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Abstract
Dimension reduction is a common problemwhen analysing large data sets. The present
paper proposes amethod called reducedmultidimensional scaling based onperforming
an initial standard multidimensional scaling on a reduced data set. This method faces
the problem of finding a representative reduced sample. An algorithm is presented to
perform this selection based on alternating sampling in outlier areas and observations
in high density areas. A space is then constructed with the selected reduced sample
by standard multidimentional scaling using pairwise distances. The observations not
included in the reduced sample are then projected on the constructed space using
Gower’s formula in order to obtain a final representation of the whole data set. The
only requirement is the ability to compute distances among observations. A simulation
study showed that the proposed algorithm results performs well to detect outliers.
Evaluation of running times suggests that the proposed method could run in a few
hours with data sets that would take more than one year to analyse with standard
multidimensional scaling. An application is presented with a dataset of 9547 DNA
sequences of human immunodeficiency viruses.

Keywords Dimension reduction · Distance data · HIV · Multidimensional scaling

1 Introduction

Analysing very large data sets is now a common problem in many scientific fields. For
instance, research projects in environmental sciences or in genomics typically require
to analyse data sets made of millions of observations each with hundreds or thousands
of variables (Stephens et al. 2015). A common objective of such analyses is to find
structure defined as clusters of discrete groups of observations. In this situation, the
main output is a graphical representation into a space made of a few dimensions which
can be displayed as standard scatterplots.
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92 E. Paradis

The methods used for such analyses face three main challenges. First, handling,
analysing, and identifying observations in the final space could be very costly in
terms of computational resources. As a matter of fact, traditional multivariate methods
of aggregation or projection are not operational with data sets made of millions of
observations. Second, researchers want to represent data sets with many variables into
a small number of dimensions, either to obtain a meaningful graphical representation,
or to find a small subset of the original variables. To be effective, this dimension
reduction should be based on an assessment of how much of the original variation in
the whole data set is represented in the reduced space. Third, whether a specific data
set can be represented as discrete clusters is not a general rule and depends on the data
themselves.

A number of algorithms have been developed to handle large matrices and, in par-
ticular, decompose them in order to perform multivariate analyses on large data sets.
Eigendecomposition of a matrix can be done iteratively by expectation–maximization
which avoids inverting the matrix of eigenvectors (Roweis 1998). Standard eigen-
decomposition is computationally costly when there are many variables implying to
calculate a large variance–covariance matrix. An approach based on bidiagonalization
was proposed by Baglama and Lothar (2005) for the iterative computations of sin-
gular values of large matrices. Halko et al. (2011) reviewed several algorithms based
on random matrices that perform various matrix decompositions. There are several
implementations of these methods, in particular in R (R Core Team 2021), with the
packages RSpectra (Qiu andMei 2019), irlba (Baglama et al. 2019), flashpcaR (Abra-
ham and Inouye 2014), onlinePCA (Degras and Cardot 2016), idm (D’Enza et al.
2018), and rsvd (Erichson et al. 2019).

From a statistical inferential point of view, and without consideration on sample
size, there are two main approaches to the problem of dimension reduction that differ
mainly by their respective objective. In the first approach, the reduced space aims to be
representative, as much as possible, of the dispersion of the observations in the orig-
inal space (e.g., principal component analysis, PCA). In the second approach, some
groups actually exist and are known in the data, and the reduced space optimizes the
discrimination of these groups using data with known assignment (e.g., discriminant
analysis). This second approach is related to, but distinct from, a third approach where
it is assumed that some grouping structure exists but the assignments of the observed
data to these groups are unknown (e.g., k-means clustering): in this situation, group
assignment, instead of dimension reduction, is the main objective. In this third case,
although the basic approach assumes that groups actually exist (e.g., Lloyd 1982; Ven-
ables and Ripley 2002), statistical testing of the reality of these groups is possible, for
instance, Beugin et al. (2018) developed an approach to test the statistical significance
of groupings inferred by k-means clustering with genetic data.

The transposition of this framework to the situation of very large date sets is not
straightforward. In this paper, I present an approach that aims to address the above
issues. This approach is very general and can be applied to any type of data as long as it
is possible to calculate a distance between two observations. The next section explains
the computational details of the proposed approach. A simulation study aimed at
characterizing some of the statistical properties of the approach is presented in Sect. 3.
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Reduced multidimensional scaling 93

An application with a data set of 9547 DNA sequences is given in Sect. 4, and Sect. 5
discusses the general implications of this work.

