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Abstract
Survival data including potentially cured subjects are common in clinical studies and
mixture cure rate models are often used for analysis. The non-cured probabilities
are often predicted by non-parametric, high-dimensional, or even unstructured (e.g.
image) predictors, which is a challenging task for traditional nonparametric methods
such as spline and local kernel. We propose to use the neural network to model the
nonparametric or unstructured predictors’ effect in cure rate models and retain the
proportional hazards structure due to its explanatory ability. We estimate the parame-
ters by Expectation–Maximization algorithm. Estimators are showed to be consistent.
Simulation studies show good performance in both prediction and estimation. Finally,
we analyze Open Access Series of Imaging Studies data to illustrate the practical use
of our methods.

Keywords Consistency · Deep learning · EM algorithm · Survival analysis

1 Introduction

Survival data including potentially cured subjects are common in clinical studies.
The population is a mixture of two types of subjects, namely, the ‘cured’ and the
‘non-cured’. For example, Farewell (1986) showed that the Kaplan–Meier curves of
treatment A for breast cancer remained at about 73% after a long follow up period,
which suggested that a potential cure fraction. Masud et al. (2016) also showed that
there was a proportion of children who were non-susceptible to the asthma using the
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cure rate model. Cancer patients receiving immunotherapy can also have long term
survival (Ferrara et al. 2018).

In practice, one usually examines the Kaplan–Meier curve. If there is a long plateau
at the later part of Kaplan–Meier curve, we believe that there may be a subgroup
of cured subjects. Mixture cure rate models (MCM) and promotion time cure rate
models are two major categories of cure rate models, and the former is considered
in our article. The often used MCM was proposed by Kuk and Chen (1992), which
consists of a parametric logistic regression model to estimate the probability for cured
subpopulation and a Cox model that characterize the failure time distribution for non-
cured subjects. Extensive researches have been performed for MCM. Yin and Ibrahim
(2005) proposed a novel class of cure rate model, which was formulated through a
transformation on the population survival function. Othus et al. (2009) studied cure
rate models with dependent censoring without making parametric assumptions. Lu
(2010) studied an accelerated failure time model with a cure fraction via kernel-
based nonparametric maximum likelihood estimation. Masud et al. (2016) proposed
a method of variable selection for cure rate model. The above models used parametric
logistic regression models to depict the non-cured probability, however, parametric
assumption is overly restrictive in practical application, especially in the complex
biological field. HenceWang et al. (2012) proposed aMCMwith nonparametric forms
for both the cure rate and the hazard rate function and established good theoretical
properties for such model. Their model can well estimate the nonparametric effect of
a small number of structured covariates. However, when covariate dimension is large
and true non-parametric function contains many interactions, the spline model will
bring a large number of parameters to be estimated, which may greatly reduce the
model efficiency.

On the other hand, estimating the cured probability is clinically important because
some patients with a high cure rate may be protected from the additional risks of high-
intensity treatment. For example, Liu et al. (2012) found in a breast cancer clinical
trial MA.5 that a new adjuvant chemotherapy regimen can effectively improve the
cure rate of patients than the classic regimen, but the chemotherapy regimen was
associated with some serious toxicities that can bring the risk of albinism. Identifying
the cured probability of patients and then performing different treatments based on
it can maximize overall benefit. In practice, predictors of the cured probability may
include unstructured data such as images in addition to the structured covariates. For
example, in cancer immunotherapy study, patients may be cured of the disease and
the cure rate is primarily determined by the biomarkers (e.g. programmed death-
ligand 1 (PD-L1) positive rate in cancer cells) which are derived from the histological
images (Cho et al. 2017). Current prediction models using image derived biomarkers
are labor intensive and subject to substantial human reading error. Incorporating the
image as an unstructured predictor directly in MCM will provide a more accurate
and automated model prediction. However, traditional non-parametric methods are
generally not computationally suitable for processing unstructured predictors, such
as high-dimensional images or sparse text. Therefore in this study, we aim to study
MCM with structured and unstructured predictors in the cure rate component. We
recommend using a neural network to fit the component because it can process not
only structured but also unstructured predictors such as image and text data.
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Neural networks are popular methods for processing complex data that have been
widely employed in recent decades. The earliest neural network originated from the
artificial neuron model proposed by McCulloch and Pitts (1943). Rumelhart et al.
(1986) described back-propagation learning procedure for networks of neuron-like
units to solve the problem of nonlinear classification. Cybenko (1989) first proved
the universal approximation theorem for a neural network with sigmoid activation
function. Halbert (1990) and Hornik (1991) proved the theorem under less assump-
tions of the activation functions. Unlike traditional statistical models, neural networks
do not need to pre-specify the model form and can be used for a wider range of
data types. Besides, Faraggi and Simon (1995) indicated that neural networks are
considered by many to be very promising tools for classification and prediction.
Therefore, in recent years, there have been some studies dedicated to using neural
networks to improve the predictive ability of statistical models. Faraggi and Simon
(1995) modeled censored survival data with a simple feed-forward neural network
as the basis for a non-linear proportional hazards model. Katzman et al. (2018)
applied the deep feedforward neural network to survival data, and proposed a Deep-
Surv model. They showed that DeepSurv performs as well as or better than other
survival analysis methods on survival data with both linear and nonlinear effects
from covariates. Ching et al. (2018) have developed a neural network extension of
the Cox model, called Cox-nnet. It is optimized for survival prediction from high
throughput gene expression data, with comparable or better performance than other
conventional methods. Tandon et al. (2006) expanded the linear part of traditional
mixed-effects models with neural networks. And they used the proposed model to
analyze longitudinal data of Alzheimer’s disease. Therefore, we propose to use a
neural network to fit a cure rate model with a complex covariant structure, aim-
ing to improve the accuracy of the cure rate estimation. As far as we know, this
is the first time that a neural network has been used in a cure rate model. On
the other hand, due to the good interpretability and theoretical properties, the pro-
portional hazards structure is preserved in the survival analysis for the non-cured
subjects.

