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Abstract
In this paper, a partially linear varying-coefficient model with measurement errors in
the nonparametric component as well as missing response variable is studied. Two
estimators for the parameter vector and nonparametric function are proposed based on
the locally corrected profile least squares method. The first estimator is constructed
by using the complete-case data only, and another by using an imputation technique.
Both proposed estimators of the parametric component are shown to be asymptoti-
cally normal, and the estimators of nonparametric function are proved to achieve the
optimal strong convergence rate as the usual nonparametric regression. Some simula-
tion studies are conducted to compare the behavior of these estimators and the results
confirm that the estimators based on the imputation technique perform better than the
complete-case data estimator in finite samples. Finally, an application to a real data
set is illustrated.

Keywords Partially linear varying-coefficient models · Measurement error ·
Missing response · Locally corrected profile least squares · Imputation technique

1 Introduction

The partially linear varying-coefficient model, as a very important semi-parametric
model, takes the form as

Y = XT β + ZT α(U ) + ε, (1)

where Y is the response variable,X ∈ R p,Z ∈ Rq andU are the associated covariates,
β = (β1, . . . , βp)

T is a p-dimensional vector of unknown parameter and α(.) =
(α1(.), . . . , αq(.))T is a q-dimensional vector of unknown coefficient function, ε is
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the random error that is assumed to be independent of (U ,X,Z) with mean zero and
finite variance σ 2. Since model (1) keeps both the interpretation power of parametric
model and the flexibility of nonparametric model, it has been extensively studied by
researches (Ahmad et al. 2005; Fan and Huang 2005; Kai et al. 2011; Long et al. 2013;
You and Zhou 2006; Zhang et al. 2002; among others).

With the development of science and technology, the study of data with missing
observations has been attracted more attention in various scientific fields, such as eco-
nomics, engineering, biology and epidemiology. Dealing with missing data, several
problemsmay arise when traditional statistical inference procedures for complete data
sets are applied directly. There has been extensive research on statistical models with
missing observations. In the partially linear model with the missing response data,
Wang et al. (2004) proposed a class of semiparametric estimators for the regression
coefficient and the response mean. Wang and Sun (2007) developed the imputation,
semi-parametric surrogate regression and inversemarginal probability weightedmeth-
ods to estimate unknown parameter. Xue and Xue (2011) proposed the bias-corrected
method to calibrate the empirical likelihood ratios so that the estimator has asymptoti-
cally chi-squared distribution. Besides, with the missing response data in the partially
linear varying-coefficient model (1), Wei (2012a) presented a profile least squares
estimator for the parametric part based on the complete-case data.

Besides missing data, error-in-variables(EV) data, as another complex data can
always be seen in real problems. It is well known that, if the measurement errors
are ignored directly, the resulting estimators will not be unbiased. A great deal of
researches on regression models with EV data have been studied. The simple spec-
ification of EV data is that the variables are measured with additive errors. Instead
of observing certain covarites X, we observe W = X + ξ , where the measurement
error ξ is independent of other variables. Taking model (1) as an example, under the
situation ofX is measured with additive error, You and Chen (2006) proposed a locally
corrected profile least squares procedure to estimate the parameter and showed that the
estimator is consistent and asymptotically normal. Zhang et al. (2011) andWei (2012b)
developed a restricted modified profile least squares estimator of the parameter under
some additional linear restrictions. Hu et al. (2009) andWang et al. (2011) constructed
confidence regions for the unknown parameters with the empirical likelihood infer-
ence. On the other hand, when the nonparametric part Z is measured with additive
error in model (1), Feng and Xue (2014) conducted a locally bias-corrected restricted
profile least squares estimators of both parameter and nonparametric functions. Fan
et al. (2016a) used some auxiliary information to construct empirical log-likelihood
ratios and Fan et al. (2016b) extended the penalized empirical likelihood to the high-
dimensional model. Fan et al. (2018) suggested a bias-correction penalized profile
least squares variable selection method in high dimensional models. Moreover, when
X is measured with additive errors as well as the response Y is missing in model (1),
Wei and Mei (2012) applied the empirical likelihood method to construct confidence
regions for parameters and Yang and Xia (2014) obtained restricted estimators under
the linear constraint. However, the simultaneous existence of missing response and
measurement error in the nonparametric part of model (1) has been seldom discussed.
In addition, it should be noted that the assumption of additive measurement errors
may be too simple in some applications. To analyze data from certain biomedical and
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health-related studies, one cannot directly observe some covariates and the response
variable, butmayobtain their distorted observations by certain functions of an observed
confounding variable. Zhang et al. (2018) considered the nonlinear regression model
under the assumption that both the response and predictors are unobservable and dis-
torted by the multiplicative effects of some observable confounding variables. More
interesting work for further study with model (1) will consider this situation.

In this paper, we study partially linear varying-coefficient models in which the
response variable Y cannot be observed completely and the covariate Z cannot be
observed accurately. Throughout this paper, we introduce an indicator variable δ such
that δ = 1 means that Y is observed and δ = 0 indicates that Y is missing. We assume
that data missing mechanism follows

Pr(δ = 1|Y ,X,Z,U ) = Pr(δ = 1|X,Z,U ) = π(X,Z,U ). (2)

Meanwhile, the variable Z is measured with additive errors. That is

W = Z + ξ , (3)

where ξ is the measurement error and independent of (Y ,X,Z, U , ε, δ) and has mean
zero and known covariance Cov(ξ) = �ξ . Even if covariance �ξ is unknown, a
consistent and unbiased estimator can still be obtained by repeatedly observing Wi

(see Liang et al. (2007) for details). If Z is observed exactly, then the probability
of missingness is independent of missing responses and the resulting mechanism is
called missing at random (MAR). However, considering model (1) under assumption
(3), the covariate Z is observed with measurement error and therefore Y is not missing
at random which has been pointed out by Wei and Mei (2012) and Liang et al. (2007).

The rest of this paper is organized as follows. In Sect. 2, the locally corrected profile
linear least squares estimation procedure with complete-case data is proposed, and
then the asymptotic properties of the estimators are proved under some assumptions.
In Sect. 3, an imputation technique is used to improve the accuracy of the estimator and
corresponding asymptotic results are obtained. Some simulation studies are conducted
in Sect. 4 to assess the performances of the proposed two estimators. In Sect. 5, the
methodologies are illustrated by a real data example. Sect. 6 is conclusion and the
proofs of the main Theorems are left in the “Appendix”.

