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Abstract
We focus on purely autoregressive (AR)-type models defined on the bounded range
{0, 1, . . . , n} with a fixed upper limit n ∈ N. These include the binomial AR model,
binomial AR conditional heteroscedasticity (ARCH) model, binomial-variation AR
model with their linear conditional mean, nonlinear max-binomial AR model, and
binomial logit-ARCH model. We consider the key problem of identifying which of
these AR-type models is the true data-generating process. Despite the volume of
the literature on model selection, little is known about this procedure in the context
of nonnested and nonlinear time series models for counts. We consider the most
popular approaches used for model identification, Akaike’s information criterion and
the Bayesian information criterion, and compare them using extensive Monte Carlo
simulations. Furthermore, we investigate the properties of the fitted models (both the
correct andwrongmodels) obtained usingmaximum likelihood estimation.A real-data
example demonstrates our findings.

Keywords Binomial autoregressive models · Count time series · Model adequacy ·
Model selection · Parameter estimation

1 Introduction

Count time series occur in various fields, including investigations of natural phenom-
ena (e. g., rare disease occurrences, animal sightings, and severe weather events) and in
economic contexts (e. g., monitoring the number of transactions). Significant progress
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has been made in modeling count time series over the last 20 years; see Weiß (2018)
for a recent survey. The most popular stationary count time series models are arguably
the integer-valued autoregressive moving-average (INARMA) models, dating back
to McKenzie (1985) and Al-Osh and Alzaid (1987), which use a probabilistic oper-
ator called binomial thinning. The simplest INARMA model is the integer-valued
autoregressive model of order one, abbreviated as INAR(1). The model is defined as
Xt = α◦ Xt−1+εt , with t ∈ N = {1, 2, . . .}, where {εt } is an innovation process com-
posed of independent and identically distributed (i. i. d.) non-negative integer-valued
random variables (i. e., having the range N0 = {0, 1, . . .}) with finite mean and vari-
ance. The symbol “◦” denotes the binomial thinning operator (Steutel and van Harn
1979), defined by α ◦ X = ∑X

i=1 Yi , where {Y j } are i. i. d. Bernoulli random variables
with P(Y j = 1) = α = 1 − P(Y j = 0). By construction, the observations Xt gener-
ated by the INAR(1) process can attain any value fromN0; that is, the INAR(1) model
applies to time series composed of unbounded counts.

INARMA models with unbounded support appear to provide an adequate frame-
work for modeling dependent count data in many applications. However, these models
cannot be applied if the counts exhibit a finite upper bound n ∈ N that needs to be
preserved by the data-generatingmechanism. Examples of bounded-counts time series
are the weekly number of rainy days, which has a fixed upper limit of n = 7 (Cui
and Lund 2009; Gouveia et al. 2018), the number of transactions among n companies
(Weiß and Kim 2013), and the number of metapopulations on n patches (Weiß and
Pollett 2012); a data example is presented in Sect. 7, in which we examine access
counts to a web server.

Thus, the question is how to construct stationary and integer-valued time series
models defined on the bounded range {0, 1, . . . , n}. Modeling time series of bounded
counts is challenging. In the presentwork,we focus onpurely autoregressive (AR)-type
models, because these can be traced back to finite Markov chains and are particularly
attractive in practice (e. g., in estimation, forecasting, asymptotic theory); see Weiß
(2018) for more details. These AR-type models include, on the one hand, three mem-
bers from the class of conditional linear AR (CLAR)models, because their conditional
mean E[Xt |Xt−1, . . .] is a linear expression in Xt−1, . . . , Xt−p (see Grunwald et al.
2000). These CLAR models are the pth-order binomial AR model (BAR(p)) based
on the binomial thinning operator and a random mixture mechanism (Weiß 2009);
the pth-order binomial AR conditional heteroscedasticity model (BARCH(p)) being
a type of conditional regression model (Ristić et al. 2016); and the bvAR(p) model
using the binomial variation (bv) operator (Gouveia et al. 2018). On the other hand,
we also consider two types of models with a nonlinear conditional mean, the max-
BAR(p) model as a counterpart to the conventional max-AR(p) model (Weiß et al.
2018); and the binomial logit-ARCH(p) model (logit-BARCH(p)) as another condi-
tional regression model (Chen et al. 2019). A detailed description of these AR-type
models is provided in Sects. 2 and 6, respectively.

All these AR-type models are Markovian of order p. Furthermore, the three types
of CLAR(p) models also satisfy the Yule–Walker equations
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ρ(k) =
p∑

i=1

αi ρ
(|k − i |) for k = 1, 2, . . . , (1.1)

where ρ(k) = Corr Xt , Xt−k is the autocorrelation function (ACF). Equivalently, if
we consider the partial ACF (PACF) ρpart(k), which is defined for stationary processes
as a function of the ACF, then ρpart(k) = 0 for all k > p. Nevertheless, the models
do vary in terms of their dispersion behavior, for example, when comparing the actual
variance to the mean. For bounded counts, this comparison is commonly based on the
binomial index of dispersion (BID), defined as

BID = n V ar(Xt )

E(Xt )
(
n − E(Xt )

) . (1.2)

Here a binomial distribution always leads to BID = 1, and a distributionwith BID > 1
is said to exhibit extra-binomial variation (overdispersion). Conversely, a distribution
with BID < 1 expresses underdispersion with respect to a binomial distribution.

Thus, a natural question arises as to how different thesemodels are. From a practical
perspective, we would like to know how to identify the true model underlying the data-
generating process (DGP) given anAR-type time series of bounded counts. The goal of
this study is to compare and investigate theseAR-typemodels for bounded-counts time
series. In particular, we focus on identifying themodel behind theDGP.This is a crucial
part of any time series analysis, because fitting a misspecified model to the data will
lead to biased estimates and, subsequently, misleading inferences (e. g., forecasting)
based on the previous results. The most popular approach for model identification is
to apply an information criterion (Burnham and Anderson 2002), such as Akaike’s
information criterion (AIC) (Akaike 1974) or the Bayesian information criterion (BIC)
(Schwarz 1978). These criteria penalize the likelihoods in order to determine a model
providing both a good fit and a parsimonious parametrization. Selecting this model
gives the minimal value for the considered criterion.