We present the model and estimation procedure in Sect. 2. We study consistency
and asymptotic properties of the proposed estimators in Sect. 3.We conduct simulation
studies to examine the numerical properties of the proposed method in Sect. 4. The
method is applied to the analysis of Open Access Series of Imaging Studies (OASIS)
data in Sect. 5. We conclude the study with a discussion.

2 Models and estimation

2.1 Model

Define the failure time and censoring time of i th subjects as ˜Ti andCi , i = 1, 2, . . . , n.
The observed time is Ti = min(˜Ti ,Ci ). The failure time indicator δi = 1 when
Ti = ˜Ti and δi = 0 otherwise. Let Yi = 1 be a binary indicator with Yi = 1 denoting
the non-cured subjects and Yi = 0 otherwise. We model the non-cured probability
P(Yi = 1) with a nonparametric function θ(·). Assume that xi ∈ R

p and zi ∈ R
q are
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the covariates for cure and survival component respectively. The population survival
function Sp(ti ) can be expressed as:

Sp(ti ) = {1 − θ(xi )} + θ(xi )S(t |zi ), (1)

where S(·) is the survival function for the non-cured subjects, given zi . Kuk and Chen
(1992) used a logistic regression model to model the probability of a subject in the
non-cured group:

θ(xi ) = sig(xi ) = exp(βT xi )

1 + exp(βT xi )
, (2)

where β ∈ R
p is the corresponding regression parameter vector, and sig(·) is sigmoid

function. Model (2) assumes a linear effect of covariate x and the logit of probability
of cure. Linear assumption is often violated in practice. And in this study, we consider
cases where x with large p and can be even unstructured data. As stated in Sect. 1,
traditional non-parametric models may be cumbersome unless additional variable
screening processes are used in such cases. Hence we propose to use neural network
to depict more flexible forms of θ(·) and x. For demonstration, we consider two hidden
layers network with k, m finite number of neurons respectively, we write the model
as:

θ(xi ) = act[act{BT
2 act(B

T
1 xi + b1)T + b2}Tβ3 + b3], (3)

where xi ∈ R
p is the covariates, B1 ∈ R

p×k is the parameter matrix of the first hidden
layer, B2 ∈ R

k×m is the parameter matrix of the second hidden layer, β3 ∈ R
k is the

parameter vector of the output layer. b1 ∈ R
k , b2 ∈ R

m and b3 are the parameters
of offset neurons. act(·) is activation function, commonly used functions are sigmoid
function, relu function, leaky relu function etc. In addition to fully connected neural
networks, there are other types of networks, such as Convolutional Neural Networks
(CNN) that are well suited for processing image data.

For survival component, due to the need for interpret ability in most medical appli-
cations and the good theoretical properties, we still use the Cox model to fit the hazard
function λ(t |zi ):

λ(t |zi ) = λ0(t |zi )eγ T zi , (4)

where λ0(t |zi ) is the baseline function, and γ ∈ R
q is the coefficient vector for z. The

cumulative baseline hazard function is Λ0(t) = ∫ t
0 λ0(u)du. The survival function is

S(t) = S0(t)e
γ T z

, where S0(t) = e−Λ0(t).
The observed data for i th subject is (ti , δi , xi , zi ). The density function of popula-

tion is f p(ti ) = − ∂Sp(ti )
∂ti

= f (ti ) = [λ(ti )]δi S(ti ), where f (·) and S(·) is the density
function and survival function for the non-cured subjects, respectively.

Write the vector contains all neural network parameters as w = (Vec(B1)
T ,

bT1 , Vec(B2)
T , bT2 ,βT

3 , b3)T , where Vec is vector operator. The observed likelihood
is
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L(w, γ , λ0)

=
n

∏

i=1

{λ(ti )S(ti )}δi {1 − θ(xi ) + θ(xi )S(ti )}1−δi

=
n

∏

i=1

{λ(ti )S(ti )}δi {1 − act(act(BT
2 act(B

T
1 xi + b1)T

+ b2)Tβ3 + b3) + act(act(BT
2 act(B

T
1 xi + b1)T + b2)T

· β3 + b3)S(ti )}1−δi , (5)

where λ(ti ) = λ0(ti )eγ T zi .

2.2 Parameter estimation

In order to optimize (5), following Sy and Taylor (2001), we use EM algorithm and
treat yi s as unobserved latent binary variables, where yi = 1 means that the individual
i is non-cured, and yi = 0 means cured. Let Oi = (ti , δi , xi , zi ), i = 1, 2, . . . , n
denote the set of observed data. Then the complete likelihood can be written as

LC (w, γ , λ0; y, O) = L(y)L(O|y)

=
n

∏

i=1

[θ(xi )yi {1 − θ(xi )1−yi }]
n

∏

i=1

[{λ(ti )}δi S(ti )]yi . (6)

Weuse the samemethod asCai et al. (2012) to simplify the calculation. Set log(yi )·δi =
0 and notice that δi · yi = δi , the term [{λ(ti )}δi S(ti )]yi in (6) can be expressed as

[{λ(ti )}δi S(ti )]yi = {λ0(ti )eγ T zi }δi yi · S0(ti )eγ T zi ·yi

= {λ0(ti )eγ T zi+log(yi )}δi · S0(ti )eγ T zi+log(yi ) , (7)

which can be viewed as likelihood for standard Cox model with the additional offset
variable log(yi ). After the transformation, solution in a loop can be obtained using
existing software package , e.g. coxph() in R software.

The log-likelihood rescaled by 1/n for (6) is

lC (w, γ , λ0; y, O) = lc,1(w; y, O) + lc,2(γ ; y, O), (8)

where

lc,1(w; y, O) = 1

n

n
∑

i=1

[yi log{θ(xi )} + (1 − yi ) log{1 − θ(xi )}], (9)
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and

lc,2(γ ; y, O) = 1

n

n
∑

i=1

[δi {log λ0(ti ) + γ T zi } − yi e
γ T zi · Λ0(ti )]. (10)

We estimate the cumulative baseline function Λ0(t) by Breslow type estimator

Λ0(t) =
∑

tl≤t

dl
∑

r∗∈Rl yr∗ · eγ T zr∗
, (11)

where Rl = {i : ti ≥ tl} is the set of individuals who are at risk for failure at time tl ,
and i = 1, 2, . . . , n.