2 Estimationmethod based on complete-case data

Firstly, we assume that measurement errors do not exist thus covariate Z can be
observed exactly. Suppose that the observation data {Yi ; δi ,Xi ,Zi , Ui }n

i=1 is generated
from model (1) under assumption (2), then we have the following equation

δi Yi = δiXT
i β + δiZT

i α(Ui ) + δiεi , i = 1, . . . , n. (4)

We assume that β is known, then the model (4) can be rewritten as the following
varying coefficient regression model,
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δi Yi − δiXT
i β = δi

q∑

j=1

Zi jα j (Ui ) + δiεi , (5)

where Zi j is the j th element of Zi and α j (.) is the j th function of α(.), j = 1, . . . , q.
We can estimate the coefficient functions α j (.), j = 1 · · · , q by the local linear fitting
procedure. Specifically, for u in a small neighborhood of u0, α j (u) can be locally
approximated by a linear function as following:

α j (u) ≈ α j (u0) + α
(1)
j (u0)(u − u0) = a j + b j (u − u0), j = 1, . . . , q,

where α
(1)
j (u) = ∂α j (u)/∂u denotes the first order derivative of α j (u). Then, the

estimators of α j (.) can be obtained by selecting {(a j , b j ), j = 1, . . . , q} to minimize:

n∑

i=1

⎧
⎨

⎩Yi − XT
i β −

q∑

j=1

[a j + b j (Ui − u)]Zi j

⎫
⎬

⎭

2

Kh1(Ui − u)δi , (6)

where Kh1(.) = K (./h1)/h1, K (.) is a kernel function and h1 is the bandwidth. The
solution to problem (6) is obtained by

α̂(u;β) = (Iq , 0q)
[
(DZ

u )T ωδ
uD

Z
u

]−1
(DZ

u )T ωδ
u(Y − Xβ), (7)

where Y = (Y1, . . . , Yn)T , X = (X1, . . . ,Xn)T , ωδ
u = diag(Kh1(U1 − u)δ1, . . . ,

Kh1(Un − u)δn), and

DZ
u =

⎛

⎜⎝
ZT
1 h−1

1 (U1 − u)ZT
1

...
...

ZT
n h−1

1 (Un − u)ZT
n

⎞

⎟⎠ .

Now consider Zi ’s are not observed due to measurement error and Wi ’s are the
observable surrogate data. Thus, α̂(u;β) is not consistent and unbiased if Wi is
replaced by Zi directly in (7). Based on the idea of Feng and Xue (2014), a mod-
ified locally corrected linear estimators of α(.) can be given by

α̂(u;β) = (Iq , 0q)
[
(DW

u )T ωδ
uD

W
u − �δ

u

]−1
(DW

u )T ωδ
u(Y − Xβ), (8)

where DW
u has the same form as DZ

u except that Zi is replaced by Wi and

�δ
u =

n∑

i=1

�ξ ⊗
⎛

⎝
1 Ui −u

h1
Ui −u

h1

(
Ui −u

h1

)2

⎞

⎠ Kh1(Ui − u)δi ,

with ⊗ is the Kronecker product.
Taking u to be U1, . . . , Un in (8), we can get that α̂(Ui ;β) = Qi (Y − Xβ),

where Qi = (Iq , 0q)[(DW
Ui

)T ωδ
Ui
DW

Ui
− �δ

Ui
]−1(DW

Ui
)T ωδ

Ui
. For the convenience of

expression, let
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Sc =
⎛

⎜⎝
(WT

1 , 01×q)[(DW
U1

)T ωδ
U1
DW

U1
− �δ

U1
]−1(DW

U1
)T ωδ

U1
...

(WT
n , 01×q)[(DW

Un
)T ωδ

Un
DW

Un
− �δ

Un
]−1(DW

Un
)T ωδ

Un

⎞

⎟⎠ ,

and denote Ỹi = Yi − ∑n
k=1 S

c
ikYk and X̃i = Xi − ∑n

k=1 S
c
ikXk , where Sc

ik is the
(i, k)th component of matrix Sc.

Then, the locally corrected profile least squares estimator β̂c of β based on
complete-case data is obtained by minimizing

n∑

i=1

δi

[
Yi − XT

i β − WT
i α̂(Ui ;β)

]2 −
n∑

i=1

δi α̂
T
(Ui ;β)�ξ α̂(Ui ;β). (9)

It is noted that the second term on the right hand side of (9) is included to avoid
underestimating for β which is caused by measurement errors. By simple calculation,
estimator β̂c can be obtained by

β̂c =
[

n∑

i=1

δi

(
X̃i X̃

T
i − XTQT

i �ξQiX
)]−1 [ n∑

i=1

δi

(
X̃i Ỹi − XTQT

i �ξQiY
)]

.

(10)

Then, substituting β̂c into α̂(u;β) of (8) gives the estimator α̂(u; β̂c) of α(u),that is

α̂c(u) = α̂(u; β̂c) = (Iq , 0q)
[
(DW

u )T ωδ
uD

W
u − �δ

u

]−1
(DW

u )T ωδ
u(Y − Xβ̂c).

(11)

The asymptotic properties of β̂c and α̂c(u) are given in the following Theorems.

Theorem 1 Suppose that the Conditions in the Appendix C1–C5 hold. Then we have

√
n(β̂c − β)

d−→ N (0,�−1
1 �1�

−1
1 ),

where “
d−→” denotes convergence in distribution,

�1 = E{δ1[X1 − 	T
c (U1)


−1
c (U1)Z1]⊗2},

�1 = E{δ1(ε1 − ξ T
1 α(U1))

2�1} + σ 2E{δ1[	T
c (U1)


−1
c (U1)�ξ


−1
c (U1)	c(U1)]}

+E{δ1[	T
c (U1)


−1
c (U1)(ξ1ξ

T
1 − �ξ )α(U1)]⊗2},

wi th 
c(u) = E(δ1Z1ZT
1 |U = u) and 	c(u) = E(δ1Z1XT

1 |U = u).

When we make statistical inference for β by Theorem 1, asymptotic variance

of β is required to be estimated firstly. �−1
1 �1�

−1
1 is estimated by �̂

−1
1 �̂1�̂

−1
1

with plug-in method, where �̂1 = 1
n

∑n
i=1 δi {X̃i X̃

T
i − XTQT

i �ξQiX}, and �̂1 =
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1
n

∑n
i=1 δi

{
X̃i (Ỹi − X̃

T
i β̂c) − XTQT

i �ξQi [Y − Xβ̂c]
}⊗2

.

