techniques, principal component analysis
(PCA) is the most popular and commonly used. While PCA is used very frequently
for graphical representation and has good geometric properties, it is not ideal for
projection-based hypothesis testing in high dimensions. For example, consider the
two-sample test. When using PCA-based projection, variance of the data projected
onto the first m principal component is given by the first m eigenvalues. While the
data is embedded in the lower dimension, the hypothesis is not preserved. Equality
of the first m eigenvalues does not guarantee that the two covariance matrices are
equal. Extending to include all the p eigenvalues will also not work since the sample
covariance matrix is singular and yields only n − 1 non-zero eigenvalues. Other data-
driven projection methods such as t-SNE (van der Maaten and Hinton 2008) will also
not work for similar reasons. To avoid these shortcomings, random projection (RP) of
data is a popular method to alleviate the curse of dimensionality.
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Covariance matrix testing in high dimension using random projections 1119

A random projectionmatrix R = (ri j ) ∈ R
k×p is a matrix with randomly generated

elements, and is not generated from a matrix-valued distribution. The elements ri j are
randomly and independently generated thereby resulting in a much lower computa-
tional cost. Structural constraints such as sparsity and orthogonality can be imposed
later as desired. There are various methods to generate the elements of the random
projection matrix - (Achlioptas 2001; Srivastava et al. 2014) generate sparse projec-
tion matrices by structuring the matrix to have a large proportion of zeros. Another
approach is to impose structure by generating orthogonal matrices to preserve geo-
metrical properties in the data. RP-based inference procedure is along the same lines
as a union-intersection test, where the null hypothesis is equivalently written as the
intersection of a family of hypotheses and the alternative is expressed as a union.
The principle remains the same - we reject the null hypothesis if at least one random
projection presents evidence in favor of rejection.

Using the principle of random projections, Wu and Li (2020) developed a test
procedure by projecting the data onto a one-dimensional space (k = 1). For the one
sample hypothesis of H (1)

0 : � = I, the chi-squared test statistic can be used on
the projected data. Conditional on the random projection matrix R, the test statistic
will have a chi-squared distribution with 1 degree of freedom. For the two sample
hypothesis in (9), the standard F test statistic was used. To combine the results of M
random projection matrices, the maximumwas used. The test statistics for the one and
two sample cases are given by

TM,n = max
1≤i≤M

χ2 (RiX1, . . . , RiXn) ,

TM,n,m = max
1≤i≤M

F (RiX1, . . . , RiXn; RiY1, . . . , RiYm) ,
(16)

where R1, . . . , RM are independently generated random matrices. The critical values
for rejection H0 are derived using type I extreme value (Gumbel) distribution. Project-
ing into the one-dimensional space is convenient because the standard χ2 and F test
statistics have exact distributions. However, there are a few limitations to this method.
First, the effect of sample size on the performance of the test statistic is not extensively
studied. The Gumbel distribution can have poor performance when the sample size is
small, n + m < 40. In contrast, the simulation studies reported in Wu and Li (2020)
use n = m = 100. Second, the projected space sounds very restrictive to translate the
entire information from p dimensions to a single dimension.

3.1 Proposed test procedure

Usingmore than one dimension,we propose projecting the data from p to k dimensions
using a random matrix R ∈ R

k×p, where k > 1 is smaller than sample size n + m.
First consider the one sample hypotheses. For k < p, let R ∈ R

k×p be a projection
matrix and define X∗

i = RXi , i = 1, . . . n as the projected data. If the mean and
variance of X are given by µ and � respectively, then we have µ∗ = E(X∗

i ) = Rµ

and �∗ = var(X∗
i ) = R�R�. Under the null hypothesis of identity, the variance of

X∗ becomes var(X∗|H0I ) = R�R� = RR�. Similarly under the null hypothesis of
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1120 D. N. Ayyala et al.

sphericity, we have var(X∗|H0S) = σ 2RR�. If we choose the projection matrix R
to be of full row rank and semi-orthogonal, i.e. RR� = Ik , then the null hypotheses
are preserved under the projection. Using X∗

1, . . . ,X
∗
n as the data, the hypotheses of

interest will be

H∗
0I : �∗ = Ik vs. H1I : �∗ �= Ik,

H∗
0S : �∗ = σ 2Ik vs. H1S : �∗ �= σ 2Ik .

