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Abstract
The first-order Poisson autoregressive model may be suitable in situations where the
time series data are non-negative integer valued. In this article, we propose a new
parameter estimator based on empirical likelihood. Our results show that it can lead to
efficient estimators by making effective use of auxiliary information. As a by-product,
a test statistic is given, testing the randomness of the parameter. The simulation values
show that the proposed test statistic works well.We have applied the suggestedmethod
to a real count series.

Keywords Integer-valued time series · Empirical likelihood · Test statistic

1 Introduction

Owen (1988) first proposed an empirical likelihood (EL) as away to extend likelihood-
based inference ideas to certain nonparametric situations. The advantages of the
empirical likelihood are now recognized. For more details and further studies, we
refer to the book or the papers by Owen (1991), Qin and Lawless (1994), Qin and
Lawless (1995), and Zhang et al. (2011b) among others.

In many different fields, for example, economics, medicine, actuarial statistics etc,
lots of interesting variables are integer-valued. Recently, there has been an increasing
attention inmodeling non-negative integer-valued time series. Somemodels have been
proposed in the literature. See, for instance, (Weiss 2017) and (Steutel and Van Harn
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1979) proposed a thinning operator “◦”, which is defined as

φ ◦ X =
X∑

i=1

Bi ,

where φ ∈ [0, 1), X is an integer-valued random variable and {Bi } is an independent
and identically distributed Bernoulli random sequence with P(Bi = 1) = 1−P(Bi =
0) = φ and is independent of X . With the operator, the first-order integer-valued
autoregressive model (INAR(1)) is defined as follows

Xt = φ ◦ Xt−1 + Zt , t ≥ 1, (1)

where the innovations {Zt } is a sequence of i.i.d. non-negative integer-valued random
variables with mean λ and variance σ 2

Z . Here all thinning operations are performed
independently of each other and of {Zt } and the thinning operations at each time t
as well as Zt are independent of {Xs}s<t . The model has some similar properties as
the ordinary AR(1) model and it has been discussed by Al-Osh and ALZAID (1987),
Alzaid and Al-Osh (1988), and Al-Osh and Aly (1992). If the {Zt } are assumed to be
Poisson distributed, Zt ∼ Poi(λ) with λ > 0, then {Xt } is a stationary and ergodic
Markov chain with a Poisson marginal distribution, such that mean and variance are
equal to each other, μX = σ 2

X = λ/(1 − φ), and all moments exist. For conditional
mean and variance, we have (Alzaid and Al-Osh (1988)): E[Xt |Xt−1] = φ · Xt−1 +
λ,Var[Xt |Xt−1] = φ(1 − φ) · Xt−1 + λ.

In this article, based on empirical likelihood, we provide a novel estimator which
has small bias and is efficient by making use of auxiliary information shown in the
following section. (Keith Freeland and McCabe 2005) derived the asymptotic prop-
erties of the conditional least squares (CLS) estimators in this model. (Bourguignon
and Vasconcellos 2015) proposed a bias-adjusted estimator.

Note that the parameter φ may vary with time and it may be random. Zheng et al.
(2007) proposed the following first-order random coefficient integer-valued autore-
gressive (RCINAR(1)) model:

Xt = φt ◦ Xt−1 + Zt , t ≥ 1, (2)

where {φt } is an i.i.d. sequence with cumulative distribution function on [0, 1), with
E[φt ] = φ and Var(φt ) = σ 2

φ ; {Zt } is an i.i.d non-negative integer-valued sequence as
the same in the model (1). Moreover, {φt } and {Zt } are independent. The process {Xt }
is also a stationary and ergodic Markov chain. For conditional mean and variance, we
have E[Xt |Xt−1] = φ · Xt−1 + λ,Var[Xt |Xt−1] = σ 2

φ · X2
t−1 + (φ(1 − φ) − σ 2

φ ) ·
Xt−1 + σ 2

Z . In Zheng et al. (2007), the authors consider two methods, conditional
least squares and the modified quasi-likelihood (MQL). Zhang et al. (2011a) studied
the empirical likelihood method for the model (2). Kang and Lee (2009) considered
the problem of testing for a parameter change in the model (2). There is one of the
problems of interest, given the data {x1, x2, . . . , xn}, test the hypothesis that there is
no time variation for the thinning parameter φ (the series is INAR(1)) against that it
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varies randomly across the time (it is RCINAR(1)). This is essentially same as testing
H0 : σ 2

φ = 0 against H1 : σ 2
φ > 0.