The remainder of this paper is organized as follows. We start our analyses by
considering the CLAR-type models: the BAR(p), bvAR(p), and BARCH(p) models.
In Sect. 2, we provide their definition and essential properties. Section 3 describes
the design of our simulation study and analyzes the performance of the maximum
likelihood (ML) estimation. In Sect. 4, we first summarize the AIC and BIC and then
evaluate their performance in terms of model selection based on our Monte Carlo
simulation results. Section 5 investigates the consequences of fitting the wrong model
to the DGP. Section 6 is composed of further analyses of specific research questions.
We take a more detailed look at the task of order selection among BARCH(p)models,
and we compare the conditionally linear BARCH(p) model with the two nonlinear
AR-type models, the max-BAR(p) and the logit-BARCH(p) model. We illustrate our
findings with a real-data example in Sects. 7 and 8 concludes the paper.
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2 CLAR-typemodels for time series of bounded counts

Inwhat follows, we examine three CLAR-typemodels for bounded-counts time series.
For model order p ∈ N, all of them are Markovian of order p; that is, the conditional
distributions P(Xt = x | Xt−1 = xt−1, Xt−2 = xt−2, . . .) = P(Xt = x | Xt−1 =
xt−1, . . . , Xt−p = xt−p) depend only on the last p observations. These conditional
distributions are invariant in time t ; thus, we abbreviate the transition probabilities as
p(x |x1, . . . , xp) = P(Xt = x | Xt−1 = x1, . . . , Xt−p = xp). The three CLAR-type
models satisfy the Yule–Walker equations (1.1), which constitutes the main difference
to the nonlinear max-BAR and logit-BARCH models discussed in Sect. 6.

2.1 Binomial AR(p) model

The first CLAR-type model for bounded counts (Xt )N with range {0, 1, . . . , n} dates
back to McKenzie (1985). The model is defined by an AR(1)-like recursion, where
the multiplication “·” is substituted by the binomial thinning operator “◦” (recall
Sect. 1, α ◦ X |X ∼ Bin(X , α)). Using this operator, the first-order binomial AR model
(BAR(1)) (McKenzie 1985) is defined by

Xt = α ◦ Xt−1 + β ◦ (n − Xt−1) for t ≥ 1, X0 ∼ Bin(n, π), (2.1)

where π ∈ (0; 1), ρ ∈ (
max {− π

1−π
,− 1−π

π
} ; 1), and the thinning probabilities

satisfy β = π (1 − ρ) and α = β + ρ.
Weiß (2009) extended the BAR(1) model given in (2.1) to a pth-order binomial

AR model (BAR(p)) using an additional probabilistic mixture mechanism. Assum-
ing (Dt,1, . . . , Dt,p) to be independent and multinomially distributed according to
Mult(1; φ1, . . . , φp), with φ1+· · ·+φp = 1, the BAR(p)model recursion is given by

Xt =
p∑

i=1

Dt,i

(
α ◦ Xt−i + β ◦ (n − Xt−i )

)
, (2.2)

where all thinnings are performed independently. The ACF of the stationary BAR(p)
process (2.2) satisfies the Yule–Walker equations (1.1), with αi := ρ φi . The marginal
distribution is the binomial distribution Bin(n, π). The transition probabilities are as
follows:

p
(
x |xt−1, . . . , xt−p

)

=
p∑

i=1

φi

x∑

y=0

(
xt−i

y

)

αy (1 − α)xt−i −y
(

n − xt−i

x − y

)

βx−y (1 − β)n−xt−i −x+y .

(2.3)
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2.2 Binomial-variation AR(p) model

A second CLAR-type model for bounded counts was proposed by Gouveia et al.
(2018). Its definition uses the binomial variation operator bvn(X), given by
bvn(X)|X ∼ Bin(n, X/n), and it is thus referred to as the bvAR(p) model. Sim-
ilar to (2.2), it is based on a random mixture generated by (Dt,0, . . . , Dt,p) ∼
Mult(1; φ0, . . . , φp), with φ0 + · · · + φp = 1. The model recursion is given by

Xt =
p∑

i=1

Dt,i bvn(Xt−i ) + Dt,0 εt , (2.4)

where all bv operators are performed independently, and the innovations εt are i. i. d.
bounded counts. The ACF of the stationary bvAR(p) process (2.4) satisfies the Yule–
Walker equations (1.1), with αi := φi . If the innovations εt are binomially distributed
following Bin(n, π), then the observations Xt are not binomial, but instead exhibit
extra-binomial variation (Gouveia et al. 2018). The transition probabilities are as
follows:

p
(
x |xt−1, . . . , xt−p

)

= φ0

(
n

x

)

π x (
1 − π

)n−x +
p∑

i=1

φi

(
n

x

)
( xt−i

n

)x (
1 − xt−i

n

)n−x
. (2.5)

2.3 Binomial ARCH(p) model

Another CLAR-type model for bounded counts is given by the pth-order binomial
ARCH model (BARCH(p)) (Ristić et al. 2016). This model is a type of conditional
regression model, which requires that Xt |Xt−1, . . . be conditionally binomially dis-
tributed according to Bin(n, πt ), where

πt = α0 + 1

n

p∑

i=1

αi Xt−i . (2.6)

Here α0 > 0, α1, . . . , αp ≥ 0, and α0 + ∑p
i=1 αi < 1. As before, the ACF of the

stationary BARCH(p) process (2.6) satisfies the Yule–Walker equations (1.1). The
stationary marginal distribution is not binomial, but instead exhibits extra-binomial
variation (Ristić et al. 2016). The transition probabilities are given by

p
(
x |xt−1, . . . , xt−p

) =
(

n

x

)

π x
t

(
1 − πt

)n−x
. (2.7)

3 ML estimation for AR-typemodels

The CLAR-type models for bounded-counts time series summarized in Sect. 2 are
Markovian of order p, and we provided closed-form formulae for calculating their
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transition probabilities p(x |x1, . . . , xp). Using these formulae, a conditional ML esti-
mation is easily implemented by numericallymaximizing the respective log-likelihood
function,

	(θ | xp, . . . , x1) =
T∑

t=p+1

ln p
(
xt |xt−1, . . . , xt−p

)
,

where θ represents the vector of model parameters. This implementation was used in
the simulation study described in Sect. 3.1, and for the data example in Sect. 7. The
performance of the ML estimation (if the correct type of model has been chosen for
the given time series data) is analyzed briefly in Sect. 3.2.

Finally, we note that ML estimation is possible in exactly the same way for the
nonlinear AR-type models discussed in Sect. 6. We also provide closed-form for-
mulae for the transition probabilities p(x |x1, . . . , xp) and investigate the estimation
performance.