We first initialize (w(0), γ (0)), let y(0)
i = δi , then estimate Λ

(0)
0 (ti ) by (11). In the

mth EM step, denote the current parameter estimation as Ω(m) = (w(m), γ (m), Λ
(m)
0 ),

the E-step update latent yi s by

y(m+1)
i = δi + (1 − δi )

θ(xi )(m)S(m)
0 (ti )e

γ (m)T zi

1 − θ(xi )(m){1 − S(m)
0 (ti )e

γ (m)T zi }
. (12)

With y(m+1) plugged in, the M-step maximizes (9) and (10) respectively to update the
parameters forw(m+1) andγ (m+1). Repeat iterative process until ||w(m+1)−w(m)||22 →
0, ||γ (m+1) − γ (m)||22 → 0 and ||Λ(m+1)

0 (ti ) − Λ
(m)
0 (ti )||22 → 0, and || · ||22 is L2 −

norm|| · ||22.

3 Asymptotic properties

In this section, we will present consistency of the estimated non-cured probability
θ̂ (·) and survival parameters γ̂ , and asymptotic covariance matrix for γ̂ . We use a
full connected neural network with single hidden layer containing k neurons to model
θ(·). Let γ 0 denote the true value of γ .

3.1 Consistency

The parameter vector wn,k of θ(·) are marked as necessary to avoid ambiguity, where
n is the sample size and k is the number of neurons associated. Our basic denotations
are the following.

Let θ(x; ŵn,k) and γ̂ be minimizers of the following two negative log-likelihoods
respectively:

− lc,1(w; ŷ, O)

= −1

n

n
∑

i=1

[ŷi log{θ(xi )} + (1 − ŷi ) log{1 − θ(xi )}], (13)
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− plc,2(γ ; ŷ, O)

= −1

n

n
∑

i=1

δi {γ T zi − log
n

∑

j=1

ŷi e
γ T z j1(ti ≤ t j )}, (14)

where

ŷi = δi + (1 − δi )
θ̂(xi )Ŝ0(ti )e

γ̂ T zi

1 − θ̂ (xi ){1 − Ŝ0(ti )e
γ̂ T zi }

,

and Ŝ0(ti ) = exp(−∑

tl≤ti
dl

∑

r∗∈Rl
ŷr∗ ·eγ̂ T zr∗

). Write θ̂ (x) = θ(x; ŵn,k).

Let θ(x; w̃n,k) and γ̃ be minimizers of the following two negative log-likelihoods
respectively:

− l0c,1(w; y∗
0 , O)

= −1

n

n
∑

i=1

[y∗
0i log{θ(xi )} + (1 − y0i ) log{1 − θ(xi )}], (15)

− pl0c,2(γ ; y∗
0 , O)

= −1

n

n
∑

i=1

δi {γ T zi − log
n

∑

j=1

y∗
0i e

γ T z j1(ti ≤ t j )}, (16)

where

y∗
0i = δi + (1 − δi )

θ∗
0 (xi )˜S0(ti )e

γ T0 zi

1 − θ∗
0 (xi ){1 − ˜S0(ti )e

γ T0 zi }
,

where ˜S0(ti ) = exp(−∑

tl≤ti
dl

∑

r∗∈Rl
y∗
0r∗ ·eγ 0

T zr∗
), θ∗

0 (x) is the true nonparametric

function for θ(x) to generate the data.
We follow the notation used in Fine and Mukherjee (1999). We call (15) the empir-

ical error of the network. Let Sε = {w̃n,k : ∇{−l0c,1(w̃n,k; y∗
0 , O)} = 0} denote

the set of stationary points and Mε denote the set of (local and global) minima
respect to (15). Let generalization error eg(wn,k; y∗

0 , O) be E{−l0c,1(wn,k; y∗
0 , O)},

the expectation here is respect to covariate x. Similarly, we define Meg to be the
set of minima of eg(wn,k; y∗

0 , O) and the set of stationary points Seg = {w̃n,k :
∇eg(wn,k; y∗

0 , O)|w̃n,k = 0}. The parameter estimates returned by a training algo-
rithm to minimize the empirical error (15) is given by w̃n,k , and w̃0(w̃n,k) ∈ Meg

is the nearest neighbor minimum of w̃n,k in set Meg . Write ˜θ(x) = θ(x; w̃n,k) and
θ0(x) = θ(x; w̃0(w̃n,k)). Notice that θ0(x) is an optimal estimate of the true function
θ∗
0 (x) that minimizes the generalization error under a given number of finite neurons
k.

We follow the notation of Gu (2013). Set u(θ; y∗
0 , O) = dl0c,1(θ; y∗

0 , O)/dθ and

w(θ; y∗
0 , O) = d2l0c,1(θ; y∗

0 , O)/dθ2.AssumeEu(θ; y∗
0 , O) = 0 and Eu2(θ; y∗

0 , O) =
σ 2Ew(θ; y∗

0 , O), where σ is constant. Write N (t) = I (T ≤ t, δ = 1), Y (t) = I (T ≥
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t), and M(t) = N (t) − ∫ t
0 Y (u)y∗

0e
γ T
0 zdu. Then M(t) is a martingale conditional on

x and z.
We will need the following conditions:

Condition 1 The domains X and Z of covariates x and z are finite and compact, and
parameter spaceW forw is convex. The two activation functions in the layers (hidden
layer and output layer) making up the network are twice continuously differentiable.

Condition 2 Given the covariates x and z, censoring time C is independent of true
failure time T ∗. Assume the observations are in a finite time interval [0, τ ]. True
baseline hazard function λ0(t) > 0 is bounded.