2 Computational details

The data are assumed to be made of a matrix X with n rows and p columns. It is
also assumed that it is possible to compute a square n × n matrix denoted as Δ which
stores the pairwise, symmetric distances among observations (δi j = δ j i , with i and
j = 1, . . . , n). Our goal is to represent the n observations into a Euclidean space of
dimension k (< p). A widely used method to achieve this goal is multidimensional
analysis scaling (MDS) which is performed by the eigendecomposition of the doubly-
centred distance matrix:

− 1

2
JΔ2 J , (1)

with J = I − 1
n 11

T. The matrix of coordinates in the final Euclidean space, denoted
as Z , are computed with:

Z = VΛ
1
2 ,

where V is an n × k matrix with the first k eigenvectors extracted from the decompo-
sition of (1), andΛ is a diagonal k×k matrix with the first k eigenvalues (λ1, . . . , λk).
Z has thus n rows and k columns. Note that we make no assumtion on the type of
variables in X which can be continuous and/or discrete. This last feature explains, at
least in part, the success of MDS because many fields (e.g., psychology, molecular
biology) consider variables which are not continuous but there aremethods to compute
distances among observations (e.g., subjects, molecular sequences) so that the matrix
Δ can be calculated in many situations.

Matrix decomposition is usually computationally costly. For instance eigendecom-
position is limited to square matrices with a few thousands rows (see an overview of
these methods applied to population genomic data in Paradis 2020). Instead of con-
sidering the full matrix Δ for decomposition, an alternative approach is to consider a
subset of it made of m rows and m columns (with m << n), calculate the required
numbers of axes from thesem observations, and project the remaining n−m observa-
tions on these axes. The core of this approach is an algorithm that subsamples X and
was first given in Paradis (2018). This algorithm is based on distances among obser-
vations but does not require to compute the full matrix Δ, only some of its elements
δi j . This is detailed in Algorithm 1.

The aim of this algorithm is to select a few observations that are representative, in
a specific way, of the overall distribution of the n rows of X in a multidimensional
space. Step 4 selects observations that are at the periphery (or outliers) of this space,
while step 6 selects those that are close to its center. The alternance of these two steps
results in an equal representation of these two types of observations.
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Algorithm 1 Selection of a reduced sample of observations from X .
1: Choose m so that 1 < m < n. Define a vector ζ of length m.
2: Select one observation i at random among the n. Store i in ζ .
3: Compute the vector of distances δi j with j = 1, . . . , n and j /∈ ζ .
4: Find j ′ so that δi j ′ is max of the distances calculated at step 3. Store j ′ in ζ .
5: Compute the vector of distances δ j ′ j with j = 1, . . . , n and j /∈ ζ .
6: Select i so that δ j ′i is median of the distances calculated at step 5. Store i in ζ .
7: Repeat steps 3–6 until m values are stored in ζ .

A version of the above algorithm has step 6 modified so that i is chosen randomly
which is more likely to select observations that are present in regions of the space with
high density, so that the alternance of steps 4 and 6 now gives equal representation of
outliers and high density areas. This second version of the algorithm was used in the
simulations and the application below.

Because the above algorithm uses distances among individuals, it can be applied to
any type of data as long as pairwise distances can be calculated. Furthermore, it does
not require to compute the full matrix Δ which can be very costly if n is large. Four
versions of Algorithm 1 have been implemented in R for the present study:

– A general version with an argument FUN which accepts any R function to compute
the distance between two vectors.

– Aversion that usesEuclidean distance codedwith efficient R vectorized operations.
– A version that calls a C routine implementing Euclidean distance.
– A version for DNA sequences using C code borrowed from ape (Paradis and
Schliep 2019).

Figure 1 shows Algorithm 1 in action. Two data sets were simulated with n = 10,000 or
n = 1,000,000, respectively, and p = 10 in both cases. Half of the points were drawn
from a normal distribution with mean equal to −2 and the other half with mean equal
to 2. The algorithm was set with m = 100. This illustrates the ability of the algorithm
to select observations spreading the range of the data independently of sample size as
well.

Clearly, it is important to assesswhether a subsample of the data is likely to represent
correctly the complete matrix X . A solution to this problem is to assess whether
increasing the value of m provides a stable representation of the subsample after
performing the MDS. The logic of this approach is that if an MDS performed on m
observations represents correctly the data, then anMDS onm+1 observations should
give a similar representation. To assess this, we compute the discrepancy between the
original distances and the Euclidean distances inferred from theMDS calculated with:

di j =
√

(zi − z j )T(zi − z j ),

where zi and z j are the vectors of coordinates for observations i and j in the MDS-
based space. At this stage, there is no consideration of the final number of dimensions,
so these coordinates are based on the m dimensions resulting from the decomposition
of the m × m distance matrix. The sum of the squared differences between the two
sets of pairwise distances are used to assess the ‘quality’ of the representation for each
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Reduced multidimensional scaling 95