In this article, we give a test statistic for testing this hypothesis. Zhao and Hu (2015)
have proposed a test for randomness of the coefficient of an RCINAR(1) process, but
using the least squares estimates of the parameter σ 2

φ . Awale et al. (2019) developed
a locally most powerful-type testing the hypothesis that the thinning parameter is
constant across the time depended on the distribution of the innovation Zt .

The rest of the paper is organized as follows. In Sect. 2, we introduce the method-
ology and the main results. In Sect. 3, simulation results are reported. In Sect. 4, an
empirical example is discussed.

Throughout the paper, we use the notation “
d−→” to denote convergence in distri-

bution, “′” to denote the transpose operator and ‖ · ‖ to denote the Euclidean norm of
the matrix.

2 Methodology andmain results

Al-Osh and ALZAID (1987) defined the Poisson AR(1) model by

Xt = φ ◦ Xt−1 + Zt , t ≥ 1, (3)

where φ ◦ Xt−1 = ∑Xt−1
i=1 Bi,t , B1,t , B2,t , · · · , BXt−1,t are i.i.d. Bernoulli random

variables with P(Bit = 1) = 1 − P(Bit = 0) = φ; {Zt } are i.i.d. with a Poisson
distribution having mean λ and are independent of the Bernoulli variables Bit .

Remark 1 {Xt } is a Markov chain on {0, 1, 2 . . .} with the transition probability,

pi j = P(Xt = j |Xt−1 = i) =
min{i, j}∑

k=0

Ck
i φ

k(1 − φ)i−k λ( j−k)e−λ

( j − k)! .

For PINAR(1) process (3), let θ = [φ, λ]′, we can construct estimation equations:

mt (θ) =
⎛

⎝
m1t (θ)

m2t (θ)

m3t (θ)

⎞

⎠ = 0,

where m1t (θ) = Xt − φXt−1 − λ,m2t (θ) = (Xt − φXt−1 − λ)Xt−1,m3t (θ) =
(Xt − φXt−1 − λ)2 − φ(1 − φ)Xt−1 − λ.

The profile empirical likelihood ratio function is (Owen 1991)

R(θ) = max

{
n∏

t=1

npt
∣∣∣pt ≥ 0,

n∑

t=1

pt = 1,
n∑

t=1

ptmt (θ) = 0

}
. (4)
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The maximum may be obtained via Lagrange multipliers. Let

H =
n∑

t=1

log(npt ) − nβ ′
(

n∑

t=1

ptmt (θ)

)
+ γ

(
1 −

n∑

t=1

pt

)
,

where γ and β = (β1, β2, β3)
′ are Lagrange multipliers. Taking the partial derivative

of H with respect to pt to be zero, we have ∂H
∂ pt

= 1
pt

− nβ ′mt (θ) − γ = 0, so

0 =
n∑

t=1

pt
∂H

∂ pt
= n − γ, pt = 1

n

1

1 + β ′mt (θ)
, t = 1, 2, . . . , n.

Here, being a function of θ , β = β(θ) is with the restriction that

1

n

n∑

t=1

mt (θ)

1 + β ′mt (θ)
= 0.

The empirical log-likelihood ratio (ELR) is

	(θ) = log R(θ) =
n∑

t=1

log(1 + β ′mt (θ)). (5)

The asymptotic distribution of the ELR was derived by Qin and Lawless (1994) for
general estimating equations and by Zhang et al. (2011b) for RCINAR(p) model.
Basing on their results, it is possible to proved an asymptotic chi-squared distribution
for (5) as shown in the following theorem.

Theorem 1 As n → ∞, we have 2	(θ0)
d−→ χ2(2), where 	(θ) is defined in (5).

So, it is easy to obtain the confidence region for the parameter θ . The result is as
follows:

Corollary 1 For the parameter θ , the 100(1 − α)% confidence region is Cα,n =
{θ |2	(θ) ≤ χ2

1−α(2)}, where 1 − α is the confidence level and χ2
1−α(2) is the upper

1 − α−quantile of the chi-squared distributed with 2 degrees of the freedom.