3.1 Design of simulation study

For this research, we conduct an extensive simulation study (using the SAS/IML
9.4 procedure) where various DGP scenarios with n = 10 are used. The first and
main part of our study focusses on the CLAR-type models introduced in Sect. 2; the
correspondingDGPscenarios are summarized inTables 1 and2. The data are generated
from the BAR(1) model for scenarios 1–4, from the bvAR(1) model for scenarios 5–8,
from the BARCH(1) model for scenarios 9–12, and an analogous allocation holds for
the second-order models (scenarios 13–24) in Table 2. Tables 1 and 2 summarize the
parameters of the respective DGP in the column “Parameters.” We set the parameters
for the BAR(1), bvAR(1), and BARCH(1) DGPs to ensure that the mean E(Xt ) =
1.5, 4 and the ACF satisfies ρ(1) = 0.3, 0.6 (see the highlighted numbers in Table 1).
The model properties shown in Table 1 are E(Xt ), V ar(Xt ), P(Xt = 0), the ACF,
and the PACF.

To explore the effect of higher model orders, we simulate the AR(2)-type mod-
els; the results are shown in Table 2. The parameters of the BAR(2), bvAR(2), and
BARCH(2) DGPs are chosen to ensure that the mean and ρ(1) of each DGP are equal
to those of BAR(1), bvAR(1), and BARCH(1), respectively. Additionally, the second-
order autoregression is chosen to yield ρpart(2) = 0.2 (see the highlighted numbers in
Table 2). For all 24 scenarios, we use the sample sizes T = 100, 250, 500, 1000. The
number of replications is 1000. The data are generated with a pre-run of length 250 to
ensure stationarity.

In Sect. 6, we consider further DGP scenarios regarding third-order models as well
as nonlinear AR-type models. For these DGPs, we work with 1000 replications and a
pre-run of length 250. Details on their parametrization are presented in Sect. 6.
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3.2 Estimation performance for adequate models

As the first task of our simulation study, we examine the performance of the ML esti-
mation under the premise that the correct type of model is fitted to the given time series
data; the full estimation results are summarized in Supplement S.2. This corresponds
to the ideal case.We analyze the performance when determining the true type ofmodel
underlying the DGP in Sect. 4 and the consequences of fitting the wrong model to
the DGP in Sect. 5. As shown in the boxplots in Supplement S.2, the conditional ML
estimation works well for all the considered models. There might be some biases and
a notable dispersion for the small sample size, T = 100 (particularly for the second-
order models), but both decrease quickly with increasing sample size. Thus, provided
an adequate model has been chosen (and that the time series is sufficiently large),
an ML estimation is a reliable approach for model fitting for any of the considered
AR-type models.

4 Using information criteria for model selection

In this section, we focus on the model selection considering the six types of candidate
models presented in Sect. 3.1. Since these models are not nested, traditional likelihood
ratio tests cannot be used for this purpose. In contrast, “a substantial advantage in using
information-theoretic criteria is that they are valid for nonnested models” (Burnham
and Anderson 2002, p. 88). We consider the AIC and the BIC, which are the most
widely known and used model selection tools in statistical practice (Burnham and
Anderson 2002; Cavanaugh and Neath 2019; Dziak et al. 2019). Both criteria penalize
the log-likelihood values by adding a term that increaseswith the number of parameters
(and for the BIC, with the number of observations). Therefore, the criteria balance the
model fit against the model complexity. If these criteria are applied to nested canditate
models, theywill essentially “act like a hypothesis test with a particularα level” (Dziak
et al. 2019, p. 5). But also in the case of nonnested models, they control “the tradeoff
between the likelihood term and the penalty on the number of parameters, hence the
tradeoff between good fit to the observed data and parsimony” (Dziak et al. 2019, p.
6).

The AIC is twice the negative maximized log-likelihood plus a penalty term, which
is equal to twice the number of model parameters; that is,

AIC = −2 	max + 2 nmodel, (4.1)

where 	max is the value of the maximized log-likelihood and nmodel is the number of
model parameters.

Similar to the AIC, the BIC adjusts the log-likelihood by adding a penalty term that
grows proportionally with the number of model parameters, but this also depends on
the number of observations in the sample, T :

BIC = −2 	max + nmodel ln T . (4.2)
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The AIC and BIC can be applied to the conditional log-likelihood and to the full
log-likelihood (for the first approach, see Sect. 3). Because the number of terms in
	(θ | xp, . . . , x1), the conditional log-likelihood, varies with p, we insert the corrective
factor T /(T − p) before 	max in (4.1) and (4.2) to account for this distortion (Weiß
2018).

As noted by Burnham and Anderson (2002) and Cavanaugh and Neath (2019),
the AIC and BIC were originally designed for different objectives. The AIC provides
an asymptotically unbiased estimator of the expected Kullback–Leibler discrepancy,
whereas the BIC serves as an asymptotic approximation to a transformation of the
Bayesian posterior probability of a candidate model. In practice, however, they are
usually treated as competitors in the context ofmodel selection.With increasing sample
size T , the BIC tends to choose fitted models that are more parsimonious than those
favored by the AIC, because its penalty is larger than that of the AIC if ln T > 2
(or T ≥ 8). Thus, the choice between AIC and BIC might be guided by “the relative
importance one assigns to sensitivity versus specificity” (Dziak et al. 2019, p.1).

One of the crucial questions examined in this research is howwell the AIC and BIC
perform in terms of selecting an AR-type model for a bounded-counts time series.
This question has yet to be investigated in the literature. For real-valued time series,
Rinke and Sibbertsen (2016) evaluated the ability of information criteria to distinguish
between linear and nonlinear models, and Psaradakis et al. (2009) considered the
problem of selecting from among competing nonlinear time series models that belong
to different families. Information criteria are generally recommended for selecting
from nonnested time series models (Burnham and Anderson 2002, Sect. 2.12.4); some
asymptotic considerations regarding regression models can be found in Sect. 8.7 of
Claeskens andHjort (2008).However, little is known about such an ability in nonnested
and nonlinear time series models for counts (Jung et al. 2016). Two recent studies,
Weiß and Feld (2020) andWeiß et al. (2019), partially follow the direction outlined by
Jung et al. (2016), but concentrate on the case of unbounded counts. Diop and Kenge
(2020) propose a penalized criterion relying on a Poisson quasi-likelihood approach
for some INGARCH-type processes of counts, and they prove its consistency under
certain regularity conditions. We also point out the work by Katz (1981), but this
cannot be applied here, because it focuses on the order selection of general finite
Markov processes, that is, without the parametric relations implied by the models in
Sect. 2. Therefore, in this study, we evaluate the performance of various information
criteria for simultaneousmodel class and lagorder selectionusing the threeCLAR-type
models for bounded-counts time series. In Sect. 6, we also investigate the ability of the
criteria to distinguish between models that have a linear or nonlinear autocorrelation
structure.