Condition 3 E[z exp(γ T
0 z)]2 is bounded uniformly in a neighborhood of γ 0.

Condition 4 For θ(x) in a convex set B0 around θ∗
0 (x) containing θ̂ (x) and ˜θ(x),

c1w(θ∗
0 (x); y∗

0 , O) ≤ w(θ(xi ); y∗
0 ) ≤ c2w(θ∗

0 (xi ); y∗
0 , O) and c

′
1/θ

∗
0 (1 − θ∗

0 )(x) ≤
1/θ̂(1 − θ̂ )(x) ≤ c

′
2/θ

∗
0 (1 − θ∗

0 )(x), ∀x ∈ X , for some c1, c2, c
′
1 and c

′
2 > 0.

Condition 5 (1) Assume Fourier series expansions for θ exists and can be expressed
as θ = ∑

μ aμφμ, Var[φμ(X) ·φν(X)w(θ∗
0 (X); y∗

0 )] ≤ c3, and Var [φμ(X)φν(X)
S(t;γ0,z)

[1−θ∗
0 (x)(1−S(t;γ0,z))](θ∗

0 (1−θ∗
0 ))(x)

] ≤ c
′
3 for some c1, c

′
3 < ∞ , ∀μ, ν.

(2)
∫

U m(u)
∫

T (zT1 γ )2(zT2 γ )2ehγ T
0 zP(T ≥ t |z)y∗

0dt ≤ d1, and
∫

U m(u)
∫

T (zT1 γ )2(zT2 γ )2ehγ T
0 zP(T ≥ t |z)y∗

0 · S(t;γ0,z)
[1−θ∗

0 (x)(1−S(t;γ0,z))]dt ≤ d
′
1, for some

d1, d
′
1 < ∞, ∀z1, z2 ∈ Z, h = 1, 2.

Condition 6 Select a positive sequence δn converging to 0 and terminate the opti-
mization algorithm when the following conditions are met: ||∇{−l0c,1(ŵn,k; y∗

0 , O)}||
< δn, limn→∞

√
nδn = 0 and Hn(ŵn,k) positive define, where Hn is Hessian matrix.

Condition 7 eg has a finite set Meg of minima located in the interior of W , and they
are all stationary points: Meg = {w̃1

n,k, w̃
2
n,k, . . . , w̃

m
n,k} ⊂ Seg . The Hessian matrix

He = ∇∇eg is positive define at each of these interior minima.

Condition 8 (1) There exists δ > 0, ρ < ∞, such that He(w̃) positive definite and
||∇eg(w̃)|| < δ. (2) The first derivative ∇{−l0c,1(ŵn,k; y∗

0 , O)} j of the neural network
respect to the j th parameter w̃ j is uniformly bounded (in magnitude) by B j . For each
component w̃ j of w̃ the family

D j {I(α,∞)(∇{−l0c,1(wn,k; y∗
0 , O)} j ) : wn,k ∈ W, |α| ≤ Bj }

has finite Vapnik-Chervonenkis (VC) dimension.

Condition 1 is an assumption about the boundedness of covariates and parameters
of neural networks. Condition 2 assumes non-informative censoring and the bound-
edness of the baseline hazard. Condition 4 requires big neighborhood B0 enough to
contain the true and the estimated values. Condition 5 is similar to Condition 9.3.4 and
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Condition 9.4.4 of Gu (2013). Conditions 6–8 come from Fine and Mukherjee (1999)
to derive the convergence of neural network parameters. Condition 6 is a constraint
on the neural network training algorithm, that is to ensure that the network is based
on gradient training, because one of the conditions for us to determine the minimum
weight estimate is that the gradient at this point is very small. Conditions 7–8 are con-
straints on generalization error. Note that conditions 6–8 are not strictly mathematical
conditions, but we must use them to ensure that Theorem 1 of Fine and Mukherjee
(1999) holds. Then we have the following theorem.

Theorem 1 Under Condition 1–8 and the above denotations, as n → ∞, ∃k ∈ R
such that ||θ̂ − θ∗

0 || P−→ 0 and ||γ̂ − γ 0|| P−→ 0.

This theorem states that when the sample size n tend to infinity, there is a finite
neuron number k such that the estimates of θ̂ and γ̂ respectively converge to their true
values in probability. See Web Appendix A for the detailed proof.

3.2 Asymptotic variance estimation

This article only considers the estimation of the asymptotic variance of survival param-
eters γ̂ . Nielsen et al. (1992), Murphy et al. (1997) and Fang et al. (2005) proposed
methods for estimating the asymptotic variance of the parameters for traditional cure
rate model. Due to the particularity of our proposed model, we use the method sug-
gested by Sy and Taylor (2001), that is to invert an informationmatrix derived from the
observed likelihood. Law et al. (2002) pointed out that the observed data information
is not a by-product of the EM algorithm and adopted the conclusion of Louis (1982)
to rewrite the information of the observed likelihood as the difference between the
information of the complete likelihood and the missing data:

− ∂2

∂γ 2 log L(Ω; O) = − ∂2

∂γ 2 E{log Lc(Ω; O, y)|O, Ω̂}

− Var
{ ∂

∂γ
log Lc(Ω; O, y)|O, Ω̂

}

, (17)

where Ω = (w, γ ,Λ0), O = (t, δ, x, z).
The expectation in the first term can be rewritten as

E{log L(Ω; O, y)|O, Ω̂}

=
n

∑

i=1

E{log Lc(Ω; Oi , yi )|O, Ω̂}

=
n

∑

i=1

{log Lc(Ω; Oi , yi = 1) · P(yi = 1|Oi , Ω̂)

+ log Lc(Ω; Oi , yi = 0) · P(yi = 0|Oi , Ω̂)}.
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For a subject with δi = 0,

P(yi = 1|Oi , Ω̂) = Lc(yi = 1, δi = 0)

L(yi = 1, δi = 0)

∣

∣

∣

Ω=Ω̂

= θ(xi )S0(ti )e
γ T zi

1 − θ(xi )(1 − S0(ti )e
γ T zi )

∣

∣

∣

∣

Ω=Ω̂

,

P(yi = 0|Oi , Ω̂) = Lc(yi = 0, δi = 0)

L(yi = 0, δi = 0)

∣

∣

∣

Ω=Ω̂

= 1 − θ(xi )

1 − θ(xi )(1 − S0(ti )e
γ T zi )

∣

∣

∣

∣

Ω=Ω̂

,

log Lc(yi = 1, δi = 0) = log θ(xi ) + eγ T zi · log S0(ti ),
log Lc(yi = 0, δi = 0) = log(1 − θ(xi )).