Theorem 2 Suppose that the Conditions C1–C5 in the Appendix hold and h1 =
cn−1/5, where c is a constant. Then we have

max
1≤ j≤p

sup
u∈�

|α̂cj (u) − α j (u)| = O(n−2/5 + (logn)1/2), a.s.

3 Estimationmethod based on imputation technique

It is noted that the estimator β̂c defined by (10) use complete-case data only and
discard sample when Yi is missing. This procedure may reduce the efficiency of the
estimators of β which is caused without making full use of sample information.

When we are dealing with missing data, an imputation technique is prevalent which
has been applied to various semi-parametric models, such examples can be found in
Yang et al. (2011) and Xue and Xue (2011). The main idea of this method is to firstly
impute a reasonable value for each missing data and then make statistical inference as
if the data set is complete. Specifically, if covariate Z can be observed directly, based
on the estimator β̂c and α̂c(u; β̂c), we have (Ĥ0

i ;Xi ,Zi , Ui )
n
i=1, where

Ĥ0
i = δi Yi + (1 − δi )[XT

i β̂c + ZT
i α̂c(Ui ; β̂c)].

However, Ĥ0
i can not be obtained since Zi can not be observed in practice.

Instead, Ĥi = δi Yi + (1 − δi )[XT
i β̂c + WT

i α̂c(Ui ; β̂c)] is available. Based on data
(Ĥi ;Xi ,Wi , Ui )

n
i=1, the following partially linear varying-coefficient model with

measurement errors in both covariate and response can be written as

⎧
⎪⎨

⎪⎩

Ĥ0
i = XT

i β + ZT
i α(Ui ) + ei

Wi = Zi + ξ i

Ĥi = Ĥ0
i + (1 − δi )ξ

T
i α̂c(Ui ; β̂c)

(12)

where ei = Ĥ0
i − Yi + εi is the model error.

Then, the estimator β̂ I of parameter β based on model (12) can be obtained by
minimizing

n∑

i=1

[
Ĥi − XT

i β − WT
i α̌(Ui ;β)

]2 −
n∑

i=1

α̌
T
(Ui ;β)�ξ α̌(Ui ;β)

+
n∑

i=1

(1 − δi )α̌
T
(Ui ;β)�ξ α̂(Ui ; β̂c), (13)

where α̌(u;β) has the same form as α̂(u;β) defined in (8), except that ωδ
u and �δ

u are
replaced by ωu and �u , respectively. That is
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α̌(u;β) = (Iq , 0q)
[
(DW

u )T ωuDW
u − �u

]−1
(DW

u )T ωu(Ĥ − Xβ), (14)

with ωu = diag(Kh2(U1 − u), . . . , Kh2(Un − u)), Ĥ = (Ĥ1, Ĥ2, . . . , Ĥn)T , and

�u =
n∑

i=1

�ξ ⊗
⎛

⎝
1 Ui −u

h2
Ui −u

h2

(
Ui −u

h2

)2

⎞

⎠ Kh2(Ui − u),

and Kh2(.) = K (./h2)/h2 with a kernel function K (.) and a bandwidth h2.
Besides the second term in (13), the third term is added to correct the bias which

is induced byWi contained in Ĥi . Similarity, denote Ri = (Iq , 0q)[(DW
Ui

)T ωUiD
W
Ui

−
�Ui ]−1(DW

Ui
)T ωUi , then α̌(Ui ;β) = Ri (Ĥ − Xβ). Let

SI =

⎛

⎜⎜⎜⎝

(WT
1 , 01×q)

[
(DW

U1
)T ωU1D

W
U1

− �U1

]−1
(DW

U1
)T ωU1

...

(WT
n , 01×q)

[
(DW

Un
)T ωUnD

W
Un

− �Un

]−1
(DW

Un
)T ωUn

⎞

⎟⎟⎟⎠ .

Denote H̄i = Ĥi −∑n
k=1 S

I
ik Ĥk and X̄i = Xi −∑n

k=1 S
I
ikXk , where SI

ik is the (i, k)th
component of matrix SI .

By simple calculation, the estimator β̂ I based on the imputation method is obtained
by

β̂ I =
[

n∑

i=1

(X̄i X̄
T
i − XTRT

i �ξRiX)

]−1

[
n∑

i=1

(X̄i H̄i − XTRT
i �ξRi Ĥ) + (1 − δi )XTRT

i �ξQi (Y − Xβ̂c)

]
.

(15)

Then, the corresponding imputation estimator α̂ I (u) of α(u) is defined as

α̂ I (u) = α̌(u; β̂ I ) = (Iq , 0q)
[
(DW

u )T ωuDW
u − �u

]−1
(DW

u )T ωu(Ĥ − Xβ̂ I ). (16)

The asymptotic normality of β̂ I and the convergence of α̂ I (u) are given in the
following Theorems.

Theorem 3 Suppose that the Conditions C1–C5 in the Appendix hold. Then we have

√
n(β̂ I − β)

d−→ N (0,�−1�2�
−1),
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where

� = E{[X1 − 	T (U1)

−1(U1)Z1]⊗2},

�2 = (�2 + �1)�
−1
1 �1�

−1
1 (�2 + �1),

�2 = E{(1 − δ1)[X1 − 	T (U1)

−1(U1)Z1][X1 − 	T

c (U1)

−1
c (U1)Z1]T }

wi th 
(u) = E(Z1ZT
1 |U = u) and 	(u) = E(Z1XT

1 |U = u).

where �1 and �1 are defined in Theorem 1.

Theorem 4 Suppose that the Conditions C1–C5 in the Appendix hold and h2 =
cn−1/5, where c is a constant. Then we have

max
1≤ j≤p

sup
u∈�

|α̂I j (u) − α j (u)| = O(n−2/5 + (logn)1/2), a.s.