If the data X is assumed to follow a normal distribution, the projected observations
X∗ will also be normally distributed. Hence likelihood ratio tests can be used to
test H∗

0I and H∗
0S . Also, the functional based tests, UJohn and VNagao in (5) can

be used since the projection ensures k < n. Defining the sample covariance matrix

S∗ = n−1 ∑n
i=1

(
X∗
i − X∗) (

X∗
i − X∗)�

, we have

U∗
John = 1

k
tr

{ S∗

trS∗/k
− Ik

}2

, V ∗
Nagao = 1

k
tr

{S∗ − Ik
}2

. (17)

Asymptotically, these testswill have a chi-squared distributionwith ν = k(k+1)/2−1
degrees of freedom. Hence the p-values are given by

πU = χ2
ν

(
U∗

John

)
, πV = χ2

ν

(
V ∗
Nagao

)
, (18)

which can be used to reject the null hypotheses.
The equivalence between H0I and H∗

0I (similarly between H0S and H∗
0S) holds

irrespective of the choice of the projection matrixR. Basing the inference on a single
instance of R may lead to erroneous conclusions. For example, if we take k = p/2

and � =
[Ik 0
0 �

]
for some symmetric positive definite matrix �, then setting R =

[Ik 0
]
satisfies H∗

0I but not H0I . To avoid this issue, the cumulative decision based
on multiple random projections needs to be considered. Combining the decisions
of multiple random projections is a common practice when doing random projection
based inference. In mean vector tests, Srivastava et al. (2014) used average p-values to
combine the M projections, whileWu and Li (2020) proposed using the maximum test
statistic of the M projections. We consider the average of p-values to make inference
as the mean is more robust to extreme projections causing extreme p-values, although
they have a very low probability of occurring.

Let R1, . . . ,RM be M independent random projection matrices. Let π1, . . . , πM

denote the respective p-values for the m projections. We reject the null hypothesis if
the average p-value is small,

π ≤ qα,

where qα is the α-level critical value of the sampling distribution of π . Note that the
significance level α is not used directly for comparison against π , rather the level α

critical is used. This is because the sampling distribution of π is not uniform and is
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unknown. The significance level α can be used directly only when we perform a single
random projection (M = 1). However, as discussed above, multiple projections are
needed to establish equivalence between H0 and H∗

0 ’s. Therefore, we need to use the
distribution of π to compute the α-level critical value qα .

To computeqα , an asymptotic approximation for the distribution ofπ can be derived
using the fact that the p-values are independent conditional on the observations. How-
ever, such an approximation can introduce additional error into the test procedure. To
avoid this error, critical values are computed by simulating the empirical distribution of
π under the null hypothesis. Algorithm 1 outlines the test procedure for H0S . For H0I ,
the algorithm is similar withU∗

John and πU replaced by V ∗
Nagao and πV respectively.

Algorithm 1: Generating the sampling distribution of the average of p-values to
compute the empirical critical value for the one-sample tests
for w = 1:N do

Generate Z1, . . . ,Zn under H0S ;
for 	 = 1:M do

Generate R	;
compute U∗

John and πU ,	 as in (18);
end
Compute πU ,w = mean(πU ,1, . . . , πU ,M );

end
{πU ,1, . . . , πU ,N } represents a sample from the distribution of π ;
Return q̂α = π [U ,N (1−α)] as the empirical critical value

Generating data under H0I is straightforward as the observations are generated
from Np (0, I). Under H0S , the Z are generated from Np

(
0, σ 2I)

for some σ ∈ R.
As rejecting or accepting H0S is independent of the sphericity parameter, the choice
of σ should not affect the null distribution of πU . The following result establishes
invariance of the distribution of πU under H0S . For practical implementation, the
null distribution of πU can therefore be constructed using Algorithm 1 by generating
Z1, . . . ,Zn from N (0, Ip).
Theorem 1 LetX1, . . . ,Xn be a random sample fromNp

(
0, σ 2I)

. Let U∗
John and πU

be as defined in (18). Let R1, . . . ,RM be independent random projection matrices
of dimension k × p yielding p-values π1, . . . , πM. If we define πU as the mean of
π1, . . . , πM, then the distribution of π is independent of σ .