Therefore,

E{log Lc(Ω; Oi , yi )|O, Ω̂}

=
⎧

⎨

⎩

(log θ(xi ) + eγ T zi · log S0(ti ))θ(xi )S0(ti )e
γ T zi

1 − θ(xi )(1 − S0(ti )e
γ T zi )

⎫

⎬

⎭

∣

∣

∣

∣

Ω=Ω̂

+
{

log(1 − θ(xi ))
1 − θ(xi )

1 − θ(xi )(1 − S0(ti )e
γ T zi )

}

∣

∣

∣

∣

Ω=Ω̂

. (18)

For a subject with δi = 1,

E{log Lc(Ω; Oi , yi )|O} = log Lc(yi = 1, δi = 1)

= log θ(xi ) + log λ0(ti ) + γ T zi ,

the second derivative of the above term respects to γ is zero matrix, so it is omitted.
For the second term on the right side of Eq. (17),

Var
{ ∂

∂γ
log Lc(Ω; O, y)|O, Ω̂

}

=
n

∑

i=1

E{( ∂

∂γ
log Lci )

2|O, Ω̂}

−
n

∑

i=1

{E(
∂

∂γ
log Lci |O, Ω̂)}2,

the second term of the above equation is 0 at MLE. Since ∂
∂γ

log Lci = yiδi zi +
yi eγ T zi · log S0(ti )zi , for a subject with δi = 0,
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∂

∂γ
log Lci (yi = 1, δi = 0) = {eγ T zi · log S0(ti )}zi ,

∂

∂γ
log Lci (yi = 0, δi = 0) = 0,

E{( ∂

∂γ
log Lci )

2|O, Ω̂}

=
⎧

⎨

⎩

(eγ T zi · log S0(ti ))2θ(xi )S0(ti )e
γ T zi

1 − θ(xi )(1 − S0(ti )e
γ T zi )

⎫

⎬

⎭

zi zTi

∣

∣

∣

∣

Ω=Ω̂

. (19)

For a subject with δi = 1, which means that yi = 1, we have

∂

∂γ
log Lci (yi = 1, δi = 1) = {1 + eγ T zi · log S0(ti )}zi ,

E{( ∂

∂γ
log Lci )

2|O, Ω̂} = {1 + eγ T zi · log S0(ti )}2zi zTi (20)

Substituting the above derivations into (17) and inverting the information matrix,
the asymptotic variance of γ̂ can be obtained.

4 Simulation study

We conduct some simulations to evaluate the performance of the proposed method.
Specifically, for the cure rate component, we consider two settings: structure and
unstructured predictors. We provide access to the corresponding code in Supplemen-
tary Material.

4.1 Structured predictors

In this subsection, both the predictors of the survival component and the cure rate
component are structured. We consider p = 10 in Scenario 1 and p = 30 in Scenario
2. In addition, we consider the case of n ≤ p in Scenario 3.

4.1.1 Data generation

We set x = z in Scenarios 1 and 2. Scenario 1 considers p = q = 10, sample
size n = 100, 1000, 5000 and 10,000. Scenario 2 considers p = q = 30, sample
size n = 300, 1000, 5000 and 10,000. In Scenarios 1 and 2, n = 10,000 is used to
explore whether a large sample size can fit the data well when the true θ(·) is very
complicated with a lot of interaction terms. We consider the case where the sample
size is less than the dimension of x in Scenario 3. At this time, p = 500, q = 20,
n = 300, 500. Failure times are generated from a Weibull distribution with a survival

function S(t; a, b) = exp(− t
b )a , where a is the shape parameter, b = exp(γ T z)− 1

a .
The non-cured probability θ(·) is generated from completely nonparametric models,
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achieving a average cure rate of 50%. The censoring times are generated from expo-
nential distribution independent of the time to failure, achieving a total censoring
rate of 60% in average. True θ(·) includes a large number of interaction terms and
non-smooth features such as indicators and absolute values in Scenarios 1 and 2. The
detailed settings for θ(·), a and γ are presented in Web Appendix B. 500 replicates
are generated for each scenario. Test set with the same sample size as the training set
are generated for each scenario for model evaluation.

4.1.2 Simulation results

We use the proposed method with neural network to estimate θ(·). Besides, we also fit
MCM with linear and spline θ estimates and compare the results of different models.
We use R package ‘smcure’ to fit the linear model. For the spline method, we only fit
the nonparametric additive model for convenience. We use a thin plate spline and use
the ‘gam’ function of R package ‘mgcv’ for estimating, where the effective degrees of
freedom of each covariate function are automatically selected. For neural networks,
we pre-set several different network structures (different neuron and layer numbers),
and then train the models to obtain their estimates respectively, and then calculate
negative log-likelihood of the test set with the estimates, and finally we choose the
network structure with minimum negative log-likelihood of the test set. To reduce
computing cost, for each scenario, we only take three datasets to select the structure.
The selected structure will be applied to all replicates of each scenario. Detailed
neural network structure of each scenario is shown in Web Table 4. In the practical
use of neural networks, some measures to prevent over-fitting need to be adopted.
Amari et al. (1997) pointed out that cross-validation early-stopping is effective with
the intermediate range sample size. Hence we use early-stopping to choose a suitable
steps to stop training. See Web Appendix E for the pseudo code for early-stopping.