Fig. 1 Illustrations of the selection algorithm presented in the text with n = 104 and n = 106 observations
(shown with small black dots); the selected observations are shown with large blue dots (p = 10 and
m = 100 in both cases; only the first two dimensions are shown) (color figure online)

value of m. However, this criterion is expected to increase with increasing values of
m, thus it is scaled by the mean of the differences:

√
1
m′

∑n
i, j (δi j − di j )2

1
m′

∑n
i, j δi j − di j

, (2)

with m′ = m(m − 1)/2 is the number of pairs among the m observations. An appro-
priate value of m is found when Eq. 2 gives a similar value for m + 1; in practice, the
absolute difference between the two criteria is used.

Once a representative sample has been obtained, it is possible to project the remain-
ing n−m observations usingGower’s (1968) formula. Supposewe performed anMDS
onm observations resulting in them×k matrix of coordinates Z , and that we have one
additional observation for which we have the distances to the m previous ones stored
in the vector δ̃. Then, the k coordinates of this additional observation are computed
with:

1

2

(
ZTZ

)−1
Z

[
diag

(
Z ZT

)
− δ̃2

]
. (3)

By contrast to a previous approach (Paradis 2018), the reduced space may have more
than two dimensions.

3 Simulation study

Two sets of simulations were run to assess some properties of the method presented
in this paper. The basic model used in these simulations was to simulate a matrix
X with n rows and p columns where the elements xi j follow a normal distribution

123



96 E. Paradis

Table 1 Computing times (in
seconds)

n Method p

100 1000 104 105 106

100 MDS 0.005 0.025 0.26 5.9 74

1000 MDS 0.9 5.6 66 1422 –

RMDS 0.44 9 110 2315 –

104 MDS 1582 – – – –

RMDS 4.2 102 1602 – –

105 RMDS 47 1328 – – –

106 RMDS 410 – – – –

All times less than one minute were averaged over ten replications
MDS standardMDS,RMDS reducedMDS (presentmethod), n number
of observations, p number of variables

with variance unity and means determined by the model. The details of the simulation
protocols are further explained in the following subsections.

3.1 Computing times

The first set of simulations aimed at assessing computing times of the method
presented in this paper compared to standard MDS. X was simulated with n =
{100, 1000, 104, 105, 106}, and the same set of values for p, although not all com-
binations of these two parameters were considered. The variables were independently
drawn from a normal distribution with mean equal to zero and standard-deviation
equal to one. The simulated matrix X was analysed with a standard MDS and with
the present method (RMDS). The computing times were recorded; in the case of
MDS, these included the time needed to compute Δ and perform the standard MDS
as described above; in the case of RMDS, these included the times to perform Algo-
rithm 1, find the optimal value of m, and project the observations on the reduced
MDS-based space.

The results are presented in Table 1. The computing times of the standard MDS
scaled roughly linearly with p. On the other hand, they appeared to increase dramat-
ically with n so that they were not assessed with n > 104. On the other hand , the
present method (RMDS) scaled linearly with n and was almost 400 times faster than
MDS with n = 104 and p = 100.

3.2 Precision

In the second set of simulations, we addressed the question of the precision of the
results. Specifically, we assessed whether the representations of the observations in
the MDS-based space is close to the original pairwise distances. The size of the
data was fixed to n = p = 1000. A fraction of the n observations, denoted as g
(< 1), was simulated with a mean equal to two while the other observations were
simulated with mean zero. This made possible to simulate data sets with two groups
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Table 2 Precision of three
MDS-based methods

g Method S S′

Mean SD Mean SD

0 MDS 0.922 0.000 19 × 106 17,602

RMDS 0.953 0.002 20 × 106 82,217

RMDS(2) 0.954 0.002 20 × 106 74,724

0.001 MDS 0.933 0.001 19 × 106 24,487

RMDS 0.913 0.006 18 × 106 241,665

RMDS(2) 0.953 0.007 20 × 106 292,649

0.01 MDS 0.913 0.000 19 × 106 23,618

RMDS 0.916 0.007 19 × 106 297,440

RMDS(2) 0.945 0.018 20 × 106 593,160

0.1 MDS 0.738 0.001 16 × 106 21,397

RMDS 0.752 0.002 16 × 106 62,871

RMDS(2) 0.783 0.088 17 × 106 2,717,905

MDS standardMDS,RMDS reducedMDS (presentmethod),RMDS(2)
reduced MDS with random sampling of the m observations

in unequal proportions. This parameter took the values g = {0, 0.001, 0.01, 0.1}. The
simulated data were analysed with three methods: the standardMDS, the RMDS using
Algorithm 1, and the RMDS where the m observations were selected randomly. In
order to assess the precision of the results, twomeasures were used: the classical stress
calculated with Kruskal’s formula (Kruskal 1964):

S =
√√√√

∑n
i, j (δi j − di j )2∑n

i, j δ
2
i j

,

and a measure of the accuracy of the inferred distances calculated with:

S′ =
n∑
i, j

(δi j − di j )2

δi j
.

