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Abstract
With the emergence of numerical sensors in many aspects of everyday life, there is an
increasing need in analyzing multivariate functional data. This work focuses on the
clustering of such functional data, in order to ease their modeling and understanding.
To this end, a novel clustering technique for multivariate functional data is presented.
This method is based on a functional latent mixture model which fits the data into
group-specific functional subspaces through a multivariate functional principal com-
ponent analysis. A family of parsimonious models is obtained by constraining model
parameters within and between groups. An Expectation Maximization algorithm is
proposed for model inference and the choice of hyper-parameters is addressed through
model selection. Numerical experiments on simulated datasets highlight the good per-
formance of the proposed methodology compared to existing works. This algorithm
is then applied to the analysis of the pollution in French cities for 1 year.

Keywords Multivariate functional curves · Multivariate functional principal
component analysis · Model-based clustering · EM algorithm
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1 Introduction

Themodern technologies ease the collection of high frequency datawhich is of interest
to model and understand the studied phenomenon for further analyses. For example
in sports, athletes wear devices that collect data during their training to improve their
performances and follow their physical constants in order to prevent injuries. This
kind of data can be classified as functional data: a quantitative entity evolving along
time. For instance in the univariate case, a functional data X is represented by a single
curve, X(t) ∈ R, ∀t ∈ [0, T ].

With the growth of smart device market, more and more data are collected for the
same individual, such as runner heartbeat and the altitude of his travel. An individual
is then represented by several curves. The corresponding multivariate functional data
can be written: X = X(t)t∈[0,T ] with X(t) = (X1(t), . . . , X p(t))′ ∈ R

p, p ≥ 2. We
refer to Ramsay and Silverman (2005) for univariate and bivariate examples.

Because of this amount of collected data, there is an increasing need for methods
able to identify homogeneous subgroups of data, to make better individualized pre-
dictions for example. The clustering of functional data can be addressed with different
methods, that can be split into 4 categories according to Jacques and Preda (2014a):
the raw data methods that consists of clustering directly the curves on their finite set
of points ; the filtering methods that need a first step of smoothing curves into a basis
of functions and a second step of clustering the obtained expansion coefficients ; the
adaptive methods where clustering and expression of the curves into a finite dimen-
sional space are performed simultaneously ; and the distance-based methods where
usual clustering algorithms are applied with specific distances for functional data.
Among these categories, there exist numerous works for the clustering of univariate
functional data as for instance (James and Sugar 2003; Tarpey and Kinateder 2003;
Chiou and Li 2007; Bouveyron and Jacques 2011; Jacques and Preda 2013; Bouveyron
et al. 2015; Bongiorno and Goia 2016).

Conversely, only a few exists for clustering multivariate functional data. Singhal
and Seborg (2005) and Ieva et al. (2013) use a k-means algorithm based on spe-
cific distances between multivariate functional data. Kayano et al. (2010) consider
Self-OrganizingMaps based on the coefficients ofmultivariate curves into an orthonor-
malized Gaussian basis expansions. Tokushige et al. (2007) extend crisp and fuzzy
k-means algorithms for multivariate functional data by considering a specific distance
between functions. Those methods cluster data by considering that they lie in the
same subspace. A new method has been recently published based on a hypothesis
testing k-means (Zambom et al. 2019). At each step of the k-means algorithm, the
curve belonging decision is based on the combination of two hypothesis test statistics.
The performance of their algorithm is compared to distance-based methods and some
dimension reduction basedmethods. Those dimension reduction techniquesmain prin-
ciple is to obtain a low-dimensional representation of functions. For example, Ieva and
Paganoni (2016) present a generalized functional linear regression model that cluster
individuals in two categories. The first step consist of a multivariate functional prin-
cipal component analysis applied on the variance-covariance matrix on the functional
data and their first derivatives. Then, the obtained scores are used as covariates in a gen-
eralized linear model to predict the outcome. Yamamoto and Hwang (2017) propose
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a clustering method that combines a subspace separation technique with functional
subspace clustering, named FGRC, that is less sensible to data variance than functional
principal component k-means developed byYamamoto (2012) and functional factorial
k-means (Yamamoto and Terada 2014). Finally, Jacques and Preda (2014b) present
a Gaussian model-based clustering method based on a principal component analysis
for multivariate functional data (MFPCA). One of the benefits of this method is that
the dependency between functional variables is managed thanks to the MFPCA.More
recently, new methods based on a mix between dimension reduction and nonparamet-
ric approaches appear. Indeed, Traore et al. (2019) propose a clustering technique for
nuclear safety experiment where one individual curve is decomposed into two new
curves that are used in the decision making process. The first step consists in doing
a dimension reduction technique on the first curves and applying a hierarchical clus-
tering on those obtained values. Then, a semi-metric is build to compare the second
curves, and the clusters are refining thanks to this comparison. But, even if this method
is developped to deal with two curves for a same individual, at first the functional data
are univariate.