The performance of themodel selection criteria (AIC andBIC) is assessed using the
Monte Carlo simulations described in Sect. 3.1. Once a time series has been simulated,
the six time series models listed in Tables 1 and 2 (i. e., BAR(1), BAR(2), bvAR(1),
bvAR(2), BARCH(1), BARCH(2)) are fitted. Then, we store the CML estimates and
the resulting maximized conditional log-likelihood values (	max). Next, we calculate
the AIC and BIC values for each model according to (4.1) and (4.2), respectively
(together with the corrective factor T /(T − p)), and determine the model that yields
the lowest AIC or BIC value. This process is repeated 1000 times to compute the
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number of times each criterion selected each of the six possible models. The full
results are provided in Supplement S.1.

The first part of each table in Supplement S.1 shows the number of times each
candidate model was selected for a given type of DGP based on the AIC or BIC. Here,
the number of correct identifications is in italics. The second part of each table shows
the average of the deviations AICi − AICmin and BICi − BICmin, where the sub-
script “i” denotes the model under consideration and the subscript “min” denotes the
minimal AIC (or BIC) value for the respective time series. In routine model selection
applications, the optimal fitted model is that which minimizes the selected informa-
tion criterion. However, models with similar values should receive the same ranking
by a criterion. A common rule of thumb is to treat any fitted model as a viable can-
didate if it yields an AIC value within two units of the minimal AIC (Burnham and
Anderson 2002, Sect. 2.6); an analogous procedure is recommended by Neath and
Cavanaugh (2012) for the BIC. These refined model selections can be evaluated using
the respective second parts of the tables in Supplement S.1.

For all scenarios, the rates of successful identification generally increase with T .
For the largest sample size T = 1000, these rates range from 70 to 100% for the
AIC and from 80 to 100% for the BIC. In general, for the model order p = 1, the
performance of the BIC is similar or superior to that of the AIC. For the model order
p = 2, however, the reverse is true; that is, the performance of the AIC is superior
to that of the BIC. For illustration, the results for scenarios 4, 8, 12, 16, 20, and 24,
with mean 4 and ρ(1) = 0.6, are discussed in more detail. For the DGP scenario 4
(BAR(1)), the AIC’s rates for identifying the correct model are 83.7%, 83.8%, 87.8%
and 88.5% for T = 100, 250, 500, 1000, respectively, and the BIC’s success rates
quickly tend to 100%. Analogous identification rates are observed for the bvAR(1)
scenario 8, whereas scenario 12 (BARCH(1)) leads to slightly lower success rates
for small T . It is also interesting to investigate the means of AICi − AICmin and
BICi − BICmin. For scenario 4, we have a mean AICBAR(2) − AICmin ≤ 2 for all T ,
but a mean BICBAR(2) − BICmin > 4 for all T (Supplement S.1). That is, following
the two-units rule, the AIC also considers the BAR(2) model a substantial candidate
(in the mean) if the DGP is BAR(1) according to scenario 4, whereas the BIC does
not make such a mistake. These results indicate that the BIC leads to better results
regarding the model order for scenario 4. Analogous conclusions hold for scenarios 8
and 12 and, more generally, for model order p = 1. Note, however, that for some
BAR(1) scenarios, there is a notable rate of BARCH(1) misidentifications (up to 20–
30%); that is, a model from outside the DGP’s model family is chosen. This time,
these rates are slightly larger for the BIC. The same phenomenon is observed in the
opposite direction; that is, a BARCH(1) DGP is often misidentified as BAR(1).

Next, we consider the model order p = 2. For scenario 16 (BAR(2), with mean 4
and ρ(1) = 0.6), and a small sample size T = 100, we observe somewhat lower rates
of successful identification, 69.4% (AIC) and 45.9% (BIC). Furthermore, the rates of
falsely voting for BAR(1) are 29.1% (AIC) and 51.9% (BIC). For T ≥ 250, the correct
rates exceed 94.8% (AIC) and 83.7% (BIC). Therefore, the AIC now demonstrates
better model selection than the BIC, which is very different from scenario 4, where the
BIC leads to better results. The means of both AICBAR(1) −AICmin and BICBAR(1) −
BICmin are larger than two; that is, based on the two-units rule, we do not have
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misidentifications such as BAR(1) in the mean. Analogous conclusions are drawn for
scenario 20 (bvAR(2)).

In scenario 24 (BARCH(2)), the situation is more complicated. The rates of correct
identifications are lower than before, 54.6% (AIC) and 29.6% (BIC) for T = 100. In
particular, theAICmisidentifies as BARCH(1)with 27.6%, and theBIC falsely selects
BARCH(1) inmost cases (53.2%).Additionally, themeanofAICBARCH(1)−AICmin =
2.92 > 2, but the mean of BICBARCH(1) − BICmin = 1.68 < 2. For T ≥ 250, the
rates of correct identifications are above 90.5% (AIC) and 72.1% (BIC). This implies
that the BIC tends to choose a model order that is too low for T = 100, but its
performance improves for T ≥ 250. Finally, also for the second-order DGPs, there
may be misidentifications across different model families, particularly between the
BAR and BARCH models.

5 Properties of (Mis)fittedmodels

Our analyses in Sect. 4 showed that, depending on the sample size and the type of DGP,
there is considerable risk of selecting the wrong model. Most often, the wrong model
order within the correct model family is chosen, but we observed a large proportion of
cases for which an incorrect model family was selected. Therefore, we next examine
the effect of an incorrect model selection, as the selected model might later be applied
to, for example, the forecasting of future observations. More precisely, we investigate
this effect by comparing relevant moment properties (mean, BID, and ACF) of the
fitted model with the same properties of the true DGP. In this context, we analyze the
influence of estimation uncertainty when the correct model is selected. Our analyses
rely on theMonte Carlo simulations described in Sect. 3.1.We calculate the properties
from the estimated parameters for each replication and each model fit. The means
across all replications are tabulated in Sect. S.3 of the supplementary material for
all considered scenarios and all time series lengths T . In the following, we present a
summary of our findings. We focus on the BID and ACF, because the fitted models’
mean is quite close to the true mean in most cases.

If the DGP is BAR(1) (scenarios 1–4), then the fitted BAR models have a BID of
one (by definition), and they capture the ACF structure very well, even for T = 100.
In contrast, we observe additional dispersion for the fitted bvAR and BARCHmodels.
Thesemodels exhibit extra-binomial variation, by construction, and they cannotmatch
a BID of one. However, in contrast to the bvAR models, the BARCH models have
good fit to the true ACF (in the mean). The bvAR models only reach an acceptable
fit for the ACF for Scenario 4 (mean μ = 4, ρ(1) = 0.6), whereas the BID for these
fitted models is larger than two.