4 Simulation study

In this section,we conduct some simulations to assess the performances of the proposed
estimators in finite samples. The data are generated from the following partially linear
varying-coefficient measurement error model with missing responses

{
Yi = XT

i β + Z1iα1(Ui ) + Z2iα2(Ui ) + εi ,

W ji = Z ji + ξ j i , j = 1, 2, i = 1, . . . , n,

where parameter vector β = (β1, β2, β3, β4, β5)
T = (1, 1.5, 2, 1.5, 1)T , coefficient

functions α1(u) = cos(2πu) and α2(u) = sin(2πu). The covariate variables X1, X2,

X3, X4, X5 are independently generated from N (1, 1), Z1, Z2 are independently
generated from N (−1, 1) and U is independently drawn from a uniform distribu-
tion on [0,1]. In addition, the model error ε ∼ N (0, 1) and the measurement error
ξ = (ξ1, ξ2)

T ∼ N (0, �ξ ) with �ξ = 0.2I2 and �ξ = 0.4I2, respectively. I2 is
identity matrix with order 2. We consider the following two missing schemes as

Case (i). Pr(δ = 1|X1 = x1, X2 = x2, X3 = x3, X4 = x4, X5 = x5, Z1 =
z1, Z2 = z2, U = u) = 0.8 for all x1, x2, x3, x4, x5, z1, z2, u.

Case (ii). Pr(δ = 1|X1 = x1, X2 = x2, X3 = x3, X4 = x4, X5 = x5, Z1 =
z1, Z2 = z2, U = u) = 0.8+0.6(|z1|+ |z2|+ |u −0.5|) if |z1|+ |z2|+ |u −0.5| < 1,
and otherwise 0.8. In this case, the mean response rates is approximately 0.87.

Kernel function K (t) is chosen as Epanechnikov kernel K (t) = (3/4)(1 − t2) if
|t | ≤ 1, and 0 otherwise. In our simulation, we set the sample size n to be 100, 200
and 300. For each sample size, we generate 1000 random samples.

Some simulation results are reported in Tables 1, 2, 3, 4, 5, 6 and 7 to evaluate
the performances of the proposed estimators β̂c and β̂ I . Firstly, to determine whether
the choice of bandwidth has influences on the performance of the estimators, we
choose three bandwidths with h1 = h2 = hopt = 2.34 ∗ sd(U ) ∗ n−1/5, where
sd(U ) is the standard deviation of the observations of U1, U2, . . . , Un . The average
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Table 1 The average estimation errors of estimators for the parametric components with�ξ = 0.2I2 under
missing case (i)

n ||β̂c − β|| ||β̂ I − β||
0.5hopt hopt 1.5hopt 0.5hopt hopt 1.5hopt

100 0.3441 0.2806 0.3130 0.3221 0.2789 0.2938

200 0.2071 0.1809 0.1881 0.1889 0.1806 0.1865

300 0.1557 0.1438 0.1494 0.1541 0.1432 0.1488

Table 2 Finite sample performance of estimator β̂T , β̂c , β̂I and β̂N for β1

�ξ n β̂T β̂c β̂I β̂N

Bias SD Bias SD Bias SD Bias SD

case(i)

0.2I2 100 0.0027 0.1197 0.0035 0.1355 0.0032 0.1354 0.1109 0.2133

200 0.0013 0.0797 0.0034 0.0878 0.0032 0.0876 0.1101 0.1363

300 0.0005 0.0645 0.0019 0.0701 0.0014 0.0700 0.1082 0.1086

0.4I2 100 0.0042 0.1145 0.0035 0.1393 0.0038 0.1376 0.2016 0.2575

200 0.0027 0.0774 0.0023 0.0912 0.0021 0.0904 0.1998 0.1621

300 0.0008 0.0648 0.0018 0.0725 0.0013 0.0721 0.1945 0.1310

case(ii)

0.2I2 100 0.0021 0.1129 0.0037 0.1274 0.0031 0.1264 0.1075 0.2049

200 0.0009 0.0775 0.0018 0.0866 0.0018 0.0860 0.1013 0.1357

300 0.0001 0.0613 0.0013 0.0675 0.0011 0.0673 0.1010 0.1065

0.4I2 100 0.0026 0.1120 0.0057 0.1362 0.0053 0.1359 0.1910 0.2443

200 0.0013 0.0749 0.0049 0.0907 0.0045 0.0899 0.1779 0.1680

300 0.0006 0.0606 0.0013 0.0717 0.0011 0.0710 0.1659 0.1338

estimation errors ||β̂c−β|| and ||β̂ I −β|| in L2-norm are computedwith three different
bandwidths in Table 1. We can see that the choice of bandwidth shows a very slight
impact on the estimators β̂c and β̂ I , especially when the sample size is large. Hence,
we choose hopt as the selected bandwidth for the later examples.

Secondly, in Tables 2, 3, 4, 5 and 6, “Bias” and “SD” denote the bias and the standard
deviation of the 1000 estimators, respectively. For comparison, we not only report the
proposed estimates β̂c and β̂I , but also β̂T and β̂N , which stand respectively for the
true and naive estimates. The true estimate β̂T is obtained via the standard profile least
squares approach by using the complete data (Yi ; Xi , Zi , Ui ), i = 1, . . . , n. However,
β̂T is not applicable in practice since some observations of Yi are not available due
to missing and Zi can not be obtained as a result of measurement errors. The naive
estimate β̂N is calculated by ignoring the measurement errors, not performing the bias
correction as in equations (8) and (9), and applying the complete-case data only.

From Tables 2, 3, 4, 5 and 6, it is observed that the bias and SD of both estimators
β̂c and β̂I are relatively small, which show that the proposed estimation procedures in
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Table 3 Finite sample performance of estimator β̂T , β̂c , β̂I and β̂N for β2

�ξ n β̂T β̂c β̂I β̂N

Bias SD Bias SD Bias SD Bias SD

case(i)

0.2I2 100 0.0039 0.1156 0.0083 0.1291 0.0078 0.1288 0.1297 0.2133

200 0.0013 0.0813 0.0061 0.0888 0.0054 0.0881 0.1106 0.1420

300 0.0005 0.0609 0.0006 0.0701 0.0003 0.0667 0.1071 0.1067

0.4I2 100 0.0055 0.1131 0.0100 0.1437 0.0113 0.1383 0.2016 0.2575

200 0.0026 0.0758 0.0062 0.0920 0.0069 0.0913 0.1924 0.1702

300 0.0014 0.0649 0.0054 0.0765 0.0052 0.0751 0.1842 0.1347

case (ii)