In Jacques and Preda (2014b), MFPCA scores are considered as random variables
whose probability distributions are cluster specific. Although this model is far more
flexible than other methods due to its probabilistic modeling, it suffers nevertheless
from some limitations. Indeed, using an approximation of the notion of density dis-
tribution for functional data, the authors modeled only a given proportion of principal
components and thus a significant part of the available information is ignored. In this
paper, we propose a model which extends Jacques and Preda (2014b) work by mod-
eling all principal components whose estimated variance are non-null. All available
information is therefore taken into account. This is a significant advantage because
it will give a finner modeling and, consequently, a better clustering in most cases.
Moreover, our model allows to use an Expectation Maximisation (EM) algorithm for
its inference, with the theoretical guaranties it implies, whereas Jacques and Preda
(2014b) use an heuristic pseudo-EM algorithm with no theoretical guaranties. The
resulting model can be also viewed as an extension of Bouveyron and Jacques (2011)
method to the multivariate case, that is why we will refer to it as the funHDDC model
in the following.

The paper is organized as follows.Aquick reminder of function data analysis is done
in Sect. 2. Section 3 presents principal component analysis for multivariate functional
data, as introduced in Jacques and Preda (2014b). Section 4 introduces the mixture
model allowing the clustering of multivariate functional data. Section 5 discusses
parameters estimation via an EM algorithm, proposes criteria for the selection of
number of clusters and computational details. Comparisons between the proposed
method and existing ones on simulated and real datasets are presented in Sects. 6 and
7. A discussion concludes the paper in Sect. 8.

2 Functional data analysis

Let us first assume that the observed curves X1, . . . ,Xn are independent realiza-
tions of a L2-continuous multivariate stochastic process X = {X(t), t ∈ [0, T ]}
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1104 A. Schmutz et al.

= {(X1(t), . . . , X p(t))}t∈[0,T ] for which the sample paths, i.e. the observed curves
Xi = (X1

i , . . . , X
p
i ), belong to L2[0, T ]. Without loss of generality, let assume that

E(X) = 0.
In practice, the functional expressions of the observed curves are not known and

it is only possible to have access to discrete observations at a finite set of times
X j
i (t1), . . . , X

j
i (ts) with 0 ≤ t1 ≤ · · · ,≤ ts ≤ 1 for every 1 ≤ i ≤ n and 1 ≤

j ≤ p. The first task, when working with functional data, is therefore to convert these
discretely observed values to a function X j

i (t), computable for any desired argument
value t ∈ [0, T ]. One way to do that is interpolation, which is used if the observed
values are assumed to be errorless. However, if there is some noise that needs to be
removed, a common way to reconstruct the functional form is to assume that the
curves X j

i (t) can be decomposed into a finite dimensional space, spanned by a basis
of functions (Ramsay and Silverman 2005):

X j
i (t) =

R j∑

r=1

c jir (X
j
i )φ

j
r (t) (1)

where (φ
j
r (t))1≤r≤R j is the basis of functions for the jth component of the multivariate

curve and R j the number of basis functions. In order to ease the description of the

model, let us introduce the following notations. The coefficients c jir can be gathered
in the matrix C:

C =
⎛

⎜⎝
c111 . . . c11R1

c211 . . . c21R2
. . . cp11 . . . cp1Rp

. . .

c1n1 . . . c1nR1
c2n1 . . . c2nR2

. . . cpn1 . . . cpnRp

⎞

⎟⎠ .

Let also introduce the matrix φ(t), gathering the basis functions:

φ(t) =

⎛

⎜⎜⎝

φ1
1(t) . . . φ1

R1
(t) 0 . . . 0 . . . 0 . . . 0

0 . . . 0 φ2
1(t) . . . φ2

R2
(t) . . . 0 . . . 0

. . .

0 . . . 0 0 . . . 0 . . . φ
p
1 (t) . . . φ

p
Rp

(t)

⎞

⎟⎟⎠ .