Then, we may find the maximum empirical likelihood estimator (MELE) θ̌ for the
parameter θ by minimizing 	(θ) over θ .

Theorem 2 For the MELE θ̌ , we have

√
n(θ̌ − θ0)

d−→ N (0, V ),

where V = [�′�−1�]−1,� = E

(
∂mt (θ)

∂θ

)
,� = E

[
mt (θ)mt (θ)′

]
.
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Remark 2 If we don’t consider the third equation and only use m1t = 0,m2t = 0 as
the estimation equations, the maximum empirical likelihood estimator is consistent
with the conditional least squares estimator.

Remark 3 The conditional least squares estimator (CLE) of the model’s parameters
can be calculated by the following expression

φ̂ = n
∑n

t=1 Xt Xt−1 − (∑n
t=1 Xt−1

) (∑n
t=1 Xt

)

n
∑n

t=1 X
2
t−1 − (∑n

t=1 Xt−1
)2 , λ̂ = 1

n

(
n∑

t=1

Xt − φ̂

n∑

t=1

Xt−1

)
.

The CLS estimator is consistent and asymptotically normal, see (Keith Freeland and
McCabe 2005).

Remark 4 Note that the conditional variance is

Vθ (Xt |Xt−1) := Var(Xt |Xt−1) = φ(1 − φ)Xt−1 + λ,

then the maximum quasi-likelihood (MQL) estimator of the parameters are:

(
φ̃

λ̃

)
=

(∑n
t=1 X

2
t−1V

−1
θ̂

(Xt |Xt−1)
∑n

t=1 Xt−1V
−1
θ̂

(Xt |Xt−1)∑n
t=1 Xt−1V

−1
θ̂

(Xt |Xt−1)
∑n

t=1 V
−1
θ̂

(Xt |Xt−1)

)−1

×
(∑n

t=1 Xt−1XtV
−1
θ̂

(Xt |Xt−1)∑n
t=1 XtV

−1
θ̂

(Xt |Xt−1)

)
,

where θ̂ is its consistent estimator, in practice, we can use the conditional least squares
estimator of θ . Similar to the proof of theorem 3.2 in Zheng et al. (2007), it can be
proved that the estimator is also consistent and asymptotically normal.

Remark 5 The conditional maximum likelihood (CML) estimator of the parameter θ̄

is

θ̄ = argmax
n∑

t=1

log pxt |xt−1(θ),

where

pxt |xt−1(θ) := P(Xt = xt |Xt−1 = xt−1) =
min(xt ,xt−1)∑

k=0

(
xt−1
k

)
φk(1− φ)xt−1−k λxt−k

(xt − k)! .

The CML estimator is consistent and asymptotically normal, see Freeland andMccabe
(2004).

In order to test H0 : σ 2
φ = 0, we may consider the following theorem.

Theorem 3 Under H0, we have 2	(θ̌)
d−→ χ2(1), as n → ∞,where 	(θ) is defined

in (5).
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Then, it follows that the null hypothesis H0 : σ 2
φ = 0 may be tested using the

statistic T = 2	(θ̌) and the rejection region {T > χ2
1−α(1)}.

3 Simulation study

Simulation studies are reported in the section to evaluate the finite sample performance
of the proposed maximum empirical likelihood estimator (MELE). We computed the
empirical bias and root of the mean squared errors (RMSE) based on 1000 replica-
tions for each parameter combination. These values are reported within parenthesis in
Tables 1. For succinctness, we only report here partial results, to illustrate the effect of
parameter φ while holding the other parameter λ identical. Other results are available
from the authors upon request. In the following Table 1, the format (Bias, RMSE) is
used; for example, (0.0142,0.1204) means that the bias is 0.0142 and RMSE is 0.1204.

From the above results, we can see that MELE is a good estimation method produc-
ing estimators whose biases and RMSEs are overall comparable to the CML method.
As expected, the CML performs best which has the smallest bias and RMSE and there
are almost no differences between the MELE and CML. The CLS and QML have the
same performance in terms of both bias and the RMSE. Howerver, when the sample
size is small or the parameters are large, the MELE works better than the CLS and
QML.