Proof See Appendix ��

3.2 Two sample testing

To test the equality of covariance matrices of two normal populations, the likeli-
hood ratio test (10) or the Wald-type test (11) can be used when p < n + m. For
high-dimensional data, these tests can be applied by projecting the data into lower-
dimensional subspace. For a random semi-orthogonal matrix R ∈ Rk×p of full row
rank, let X∗

i = RXi , i = 1, . . . , n and Y∗
j = RY j , j = 1, . . . ,m denote the pro-
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jected observations from the two populations respectively. The hypothesis of equality
of covariance matrices in (9) can be equivalently stated as H0T : �1 − �2 = 0 ver-
sus H1T : �1 − �2 �= 0. In the projected subspace, the two-sample hypothesis will
become

H0T : R (�1 − �2)R� = 0 vs. H1T : R (�1 − �2)R� �= 0.

Let S∗
1 ,S∗

2 and S∗
pl denote the sample covariance matrices of the two groups and the

pooled covariance matrix respectively. Then the projected Box-M test statistic and the
Wald-type test statistic will be

M∗ =
∣∣S∗

1

∣∣n−1 ∣∣S∗
2

∣∣m−1

∣∣∣S∗
pl

∣∣∣
n+m−2 ,

T ∗
Wald = n + m

2

[
n

n + m
tr

(
S∗
1S∗

pl

)2 + m

n + m
tr

(
S∗
2S∗−1

pl

)2

− nm

(n + m)2
tr

(
S∗
1S∗−1

pl S∗
2S∗−1

pl

) ]
.

(19)

The p-values are calculated using the χ2
η approximation with η = k(k + 1)/2. For

M∗, finite-sample correction terms as described in Sect. 2 can be used to improve
performance.

As in the case of one-sample tests, the aggregate decision from multiple random
projections should be used to accept or reject H0T . For M independent random pro-
jection matrices R	, 	 = 1, . . . , M with corresponding p-values π1, . . . , πM , let π

denote the average p-value. To determine the α-level critical value qα , the sampling
distribution of π under H0T is required. Under the null hypothesis, it is only known
that the two covariance matrices are equal. Thus, the empirical sampling distribution
can be generated using any �1 = �2 = � for any symmetric positive definite matrix
�. The following theorem provides invariance of the sampling distribution of π to the
choice of parameters under H0T .

Theorem 2 Let Xi ∼ N (µ1, �) , i = 1, . . . , n and Y j ∼ N (µ2, �) , j = 1, . . . ,m
be two groups of independent observations. Let M∗ be as defined in (19) and π	

denote the p-value obtained when using the random projectionR	, 	 = 1, . . . , M. If
πM denotes the average of the M p-values, then the sampling distribution of πM is
independent of µ1,µ2 and �.

Proof See Appendix. ��

The above result indicates that random samples from standard normal distribution
can be used to generate the empirical critical value. Implementation of the method is
described in Algorithm 2.
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Algorithm 2: Generating the sampling distribution of the average of p-values to
compute the empirical critical value for the two-sample tests
for w = 1:N do

Generate ZX;1, . . . ,ZX;n ,ZY;1, . . . ,ZY;m ∼ Np(0,I));
for 	 = 1:M do

Generate R	 and project the data Z∗ = R	Z;
Compute S∗

1 = var(Z∗
X;1, . . . ,Z∗

X;n) and S∗
2 = var(Z∗

Y;1, . . . ,Z∗
Y;m );

ComputeM∗ and π	 as defined in (19)
end
Compute πM,w = mean(π1, . . . , πM );

end
{πM,1, . . . , πM,N } represents a sample from the distribution of πM ;
Return q̂α = π [M,N (1−α)] as the empirical critical value

3.3 Specifying parameters

In Algorithms 1 and 2, there are three parameters which are not data driven and are
user-specified: number of iterations M and N , and dimension of projection space
k. These quantities affect accuracy of the results and the computation cost of the
algorithms.