With these notations, Eq. (1) can be rewritten as follows:

X(t) = Cφ′(t). (2)

The estimation of C is usually done through least square smoothing (see Ramsay
and Silverman 2005). The choice of the basis functions, contained in φ, has to be
made by the user. There is no straight rules about how to choose the appropriate ones
(Jacques and Preda 2014a). We can nevertheless recommend the use of a Fourier basis
in the case of data with a repetitive pattern, and B-spline functions in most other
cases.
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3 Multivariate functional principal component analysis

Principal component analysis for multivariate functional data has already been sug-
gested by various authors. Ramsay and Silverman (2005) propose to concatenate
observations of the functions measured on a fine grid of points into a single vector and
then to perform a standard principal component analysis (PCA) on these concatenated
vectors. They also propose to express observations into a known basis of functions
and apply PCA on the vector of concatenated coefficients. Both approaches may be
problematic when the functions correspond to different observed phenomena. More-
over, the interpretation of multivariate scores for one individual is usually difficult. In
Berrendero et al. (2011), the authors propose instead to summarize the curves with
functional principal components. For this purpose, they carry out classical PCA for
each value of the domain on which the functions are observed and suggest an interpo-
lation method to build their principal functional components. In a different approach,
Jacques and Preda (2014b) suggest the MFPCA method, with a normalization step
if the units of measurement differ between functional variables. Their method relies
on the multidimensional version of the Karhunen–Loève expansion (Saporta 1981).
Chiou et al. (2014) also present a normalized multivariate functional principal com-
ponent analysis which takes into account the differences in degrees of variability and
units of measurement among the components of the multivariate random functions.
As in Jacques and Preda (2014b), it leads to a single set of scores for each individual.
Chen and Jiang (2016) present a multi-dimensional functional principal component
analysis and ? a multivariate functional principal component analysis that both can
handle data observed onmore than one-dimensional domain. Happ and Greven (2015)
method can be applied to sparse functional data and includes the MFPCA proposed
by Jacques and Preda (2014b) when the interval is [0, T ] and steady.

Because our data are collected on the one-dimensional interval [0,T] and with a
regular sampling scheme, the MFPCA proposed by Jacques and Preda (2014b) is
used in combination with a fine probabilistic modeling of the group-specific densities.
The MFPCA method is therefore summarized hereafter. MFPCA aims at finding the
eigenvalues and eigenfunctions that solve the spectral decomposition of the covariance
operator ν:

ν f l = λl f l , ∀l ≥ 1, (3)

with λl a set of positive eigenvalues and f l the set of associated multivariate eigen-
functions. The estimator of the covariance operator can be written as:

ν̂(s, t) = 1

n − 1
X ′(s)X(t) = 1

n − 1
φ(s)C ′Cφ′(t). (4)

Let suppose that each principal factor f l belongs to the linear space spanned by the
matrix φ:

f l(t) = φ(t)b′
l (5)
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1106 A. Schmutz et al.

with bl = (bl11, . . . , bl1R1 , bl21, . . . , bl2R2 , . . . , blp1, . . . , blpRp ). Using Equation (4),
the eigen problem (3) becomes:

1

n − 1
φ(s)C ′CWb′

l = λlφ(s)b′
l (6)

where W = ∫ T
0 φ′(t)φ(t) is a R × R matrix, where R = ∑p

j=1 R j , which contains
the inner products between the basis functions. The MFPCA then reduces to eigende-
composition of the matrix 1√

n−1
CW1/2. Thus, each multivariate curve X i is identified

by its score δi = (δil)l≥1 into the basis of multivariate eigenfunctions ( f l)l≥1. Scores
are obtained from δil = C iWb′

l where C i is the i th row of matrix C .
In practice, due to the fact that each component X j

i of X i is approximated into
a finite basis of functions of size R j , the maximum number of scores which can be
computed is R = ∑p

j=1 R j .

4 A generativemodel for multivariate functional data clustering

Our goal is to group the observedmultivariate curves X1, . . . , Xn into K homogeneous
clusters. At this stage, K is fixed a priori and an estimation procedure for this parameter
will be suggested in Sect. 5.3. Let Zik be the latent variable such that Zik = 1 if X i

belongs to cluster k and 0 otherwise. In order to ease the presentation of the modeling,
let us assume at first that the values zik of Zik are known for all 1 ≤ i ≤ n and
1 ≤ k ≤ K (our goal is in practice to recover them from the data). Let nk = ∑n

i=1 zik
be the number of curves within cluster k.

Let suppose that the curves of each cluster can be described into a low-dimensional
functional latent subspace specific to each cluster, with intrinsic dimensions dk < R,
k = 1, . . . , K . Curves can be expressed into a group-specific basis {ϕk

r }1≤r≤dk , which

is determined thanks to the model, and is obtained from {φ j
r }1≤ j≤p,1≤r≤R through a

linear transformation:

ϕk
r (t) =

R∑

�=1

qkr�φ�(t), 1 ≤ r ≤ R (7)

where Qk = (qkr�)1≤r ,�≤R is the orthogonal R × R matrix containing the basis
expansion coefficients of the eigenfunctions. Qk is split for later use into two parts:
Qk = [Uk, Vk] with Uk of size R × dk and Vk of size R × (R − dk), U ′

kUk = Idk ,
V ′
kVk = IR−dk and U

′
kVk = 0.