For the case of a bvAR(1) DGP (scenarios 5–8), for small sample sizes, we observe
somewhat larger discrepancieswhenwefit the correctmodels compared to the previous
scenarios. For the misfitted models, the BAR models underestimate the true ACF and
BID. The BARCH models again fit the ACF quite well, but they underestimate the
BID.

If theDGP isBARCH(1) (scenarios 9–12),we again find somediscrepancy between
the true and fitted BARCH models’ ACF if T is small. The (mis)fitted BAR models
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underestimate the BID and ACF, particularly for higher autocorrelation levels. For the
fitted bvAR models, we observe a visible underestimation of the mean. The estimated
BID is, in general, higher than the true BID, whereas the opposite holds for the ACF.
The underestimation of the ACF decreases with a higher autocorrelation level.

For the second-order DGPs, the ACF at lag one is well captured, in general, by
the fitted first-order models from the same family. The other results for the first-order
DGPs are transferable to the second-order DGPs. The BARCH and BAR models are
closer to each other than they are to the other competitor: the bvAR models have
unique features in their structure that cannot be mimicked by the other models.

Overall, it appears that the fitted BARCH models match the ACF quite well for
most models and scenarios, whereas the BID is not captured well. The BAR and bvAR
models cannot mimic the ACF of different DGPs. More flexibility for the BID can
be obtained by switching from the basic binomial distribution to a distribution with
an additional dispersion parameter, such as the beta-binomial distribution if extra-
binomial variation is required. Returning to our initial question of how different these
models are,wefind that the threeCLAR-typemodels for bounded counts differ notably
in terms of their model properties. However, the BARCHmodels are relatively flexible
andmimic at least the trueACFstructure quitewell, even if the underlyingDGP follows
another CLAR-type model.

6 Further analyses

In what follows, we conduct further analyses regarding the choice of the model order
(Sect. 6.1) and regarding nonlinear AR-type DGPs (Sects. 6.2, 6.3). To keep our
analyses manageable, we limit to the BARCH model among the CLAR models for
bounded counts because this model is the most flexible in imitating the true DGP’s
autocorrelation structure.

6.1 More details on order selection

As shown in Sect. 4, the most common type of misidentification is the selection of the
wrong model order within the true model class. For this reason, we conduct a further
simulation experiment focusing on model order selection among BARCH(p) models.
Extending the previous scenarios 9 & 10 (p = 1) and 21 & 22 (p = 2), we consider
two 3rd-order DGPs (numbered 25 & 26) having the marginal mean μ = 1.5; see
Table 3 for details. Then we simulate each of the six DGPs 9, 10, 21, 22, 25, and 26,
as described in Sect. 3.1, where the set of candidate models is given by BARCH(1–3)
in each case. The full model selection results are summarized in Supplement S.4.

The selection results for the first-order BARCH DGP are completely analogous
to our finding in Sect. 4: the wrong model order is rarely selected (in particular, the
BIC shows excellent performance), and in the case of a misidentification, mainly
the BARCH(2) model is selected. The reverse scenario is given by a BARCH(3)
DGP (with BARCH(1–2) being further candidates). Now, the rates of successful order
selection are much lower, particularly for T ≤ 250. The BIC performs particularly
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Table 3 The BARCH(3) models with n = 10 used in the simulation study and their properties, where
(P)ACFk refers to the (P)ACF at lag k

Scenario (Sc.) 25: (α0, α1, α2, α3) = (0.068, 0.194, 0.2, 0.15)
Sc. 26: (α0, α1, α2, α3) = (0.037, 0.400, 0.2, 0.15)

Sc. Mean Var P(X = 0) (P)ACF1 ACF2 ACF3 ACF4 PACF2 PACF3 PACF4

25 1.500 1.488 0.224 0.300 0.303 0.269 0.158 0.234 0.150 0.000

26 1.500 2.046 0.287 0.600 0.530 0.482 0.389 0.266 0.150 0.000

badly, choosing the wrong model order more often than the true model order (for DGP
25, it votes for the first-order model in most cases). Even for sample size T = 500,
the rate of successfully identifying the model order p = 3 is still below 80%.

Aparticularly interesting case is that of theBARCH(2)DGP, because here, amodel-
order misidentification is possible in both directions, toward a model order that is
too large or too small. The results in Supplement S.4 show that the most common
misidentification is choosing p too small. For the BIC, it is nearly the only type of
misidentification, whereas the AIC shows a more complex pattern: choosing a too
small p mainly occurs for short time series (T = 100), while choosing p too large
happens for all T in about 10–15% of all cases, with slightly increasing values for
increasing T . In summary, the AIC always has a moderate tendency to choose the
model order p too large. But for small sample sizes, and particularly for the BIC, there
is a much larger risk of choosing a model order that is too small. This tendency should
be kept in mind when interpreting the actual decision of AIC or BIC for a given data
example.

6.2 Nonlinear AR-typemodels: max-BAR(p) model

In this and the subsequent section, we consider the use of AIC and BIC when deciding
between types of linear and nonlinear AR models. More precisely, in both sections,
we use the BARCH model as the representative CLAR-type model, but we consider
two different types of nonlinear AR-type models for bounded counts. In the present
section, it is the max-BAR(p) model (Weiß et al. 2018), which is defined by

Xt = max
{
α1 ◦ Xt−1, . . . , αp ◦ Xt−p, εt

}
, (6.1)

where all thinnings are performed independently, and the innovations εt are i. i. d.
bounded counts (here, we assume εt ∼ Bin(n, π)). Analytic formulae for the mean,
variance, and (P)ACF are not available, but these properties can be computed numer-
ically because (6.1) defines a pth-order Markov process (Weiß et al. 2018). The
conditional cumulative distribution function (CDF) is given by

FXt |xt−1,...,xt−p(x) = Fα1◦xt−1(x) · · · Fαp◦xt−p(x) · Fε(x), (6.2)
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Table 4 The max-BAR(1) and max-BAR(2) models with n = 10 used in the simulation study and their
properties, where (P)ACFk refers to the (P)ACF at lag k

Scenario (Sc.) 27: (π, α1) = (0.15, 0.3) Sc. 31: (π, α1, α2) = (0.15, 0.24, 0.2)
Sc. 28: (π, α1) = (0.15, 0.6) Sc. 32: (π, α1, α2) = (0.15, 0.48, 0.2)
Sc. 29: (π, α1) = (0.40, 0.3) Sc. 33: (π, α1, α2) = (0.40, 0.24, 0.2)
Sc. 30: (π, α1) = (0.40, 0.6) Sc. 34: (π, α1, α2) = (0.40, 0.48, 0.2)