We usemean area under curve (AUC) of the non-cured probability andmean square
error (MSE) for estimator Sp(t) to compare the performance of the three models. The
AUC here is about the predicted θ̂ (xi ) and the true non-cured indicator 1 − Yi , and
we take the average based on the sample size n and replicates number R = 500.
The MSE for Ŝp(t) is defined as 1

R·n
∑R

r=1
∑n

i=1(Ŝp(tir ) − S0p(tir ))
2, where S0p(t)

is true population survival function at t . Table 1 presents the prediction accuracy for
three estimation methods. In general, the AUC of neural network (Nnet) methods is
higher than that of the nonparametric spline (Nonpar) and the Linear method. When
the sample size is small (p = 10, n = 100 and p = 30, n = 300), the AUCs of the
three models are all low, but only the Sp of the Nnet has an MSE less than 0.2. When
the sample size increases, the AUC of the Nnet increases notably, and the difference
between Nnet and Nonpar also increases. For the models with 10 covariates, the Nnet
method shows a higher AUC (0.720 vs. 0.621) and lower MSE of Sp (0.147 vs.
0.155) when compared with the Nonpar method. When the true model has complex
interaction terms (p = q = 30), even with a sample size of 10,000, the AUC of the
Nonpar still does not exceed 0.55, but the AUC of Nnet can reach 0.685. In general, as
the sample size and the model complexity increase, the Nnet methods shows a greater
advantage than theNonpar andLinearmethods. For Scenario 3with n ≤ p, theNonpar
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Table 1 Prediction results of linear method (Linear), nonparametric spline method (Nonpar) and neural
network method (Nnet) for structured data on test set

Scenario p n AUC MSE of Sp

Linear Nonpar Nnet Linear Nonpar Nnet

Scenario 1 10 100 0.538 0.547 0.556 0.215 0.210 0.189

1000 0.513 0.593 0.599 0.187 0.161 0.153

5000 0.506 0.617 0.673 0.180 0.156 0.150

10, 000 0.504 0.621 0.720 0.720 0.155 0.147

Scenario 2 30 300 0.522 0.525 0.535 0.232 0.219 0.179

1000 0.513 0.526 0.552 0.225 0.186 0.173

5000 0.505 0.535 0.660 0.222 0.181 0.165

10, 000 0.504 0.538 0.685 0.222 0.181 0.170

Scenario 3 500 300 – – 0.620 – – 0.136

500 – – 0.650 – – 0.128

and Linear methods are not applicable, but the Nnet still has good prediction power
(AUC=0.65) and small MSE of Sp (0.128).

We then show the estimation performance of the survival component. Web Table
1 to 3 present the mean estimator, empirical standard deviation (ESD) and mean
of the estimated asymptotic standard error (ASE) over 500 replicates for Cox model
coefficients. Except for the case where the sample size is small, the estimated γ agrees
with its true value very well in other settings and overall ESDs and ASEs are similar.

4.2 Unstructured predictors

In this subsection, predictor z of survival component is still structured with dimension
q = 10, while predictor x of the cured probability θ(x) is unstructured (images and
text data).

4.2.1 Data generation

When x is an image predictor (marked as ‘model image-gray’), the used gray-scale
images of handwritten digits (28 by 28 pixels) including 10 categories (0–9) are
obtained fromMixedNational Institute of Standards andTechnology (MNIST). Hence
the dimension of x is 784. The dataset can be accessed in the ‘keras’ package of R
software by the command: dataset_mnist(). We associate image x with the non-cured
probability: θ(x) = 1 if the input is a handwritten image of ‘8’ and θ(x) = 0 if an
image of ‘6’. Other categories of handwritten images are not included. Failure times
are generated from aWeibull distribution S(t; a, b) = exp(− t

b )a , where a is the shape

parameter, b = exp(γ T z)− 1
a . Here z is a 10-dimensional structured predictor, and γ

is the same as the setting of Scenario 2 in Sect. 4.2.1. The censoring times are gener-
ated from exponential distribution independent of the time to failure, achieving a total
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censoring rate of 60% in average. The sample size is 10,000 for the training set and
1500 for the test set. We generate 500 replicates for each scenario.

When x is a text predictor (marked as ‘model text’), the used text data is obtained
from Internet Movie Database (IMDB) including 50,000 highly polarized reviews.
The dataset can be accessed in the ‘keras’ package of R software by the command:
dataset_imdb(). The dataset including 50% negative and 50% positive reviews. We
associate the attitude x of the review with the non-cured probability: θ(x) = 1 if x
corresponds to a positive commentpositive review and θ(x = negative review) = 0.
The reviews, that is, the sequence of words has been preprocessed and converted
into a sequence of integers, where each integer represents a word in the pre-prepared
dictionary. We only keep the first 5000 most common words in the training set, and
the low-frequency words will be discarded. Then these features will be converted into
one-hot encoding, and each feature indicates whether it belongs to one of the 5000
words. As a sequence, x is a 5000-dimensional one-hot encoded predictor. Failure
times are generated from aWeibull distribution S(t; a, b) = exp(− t

b )a , where a is the

shape parameter, b = exp(γ T z)− 1
a . Here z is a 10-dimensional structured predictor,

and γ is the same as the setting of Scenario 2 in Sect. 4.2.1. The censoring times are
generated from exponential distribution independent of the time to failure, achieving
a total censoring rate of 60% in average. The sample size is 10,000 for the training set
and 3000 for the test set. A total of 500 replicates are generated.