0.2I2 100 0.0030 0.1180 0.0052 0.1306 0.0049 0.1298 0.1217 0.2070

200 0.0012 0.0747 0.0017 0.0821 0.0015 0.0819 0.1091 0.1317

300 0.0003 0.0644 0.0029 0.0696 0.0014 0.0693 0.1061 0.1073

0.4I2 100 0.0087 0.1146 0.0135 0.1400 0.0057 0.1374 0.2154 0.2470

200 0.0027 0.0744 0.0018 0.0888 0.0017 0.0881 0.1920 0.1593

300 0.0020 0.0602 0.0021 0.0720 0.0013 0.0719 0.1900 0.1267

Table 4 Finite sample performance of estimator β̂T , β̂c , β̂I and β̂N for β3

�ξ n β̂T β̂c β̂I β̂N

Bias SD Bias SD Bias SD Bias SD

case(i)

0.2I2 100 0.0024 0.1096 0.0073 0.1206 0.0070 0.1201 0.1234 0.2177

200 0.0011 0.0806 0.0045 0.0900 0.0042 0.0898 0.1130 0.1417

300 0.0008 0.0628 0.0025 0.0703 0.0021 0.0700 0.1091 0.1058

0.4I2 100 0.0031 0.1188 0.0081 0.1487 0.0080 0.1440 0.2243 0.2527

200 0.0028 0.0890 0.0064 0.0960 0.0060 0.0956 0.1982 0.1638

300 0.0023 0.0637 0.0027 0.0741 0.0023 0.0741 0.1008 0.1373

case(ii)

0.2I2 100 0.0093 0.1202 0.0075 0.1325 0.0068 0.1313 0.1307 0.2095

200 0.0025 0.0779 0.0044 0.0858 0.0041 0.0856 0.1133 0.1353

300 0.0013 0.0595 0.0031 0.0648 0.0032 0.0648 0.1041 0.1036

0.4I2 100 0.0029 0.1139 0.0167 0.1399 0.0164 0.1378 0.2087 0.2549

200 0.0022 0.0868 0.0046 0.0894 0.0041 0.0884 0.1886 0.1660

300 0.0016 0.0618 0.0028 0.0728 0.0027 0.0725 0.1865 0.1326

this paper can work well in finite samples. The estimators β̂c and β̂I are comparable
to β̂T , though it is impossible to obtain in practice. The bias and the SD of β̂N is
much larger than other three estimators, which indicate that the measurement error
should not be ignored directly. It is noted that the estimator β̂I based on the imputation
technique outperform the complete-case estimator β̂c in terms that it gives smaller SD
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Table 5 Finite sample performance of estimator β̂T , β̂c , β̂I and β̂N for β4

�ξ n β̂T β̂c β̂I β̂N

Bias SD Bias SD Bias SD Bias SD

case(i)

0.2I2 100 0.0057 0.1128 0.0093 0.1279 0.0089 0.1270 0.1217 0.2063

200 0.0039 0.0791 0.0073 0.0863 0.0071 0.0858 0.1070 0.1366

300 0.0033 0.0611 0.0057 0.0670 0.0055 0.0698 0.1008 0.1065

0.4I2 100 0.0077 0.1178 0.0100 0.1488 0.0096 0.1461 0.2052 0.2572

200 0.0042 0.0808 0.0083 0.0936 0.0080 0.0932 0.1964 0.1692

300 0.0023 0.0638 0.0029 0.0746 0.0027 0.0742 0.1843 0.1324

case(ii)

0.2I2 100 0.0042 0.1110 0.0093 0.1243 0.0088 0.1232 0.1193 0.2036

200 0.0031 0.0758 0.0059 0.0833 0.0055 0.0830 0.1024 0.1322

300 0.0021 0.0617 0.0025 0.0689 0.0023 0.0687 0.1007 0.1036

0.4I2 100 0.0098 0.1112 0.0167 0.1376 0.0164 0.1345 0.2043 0.2441

200 0.0052 0.0763 0.0046 0.0896 0.0037 0.0894 0.1923 0.1642

300 0.0007 0.0618 0.0064 0.0749 0.0062 0.0746 0.1826 0.1374

Table 6 Finite sample performance of estimator β̂T , β̂c , β̂I and β̂N for β5

�ξ n β̂T β̂c β̂I β̂N

Bias SD Bias SD Bias SD Bias SD

case(i)

0.2I2 100 0.0051 0.1216 0.0052 0.1356 0.0049 0.1349 0.1124 0.2135

200 0.0020 0.0797 0.0030 0.0877 0.0032 0.0876 0.1070 0.1336

300 0.0016 0.0656 0.0031 0.0731 0.0031 0.0727 0.1008 0.1107

0.4I2 100 0.0059 0.1241 0.0165 0.1400 0.0156 0.1380 0.1982 0.2587

200 0.0010 0.0795 0.0037 0.0906 0.0031 0.0899 0.1908 0.1713

300 0.0017 0.0653 0.0034 0.0758 0.0031 0.0756 0.1856 0.1334

case(ii)

0.2I2 100 0.0042 0.1196 0.0082 0.1331 0.0080 0.1326 0.1129 0.2162

200 0.0023 0.0765 0.0051 0.0842 0.0047 0.0841 0.1073 0.1302

300 0.0002 0.0594 0.0017 0.0670 0.0017 0.0670 0.1056 0.1049

0.4I2 100 0.0020 0.1096 0.0067 0.1373 0.0065 0.1352 0.2003 0.2347

200 0.0023 0.0760 0.0031 0.0902 0.0035 0.0894 0.1886 0.1620

300 0.0007 0.0636 0.0009 0.0724 0.0008 0.0722 0.1814 0.1322

inmost cases. This is due to the fact that β̂I canmake full use of the sample information.
Furthermore, the values of SD in themissing data case (i) are usually greater than those
in case (ii). The reason for this is that the number of observed responses generated
from the missing data case (i) is less than that from case (ii). In addition, the larger
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Table 7 The average MSE of estimator β̂T , β̂c , β̂I and β̂N

�ξ n ε ∼ N (0, 0.5) ε ∼ N (0, 1)

β̂T β̂c β̂I β̂N β̂T β̂c β̂I β̂N

case(i)