Sc. Mean Var P(X = 0) (P)ACF1 ACF2 ACF3 ACF4 PACF2 PACF3 PACF4

27 1.629 1.117 0.118 0.103 0.009 0.001 0.000 − 0.002 0.000 0.000

28 1.879 0.998 0.050 0.307 0.087 0.023 0.006 − 0.008 − 0.002 0.000

29 4.051 2.225 0.002 0.029 0.000 0.000 0.000 0.000 0.000 0.000

30 4.275 1.870 0.000 0.171 0.023 0.002 0.000 − 0.007 0.000 0.000

31 1.658 1.055 0.092 0.070 0.052 0.005 0.002 0.047 − 0.002 − 0.001

32 1.805 0.971 0.051 0.208 0.071 0.017 0.005 0.029 − 0.003 0.000

33 4.048 2.215 0.001 0.016 0.010 0.000 0.000 0.010 0.000 0.000

34 4.165 1.987 0.000 0.093 0.013 0.001 0.000 0.004 − 0.001 0.000

where Fα◦l(k) = ∑min {k,l}
m=0

( l
m

)
αm (1 − α)l−m is the CDF of the binomial thinning

operation, and Fε(x) is the CDF of the innovation term. (6.2) is used to compute the
transition probabilities, as follows:

p(x |xt−1, . . . , xt−p) = FXt |xt−1,...,xt−p(x) − FXt |xt−1,...,xt−p(x − 1). (6.3)

For our simulation experiments, we choose the max-BAR parameters (scenarios 27–
34 in Table 4) to be equal to those of the bvAR DGPs in Tables 1 and 2. The obtained
simulation results are summarized in Supplement S.5.

If the true DGP is BARCH(1–2), it is hardly misidentified as a max-BAR process.
Misidentifications mainly happen within the BARCH family, in the way described
in Sects. 4 and 6.1. An analogous statement holds for the reverse situation (slightly
weakened regarding DGPs 29 and 33), so these types of linear and nonlinear models
are well separated by AIC and BIC. But another problem occurs. While the rates of
successfully identifying a max-BAR(1) DGP behave analogously to the other AR(1)-
type DGPs in Sect. 4 (quickly increasing to around 80% for the AIC and nearly
100% for the BIC with increasing T ), the identification of a max-BAR(2) DGP might
fail. For scenarios 33 and 34, the success rate is small even for T = 1000: 52%
and 37%, respectively, for the AIC, and below 1% for the BIC in both cases. These
low rates are essentially caused by falsely choosing the max-BAR(1) model. Fur-
thermore, in scenarios 33 and 34, we find that AICmax−BAR(2) − AICmin ≤ 2 in
the mean, but BICmax−BAR(2) − BICmin > 2. Thus, the BIC does not even consider
the max-BAR(2) model a reasonable candidate based on the two-units rule. Even
if the correct model is selected, an ML estimation shows relatively large dispersion
(see Supplement S.5), although the dispersion, as well as the bias, decrease with
increasing T .

Thus, it is natural to ask why we have such problems with the max-BARDGPs. For
ordinary max-AR models for real-valued time series (Davis and Resnick 1989), it is
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known that higher-order autoregressions might not be uniquely determined. Consider
the max-AR(2) model as an example, defined by Yt = max

{
a1 · Yt−1, a2 · Yt−2, εt

}
.

If a2
1 ≥ a2, this model can be reduced to a max-AR(1) model (Davis and Resnick

1989, pp. 790–791); thus, the model order is not unique. This ambiguity is intuitively
clear: because Yt−1 ≥ a1 · Yt−2, by model recursion, we have a1 · Yt−1 ≥ a2

1 · Yt−2,
which is ≥ a2 · Yt−2. Therefore, the max operator at time t will never select a2 · Yt−2.
This type of non-identifiability causes problems in parameter estimation; see Zhang
and Smith (2010) and Kunihama et al. (2012).

For the max-BAR(2) model in (6.1), we do not have such an exact reducibility
because we use probabilistic thinning operators instead of multiplications. Neverthe-
less, we have an analogous tendency: if α2 is much smaller than α2

1, the probability
P(α1◦ Xt−1 ≥ α2◦ Xt−2)will be quite large, but there is always a nonzero probability
that α1 ◦ Xt−1 < α2 ◦ Xt−2 (e. g., if α1 ◦ Xt−1 = 0, but α2 ◦ Xt−2 > 0). However, if the
innovation term εt has a large mean, then the max operator will most often select the
innovation term. Thus, both AR components are rarely activated, which makes model
identification difficult. This result is also evident for models 33 and 34 in Table 4. The
mean parameter π is rather large and, as a result, the serial dependence is extremely
weak (e. g., ρ(1) = 0.016 or ρ(1) = 0.093). Thus, it is extremely difficult to correctly
identify the second-order structure.

6.3 Nonlinear AR-typemodels: logit-BARCH(p) model

As the second type of nonlinear AR model for bounded counts, we consider the logit-
BARCH(p) model developed by Chen et al. (2019). The model’s definition is actually
closely related to that of the BARCH(p) model in Sect. 2.3, but it uses a logit link
function instead of a linear one. More precisely, defining logit(x) = ln

( x
1−x

)
(so its

inverse equals logit−1(x) = (
1 + exp(−x)

)−1), the logit-BARCH(p) model requires
that Xt |Xt−1, . . . be conditionally binomially distributed according to Bin(n, πt ),
where

logit(πt ) = r0 +
p∑

i=1

ri Xt−i (6.4)

with r j ∈ R for j = 0, . . . , p. Thus, the model parameters r j are not constrained,
which is attractive for parameter estimation. In fact, the transition probabilities as
required for ML estimation are simply given by

p(x |xt−1, . . . , xt−p) = (n
x

)
π x

t (1 − πt )
n−x (6.5)

with πt = logit−1
(

r0 +
p∑

i=1
ri xt−i

)

.