Let (δki )1≤i≤nk be the MFPCA scores of the nk curves of cluster k. These scores
are assumed to follow a Gaussian distribution

δki ∼ N (μk,�k) (8)

with μk ∈ R
R the mean function and �k the covariance matrix with the following

form:
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�k =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ak1 0
. . .

0 akdk

0

0

bk 0
. . .

. . .

0 bk

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫
⎬

⎭ dk

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
R − dk

The assumption on �k allows to finely model the variance of the first dk princi-
pal components, while the remaining ones are considered as noise components and
modeled by a unique parameter bk . This model will be referred to as [akj bk Qkdk]
hereafter. The model of Jacques and Preda (2014b) is similar but with the constraint
bk = 0, for all k = 1, . . . , K . The latter leads to ignore information contained in the
last eigenfunctions, whereas we propose to model it in a parsimonious way.

In addition, different sub-models can be defined depending on the constraints we
apply on model parameters, within or between groups, leading to more parsimonious
models. This possibility allows to fit into various situations. The following 5 sub-
models can be derived from the most general one:

– [akbkQkdk] thismodel is used if the first dk eigenvalues are assumed to be common
within each group. In this case, there is only 2 eigenvalues in �k , ak and bk .

– [akj bQkdk] the parameters bk are fixed to be common between groups. It assumes
that the variance outside the group-specific subspaces is common, a usual hypoth-
esis when data are obtained in a common acquisition process.

– [akbQkdk] the parameters ak are fixed to be common within each group and bk
are fixed to be common between groups.

– [abkQkdk] the parameters akj are fixed to be common between and within groups.
– [abQkdk] the parameters akj and bk are fixed to be common between and within
groups.

In practice, the zik’s are not known and our goal is to predict them. That is why an
EM algorithm is proposed below in order to estimate model parameters and then to
predict the zik’s.

5 Model inference and choice of the number of clusters

5.1 Model inference through an EM algorithm

In model-based clustering, the estimation of model parameters is traditionally done by
maximizing the likelihood through the EM algorithm (Dempster et al. 1977). The EM
algorithm alternates between two steps: the expectation (E) and maximization (M)
steps. The E step aims at computing the conditional expectation of the complete
log-likelihood using the current estimate of parameters. Then, the M step computes
parameter estimates maximizing the expected complete log-likelihood found in the E
step.

123



1108 A. Schmutz et al.

This section presents the update formulae of the EM algorithm in the case of the
[akj bk Qkdk] model. Update formulae can be easily derived in the same manner for
other models. The following proposition provides the expression of the complete log-
likelihood associated with the model described above. Proof of this result is provided
in “Appendix A.1”.

Proposition 1 The complete log-likelihood of the observed curves under the
[akj bk Qkdk] model can be written as:

�c(θ) = −1

2

K∑

k=1

nk

⎡

⎣
dk∑

j=1

(
log(akj ) + qtk jW

1/2CkW 1/2qkj

ak j

)

+
R∑

j=dk+1

(
log(bk) + qtk jW

1/2CkW 1/2qkj

bk

)
− 2 log(πk)

⎤

⎦

+ nR

2
log(2π), (9)

where θ = (πk,μk, akj , bk, qkj )k j for 1 ≤ k ≤ K and 1 ≤ j ≤ dk, qk j is the j th
column of Qk, Ck = 1

nk

∑n
i=1 Zik(ci − μk)

t (ci − μk) and ci = (c1ir , . . . , c
p
ir ) is a

vector of coefficients.

As the group memberships Zik are unknown, the EM algorithm starts by comput-
ing their conditional expectation (E step) before maximizing the expected complete
likelihood (M step).
E step This step aims at computing the conditional expectation of the com-
plete log-likelihood and reduces to the computing of the conditional expectation
E[Zik |ci , θ(q−1)], which can be computed as follows.

Proposition 2 For the model [akj bk Qkdk], the posterior probability that each curve
belongs to the kth cluster can be written:

t (q)
ik = E[Zik |ci , θ(q−1)] = 1/

K∑

l=1

exp[1
2
(H (q−1)

k (ci ) − H (q−1)
l (ci ))], (10)

where H (q−1)
k (c) is the cost function defined for c ∈ R

R as:

H (q−1)
k (c) = ||μ(q−1)

k − Pk(c)||2Dk
+ 1

b(q−1)
k

||c − Pk(c)||2

+
dk∑

j=1

log(a(q−1)
k j ) + (R − dk) log(b

(q−1)
k ) − 2 log(π(q−1)

k ), (11)

where ||.||2Dk
is a norm on the latent space Ek defined by ||y||2Dk

= ytDk y, Dk =
Q̃�−1

k Q̃t and Q̃ is a matrix containing the dk vectors of Uk completed by zeros such
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as Q̃ = [Uk, 0R−dk ], Pk is the projection operator on the functional latent space Ek

defined by Pk(c) = WUkUt
kW

t (c − μk) + μk .