0.2I2 100 0.0072 0.0113 0.0103 0.0505 0.0133 0.0168 0.0167 0.0579

200 0.0030 0.0043 0.0043 0.0272 0.0059 0.0072 0.0072 0.0299

300 0.0019 0.0027 0.0027 0.0214 0.0039 0.0047 0.0046 0.0232

0.4I2 100 0.0070 0.0132 0.0128 0.1015 0.0134 0.0215 0.0205 0.1103

200 0.0032 0.0056 0.0055 0.0623 0.0062 0.0088 0.0088 0.0659

300 0.0020 0.0035 0.0034 0.0510 0.0038 0.0054 0.0054 0.0538

case(ii)

0.2I2 100 0.0064 0.0094 0.0093 0.0502 0.0135 0.0167 0.0166 0.0565

200 0.0031 0.0043 0.0043 0.0268 0.0058 0.0072 0.0071 0.0298

300 0.0018 0.0026 0.0025 0.0205 0.0039 0.0047 0.0046 0.0222

0.4I2 100 0.0065 0.0134 0.0123 0.0967 0.0136 0.0205 0.0200 0.1035

200 0.0029 0.0051 0.0051 0.0604 0.0059 0.0085 0.0085 0.0621

300 0.0019 0.0034 0.0033 0.0496 0.0039 0.0053 0.0052 0.0526

variance of measurement error �ξ yields larger SD. It can also be observed that all
methods perform better with smaller bias and SD as the sample size increases.

To illustrate the effect of the variance of model error ε on the proposed esti-
mation methods, we compare the average mean square error(MSE) of vector β in
Table 7. The smaller variance of model error ε, the smaller MSE. It can be seen that all
the proposed estimation procedures perform better with the small variance of model
error.

In addition, we report the performances of the proposed estimation procedures
for the nonparametric function. We plot the estimated curve of the nonparametric
function when the measurement error covariance is �ξ = 0.2I2 and the missing
scheme is case (i) with sample size 200 in Fig. 1. We also evaluate the performance
of the estimator α(.) by using the square root of mean-squared errors (RMSE) which
is defined as

RMSE =
{
1

N

N∑

k=1

||α̂(Uk) − α(Uk)||2
}1/2

where Uk, k = 1, . . . , N are the grid points at which the function is evaluated. In
our simulation, we set N = 200 and Uk is equally taken on interval (0,1). Figure 2
shows the box-plots for 1000 RMSE values for the nonparametric functions α(.) with
different methods.

FromFig. 1, we can see that the estimators α̂c(.) and α̂I (.) are almost same, and they
all approximate the real curve. It shows that both the proposed methods can perform
well in terms of nonparametric functions. From Fig. 2, it is observed that the RMSE
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Fig. 1 The plot of the nonparametric estimator. The dotted, the dashed and the solid lines respectively
denote α̂c(.), α̂I (.) and the true curve α(.)
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Fig. 2 The boxplots of the 1000 RMSE values for the nonparametric functions based on the complete-case
data (left panel) and imputation technique (right panel)

values, obtained by the complete-case data and imputation technique, both decrease
as the sample size increases. In addition, α̂I (.) performs better than α̂c(.) since it has
smaller RMSE values.

In this simulation, we assume that the dimension p of the parameter β is fixed. In
a general setup, the dimension p can grow with the sample size n, and thus model
(1) extends to a high-dimensional partially linear varyingcoefficient model. As there
would be some spurious covariates in the parametric component, some penalized pro-
file least squares estimation procedures should be developed. The assumption that
there are simultaneous missing response observations and additive errors in the non-
parametric component in high-dimensional partially linear varying-coefficient model
(1), would be more practical, but more challenging, which is left for the future
research.

123



1650 Y.-T. Xiao, F.-X. Li

Table 8 The estimates of β1 and
β2

Missing rate (%) β̂1 β̂2

β̂c β̂I β̂c β̂I

10 0.0648 0.0634 − 0.1423 − 0.1443

15 0.0750 0.0728 − 0.1405 − 0.1412

20 0.0989 0.0971 − 0.1319 − 0.1337

5 A real example

In this section, we apply our proposed estimation procedures to the Boston housing
data set, which has been analyzed by several researches, such as Fan andHuang (2005),
Wang and Xue (2011) and Li and Mei (2013) via different regression models. The
median value of houses and several associated variables which might explain the vari-
ation of housing values are our main interest. In this study, we take the median value
of owner-occupied homes in $1000s(MEDV) as the response variable Y , per capita
crime rate by town(CRIM), nitric oxide concentration parts per 10million(NOX), aver-
age number of rooms per dwelling(RM), full-value property tax per $10,000(TAX),
proportion of owner-occupied units built prior to 1940(AGE) and pupil-teacher ratio
by town school district(PTRATIO) as covariates, denoted by Z2, Z3, Z4, Z5, X1 and
X2,respectively. We take Z1 = 1 as the intercept term and U = √

LSTAT as the
index variable, where LSTAT means lower status of the population. We employ the
following partially linear varying-coefficient model

Y = X1β1 + X2β2 +
5∑

i=1

Ziαi (U ) + ε. (17)

to fit the given data.
Before building the model, the response and covariate variables should be standard-

ized for mean zero and unit sample standard deviation. In addition, the index variable
U is transformed so that its marginal distribution is U[0,1]. To illustrate our method
to this data set, as mentioned in Feng and Xue (2014), we consider the situation that
covariate Z5 has measurement error and can not be observed directly. Instead of Z5,
W5 can be observed and has the following form

W5 = Z5 + U5, (18)

where U5 ∼ N (0, 0.32). Firstly, we fit the data set by models (17) and (18) with-
out response missing. The estimator of β, denoted by β̂0 = (0.0435,−0.1446)T is
obtained with all observation data. Secondly, we remove 10%,15% and 20% of the
response Y values at random. Since δ is randomly generated, we estimate β from 100
simulation runs and the average results can be found in Table 8.

FromTable 8, we can obtain that two estimates of the parameter with complete-case
data and imputation technique are almost same, and close to the case with no response
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Fig. 3 The estimated coefficient functions, where the solid line and the dotted line represent the estimated
coefficient functions α̂c(.) and α̂I (.), respectively

missing. In addition, the missing rate is smaller, the estimator value is closer to the
case of no missing.

The estimated coefficient functions when the missing rata is 20% are depicted in
Fig. 3. From Fig. 3, we can observe that the shapes of the α̂c(.) and α̂I (.) are very
similar in five different coefficient functions.