Inorder to assess the performanceof the suggested test statistic,wehavedone a lot of
simulation studies.We simulate observations from the Poisson INAR(1)model various
combinations of the parameters, as shown in 2. In each case, the sizes of samples are
100, 300, 500, 1000, 5000 and 1000 simulations were carried out. The distribution of
φt is assumed to Beta(a, b) under the alternative hypothesis. The empirical level and
power of the test statistic is reported in Tables 2 and 3, respectively.

It can be seen that the test maintains the level and the power tends to one as sample
size increase. We also perform the test proposed by Awale et al. (2019), since it is
better than the test given by Zhao and Hu (2015). The results are reported in Tables 4
and 5.

From comparison with level and power of the the suggested test from Tables 2
and 3, it can be seen that the test is not as good as the proposed test using the proba-
bility distribution function, as accepted. However, the suggested test in this article is
competitive and convenient as opposed to that of Awale et al. (2019).

4 Real data example

In this section, we employ the programme suggested in the previous section a real
time series data. The data set consists of monthly counts of claimants collecting short-
term wage loss benefit for born-related injuries received in workplace. The data set
contains 120 observations for the period January 1985 to December 1994. These
data were previously studied by Freeland and Mccabe (2004) and Bourguignon and
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Table 2 Empirical level of the
test at nominal level 0.05 for
Poisson INAR(1) model

λ φ Sample size
100 300 500 1000 5000

0.5 0.1 0.108 0.066 0.056 0.066 0.045

0.3 0.081 0.078 0.046 0.064 0.052

0.5 0.075 0.058 0.054 0.053 0.048

0.7 0.072 0.063 0.069 0.057 0.053

0.9 0.101 0.070 0.052 0.049 0.053

1 0.1 0.080 0.063 0.061 0.050 0.048

0.3 0.078 0.048 0.055 0.050 0.051

0.5 0.081 0.054 0.052 0.051 0.052

0.7 0.077 0.061 0.059 0.051 0.049

0.9 0.087 0.077 0.054 0.052 0.046

2 0.1 0.088 0.053 0.044 0.054 0.048

0.3 0.070 0.066 0.052 0.056 0.051

0.5 0.083 0.068 0.058 0.053 0.052

0.7 0.061 0.065 0.056 0.058 0.047

0.9 0.102 0.055 0.061 0.050 0.052

Vasconcellos (2015). Table 6 provides some descriptive statistics. The series and its
sample autocorrelation function are shown in Fig. 1.

From mean, variance and correlation plots given in Fig. 1, it can be seen that the
data can be modeled by a Poisson INAR(1) model and the constancy of the thinning
parameter may be suspected. Therefore it is of interest to test the hypothesis of con-
stancy of the thinning parameter. The value of the test statistic for testing H0 : σ 2

φ = 0

against H1 : σ 2
φ > 0 turned out to be 0.1035 , with p-value 0.7477, indicating that one

did not reject the null hypothesis at 5% level of significance. Consequently, it is better
to model this data with a Poisson INAR(1) model rather than the RCINAR(1) model.
Table 7 display the estimates. Two goodness-of-fit statistics are also shown: the root
mean-squared error (RMSE) and mean absolute deviation (MAD). Those statistics
defined as follows. For t = 2, . . . , n, consider the expected value of the observation
at the previous time, E[Xt |Xt−1] = φXt−1 + λ. Let ε


t = Xt − φ
Xt−1 − λ
, where
φ
 and λ
 are any estimates of φ and λ. Define

RMSE =
√√√√ 1

n − 1

n∑

t=2

(ε

t )

2, MAD = 1

n − 1

n∑

t=2

|ε

t |.

FromTable 7, it can be found that the CML andMELE are competitive and superior
in terms of RMSE and MAD. We also plot the confidence region of the parameter as
shown in Fig. 2. This is an indication that our proposed estimator can be indeed a good
choice in practice.