Proof of this result is provided in “Appendix A.2”.
M step This step estimates the model parameters by maximizing the expectation of
the complete log-likelihood conditionally on the posterior probabilities t (q)

ik computed
in the previous step. The following proposition provides update formulae for mixture
parameters. Proof of these results are provided in “Appendix A.3”.

Proposition 3 For the model [akj bk Qkdk], the maximization of the conditional
expected complete log-likelihood leads to the following update:

– π
(q)
k = η

(q)
k
n , μ

(q)
k = 1

η
(q)
k

∑n
i=1 t

(q)
ik ci ,

– the dk first columns of the orientation matrix Qk are updated by the eigenfunctions
coefficients associated with the largest eigenvalues of W1/2C (q)

k W1/2,
– the variance parameters ak j , j = 1, . . . , dk, are updated by the dk largest eigen-

values of W1/2C (q)
k W1/2,

– the variance parameters bk are updated by b(q)
k = 1

R−dk
[tr(W1/2C (q)

k W1/2) −
∑dk

j=1 â
(q)
k j ].

where η
(q)
k = ∑n

i=1 t
(q)
ik andC (q)

k = 1
η

(q)
k

∑n
i=1 t

(q)
ik (ci −μ

(q)
k )t (ci −μ

(q)
k ) is the sample

covariance matrix of group k.

To summarize, the algorithm introduced above, namedhereafter funHDDC, clusters
multivariate functional data through their projection into low dimensional subspaces.
Those projections are obtainedbyperforming aMFPCAper cluster thank to an iterative
algorithm.

5.2 Estimation of intrinsic dimensions

In order to choose the intrinsic dimensions dk of each cluster, the Cattell’s scree-test
(Cattell 1966) is used. This test looks for a drop in the eigenvalues scree. The selected
dimension is the one for which the subsequent eigenvalues differences are smaller
than a threshold provided by the user or selected using Bayesian information crite-
rion, Akaike information criterion, integrated completed likelihood or slope heuristic
(described below).

This estimation of the number of intrinsic dimensions is done within the M step
of EM algorithm. It may allow the estimated intrinsic dimensions to vary along the
iterations in order to fit well data.

5.3 Choice of the number of clusters

We now focus on the choice of the hyper-parameter K , the number of clusters. The
choice of this hyper-parameter is here viewed as model selection problem. Clas-
sical model selection tools include the Akaike information criterion (AIC, Akaike
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1110 A. Schmutz et al.

1974), the Bayesian information criterion (BIC, Schwarz 1978) and the integrated
completed likelihood criterion (ICL, Biernacki et al. 2000). In the context of mix-
ture model, BIC is certainly the most popular. The BIC criterion can be computed
as follows:

BIC = l(θ̂) − m

2
× log(n),

with l(θ̂) the maximum log-likelihood value, m the number of model parameters
and n the number of individuals. The criterion penalizes the log-likelihood through
model complexity. The model maximizing the criterion is chosen.

Another criterion, that has proved its usefulness, is the slope heuristic (SH,Birge and
Massart 2007). This data-driven criterion penalty has a multiplicative factor provided
by the linear part of the log-likelihood:

SH = l(θ̂) − 2 s m,

where s is the slope of the linear part of themaximum log-likelihood value l(θ̂ )when
plotted against the model complexity. It has to be noticed that this method requires to
test a large number of clusters number, or a large number of models, so that there is
enough points in the log-likelihood versus model complexity plot (bottom left plot of
Fig. 4) to detect a plateau in the log-likelihood.

For either of those criteria, different values for K need to be tested. Then, the one
that maximizes the chosen criterion’s value is the best one that has to be kept.

5.4 Computational details

As explained in Sect. 5.1, funHDDC algorithm relies on an EM algorithm. The EM
algorithm needs to be initialized, by setting initial values for the partitions. To this end,
two initialization strategies are considered: random and kmeans initializations. In the
case of random initialization, the partitions are randomly sampled using a multinomial
distributionwith uniform probabilities. The kmeans strategy consists in initializing the
partitions with those obtained by a kmeans algorithm applied directly on the whole
set of discretized observations. With kmeans initialization, the EM algorithm usually
converges quicker than with random initialization. For both initialization, it is highly
recommended, in order to prevent the convergence to a local maximum, to perform
multiple initializations of the algorithm and keep the solution maximizing the log-
likelihood. The number of initializations is a parameter of funHDDC algorithm that
can be tuned by the user.