6 Conclusions

In this paper, we study the partially linear varying-coefficient model when the non-
parametric component is measured with additive error and the response variable is
missing simultaneously. Firstly, we propose a locally corrected profile linear least
squares estimation procedure based on the complete-case data only. Furthermore, a
semiparametric imputation technique is applied to construct another estimator for
improving the accuracy of the estimator. We establish the asymptotic normality prop-
erty of the proposed two estimators of the parameters. As well, we show that the
estimator of nonparametric component converge at an optimal rate. Theoretically, the
estimator based on the imputation technique has advantages compared to the complete-
case data method because it makes full use of information of the observation data. This
conclusion is confirmed by the simulation studies and a real example.

However, we only consider the case in which there are a fixed number of predictors
in this study. Currently highdimensional data analysis has attracted extensive attention.
One important aspect of a regressionmodel for highdimensional data is that the number
of covariates is diverging. There has been some remarkable results on variable selec-
tion and parameter estimation in partially linear varying coefficient errors-invariables
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model with no missing data (Fan et al. 2016b, 2018). The simultaneous existence of
missing response observations as well as measurement errors in the covariates would
be extremely challenge in the highdimensional data modeling. We may apply some
penalization methods for variable selection. Specifically, a penalty function could be
added to Eqs. (9) or (13). The penalized estimator of β based on complete-case data
can be obtained by minimizing the following bias-corrected penalized least square
function

1

2

n∑

i=1

δi

[
Yi − XT

i β − WT
i α̂(Ui ; β)

]2 − 1

2

n∑

i=1

δi α̂
T
(Ui ;β)�ξ α̂(Ui ;β) + n

p∑

j=1

pλ(|β j |).

(19)

where pλ(.) is a pre-specified penalty function, such as the SCAD penalty. The tuning
parameter λ can be selected by some data-driven criteria, such as BIC, AIC, CV. Since
the SCAD penalty function is irregular at the origin, the commonly used gradient
method is not applicable. To solve this difficulty, an iterative algorithm is proposed
by Fan and Li (2001). The penalty function is locally approximated by a quadratic
function and then Newton–Raphson algorithm can be used to minimize problem (19).
This method can significant reduce the computational burden and should be studied
in the future work.
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Appendix: Proofs of themain results

Webegin with the following assumption conditions required to derive themain results.
These conditions are quite mild and can be easily satisfied.

C1: The random variable u has a bounded support �. Its probability density function
f (.) is Lipschitz continuous and bounded away from 0 on its support.

C2: The q × q matrix E(ZZT |U ) and E(δZZT |U ) are nonsingular for each U ∈ �.
The matrix E(ZZT |U ), E(ZZT |U )−1, E(δZZT |U ), E(δZZT |U )−1, E(ZXT |U ) and
E(δZXT |U ) are all Lipschitz continuous.

C3: There exists an s > 0 such that E||X||2s < ∞,E||Z||2s < ∞ and for some
k < 2 − s−1 such that n2k−1h −→ ∞.

C4: α j (u), j = 1, . . . , q have continuous second derivative for u ∈ �.

C5:TheKernel K (.) is a symmetric probability density functionwith compact support
and the bandwidth h satisfies nh8 −→ 0 and nh2/(logn)2 −→ ∞ when n −→ ∞.

In order to prove the main results, we first give several Lemmas. The fol-
lowing notations will be used in the proof of the Lemmas and Theorems. Let
cn = (logn/nh)1/2, μi = ∫ ∞

0 t i K (t)dt , M = [ZT
1 α(U1), . . . ,ZT

n α(Un)]T , MW =
[WT

1 α(U1), . . . ,WT
n α(Un)]T , ε̃i = εi − ∑n

k=1 S
c
ikεk and Z̃i = Zi − ∑n

k=1 S
c
ikZk .
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Lemma 1 Suppose that conditions C1–C5 hold. Then the followings hold uniformly

(DZ
u )T ωuDZ

u − �u = n f (u)
(u) ⊗
(
1 μ1
μ1 μ2

)
[1 + Op(cn)]. (20)

(DZ
u )T ωuX = n f (u)	(u) ⊗ (1, μ1)

T [1 + Op(cn)]. (21)

(DW
u )T ωδ

uD
W
u − �δ

u = n f (u)
c(u) ⊗
(
1 μ1
μ1 μ2

)
[1 + Op(cn)]. (22)

(DW
u )T ωδ

uX = n f (u)	c(u) ⊗ (1, μ1)
T [1 + Op(cn)]. (23)

Proof Equations (20) and (21) are given inLemma2 inFeng andXue (2014). Similarly,
Eqs. (22) and (23) can also be obtained.

Lemma 2 Suppose that conditions C1–C5 hold. Then

1

n

n∑

i=1

δi (X̃i X̃
T
i − XTQT

i �ξQiX) −→ �1, a.s,

1

n

n∑

i=1

(X̄i X̄
T
i − XTRT

i �ξRiX) −→ �, a.s,

1

n

n∑

i=1

(1 − δi )(X̄i X̃
T
i − XTRT

i �ξQiX) −→ �2, a.s,

where �1 is defined in Theorem 1, � and �2 are defined in Theorem 3.

Proof The proof of this Lemma is similar to that of Lemma 7.2 in Fan and Huang
(2005). Hence, the details are omitted.

Proof of Theorem 1 Let

Bn = 1

n

n∑

i=1

δi (X̃i X̃
T
i − XTQT

i �ξQiX),

and

An = 1√
n

n∑

i=1

δi

[
X̃i (Ỹi − X̃

T
i β) − XTQT

i �ξQi (Y − Xβ)
]
.

Then,

√
n(β̂c − β) = B−1

n An . (24)
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For An , by simple calculation and similar proof of Lemma 4 in Feng and Xue
(2014), we have

An = 1√
n

n∑

i=1

δi

[
X̃i (Z̃

T
i α(Ui ) + ε̃i ) − XTQT

i �ξQi (M + ε)
]

= 1√
n

n∑

i=1

δi

{
[Xi − 	T

c (Ui )

−1
c (Ui )Zi ][εi − ξ T

i α(Ui )]

−	T
c (Ui )


−1
c (Ui )ξ iεi + 	T

c (Ui )

−1
c (Ui )(ξ iξ

T
i − �ξ )α(Ui )

}
+ op(1)

= 1√
n

n∑

i=1

Gi + op(1). (25)

It is easy to see that Gi is independent and identical distributed with mean zero and
Cov(Gi ) = �1.

Thus, by the Slutsky theorem, Lemma 2 and the central limit theorem, we complete
the Theorem.