On the other hand, analytic formulae for the mean, variance, and (P)ACF are not avail-
able. These properties have to be computed numerically using the Markov property
(Weiß et al. 2018), as an analogy to Sect. 6.2. This is done for the simulation scenarios
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Table 5 The logit-BARCH(1) and logit-BARCH(2) models with n = 10 used in the simulation study and
their properties, where (P)ACFk refers to the (P)ACF at lag k

Scenario (Sc.) 35: (r0, r1) = (−2.14, 0.20) Sc. 39: (r0, r1, r2) = (−2.39, 0.20, 0.1)
Sc. 36: (r0, r1) = (−2.75, 0.40) Sc. 40: (r0, r1, r2) = (−2.99, 0.35, 0.1)
Sc. 37: (r0, r1) = (−0.94, 0.13) Sc. 41: (r0, r1, r2) = (−1.24, 0.11, 0.1)
Sc. 38: (r0, r1) = (−1.66, 0.30) Sc. 42: (r0, r1, r2) = (−1.92, 0.25, 0.1)

Sc. Mean Var P(X = 0) (P)ACF1 ACF2 ACF3 ACF4 PACF2 PACF3 PACF4

35 1.354 1.240 0.243 0.247 0.062 0.015 0.004 0.001 0.000 0.000

36 0.886 0.938 0.420 0.382 0.155 0.065 0.028 0.010 0.003 0.001

37 3.950 2.614 0.009 0.309 0.095 0.029 0.009 0.000 0.000 0.000

38 3.851 4.026 0.028 0.675 0.458 0.311 0.211 0.004 0.001 0.000

39 1.184 1.122 0.296 0.253 0.169 0.067 0.035 0.112 0.001 0.000

40 0.667 0.676 0.515 0.280 0.147 0.062 0.029 0.075 0.003 0.001

41 4.051 2.838 0.009 0.343 0.327 0.167 0.122 0.238 0.000 0.000

42 3.327 4.024 0.052 0.684 0.585 0.466 0.381 0.220 0.007 0.004

35–42 shown in Table 5. The choice of the parameter values is motivated as follows.
As shown in Sect. 6.2, if the nonlinear model behaves very differently from the con-
sidered linear candidate model, the information criteria can well discriminate between
these model families. Therefore, we attempt to choose the logit-BARCH DGPs such
that the shape of the actual inverse link function is similar to that of the respective
BARCH(p) model in Tables 1 and 2. We expect that the model selection will be more
difficult this time.

The obtained simulation results are summarized in Supplement S.6. As in the pre-
vious sections, the results are composed of boxplots of the simulated estimates for
the case of fitting the adequate model. As an analogy to the other DGPs considered
in this paper, the boxplots confirm the asymptotic unbiasedness and consistency of
the ML estimators, although the dispersion might be quite large for the small sample
size T = 100 (particularly for the estimators r̂1 and r̂2 of the second-order model).
In addition, Supplement S.6 again provides tables with selection numbers and aver-
age distances to the minimal AIC or BIC, respectively. As conjectured, the model
selection is quite problematic in some cases. For the BARCH(1) DGP 11, the AIC
more often selects the logit-BARCH family, without notable improvement for increas-
ing T . The BIC does slightly better because it rarely misidentifies as a second-order
model. The reverse is observed for the logit-BARCH(1) DGP 37, where we have a
stable number of BARCH(1) false selections. For the remaining scenarios (including
all second-order DGPs), the fraction of correct model identification increases with
increasing T , although sometimes quite slowly. Thus, we conclude that the BARCH
and logit-BARCH models might sometimes behave so similarly that a reliable dis-
crimination by AIC and BIC is not possible. This underlines the necessity to not rely
solely on information criteria for model choice, but to also consider further diagnostic
tools.
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Fig. 1 Access counts time series discussed in Sect. 7: plots of time series, sample ACF, sample PACF, and
sample probability mass function (PMF)

7 Real-data application: access counts

As a real-data application of model selection, we consider the data set introduced
by Weiß (2009) that records access to the websites of n = 6 staff members from a
statistics department. The counts x1, . . . , x661 provide the number of staff members
whose home directory was accessed for each minute between 10 AM and 9 PM on
November 29, 2005. As shown byWeiß (2009) (see also the (P)ACF plot in Fig. 1), this
bounded-counts time series has an AR-type autocorrelation structure, and a BAR(p)
model (Sect. 2.1) of order p = 2 or p = 3 works reasonably well. At the time of the
data analysis, the four other AR-type models for bounded-counts time series (those
from Sects. 2.2, 2.3, 6.2 and 6.3) were not known; thus, Weiß (2009) had to limit the
set of candidate models to BAR(p) models. In what follows, we perform a new model
selection based on a much larger set of candidate models: all AR(p)-type models
discussed in Sects. 2 and 6, with model orders p = 1, 2, 3. The full estimation results
are provided in Supplement S.7.

The obtained values for the AIC and BIC are summarized in Table 6 (a). Themodels
that minimize the AIC and BIC (in bold font) are the BAR(3) or BAR(2) models,
respectively, as in Weiß (2009). However, if we consider the two-units rule (see the
values in italic font), it becomes clear that the corresponding BARCH models also
appear to be a reasonable choice, whereas the max-BAR and bvAR models clearly
perform worse. Among the logit-BARCH models, the second-order model should be
further considered. This appears plausible in view of our previous findings: the max-
BAR and bvAR models clearly differ from the BAR model, whereas the BARCH
model is relatively flexible, with the logit-BARCH model sometimes coming close.
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Fig. 2 Access counts time series discussed in Sect. 7: analysis for Pearson residuals for the fitted BAR(2)
and BAR(3) model. Summary with their means and variances, plots of their sample ACF (left: p = 2; right:
p = 3)

On the other hand, this time, we do not know the true model underlying the DGP.
Thus, it is important to verify and explain these decisions and distinctions, including
whether they are perhaps misleading. Therefore, we next compare the properties of
the fitted models in Table 6 (b) with those of the sample.

From Table 6 (b), it becomes clear that the BAR and BARCH models outperform
the bvAR and max-BAR models in terms of the marginal properties (particularly the
variance and zero probability) and theACF. The bvARmodels, and especially themax-
BARmodels, exhibit much lower autocorrelation values than are observed in the time
series itself. Therefore, these types of models are not adequate for the data, confirming
the decisions based on the AIC and BIC. For the logit-BARCH models, we observe
that the third-order model does not show clear improvement over the second-order
model, and both have a lower lag-three ACF than is observed in the data. Therefore,
themodels do notmatch aswell as theBAR(3) andBARCH(3)models. But if selecting
among the second-order models, the logit-BARCH(2) model performs quite well. If
we compare the BAR and BARCH models, we find similar performance for both
p = 2 and p = 3. The BAR models’ variance and zero probability are slightly closer
to the corresponding sample properties than those of the BARCH models, supporting
the slight preference for the BAR models of both the AIC and BIC. The closeness
between the ACFs of the models and the sample is effected more by the actual model
order than by the model type. Weiß (2009) noted that a “third-order model should be
preferred” for the serial dependence structure, despite the BIC’s preference for order
p = 2. This conclusion is confirmed by the results in Table 6 (b) for both the BAR
and BARCH models: the ACFs at lags three and four are well approximated only if
p = 3, with a slight advantage for the BAR model.