The funHDDC algorithm is stopped when the difference between two consecutive
log-likelihood values is lower than a given threshold ε or after a maximal number of
iterations.

Running times for different sizes of datasets will be presented later, in Sect. 6.4.
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6 Numerical experimentation on simulated data

This section presents numerical experiments to illustrate the behavior of the proposed
methodology and confront it to competitors from the literature. Firstly, the quality of
themodel inference algorithm is illustrated on simulated data. Secondly, the sensitivity
of the proposed approach to sample size is investigated in term of correct classification
rate as well as in term of computational time. Thirdly, BIC and SH are compared for
selecting the number of clusters. Finally, funHDDC is confronted to competitors on
several datasets. The R code (R Core Team 2017) for our multivariate functional
clustering algorithm is available on CRAN in the funHDDC package.

6.1 Simulation setup

In order to ease the reproducibility of the results, we consider 3 simulation scenarios
designed as follows.
Scenario A For this first scenario, a sample of 1000 bivariate curves are simulated
based on [akbkQkDk] model. To do so, scores are simulated according to a Gaussian
model with meanμ and diagonal variance�. Curves coefficients can be rebuild based
on (δil)l≥1 = CWb′

l as shown in Sect. 2. The number of clusters is fixed to K = 3
and mixing proportions are equal. Scores are generated from a multivariate normal
distribution with the following parameters:

Group 1: d = 5, a = 150, b = 5, μ = (1, 0, 50, 100, 0, . . . , 0),

Group 2: d = 20, a = 15, b = 8, μ = (0, 0, 80, 0, 40, 2, 0, . . . , 0),

Group 3: d = 10, a = 30, b = 10, μ = (0, . . . , 0, 20, 0, 80, 0, 0, 100),

where d is the intrinsic dimension of subgroups, μ is the mean vector of size 70, a is
the value of the d-first diagonal elements of � and b the value of the (70-d)-last ones.
Curves are smoothed using a basis of 35 Fourier functions (cf. top panel of Fig. 1).
Scenario B The second simulation setting is inspired by the data simulation process of
Ferraty and Vieu (2003), Preda (2007) and Bouveyron et al. (2015), and therefore will
not favor our approach in the comparison. For this simulation, the number of clusters
is fixed to K = 4. A sample of 1000 bivariate curves is simulated according to the
following model for t ∈ [1, 21]:

Group 1: X1(t) = U + (1 −U )h1(t) + ε(t),

X2(t) = U + (0.5 −U )h1(t) + ε(t),

Group 2: X1(t) = U + (1 −U )h2(t) + ε(t),

X2(t) = U + (0.5 −U )h2(t) + ε(t),

Group 3: X1(t) = U + (0.5 −U )h1(t) + ε(t),

X2(t) = V + (1 − V )h2(t) + ε(t),

Group 4: X1(t) = U + (0.5 −U )h2(t) + ε(t),

X2(t) = U + (1 −U )h1(t) + ε(t),
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Fig. 1 Smooth data simulated for variable 1 (left) and variable 2 (right) for scenario A (top), scenario B
(middle) and scenario C (bottom) colored by group for one simulation (color figure online)

where U ∼ U(0, 0.1) and ε(t) is a white noise independent of U and such that
Var(ε(t)) = 0.25. The functions h1 and h2 are defined, for t ∈ [1, 21], by h1(t) =
(6 − |t − 7|)+ and h2(t) = (6 − |t − 15|)+ where (·)+ means the positive part. The
mixing proportions are equal, and the curves are observed in 101 equidistant points.
The functional form of the data is reconstructed using a cubic B-spline basis smoothing
with 25 basis functions (cf. middle panel of Fig. 1).
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Scenario C For this third simulation scenario, the number of clusters is fixed to K = 4.
A sample of 1000 bivariate curves is simulated according to the following model for
t ∈ [1, 21]:

Group 1: X1(t) = U + (1 −U )h1(t) + ε(t),

X2(t) = U + (0.5 −U )h1(t) + ε(t),

Group 2: X1(t) = U + (1 −U )h2(t) + ε(t),

X2(t) = U + (0.5 −U )h2(t) + ε(t),

Group 3: X1(t) = U + (1 −U )h1(t) + ε(t),

X2(t) = U + (1 −U )h2(t) + ε(t),

Group 4: X1(t) = U + (0.5 −U )h2(t) + ε(t),

X2(t) = U + (0.5 −U )h1(t) + ε(t),

where U , ε(t), h1 and h2 are defined as before. The mixing proportions are equal,
and the curves are observed in 101 equidistant points. The functional form of the data
is reconstructed using a cubic B-splines basis smoothing with 25 basis functions. As
shown in Fig. 1 (bottom), the 4 groups cannot be distinguished with one variable only:
indeed group 3 (green) is similar to group 1 (black) for variable X1(t) and similarly
group 4 (blue) is similar to group 1 (black) for variable X2(t). Consequently, any
univariate functional clustering methods applied either on variable X1(t) or X2(t)
should fail.