The simulations were replicated 100 times for each set of parameter values. The mean
and standard-deviation (sd) of both S and S′ were calculated over the 100 replications.

The sd of both S and S′ were much lower for the MDS than both variants of the
RMDSmethod. Considering that the results with theMDSmethod provides a measure
of the ‘baseline’ precision, it appeared that the RMDSmethod performed usually very
close in comparison (Table 2). Particularly, the present method performed very well
when g = 0.001 or g = 0.01. The RMDS method with random sampling (RDMS(2)
in Table 2) performed better than with Algorithm 1 only when g = 0; in other cases,
the latter performed better although not as good as the full MDS.
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Fig. 2 Values of the critetion calculated with Eq. 2 with respect to the reduced sample size (m)

4 Application

The RMDS method was applied to a set of DNA sequences downloaded from
the Los Alamos National Laboratory (https://www.hiv.lanl.gov/content/sequence/
NEWALIGN/align.html). This data set consisted of 9547 sequences of the GAG pro-
tein of the human immunodeficiency virus (HIV) originally with 1944 sites (columns).
The sequences were already aligned (alignment ID: 118AP3) although a few sites (16)
consisted of alignment gaps only and were removed prior to analysis, so the data anal-
ysed had 1928 sites. In a first step, two reduced sampleswere selectedwithAlgorithm1
on one side, and by random sampling on the other. In both cases, the criterion (2) con-
verged rather quickly: it reached a stable value with m = 200 for Algorithm 1, and
m = 192 for random sampling (Fig. 2). On the other hand, the percentage of variance
explained by the MDS on these respective subsamples were quite different: the first
five eigenvalues explained 61, 16, 9, 3, and 2% for Algorithm 1, and 21, 15, 4, 3, and
2% for random sampling.

The plots of the 9547 projected observations were quite different between the
different methods. The RMDS plots using Algorithm 1 showed one main cluster on
axis 1 and a few outliers, whereas three main clusters were observed on axes 4 and
5 (Fig. 3). On the other hand, using random sampling showed three main clusters on
axes 1 and 2 (Fig. 4).

Although the data set was relatively large, we analysed it with a standard MDS.
This last analysis took about one hour to complete, whereas the two previous ones took
each less than one minute. The MDS on the full data showed a pattern quite similar to
the RMDS with random sampling (Fig. 5). Axis 3 shows evidence of a small cluster
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distant from the bulk of the rest of the data. Notably, the scales of axis 3 was larger
than for axes 1 and 2, which will be further considered in the discussion below.

5 Discussion

The present work builds on a previous study aiming at performing MDS with very
large data sets (Paradis 2018). However, the procedure presented in this previous work
was limited to find a space limited to a one or two dimensions. By contrast, the method
proposed in the present paper is not limited to these numbers, and it is up to the user to
select the number of dimensions of the final MDS space based on the eigenvalues of
the reduced sample. In addition, in Paradis (2018) the coordinates of the observations
outside of the reduced sample were found by numerical optimization, whereas direct
matrix calculus is used in the present work. Themost computationally costly operation
seems to be the matrix inverse (ZTZ)−1, but since Z has m rows and m columns and
that in practice it is likely that m ≤ 1000, this is expected to take typically a short
time (i.e., a few seconds). Furthermore, this matrix inverse needs to be computed only
once in order to apply Eq. 3 to the n − m observations out of the reduced sample.

When compared to standard (i.e., full) MDS, the method proposed here (RMDS)
requires to compute far less pairwise distances among observations. The standard
MDS needs to compute all (n2 − n)/2 pairwise distances and store them in an n × n
matrix before decomposition. The number of distances computed is thus proportional
to n2 and the storage requirement is typically 8n2 bytes if the distances are stored as
64-bit floating-point reals. An additional matrix of the same size with the eigenvectors
output by the eigendecomposition of the previous matrix is eventually also needed. By
contrast, the RMDS has the same resource requirements for only them observations in
the reduced sample. In addition, the procedure computes m(n −m) distances in order
to apply Eq. 3. Thus, a total of (m2 − m)/2 + m(n − m) distances need to computed
by the RMDS method. For example, if n = 104 and m = 200 this number will be
1,979,900 whereas the number of distances computed for a standard MDS will be
49,995,000, differing by a factor of 25. Furthermore, the number of distances required
for the RMDS grows linearly with n, so this factor will grow when n increases.