1. The term N represents the number of random samples drawn when determining
the sampling distribution of the test statistic under H0. Consequently, it can be
seen as the sample size for determining the empirical distribution and the critical
value under H0. Using small values of N will yield highly variable critical values.
As N increases, the empirical distribution of the test statistic under H0 becomes
more stable and hence yields consistent critical values.

2. The quantity M is the number of random projections for each set of data, used in
both determining the sampling distribution under H0 as well as calculating the test
statistic. It affects consistency of the average p-value as small values of M may
result in the random projection matrices being generated from different subspaces.
As M increases, the average p-value becomes less variable, resulting in a smaller
sampling effect on the results.

3. Dimension of the projected space k is chosen to be smaller than n +m so that the
model becomes full rank.Theoretically, the idea of randomprojections ismotivated
by Johnson-Lindenstrauss (J-L) lemma (Johnson andLindenstrauss 1984). For any
ε, δ > 0, by J-L lemma there exists a constant c > 0 and k ≥ cε−2 log(1/δ) such
that

P

[
(1 − ε)‖X‖22 ≤ ‖RX‖22 ≤ (1 + ε)‖X‖22

]
> 1 − δ,

for any projection matrix R ∈ R
k×p. To compute k, Burr et al. (2018) provide

an optimal bound as k = 4ε−2 log(1/δ). However, the trade-off between error
(ε, δ) and dimension (k) is extremely high. For example, to have ε = δ = 10−2,
the projected dimension will be k = 4 log(102) × 104 ≈ 1.8 × 105. Further-
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more, the direct implication of J-L lemma on hypothesis testing is not very clearly
understood.

In our simulation study and data illustrations, we used N = M = 1000. A brief
simulation study demonstrating the effect of the parameters on consistency of critical
values and the type I error are presented in Sect. 4.3.

4 Simulation study

To study the performance of the random projection based tests in comparison against
the high-dimensional tests, we performed an extensive simulation study for both the
one and two sample cases. Type I error and power are computed under different
scenarios, for various values of sample sizes n and m, dimension of the original
sample space p and projected spaces k, respectively. To study the effect of sample size
and dimensions, we set n ∈ {20, 40, 50, 60}, p ∈ {100, 200, 500, 1000, 2000} and
k ∈ {5, 10, 15}. Empirical size and power are computed at the nominal significance
level of α = 0.05.

4.1 One sample results

For the hypotheses of identity H0I , we have the three high dimensional test statistics
- VCZZ , VLW and VSY K , and three random projection based tests - LRTI , VJohn and
VLW . For all the studies, observations are randomly generated from a normal distri-
bution with mean µ and covariance matrix � = (σi j )1≤i, j≤p. Elements of the mean
vector were generated uniformly, μk ∼ Unif(−3, 3), i = 1, . . . , p. For computing
type I error, the covariance matrix is set as identity matrix of dimension p. Power was
computed under four scenarios (Power I–Power IV) under the alternative, with the
difference from identity matrix defined in two ways—a band matrix with non-zero
diagonal elements and a diagonal matrix with elements different from 1. For Power I
and II, we set σi j = ρ|i− j | for |i − j | ≤ B for some bandwidth B and zero otherwise.
For Power III and IV, we define � as diagonal with σi i = 1 for i ≤ B and σi i = 1+ ε

for B < i ≤ p. Table 1 presents the type I error for k = 5 and k = 15.
Among the high dimensional tests, only VCZZ preserves type I error at 5% signifi-