We can also compare the estimators in terms of predictive power. Let φ

n and λ


n be
any estimators of φ and λ, obtained from n observations. Then, at any given time n,
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Fig. 2 Estimates and 95%
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based on CLS(�, dotted line),
CML(•, dashed line), EL(∗,
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Table 3 Empirical power of the test at nominal level 0.05 for Poisson RCINAR(1) model with φt ∼
Beta(a, b)

λ a b (φ, σ 2
φ ) Sample size

100 300 500 1000 5000

0.5 0.5 0.5 (0.500,0.125) 0.182 0.409 0.567 0.832 1.000

1 (0.333,0.089) 0.120 0.146 0.181 0.358 0.989

1.5 (0.250,0.063) 0.116 0.107 0.103 0.178 0.978

1 0.5 (0.667,0.089) 0.178 0.441 0.680 0.920 1.000

1 (0.500,0.083) 0.101 0.190 0.320 0.498 1.000

1.5 (0.400,0.069) 0.092 0.120 0.178 0.294 0.985

1.5 0.5 (0.750,0.063) 0.188 0.457 0.660 0.915 1.000

1 (0.600,0.069) 0.118 0.228 0.313 0.541 1.000

1.5 (0.500,0.063) 0.094 0.149 0.206 0.320 0.995

1 0.5 0.5 0.412 0.844 0.962 0.998 1.000

1 0.156 0.359 0.548 0.828 1.000

1.5 0.122 0.180 0.280 0.481 1.000

1 0.5 0.495 0.920 0.989 1.000 1.000

1 0.215 0.546 0.744 0.949 1.000

1.5 0.134 0.309 0.449 0.715 1.000

1.5 0.5 0.461 0.925 0.991 1.000 1.000

1 0.225 0.574 0.788 0.976 1.000

1.5 0.153 0.352 0.524 0.790 1.000

2 0.5 0.5 0.841 0.999 1.000 1.000 1.000

1 0.402 0.814 0.967 0.999 1.000

1.5 0.197 0.432 0.698 0.926 1.000

1 0.5 0.913 1.000 1.000 1.000 1.000

1 0.559 0.943 0.999 1.000 1.000

1.5 0.313 0.707 0.898 0.994 1.000

1.5 0.5 0.907 1.000 1.000 1.000 1.000

1 0.601 0.973 0.999 1.000 1.000

1.5 0.364 0.808 0.945 0.999 1.000

we can forecast the next observation as

X

n+1 = 〈φ


n Xn + λ

n〉,

where 〈·〉 represents the nearest integer. The one-step ahead absolute forecast deviation
is then given by

∣∣X

n+1 − Xn+1

∣∣ ,

where X

n+1 is the one-step ahead forecast.
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Table 4 Empirical level of the
Awale et al. (2019) test at
nominal level 0.05 for Poisson
INAR(1) model

λ φ Sample size
100 300 500 1000 5000

0.5 0.1 0.058 0.062 0.055 0.065 0.055

0.3 0.071 0.068 0.056 0.054 0.051

0.5 0.080 0.068 0.064 0.052 0.049

0.7 0.092 0.062 0.069 0.061 0.057

0.9 0.121 0.090 0.062 0.059 0.055

1 0.1 0.085 0.073 0.065 0.060 0.046

0.3 0.088 0.068 0.056 0.053 0.051

0.5 0.082 0.064 0.062 0.055 0.054

0.7 0.097 0.071 0.056 0.061 0.059

0.9 0.107 0.078 0.074 0.058 0.048

2 0.1 0.098 0.063 0.074 0.057 0.049

0.3 0.090 0.065 0.058 0.055 0.051

0.5 0.097 0.078 0.068 0.043 0.053

0.7 0.101 0.085 0.066 0.068 0.050

0.9 0.132 0.095 0.068 0.065 0.047

Table 8 shows that all four estimators produce a correct forecast or a small forecast
error in all the time interval here studied (n = 111, . . . , 120). This confirms that the
PINAR(1) process is a good model for this data, at least in this interval. We observe
that the CLS and MQL provide the worst forecasting performance. On the other hand,
the MELE and CML provide the same forecasting and predict better than CLS and
MQL. This is an indication that our proposed MELE estimator can be indeed a good
choice for forecasting purposes.

5 Conclusions

In this article, we considered the empirical likelihood inference for the Poisson
INAR(1) process by making effective use of auxiliary information and found a test
statistic of testing the randomness of the parameter. A straightforward question is to
ask this point is whether similar results as shown here could be obtained in the other
models. This is our further work.

Funding This work is supported by National Natural Science Foundation of China (No. 11871028,
11731015, 11901053), Natural Science Foundation of Jilin Province (No. 20180101216JC).