The crucial feature of theRMDS is theway them observations of the reduced sample
are selected. One goal of this paper was to compare two algorithms performing this
selection step. Algorithm 1, which is a modified version of an algorithm presented
in Paradis (2018), aims to select the most distant observations as defined by pairwise
distances. The second algorithm considered in this work simply selects randomly m
observations out of n. Algorithm 1will tend to select outlying observations even if they
are in low proportions in the data set and thus such observations may likely be ignored
by random sampling. This is illustrated by the above second simulation experiment
where two groups were simulated: if the number of observations in the smaller group
is very low, they were very likely “forgotten” by ramdom sampling and Algorithm 1
performed better in this case.

The analysis of the HIV data shows that the comparison of the results from both
selection algorithms is also informative in practice. With Algorithm 1, the projection
on axes 1 and 2 revealed one main cluster, a second small cluster, and a few outliers.
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On the other hand, ramdom sampling showed five main clusters on these first two
axes, in agreement with the standard MDS on the full data set. However, the axis 3 of
these two analyses revealed a smaller cluster and a few outliers. When looking at the
scales on these three axes, it appears that the range of values on axis 3 of the standard
MDS is similar to the range of values on axis 1 of the RMDS. Thus, this suggests
that Algorithm 1 worked as expected in selecting the most distant observations. Inter-
estingly, these outliers were not apparent in the first two axes of the standard MDS
because they did not contribute to the overall variability within the data. Therefore, the
comparison of both selection algorithms helps to reveal these patterns in the data. It is
worth adding that running the RMDS, with either selection algorithm, took less than
one minute, while the full MDS took more than one hour, so that it is straightforward
to repeat the RMDS, or even plan to apply it to larger data sets. For instance, the
RMDS applied to a data set with one million sequences is expected to take less than
two hours, whereas the full MDS is predicted to take 14 months (in addition to require
a computer able to store and handle two 106 × 106 matrices to store the distances and
their eigendecomposition).

Statistical or computational methods aimed at displaying large data sets in a limited
number of dimensions have received a lot of attention by researchers. Recently, uni-
form manifold approximation and projection (UMAP) was proposed to handle highly
dimensional data withmany observations (McInnes et al. 2018). UMAPwas applied to
analyse gene expression data (Becht et al. 2019) or remote sensing data (Franch et al.
2019), two types of applicationswhere highly-dimensional data are common (Stephens
et al. 2015). UMAP is an appropriate method when discrete clusters exist in the data.
On the other hand, if the distribution of observations is continuous (i.e., no clusters
exist), thismethodwill tend to create artificial clusters, especially if the number of vari-
ables is low. In this context, methods such as PCA or MDS have the advantage of not
assuming any structure a priori, so that structures may become apparent once dimen-
sion reduction has been performed. Furthermore, Sun et al. (2019) reviewed eighteen
methods applied to single-cell sequencing data and found that PCA and MDS have
overall good features compared to more recently developed methods. Interestingly,
these authors found that only three out of the eighteen methods they reviewed per-
formed well for “rare cell detection” (PCA and MDS were rated “Intermediate” on
this criterion). It might be interesting to assess whether RMDS with Algorithm 1 is a
good alternative for this.

The idea to take a random, reduced sample from a large data set and use it to
perform preliminary analyses as a first or preliminary step, and then “map” or “project”
the whole data set based on the results from this reduced sample has been explored
several times in the literature. Mirarab et al. (2015) developed a method to align very
large samples of molecular sequences using what they call a “backbone” alignment
made from a random subset of sequences. More recently, Wan et al. (2020) proposed
the SHARP method for the analysis of single-cell RNA-sequencing data based on
random projection of data blocks followed by a weighted metaclustering, and then a
similarity-based metaclustering. They showed their method to perform much faster
than alternatives and being able to scale with several millions of cells. However, the
SHARP method assumes the existence of groups of clusters in the data, thus avoiding
the need to consider a continuous space like in traditional MDS.
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104 E. Paradis

The possibility to display many kinds of data in a limited number of dimensions is
an attractive feature of MDS. It makes possible to represent observations in a scatter
plot and to assess potential structures in the data. Therefore, the method presented in
this paper has a very large potential range of applications.

6 Supplementary Material

Thecodeused in this paper is available onGitHub: https://github.com/emmanuelparadis/
rmds.
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