In practical applications, x may also be RBG images. At this time, the dimension
p of x is usually much larger than the sample size n. We also conduct a simulation
study on such situation (mark as ‘model RBG’). The used images are from a Kaggle
competition aims at creating an algorithm to distinguish dogs from cats. The original
image is 150 by 150 pixels with three channels. In other words, the dimension of x is
p = 67,500. The dataset and its detailed description can be obtain from https://www.
kaggle.com/c/dogs-vs-cats/data. We associate the images x with the non-cured prob-
ability: θ(x = dog) = 1 and θ(x = cat) = 0. We randomly selected 500 observations
from the original dataset as the training set and 300 observations as the test set. Hence
in this scenario, the sample size n = 500 is much smaller than the dimension p of x.
Failure times are generated from aWeibull distribution S(t; a, b) = exp(− t

b )a , where

a is the shape parameter, b = exp(γ T z)− 1
a . Here z is a 10-dimensional structured

predictor, and γ is the same as the setting of Scenario 2 in Sect. 4.2.1. The censoring
times are generated from exponential distribution independent of the time to failure,
achieving a total censoring rate of 60% in average. A total of 500 replicates are gen-
erated. Due to the small sample size in this scenario, we use the method of transfer
learning (Yosinski et al. 2014) to preprocess the data with the VGG16 network before
modeling it. See the uploaded code for details.

4.2.2 Simulation results

The prediction and estimation results of model image-gray, model text and additional
model image-RBG are presented in Table 2. Nonpar and Linear models are not appli-
cable to the unstructured predictor, hence are not included. For the model image-gray,
the AUC for the non-cured probability is close to 1, which indicates that for this sce-
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nario, the neural network can almost perfectly predict the cured probability. The MSE
of the estimated Sp(t) over 500 replicates is small (0.041). Estimated bias of survival
component are also small and ESD and ASE are close to each other. For very sparse
text data, our model also shows satisfactory performance in terms of highAUC (0.907)
in prediction and small bias for survival components. This shows that for unstructured
predictors, with sufficient sample size, our cure ratemodel can achieve good prediction
results.

For the image-RBG model with a sample size much smaller than the number of
covariates, the AUC for the non-cured probability is 0.872, the MSE of the estimated
Sp(t) over 500 replicates is still satisfactory (0.153). The parameters of the survival
component are estimated correctly for the small bias. ESD and ASE are generally
close. This indicates that our method is also applicable to unstructured x with small n
large p, which will facilitate the analysis of clinicopathological images.

In summary, the performance of Nnet models are better than that of Nonpar and
Linear models, which is reflected in the highest AUC and the lowest MSE of Sp. For
structured predictors, when the true model contains very complex interaction terms
and the sample size is small, the AUC of Nnet model and Nonpar model are not
much different. When the sample size is sufficient (such as n = 10,000, p = 30),
the prediction ability of the Nnet model is significantly higher than that of Nonpar
model. This shows that for a sufficient sample size, the neural network can fit the data
well. For unstructured predictors, neural networks have shown satisfactory prediction
capabilities. For gray image predictors, very sparse text predictors, and RBG image
predictors with larger number of covariates than the sample size, the resulting AUCs
are all above 0.87. This shows that the Nnet models can fit unstructured data well and
are suitable for predicting problems. Next, we apply our method to a real case with
image predictors.

5 Application

In this section, we used our method to analyze a real dataset with image predictors.
We put additional figures of this section into Web Appendix D. Access to application
code is provided in Supplementary Material.

OpenAccessSeries of ImagingStudies (OASIS) is a series of neuroimagingdatasets
that aimed at making neuroimaging datasets freely available to the scientific com-
munity. Wherein OASIS-3 is a longitudinal follow-up dataset for normal aging and
Alzheimers Disease (AD) participants, including clinical data and Magnetic Reso-
nance Imaging (MRI) images. The data and the detailed descriptions are available via
www.oasis-brains.org. On one hand, we were interested in the hazard of the time from
enrollment to AD onset and whether the subject’s clinical indicators at baseline would
affect the risk of AD. Since not all older people would suffer from AD, we referred
to subjects who will not suffer from AD as ‘non-susceptible’ or ‘cured’. On the other
hand, it was also of interest to know whether the MRI at baseline was predictive to
the susceptibility of AD. Clinical Dementia Rating (CDR) is commonly used to dis-
tinguish subjects with and without AD, and CDR > 0 represents demented. Hence
we restricted the sample to subjects that were non-demented at the baseline (time at
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Fig. 1 Top panel: Kaplan–Meier estimates of OASIS-3 patients. Bottom panel: AUC at different time points
for test set

registration). The raw data was cleaned up by retaining MRI of the same size, remov-
ing the missing observations and eliminating the outliers. The remaining sample size
was 352, 130 of whom were tested for AD at a later follow-up. The enrollment age of
the subjects was 42–96 years old, and the mean follow-up time was 6 years. Figure 1
showed a plateau of Kaplan–Meier plots in the later stage of follow up. This indicated
that there was a subgroup of patients who were not susceptible to the AD. Therefore,
we used the proposed method to analyze the data. The neural network component was
employed to process the MRI images x and to calculate the subject’s cure probability,
the Cox component was used to process the clinical data and assess the hazard of AD.

The structured covariates z used in the Cox component were Mini-Mental State
Examination score (MMSE, range was from 0 to 30 with a larger value indicating bet-
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ter mental state), weight (Weight), apolipoprotein E (APOE), logarithm of Geriatric
Depression Scale (log(GDS), a high score represents severe depression), intracranial
volume (IntraCranialVol), subcortical graymatter volume (SubCortGrayVol). The out-
come of survival was duration (years) from registration to event time (the first time
observed CDR > 0). The unstructured covariates used in the neural network com-
ponent was 160 by 200 pixels images taken from MRI images perpendicular to the
spine and showed the largest ventricle. Both structured and unstructured data were
normalized in range 0 to 1. We randomly divided the dataset into a training set of 280
observations and a test set of 72 observations.

We applied the proposed method to the OASIS-3 data. For model comparison, we
also fitted the traditional model. However, for the aforementioned Nonpar and Linear
model, image predictors were too cumbersome. Therefore, for the traditional models,
we fitted the case where the structured predictor x = z was used, and compared the
results with the neural network model using unstructured MRI predictors.