cance level. Both VSY K and VLW always reject the null hypothesis. When randomly
projecting to k = 5 and k = 15 dimensions, all the three lower-dimensional tests
control type I error rate, with the performance being slightly better for k = 15 than
k = 5. Across all combinations of n and p, the RP-based LRTI and VJohn for both
values of k outperform VCZZ . As VSY K and VLW fail to preserve type I error, only
VCZZ and the lower dimensional tests are compared in the power studies for the four
scenarios, results of which are presented in Table 2. In Power I and II, all the tests have
comparable power for small dimensions (p = 100, 200, 500). For fixed sample size,
the power decreases with dimension. The power of the RP-based tests increase when
the projected dimension M is increased. For small sample size, VLW has higher power
than LRTI and VJohn , with the likelihood ratio test achieving higher power than VLW

as n increases to 50. In Power III and IV, the random projection tests have greater
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power, with VLW outperforming all the tests. Overall, VLW with random projection
consistently outperforms the other tests across all comparisons.

4.2 Two sample results

For the two sample test in (9), we have four high dimensional tests—TSch , TSY K , TLC
and TCLX . For the random projection based tests, we have two standard dimension
tests—Box’sM andWald’s test; and the high-dimensionalWu-Li test. All the random
samples are generated from p-dimensional normal distributions with means µ1 =
µ2 = 0 and covariance matrices �1 and �2, respectively. For type I error, we set
both �1 and �2 to be the identity matrix. The results are presented in Table 3. We
considered a total of 8 settings (Power I–Power VIII) to compare the power of the high
dimensional tests and theRP-based tests.We considered twomodels for differentiating
the covariance matrices—unequal values along the diagonal and band matrices. For
Power I–IV,we set� = Ip and�2 = diag(σ21, . . . , σ2p),whereσ2k = 1 for k ≤ [Bp]
and σ2k ∼ �(4, 2) for k = [Bp] + 1, . . . , p. The bandwidth B is varied over the 4
scenarios. For Power V–VIII, we set � = diag(σ11, . . . , σ1p) with σ1k ∼ Unif(1, 3)

and �2 = �
1/2
1 ��

1/2
1 , where � is set as a band matrix with �i j = ρ|i− j | for

|i − j | ≤ Bp and 0 otherwise. The parameter B determines the width of the band
matrix �.

Results for the type I error comparison are presented in Table 3. At the nominal
5% significance level, none of the high dimensional tests preserve type I error for
the chosen combinations of p and n. Amongst the RP-tests, both the Box’s M-test
and Wald test after random projections consistently preserves type I error rate for all
values of k. It is interesting to note that the Wu-Li test, which is also based on random
projections onto one dimension, fails to control type I error. This indicates that RP-
based work well so long as the projected dimension is not very low. Tables 4 and 5
present the power of the Box’sM-test and Wald test respectively for the eight power
scenarios. We did not include the high dimensional methods as they failed to control
type I error.

For all eight scenarios, the RP-based tests seem to achieve reasonable power, with
the power decreasing with increase in p and increasing with increase in n. The trend
with respect for k for a given p is different though - for Power I–IV, the power decreases
whereas for Power V–VIII the power increases. This is because for Power I–IV, the
number of parameters different between �1 and �2 is k (only along the diagonal). As
the Box-M test has k(k−1)/2 degrees of freedom, the power as a function of k can be
perceived as χ2

k(k−1)/2(k) which is a decreasing function of k. For Power V–VIII, �1

and�2 differ by k(k−1) parameters, yielding a power of the form χ2
k(k−1)/2(k(k−1))

which increases with k.

4.3 Effect of N andM

As described in Sect. 3.3, performance of the test statistics is determined by three
parameters: k, N and M . We have seen in Tables 2, 3, 4 and 5 how k affects the
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Fig. 1 The three measures of consistency: standard deviation of critical values, type I and average runtimes
for different values of N and M based on the one sample hypothesis test model. All results are based on
average of 1000 replicates

performance of RP-based tests. To illustrate the effects of N and M , we repeated
the simulation study for one sample hypothesis test described in Sect. 4.1. We fixed
n = 40 and p = 1000 for generating data and k = 5 for the projection dimension.
Critical value under the null distribution, empirical p-value and run-times for different
values of (N , M) are computed. The calculations are repeated 1000 times and three
measures are calculated: (i) standard deviation of critical values for consistency of the
empirical null distribution; (ii) type I error for consistency of the rejection rule; and
(iii) average run time to determine the computational cost. The values of N and M
are chosen from the sets {1, 25, 100, 500, 1000}. The results are presented in Fig. 1.
The two measures of consistency improve as both N and M increases. However, the
computational cost also increases with N and M . From the standard deviation and
type I error plots, we can that N smaller than 100 has particularly poor performance.
Although it is not possible to determine an optimal value for N and M , we would
recommend using large values, e.g. N = M = 1000.