For each scenario, the estimated partitions are compared to the true partition
with the adjusted Rand index (ARI, Rand 1971). This criterion value is less than
or equal to 1, with 1 representing a perfect agreement between the true partition
and the one estimated by the algorithm, and 0 a random agreement. The algorithm
settings used for all simulations are the following: the threshold of the Cattell’s
scree-test for the selection of intrinsic dimensions dk is fixed to 0.2 (the optimal
threshold value should be chosen using BIC or slope heuristic), the stopping crite-
rion for the EM algorithm is a growth of the log-likelihood lower than ε = 10−3

or a maximal number of iterations of 200, the initialization of the algorithm is done
through a random partition in the introductory example, and with the kmeans strategy
the model selection and benchmark experiments, in order to speed up the conver-
gence.

6.2 An introductory example

In order to illustrate the good behavior of the inference algorithm, we first consider a
single simulation according to Scenario A, which is overall a difficult situation. The
algorithm is run for K = 3 groups with the model [akbkQkDk] which has been used
to generate the data and the simulation setting is repeated 50 times. Figure 2 allows the
comparison of the fitted values with the actual ones of model parameters. Parameter a
turns out to be well estimated for all 3 clusters, whereas parameters b and d are only
well estimated for 2 clusters out of 3. Indeed, this simulation scenario has one mixture
component with a low signal-to-noise ratio which disturbs the estimation of dk for

123



1114 A. Schmutz et al.

Fig. 2 Scree-test of Cattell performed for each group with the threshold set to 0.2 (blue line) for one
simulation and mean (sd) of parameters estimation for the 50 simulations with the [akbk Qk Dk ] model
(color figure online)

Table 1 Mean (and s.d.) of ARI
for 50 simulations

funHDDC model Mean (SD)

[ak j bk Qk Dk ] 0.99 (0.08)

[ak j bQk Dk ] 0.85 (0.26)

[akbk Qk Dk ] 1 (0)

[akbQk Dk ] 0.88 (0.26)

[abk Qk Dk ] 0.95 (0.16)

[abQk Dk ] 0.49 (0.36)

Bold value indicate that the highest value

this component, and therefore also perturb the estimation of the noise variance bk .
Nevertheless, the fact that our model actually models the variance within the whole
space (and not only a part as in Jacques and Preda 2014b), allows us to correctly
recover the cluster partition even in difficult estimation conditions.

To assess the clustering quality, the funHDDC algorithm is now run for K = 3
groups with all 6 sub-models and the simulation setting is repeated 50 times. The
quality of the estimated partitions is evaluated using the ARI and results are given
in Table 1. As expected, the best result is obtained for the model [akbkQkDk] which
has been used to generate data and it shows that the algorithm correctly recovers
the cluster pattern. It is worth noticing that the other models also have satisfying
performances.
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Table 2 Mean (and s.d.) of ARI for 50 simulation with an increasing sample size

funHDDC model Sample size n

1000 500 200 30

[ak j bk Qk Dk ] 0.98 (0.08) 0.99 (0.05) 0.98 (0.07) 0.84 (0.20)

[ak j bQk Dk ] 0.82 (0.19) 0.71 (0.15) 0.70 (0.12) 0.67 (0.09)

[akbk Qk Dk ] 1 (0) 0.99 (0.07) 0.98 (0.08) 0.80 (0.23)

[akbQk Dk ] 0.88 (0.18) 0.66 (0.10) 0.69 (0.11) 0.66 (0.08)

[abk Qk Dk ] 0.98 (0.09) 1 (0) 0.99 (0.05) 0.90 (0.16)

[abQk Dk ] 0.86 (0.18) 0.71 (0.14) 0.68 (0.11) 0.66 (0.08)

Table 3 Computational effort in performing analyses

Sample size Number of functional variables Running time (s)

1000 2 0.24

10,000 2 1.16

100,000 2 10.71

1000 4 0.59

10,000 4 3.50

100,000 4 30.85

6.3 Sample size influence

In order to evaluate the sensitivity of the proposed approach to the sample size, we
now consider 50 simulations according to Scenario B, and with different sample size:
1000, 500, 200 and 30. Table 2 presents the corresponding results. The impact of
the sample size is not really significant between 1000 to 200. For very small sample
size, 30 observations for 3 clusters, the quality of the partition estimation significantly
decreases, but such small sample size are seldomused in practice for clustering studies.