Thus, depending on the considered information criterion, model selection leads to
either the BAR(2) or BAR(3)model. In any case, the result for model selectionmust be
checked for model adequacy. A widely used tool for this purpose is the (standardized)
Pearson residuals (Jung et al. 2016; Weiß 2018). For an adequate model, the Pearson
residuals should have a sample mean close to 0, a variance close to 1, and ACF values
close to 0. For both the fitted BAR(2) or BAR(3) model, we compute the resulting
Pearson residuals and conduct the analyses summarized in Fig. 2. We find that the
mean and variance satisfy the described requirements quite well, so both models seem
to adequately describe the data’s (conditional) mean and variance. However, for the

123



1734 H.-Y. Kim et al.

Ta
bl
e
6

A
cc
es
s
co
un
ts
tim

e
se
ri
es

di
sc
us
se
d
in

Se
ct
.7

:A
IC

an
d
B
IC

in
(a
),
sa
m
pl
e
pr
op
er
tie
s
an
d
fit
te
d
m
od
el
s’
pr
op
er
tie
s
in

(b
)

p
A
IC

B
IC

B
A
R

(p
)

bv
A
R

(p
)

B
A
R
C
H

(p
)

m
ax
-B
A
R

(p
)

lo
gi
t-
B
A
R
C
H

(p
)

B
A
R

(p
)

bv
A
R

(p
)

B
A
R
C
H

(p
)

m
ax
-B
A
R

(p
)

lo
gi
t-
B
A
R
C
H

(p
)

(a
)

1
12
35
.4

12
51
.9

12
36
.4

12
55
.2

12
36
.8

12
44
.4

12
60
.9

12
45
.4

12
64
.2

12
45
.8

2
12

28
.8

12
52
.4

12
29

.6
12
55
.9

12
28

.9
12
42
.3

12
65
.9

12
43

.1
12
69
.4

12
42

.4

3
12
28
.3

12
55
.4

12
30

.3
12
58
.9

12
32
.0

12
46
.3

12
73
.4

12
48
.3

12
76
.8

12
49
.9

M
ea
n

V
ar

P
(
X

=
0)

A
C
F1

A
C
F2

A
C
F3

A
C
F4

(b
)

D
at
a

0.
55

2
0.

51
4

0.
56

0
0.

26
9

0.
20

1
0.

15
3

0.
05

7

B
A
R

(1
)

0.
55
3

0.
50
2

0.
56
0

0.
26
1

0.
06
8

0.
01
8

0.
00
5

bv
A
R

(1
)

0.
56
2

0.
62
4

0.
58
5

0.
21
9

0.
04
8

0.
01
1

0.
00
2

B
A
R
C
H

(1
)

0.
55
3

0.
53
3

0.
57
0

0.
26
3

0.
06
9

0.
01
8

0.
00
5

m
ax
-B
A
R

(1
)

0.
55
6

0.
44
0

0.
53
2

0.
16
4

0.
02
6

0.
00
4

0.
00
1

lo
gi
t-
B
A
R
C
H

(1
)

0.
55
4

0.
53
7

0.
56
9

0.
26
9

0.
07
5

0.
02
1

0.
00
6

B
A
R

(2
)

0.
55
5

0.
50
4

0.
55
9

0.
25
0

0.
17
9

0.
07
0

0.
03
8

bv
A
R

(2
)

0.
56
9

0.
65
9

0.
58
8

0.
20
1

0.
11
3

0.
03
6

0.
01
5

B
A
R
C
H

(2
)

0.
55
5

0.
54
0

0.
57
0

0.
25
7

0.
18
5

0.
07
4

0.
04
0

m
ax
-B
A
R

(2
)

0.
55
9

0.
42
6

0.
52
3

0.
15
3

0.
06
8

0.
01
7

0.
00
5

lo
gi
t-
B
A
R
C
H

(2
)

0.
55
8

0.
53
3

0.
57
1

0.
28
9

0.
22
2

0.
10
1

0.
06
0

B
A
R

(3
)

0.
55
9

0.
50
7

0.
55
6

0.
24
5

0.
17
8

0.
14
1

0.
06
7

bv
A
R

(3
)

0.
57
1

0.
66
6

0.
58
8

0.
19
6

0.
11
0

0.
05
1

0.
02
0

B
A
R
C
H

(3
)

0.
55
6

0.
54
1

0.
57
0

0.
25
0

0.
18
2

0.
13
2

0.
06
5

m
ax
-B
A
R

(3
)

0.
55
9

0.
42
6

0.
52
3

0.
15
3

0.
06
7

0.
01
6

0.
00
5

lo
gi
t-
B
A
R
C
H

(3
)

0.
55
9

0.
55
4

0.
57
0

0.
27
7

0.
21
2

0.
09
6

0.
05
7

(a
)
M
in
im

al
va
lu
e
of

A
IC

(B
IC
)
in

bo
ld

fo
nt
;A

IC
(B
IC
)
va
lu
es

de
vi
at
in
g
by

≤
2
fr
om

m
in
im

al
A
IC

(B
IC
)
in

ita
lic

fo
nt

(b
)
Sa
m
pl
e
pr
op
er
tie
s
hi
gh
lig

ht
ed

in
ita
lic

fo
nt

123



Models for autoregressive processes of bounded counts: How… 1735

fitted BAR(2) model as selected by the BIC, there is a notably large ACF value at lag
three (≈ 0.074), whereas all other ACF values are reasonably close to 0. This indicates
that the chosen model order might have been too small. In fact, the AIC’s choice, the
BAR(3) model, has ACF values close to 0 throughout. Therefore, together with our
previous findings, this leads us to conclude that the BAR(3) model should be selected
for the access counts time series.

8 Conclusion

We compared five AR-type models for bounded-counts time series and investigated
the differences between them. Three of them, the BAR, bvAR, and BARCH models,
have a conditionally linear mean, whereas the max-BAR and logit-BARCH models
are nonlinear.We found that the linear BAR and bvARmodels behave quite differently
from the BARCH model, and none of these two models can mimic the properties of
the time series generated by either of the other models. In contrast, the BARCHmodel
proved to be sufficiently flexible to imitate the ACF structure of its competitors. Thus,
the consequences of erroneously fitting a BARCH model to the data are less severe
than in the case of the two other linear models. Regarding the non-CLAR models, the
max-BAR model with its highly nonlinear data-generating mechanism is markedly
different from all other models. In contrast, the logit-BARCH model, although being
nonlinear in a formal sense, is sometimes hard to distinguish from the linear BARCH
model. Generally, for the model choice, the AIC is a more reliable advisor for higher-
order AR-type DGPs, whereas the BIC is better suited to avoid the overfitting of a
first-order AR-type DGP (also see the Discussion in Dziak et al. 2019). However,
since the actual model order is not known in advance, it is crucial to not blindly trust
any of these criteria. Instead, the model choice should always be accompanied by a
careful adequacy check, for example, by examining the moment properties or Pearson
residuals considered in this paper.
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