5 Data analysis

To study howRP-based tests and high dimensional test statistics performwhen applied
to real data, we considered two data sets. The first data set is a gene expression data
from 62 colon tissues - n = 22 normal and m = 40 tumor samples (Alon et al. 1999).
Gene expression intensities of p = 2000 genes with highest minimal intensity were
reported.1 We refer to this data set ascolon henceforth For the second illustration, we
have gathered data on breast cancer subjects from the cancer genome atlas (TCGA).2

Gene expression data from the RNA-Seq protocol are downloaded for patients from
Stages IA, IIB and IIIC, resulting in samples of sizes 91, 291 and 70 respectively. The
top p = 2000 genes with highest minimal intensity are kept in the final data set, which
will be called breast henceforth.

1 http://genomics-pubs.princeton.edu/oncology/affydata/index.html.
2 https://portal.gdc.cancer.gov/.
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Table 6 Results for type I error comparing sub-samples within the tumor samples and power for comparison
between tumor and colon samples from the colon data set. The results are based on 1000 bootstrap samples

Test Type I error Colon vs. Tumor p-value/Decision

TSY K 0.543 0.0006

TSch 0.035 0

WuLi 0.974 Reject H0

TCLX 0.001 Do not reject H0

TLC 0.041 Do not Reject H0

Box test - k = 5 0 Reject H0

Box test - k = 10 0 Reject H0

Wald test - k = 5 0 Reject H0

Wald test - k = 10 0 Reject H0

5.1 colon data

For the colon data, we did two analyses to compare the type I error rate and power
of the test statistics in detecting differences in covariance matrices. First, the n = 40
tumor samples were randomly divided into two equal groups and tested for equality of
covariance matrices. Since the sub-samples are from the same population, we expect
the tests to not detect a significant difference between the covariance matrices of the
two groups. We repeated this process N = 1000 times and the average number of
false rejections is calculated. Second, we compared the normal and tumor samples. It
iswidely accepted that in addition to the signals, co-expression networks also varywith
disease. Hence we expect to detect a significant difference between the two covariance
matrices. Results are presented in Table 6, and we expect a method to have very low
type I error rate under H0and reject H0 when comparing the two groups. From the
table, type I error calculations indicate that the random projection tests do not falsely
reject the null hypothesis and correctly differentiate between the two groups. TSch
also correctly identified the difference between tumor and normal samples, however
it falsely rejected the null hypothesis in a small (3.5%) number of models. The TSY K

and Wu-Li tests have a very high type I error. TCLX and TLC also controls type I error
reasonably, however they could not detect the difference between normal and tumor
samples.

5.2 breast data

In breast data, the samples are divided into three groups based on the cancer stage.
Similar to the colon data, we compared both type I error and power of the tests. First,
we compared the type I error within each stage. Two samples of size 40 each are drawn
to represent the two groups of observations. Since the observations correspond to the
same stage,we expect the tests to not reject the null hypothesis. Proportion of rejections
in N = 1000 repetitions will indicate the type I error within each cancer stage. Second,
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we compared the power of detecting difference between the stages. Using samples
from different stages, power of the tests are similarly calculated. Results for both type
I error and power are presented in Table 7. All the high dimensional methods have
inflated type I error rates whereas the RP-based Box M-test and Wald test have very
low false positives for stages IA and IIIC. It is interesting to note that for Stage IIB,
all the test procedures have inflated type I error including the RP-based tests. This
is a strong indication that there is potentially high heterogeneity within the samples
resulting in the hypotheses being rejected. The RP-based tests achieve very high power
when comparing between the cancer stages.