6 Appendix

Proof of Theorem 1 The proof follows essentially the lines of the classical proof
of Owen (2001) for the i.i.d. case, which may be applied when the following three
conditions are satisfied. Let S(θ) = 1

n

∑n
t=1 mt (θ)mt (θ)′.
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Table 5 Empirical power of the Awale et al. (2019) test at nominal level 0.05 for Poisson RCINAR(1)
model with αt ∼ Beta(a, b)

λ a b (φ, σ 2
φ ) Sample size

100 300 500 1000 5000

0.5 0.5 0.5 (0.500,0.125) 0.382 0.909 0.999 1.000 1.000

1 (0.333,0.089) 0.110 0.276 0.550 0.888 1.000

1.5 (0.250,0.063) 0.056 0.157 0.153 0.578 0.982

1 0.5 (0.667,0.089) 0.578 0.961 1.000 1.000 1.000

1 (0.500,0.083) 0.191 0.610 0.790 0.968 1.000

1.5 (0.400,0.069) 0.092 0.300 0.418 0.684 1.000

1.5 0.5 (0.750,0.063) 0.688 0.987 1.000 1.000 1.000

1 (0.600,0.069) 0.278 0.588 0.892 1.000 1.000

1.5 (0.500,0.063) 0.090 0.249 0.554 0.782 0.995

1 0.5 0.5 0.712 0.984 1.000 1.000 1.000

1 0.256 0.559 0.848 0.978 1.000

1.5 0.102 0.250 0.421 0.711 1.000

1 0.5 0.815 0.980 1.000 1.000 1.000

1 0.365 0.876 0.744 1.000 1.000

1.5 0.214 0.409 0.449 0.965 1.000

1.5 0.5 0.860 1.000 1.000 1.000 1.000

1 0.525 0.934 1.000 1.000 1.000

1.5 0.223 0.672 0.834 0.990 1.000

2 0.5 0.5 0.941 1.000 1.000 1.000 1.000

1 0.442 0.954 0.989 0.999 1.000

1.5 0.207 0.732 0.918 0.996 1.000

1 0.5 0.983 1.000 1.000 1.000 1.000

1 0.789 0.993 1.000 1.000 1.000

1.5 0.423 0.947 0.990 0.999 1.000

1.5 0.5 0.937 1.000 1.000 1.000 1.000

1 0.701 0.983 0.999 1.000 1.000

1.5 0.464 0.928 0.995 1.000 1.000

Table 6 Descriptive statistic Minimum Median Mean Variance Maximum

0 1 0.917 0.766 4

(C1) S(θ0) → � in probability and � positive definite.
(C2) m


n = max1≤t≤n ‖mt (θ0)‖ = op(n1/2).
(C3) 1

n

∑n
t=1 ‖mt (θ0)‖3 = op(n1/2), where θ0 is the true value of the parameter.
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Table 7 Estimates of the parameters (standard errors in parentheses), RMSE and MAD for burns claims

Method Parameter RMSE MAD
φ λ

CLS 0.5909 (0.0819) 0.3881 (0.0830) 0.7065 0.5248

MQL 0.5981 (0.0810) 0.3816 (0.0802) 0.7065 0.5238

CML 0.6517 (0.0602) 0.3329 (0.0636) 0.7055 0.5164

MELE 0.6573 (0.0616) 0.3270 (0.0595) 0.7058 0.5158

Table 8
∣∣∣X


n+1 − Xn+1

∣∣∣ for
counts of burns claim

n CLS MQL MELE CML

111 0 0 0 0

112 0 0 0 0

113 1 1 0 0

114 0 0 0 0

115 0 0 0 0

116 1 1 1 1

117 0 0 0 0

118 0 0 0 0

119 1 1 1 1

120 1 1 1 1

For the first condition, let Fn = σ(X0, X1, . . . , Xn), An = ∑n
t=1 m1t (θ0) =∑n

t=1(Xt − φ0Xt−1 − λ0), A0 = 0, then,

E(An|Fn−1) = An−1 + E(Xn − φ0Xn−1 − λ0) = An−1,

so, {An,Fn, n ≥ 0} is a martingale. For E |Xt |2 < ∞, {(Xt −φ0Xt−1 −λ0)
2, n ≥ 1}

is square integrable. By the strictly stationary and ergodic theorem,

1

n

n∑

t=1

(Xt − φ0Xt−1 − λ0)
2 a.s−→ E(X1 − φ0X0 − λ0)

2.