In order to evaluate the difference in prediction ability of different models, we char-
acterized ROC curves between the true event occurrence and the estimated population
survival probability Ŝp(t) at different time points and calculate AUC for the test set.
We plotted AUC(t) for the Nnet, Nnonpar and Linear cure rate model at different t .
Bottom panel of Fig. 1 showed AUC of the Nnet model was basically above 0.8, and it
was superior to the AUC of the Linear and Nonpar cure rate model at all time points,
which showed that our method performed well in prediction. This indicated that using
image predictors instead of structured predictors can improve the prediction accuracy
of the cure rate model for OASIS-3 data.

Results for parameter estimation of survival components were presented in Table 3.
An older adult with lower MMSE score, higher weight, lower APOE, higher GDS,
higher IntraCranialVol and lower SubCortGrayVol was associated with a higher risk of
AD.Estimated confidence interval indicated that the effects ofMMSE, IntraCranialVol
and SubCortGrayVol were significant at level 0.05. Our results are in line with the
results of previous studies. Roth (1986), Mortimer (1988) and Satz (1993) showed
that a person with higher premorbid brain reserve will have more functional brain
tissue remaining at a given level of pathology and will thus develop clinical symptoms
at amore advanced biological stage. This is consistent with our finding that theAD risk
increases as IntraCraniaVol increases. Hesse et al. (2000) found that the level of APOE
in the cerebrospinal fluid reduced in AD patients, however, due to the measurement
error and the individual difference, it is not significant in our analysis. Prospective
studies ofGanguli et al. (2006) have shown that depressive symptoms cross-sectionally
associated with cognitive impairment but not the risk factor for AD. Similarly, GDS
was not a significant risk factor of AD in our analysis. The estimated γ of the three
models was basically the same, but our model had a smaller standard error. In our
method, IntraCranialVol and SubCortCrayVolwere identified as significant covariates,
but they were not significant in spline cure rate model.

Based on the Nnet model, let other covariates be fixed at their median level, we plot-
ted the estimated marginal survival probability Ŝp(t) when MMSE, IntraCranialVol
and SubCortGray-Vol at different levels in Web Figure 1. From Web Figure 1a, when
MMSE at the normal level, AD survival was high, while when MMSE was lower than
27, in other words, there was cognitive dysfunction, the risk of AD was significantly
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increased. IntraCranialVol and SubCortGrayVol had a higher AD risk at their 90%
and 10% quantiles, respectively. When the covariates were all at the median level (red
dotted line in Web Figure 1 (b) or (c)), the survival probability decreased rapidly from
4 years, and finally reached a steady level at 0.2.

Finally, Web Figure 2 explored whether MRI images present different patterns at
different θ̂ (x) levels. The ventricles and cerebral cisterns of subjects with higher non-
cured probability had an expanding trend, and the sulci had a tendency to deepen.
These were the phenomena of the elderly brain.

6 Discussion

We proposed mixture cure rate models with a cure rate component accommodating
complex predictors, which can handle cure rate component with structured or unstruc-
tured predictors like images. The method provide higher prediction accuracy while
maintain the interpretation for the survival component. Estimators are showed to be
consistent. Our simulation studies for structured data show that ourmodel outperforms
the linear cure rate model for all settings.When compared with the nonparametric cure
rate model, the neural network method has a wider application even when the predic-
tors are structured covariates. As shown in our simulation studies, when p = 10 or 30,
if the additive model ignoring the interaction terms is used, the results may be biased.
For the case of n ≤ p, our proposedmodel still has acceptable prediction ability, while
the traditionalmodels are not applicable at this time. On the other hand, our application
for OASIS-3 data shows our approach has high and stable predictive accuracy for AD
prediction, which can clinically promote the diagnosis and prevention of Alzheimer’s
disease in the elderly.

In spite of the improvement of our method, some issues deserve more discussions.
We only extend the cure rate component of the traditional MCM with a neural net-
work. In fact, it makes sense to introduce unstructured predictors into both cure rate
and survival components. Besides, although our simulation and application section
use more than one hidden layer neural networks, we only derive the asymptotic results
of the neural network with a single hidden layer. And in this article, we only estimate
the asymptotic variance for the survival parameters, but not for the neural network
parameters. Due to the difficulty of theoretical proof, the above-mentioned problems
are limitations that have not been considered in this paper and are worthy of further
research. Our simulation studies show that if θ is estimated to be more accurate, the
accuracy of estimation for γ̂ and Ŝp(t) will also increase. Actually, except the fully
connected neural networks, other complex deep learning networks such as CNN or
some integrated networks (such as AlexNet, VGG, ResNet et al.) can be adopted to
accommodate larger, more complex data, which may bring better prediction results.
In our simulation and application section, CNN and integrated networks are used for
processing image predictors, and the resulting prediction and estimation results are
satisfactory. However, this paper only proves the convergence of parameters when
using a fully connected network. The theoretical proof under other networks merits
further research. On the other hand, neural networks also have their limitations, such
as the difficulty and arbitrariness in the selection of the optimal network and the opti-
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mal number of training steps, and there is no relatively complete theoretical support;
the back-propagation algorithm of training neural network is easy to fall into local
minimum, and so on. The limitations of neural networks need further research and
discussion, but recently some scholars have made efforts to overcome them, such as
Jiang et al. (2003) and Hinsbergen et al. (2009). Next, in this article, we only consider
the case where x is structured and unstructured predictor respectively. In practical
applications, there may be cases where x has both types of data. For such cases, rele-
vant proofs and simulations are being investigated. Furthermore, Chen and Du (2018)
proposed a mixture model with a nonparametric accelerated failure time model (AFT)
for the survival component. The model provides a more direct physical interpretation
than the proportional hazards and an additional scalar parameter with more flexibility.
Similarly, we can extend our model to have an AFT survival component with a neural
network in logistic components. Extension to the neural network based nonparametric
accelerator factor is to be further explored. On the other hand, promotion time cure rate
model is another approach for modeling cure rate data. It is also desirable to develop
the promotion time cure rate model with complex predictor. These are of our future
research interest.

Supplementary Material

Web Appendices, Tables, and Figures referenced in Sects. 3, 4 and 5 along with code
for simulations and applications, are available with this paper at website on Electronic
Supplementary Material.
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