6 Conclusion

Hypothesis tests for covariance matrices in high dimension are challenging. RP based
tests are known to be very efficient for mean vector testing in high dimensions. In
this paper, we have developed the random projection based tests for the covariance
matrix for both one and two sample tests. Standard multivariate tests such as LRT
for the one sample test and Box-M and Wald test for the two sample hypothesis
have been studied after random projection into lower-dimensional space. Inference is
based on the average p-value of M random projections, where the rejection region
is determined by the empirical critical values simulated under the null hypothesis
using fixed covariance matrices. Through Theorems 1 and 2, we have shown that
the empirical null distributions can be generated using identity matrices for the fixed
covariance matrices. Simulation results have shown that RP based methods control
type I error rates and achieve very good power over a wide range of models, whereas
high dimensional methods have very inflated type I error rates. For the RP based
methods, increasing the projection dimension k lowers the type I error and increases
power. In our limited simulation study, we have observed that a dimension of k = 15
achieves very good results. We applied the test procedures to two gene expression
data sets with p = 2000 genes. The results show that RP based tests preserve type I
error even in real data applications whereas the current existing test procedures have
inflated type I error rates. An interesting observation in the breast data is that all the
tests have consistently high type I error for Stage IIB breast cancer data. This could
be an indication that there is potentially high levels of heterogeneity in the data that is
not captured by the covariance matrix alone.

RP based methods are known to be computationally intensive - with the compu-
tational cost being linear in N and M . Typically, N = M = 1000 is large enough
to obtain consistent results. Efficient methods for generating random matrices and
parallelization can reduce the computational cost significantly. In spite of involving a
matrix decomposition step, orthogonal randommatrix generation is efficient since the
matrix being decomposed is of low dimension (k×k) and the projected dimension k is
generally chosen to be smaller than the sample size. Parallelizing the computations for
different random projections matrices can achieve a significant reduction in the overall
computational time. To this effect, we have developed an R package cramp, which
is available to download from https://github.com/dnayyala/cramp. Through efficient
parallelization, cramp achieves very good computation times. Table 8 present the
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Table 8 Computation times (in seconds) of the RP-based test statistics for different values of n, p and k
based on K = 103 random projections

p ↓ k → n = 20 n = 40 n = 50

5 10 15 5 10 15 5 10 15

100 2.65 3.16 3.46 2.64 3.22 3.64 2.62 3.29 3.6

200 2.69 3.66 3.61 2.76 3.06 3.52 2.66 3.52 3.95

500 2.73 3.55 3.18 2.76 3.74 3.23 2.7 3.43 3.35

1000 2.78 3.6 3.95 2.77 3.15 3.63 2.69 3.36 3.61

2000 2.8 3.73 10.97 3.51 3.52 10.82 3.75 4.09 10.83

run times to calculate the average p-values of the two sample RP-based test statistics
for different combinations of n, p and k based on N = 103 random projections. All
computations were done on R (ver. 4.0.2) running on a 3.6 GHz AMD Ryzen7 1800X
processor with 64 GBRAM, parallelized on 12 cores. The runtime increases very slow
with respect to all three quantities, with the maximum time being 10.97 seconds.

Appendix

Proof of Theorem 1 The proof of Theorem 1 is along the same lines as the proof of
Theorem 2 in Srivastava et al. (2014). To show that the distribution of πU is indepen-
dent of σ , define X∗

m;i = RmXi , i = 1, . . . , n,m = 1, . . . , M as the projection of the

i th observation using the mth random projection matrix. Then we have

var
(
Xm;1, . . . ,Xm;n

) = S∗
m = RmSR�

m,

where S and S∗
m are the sample covariance matrices of the original and projected

observations respectively. From equation (17), the p-values based on M i .i .d. random
projection matrices are

πm = 1 − χ2
ν

(
1

k
tr

{ S∗
m

trS∗
m/k

− Ik
}2

)

.