Similarly, we can proof that Bn = ∑n
t=1m2t (θ0),Cn = ∑n

t=1 m3t (θ0) are mar-
tingale. Then the first condition holds. To check the second condition, we note
that E{mt (θ0)/mt (θ0)} < ∞, then,

∑∞
n=1 P(mt (θ0)

′ mt (θ0) > n) < ∞. By
the Borel-Cantelli lemma, ‖mt (θ0)‖ >

√
n happens with probability 1 only for

finitely many n, since {Xt } is a strictly stationary process. This implies that there
are only finitely many n for which m


n >
√
n. Similarly, for any ε > 0, there

are only finitely many n for which m

n > ε

√
n, hence lim supn→∞ m


n/
√
n ≤ ε

holds with probability 1, so m

n = op(

√
n). From the (C1) and (C2), we have

1
n

∑n
t=1 ‖mt (θ0)‖3 ≤ m


n
1
n

∑n
t=1 mt (θ0)mt (θ0)

′ = op(
√
n)Op(1) = op(n1/2).

See Zhang et al. (2011a) and Zhao and Yu (2016) also.
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Proof of Theorem 2 The proof is similar to that of Theorem 6.2 of Zhang et al. (2011a)
and that of Theorem 1 of Qin and Lawless (1994). Let

Q1n(θ ,β) = 1

n

n∑

t=1

mt (θ)

1 + β ′mt (θ)
, Q2n(θ ,β) = 1

n

n∑

t=1

β(θ)

1 + β ′mt (θ)

(
∂mt (θ)

∂θ

)′
.

Expanding Q1n(θ̌ , β̌), Q2n(θ̌, β̌) at (θ0, 0), we have

0 = Q1n(θ̌ , β̌) = Q1n(θ0, 0) + ∂Q1n(θ0, 0)

∂θ
(θ̌ − θ0) + ∂Q1n(θ0, 0)

∂β ′ (β̌ − 0) + op(δn),

0 = Q2n(θ̌ , β̌) = Q2n(θ0, 0) + ∂Q2n(θ0, 0)

∂θ
(θ̌ − θ0) + ∂Q2n(θ0, 0)

∂β ′ (β̌ − 0) + op(δn),

where δn = ‖θ̌ − θ0‖ + ‖β̌‖ = Op(n−1/2). So, we have

Sn

(
β̌

θ̌ − θ0

)
=

(−Q1n(θ0, 0) + op(δn)
op(δn)

)
.

where

Sn =
(

∂Q1n
∂β ′

∂Q1n
∂θ

∂Q2n
∂β ′ 0

)

(θ0,0)

→
⎛

⎝
−E(mtm′

t ) E
(

∂mt
∂θ

)

E
(

∂mt
∂θ

)′
0

⎞

⎠ =
(−� �

�′ 0

)
.

since {Xt } is strictly stationary and ergodic and note that
√
nQ1n(θ0, 0) =

1√
n

∑n
t=1mt (θ0)

d−→ N (0,�). Then, we have

√
n(θ̌ − θ0) = (�′�−1�)−1�′�−1√nQ1n(θ0, 0) + op(1).

The proof of the theorem is completed.
Proof of Theorem 3: The proof is similar to that of Theorem 2 and Corollary 4 of

Qin and Lawless (1994) and will be only sketched here.
Note that

	(θ̌ , β̌) =
n∑

t=1

log[1 + β̌mt (θ̌)] = n

2

[
1

n

n∑

t=1

mt (θ0)
′
]
A

[
1

n

n∑

t=1

mt (θ0)

]
+ op(1),

where A = �−1[I − �[�′�−1�]−1�′�−1]. Thus,

2	(θ̌) = [�−1/2√nQ1n(θ0, 0)]′[I − �−1/2�[�′�−1�]−1�′�−1/2][�−1/2

√
nQ1n(θ0, 0)] + op(1),
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Note that (�)−1/2√nQ1n(θ0, 0) converges to a standard multivariate normal distribu-
tion and the matrix I − �−1/2�[�′�−1�]−1�′�−1/2 is symmetric and idempotent,
with trace equal to 1. Hence the test statistic 2	(θ̌) converges to χ2(1).
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