Proof of Theorem 2 By the definition of α̂c(u), we can obtain that

α̂c(u) = (Iq , 0q)[(DW
u )T ωδ

uD
W
u − �δ

u]−1(DW
u )T ωδ

uM

+ (Iq , 0q)[(DW
u )T ωδ

uD
W
u − �δ

u]−1(DW
u )T ωδ

uε

+ (Iq , 0q)[(DW
u )T ωδ

uD
W
u − �δ

u]−1(DW
u )T ωδ

uX(β − β̂c).

By Theorem 1, similar to the proof of Theorem 3.1 in Xia and Li (1999), it is easy to
show that

max
1≤ j≤p

sup
u∈�

|α̂cj (u) − α j (u)| = O{h2
1 + (logn/nh1)

1/2}, a.s.

Let h1 = cn−1/5, where c is a constant. Then it yields that

max
1≤ j≤p

sup
u∈�

|α̂cj (u) − α j (u)| = O(n−2/5 + (logn)1/2), a.s.

Proof of Theorem 3 Similar to Theorem 1, it can be shown that

√
n(β̂ I − β) = D−1

n En, (26)

where

Dn = 1

n

n∑

i=1

(X̄i X̄
T
i − XTRT

i �ξRiX),
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and

En = 1√
n

n∑

i=1

X̄i (H̄i − X̄
T
i β) − XTQT

i �ξQi
(
Y − Xβ)

+ (1 − δi )XTRT
i �ξQi

(
Y − Xβ̂c) + op(1).

For convenience, we denote [Sc(A)]i and [SI (A)]i to respectively be the i th row of
product of ScA and SIA for a given matrix A.

By simple calculation, it is obtained that

En = 1√
n

n∑

i=1

X̄iδi (εi − ξ T
i α(Ui ))

+ 1√
n

n∑

i=1

(1 − δi )X̄i X̃
T
i (β̂c − β)

+ 1√
n

n∑

i=1

(1 − δi )X̄i [Sc(ε − ξ T α(u))]i

+ 1√
n

n∑

i=1

X̄i {WT
i α(Ui ) + [SI (X)]T

i β − [SI (Ĥ)]i }

+ 1√
n

n∑

i=1

(1 − δi )X̄i {[Sc(MW)]i − WT
i α(Ui )}

− 1√
n

n∑

i=1

δiXTQT
i �ξQi (Y − Xβ)

− 1√
n

n∑

i=1

(1 − δi )XTRT
i �ξQiX(β̂c − β)

=
7∑

i=1

Ii .

By Lemma 1, we have

I1 = 1√
n

n∑

i=1

(Xi − 	(Ui )

−1(Ui )Wi )δi (εi − ξ T

i α(Ui )) + op(1). (27)

In view of Theorem 1 and the law of large numbers, it follows that

I2 = 1

n

n∑

i=1

(1 − δi )X̄i X̃
T
i

√
n(β̂c − β)
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= 1

n

n∑

i=1

(1 − δi )(X̄i X̃
T
i − XTRT

i �ξQiX)
√

n(β̂c − β)

+ 1√
n

n∑

i=1

(1 − δi )XTRT
i �ξQiX(β̂c − β) + op(1)

= �2�
−1
1

1√
n

n∑

i=1

Gi + 1√
n

n∑

i=1

(1 − δi )XTRT
i �ξQiX(β̂c − β) + op(1),

(28)

where Gi is defined in Theorem 1.
I3 can be written as

I3 = 1√
n

n∑

i=1

(1 − δi )Xi [Sc(ε − ξ T α(u))]i − 1√
n

n∑

i=1

(1 − δi )[SI (X)]T
i [Sc(ε − ξ T α(u))]i

= I31 − I32.

By Lemma 1, it can be shown that

I31 = 1√
n

n∑

i=1

(1 − δi )XiWT
i (n f (Ui )
c(Ui ))

−1
n∑

j=1

Kh1 (U j − Ui )W j (ε j − ξ T
j α(U j ))δ j

= 1√
n

n∑

i=1

	(Ui )

−1
c (Ui )Wi δi (εi − ξ T

i α(Ui ))

− 1√
n

n∑

i=1

	c(Ui )

−1
c (Ui )Wi δi (εi − ξ T

i α(Ui )) + op(1).

In a similar way, we obtain that,

I32 = 1√
n

n∑

i=1

	(Ui )

−1
c (Ui )Wiδi (εi − ξ T

i α(Ui ))

− 1√
n

n∑

i=1

	(Ui )

−1(Ui )Wiδi (εi − ξ T

i α(Ui )) + op(1)

Therefor,

I3 = 1√
n

n∑

i=1

[	(Ui )

−1(Ui )Wi − 	c(Ui )


−1
c (Ui )Wi ]δi (εi − ξ T

i α(Ui )) + op(1).

(29)
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I4 can be expressed as

I4 = 1√
n

n∑

i=1

X̄i (WT
i α(Ui ) − [SI (MW)]i ) − 1√

n

n∑

i=1

X̄i δi [SI (ε − ξ T α(u))]i

− 1√
n

n∑

i=1

X̄i (1 − δi )[SI (X)]T
i (β̂c − β) − 1√

n

n∑

i=1

X̄i (1 − δi )[SI (M̂
W
c − MW)]i

= I41 + I42 + I43 + I44

where M̂
W
c = [WT

1 α̂c(U1), . . . ,WT
n α̂c(Un)]T . By Lemma 1, it can be shown that

I41 = op(1) and I42 = op(1). By the fact that β̂c − β = Op(n−1/2) from Theorem 1
and 1

n

∑n
i=1 X̄i [SI (X)]i = op(1), I43 = op(1) is obtained. I44 = op(1) can also be

proved similarly. Thus, we have

I4 = op(1). (30)

Similar to the calculation of I4, we can show that

I5 = 1√
n

n∑

i=1

(1 − δi )X̄i ([SI (MW)]i − WT
i α(Ui )) (31)

= op(1).

Invoking (26)–(31), it can be obtained that

√
n(β̂ I − β) = �−1(�1 + �2)�

−1
1

1√
n

n∑

i=1

Gi + op(1).

Thus, by the Slutsky theorem, Lemma 2 and the central limit theorem, we concludes
the theorem.

Proof of Theorem 4 The proof of Theorem 4 is similar to Theorem 2, then, we omit it.
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