Firstly since the random matrices are independent, conditional on the data X =
{X1, . . . ,Xn} and Y = {Y1, . . . ,Ym}, the p-values π1, . . . , πM are independent and
identically distributed. This is because of the orthogonality of the projection matrices
which preserves the covariance matrix structure (R (

σ 2Ip
)R� = σ 2Ik). Addition-

ally, we can write

P [π < u] = EX ,Y {PR [π < u|X ,Y]} , (A.20)

where the expected value is with respect to the distribution of the observations and the
probability is with respect to the randomness of the projection matrix.
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By the conditional independence of π1, . . . , πM and the central limit theorem, we
have a normal approximation to the probability in (A.20)

lim
M→∞

∣∣∣∣P [π < u] − �

(
u − ER [u|X ,Y]

varR [u|X ,Y]

)∣∣∣∣ = 0. (A.21)

Hence the probability P [π < u] can be approximated only using the moments of
U |X ,Y . Under the null hypothesis H0S , the variable U |X ,Y is defined as

U |X ,Y = 1 − χ2
ν (U |X ,Y) = 1 − Fχ2

ν

(

tr

{ S∗
m

trS∗
m/k

− Ik
}2

|X ,Y
)

∼ Unif(0, 1). (A.22)

The uniform distribution is from the standard property of p-value under the null
hypothesis, which is independent of σ 2. Using this property, we shall show that the
distribution of ER [U |X ,Y] and varR [U |X ,Y] with respect to X ,Y are also inde-
pendent of σ 2.

Let W denote the expected value of U |X ,Y with respect toR,

W = ER [U |X ,Y] =
∫

u dPR

=
∫ [

1 − Fχ2
ν

(

tr

{ S∗
m

trS∗
m/k

− Ik
}2

|X ,Y
)]

dPR (A.23)

where the integral is with respect to the distribution of the random projection matrix
R. While the exact integral is not of importance, it should be noted that from equation
(A.22), the integrand is independent of σ 2. As the random projection matrices are
generated independent of the distribution of the observations, we can conclude that
the variable W is independent of σ 2. For any m ≥ 1, the mth moment of W is given
by

EX ,Y
[
Wm] =

∫
Wm dFX ,Y =

∫
ER [U |X ,Y]m dFX ,Y

=
∫

ER [U |X ,Y] × · · · × ER [U |X ,Y] dFX ,Y

=
∫ {∫

UR1 dPR1

}
· · ·

{∫
URm d PRm

}
dFX ,Y

Interchanging the integrals by Fubini’s theorem, we have

EX ,Y
[
Wm] =

∫
· · ·

∫ {∫
UR1 . . .URm dFX ,Y

}
dPR1 · · · dPRm (A.24)
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By the construction of U in equation (A.22), the integral
{∫

UR1 . . .URm dFX ,Y
}
is

independent of σ 2. Therefore, all moments ofW are independent of σ 2 which implies
that the distribution of W is independent of σ 2.

Similarly, it can be shown that the distribution of varR (U |X ,Y) is also independent
of σ 2. From the independence of the mean and variance, we have the distributions of

�

[
u − ER {U |X ,Y}
varR {U |X ,Y}

]
and EX ,Y

{
�

[
u − ER {U |X ,Y}
varR {U |X ,Y}

]}
(A.25)

are independent of σ 2. Finally, combining this independence with equation (A.21),
we have

lim
M→∞ PR {π |X ,Y} = �

[
u − ER {U |X ,Y}
varR {U |X ,Y}

]
,

with the right hand side independent of σ 2. Taking expected values with respect to X
and Y , we have

lim
M→∞ P [π < u] = EX ,Y

{
�

[
u − ER {U |X ,Y}
varR {U |X ,Y}

]}
. (A.26)

By equation (A.25), the right hand side in (A.26) is also independent of σ 2, completing
the proof. ��

Proof of Theorem 2 Invariance of the distribution of the two-sample test statistic can
be shown similar to the above proof. Besides computation of the test statistic, rest of
the argument remains the same since the Box M test statistic also follows a standard
uniformdistribution under the null hypothesis.Hence inAlgorithm2,πm ∼ Unif(0, 1)
under H0, which is independent of the choice of �. ��
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