6.4 Computational time and cost

When dealing with multivariate functional data, a big issue consists of scalability and
computational effort in performing analyses.Wewill present here the impact of sample
size and number of functional variables on running time.

Firstly, funHDDC algorithm is applied for K = 4 groups on scenario B bivariate
functional data. Then, a second scenario with four functional variables is built based
on scenario B with the two additional functional variables be cosinus and sinus func-
tions. The computer used for the experiments has a Windows 10 operating system,
Intel(R) Core(TM) i7-6700 CPU 3.40GHz processor and 8.00 Go of RAM mem-
ory. The associated running times, estimated with Sys.time R function, are shown in
Table 3.
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Fig. 3 BIC for one simulation for the model [akbk Qk Dk ]

Fig. 4 Slope heuristic for one simulation for the model [akbk Qk Dk ]

6.5 Model selection

In this section, the selection of the number of clusters is investigated. As previously
mentioned, two criteria are used: BIC and the slope heuristic. Data are generated from
Scenario A. This simulation setting has been repeated 50 times and the 6 sub-models
have been estimated for a number of clusters from 2 to 10.

Figures 3 and 4 show for one simulation with the model [akbkQkDk], the values of
BIC and the slope heuristic in view of the number of clusters. For this simulation, both
the slope heuristic and BIC succeed in selecting the right number of clusters. On Fig. 4,
the left plot corresponds to the log-likelihood function with respect to the number of
free model parameters. The red line is estimated using a robust linear regression and
its slope coefficient is used to compute the penalized log-likelihood function shown
on the right plot.

Table 4 summarized the results of the 50 simulations for the BIC and the slope
heuristic. The BIC criterion has some difficulties to estimate the actual number of
clusters K . Indeed, depending on the simulation, BIC selects between 2 and 3 clusters
and succeed in 46% of simulations in the case of [akbkQkDk] model. The slope
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Table 4 Best model selected by BIC (top) and by the slope heuristic (SH, bottom) for 50 simulations as a
percentage

Method Model Number K of clusters

2 3 4 5 6 7 8 9 10

BIC

funHDDC [ak j bk Qk Dk ] 36 48 10 6 – – – – –

funHDDC [ak j bQk Dk ] 38 54 6 – 2 – – – –

funHDDC [akbk Qk Dk ] 42 46 8 0 2 2 – – –

funHDDC [akbQk Dk ] 44 48 8 – – – – – –

funHDDC [abk Qk Dk ] 46 40 10 4 – – – – –

funHDDC [abQk Dk ] 64 24 10 2 – – – – –

SH

funHDDC [ak j bk Qk Dk ] 6 60 24 10 – – – – –

funHDDC [ak j bQk Dk ] 10 74 12 4 – – – – –

funHDDC [akbk Qk Dk ] 18 66 14 2 – – – – –

funHDDC [akbQk Dk ] 26 52 14 8 2 – – – –

funHDDC [abk Qk Dk ] 34 42 16 6 2 – – – –

funHDDC [abQk Dk ] 38 28 20 10 2 0 0 2 –

Bold values indicate that the highest value

heuristic is conversely more efficient to recover the actual number of groups, in about
66% of simulations in the case of [akbkQkDk] model.

6.6 Benchmark with existingmethods

In this section, the proposed clustering algorithm is compared to competitors of the
literature: Funclust (from Funclustering package, Jacques and Preda 2014b), kmeans-
d1 and kmeans-d2 (our own implementation of Ieva et al. 2013) and FGRC (provided
at our request by the authors Yamamoto and Hwang 2017). All algorithms are applied
for K = 3 groups for Scenario A and K = 4 groups for Scenario B and Scenario C.
These methods are compared on the basis of the 3 simulation settings and according
to the adjusted Rand index (ARI).

Table 5 presents clustering accuracies for the 10 tested models and the best fun-
HDDC model selected at each iteration by slope heuristic or BIC. These scenarios
seem to be hard situations since only funHDDC performs well for the 3 of them.
Those good results for funHDDC are due to the fact that the MFPCA are carried out
cluster per cluster. FGRC performed well for 2 out of 3 scenarios, it is the second
best method behind funHDDC. Let also remark that both kmeansmethods have a high
variance. The SH does not perform as well as in the previous example. SH seems to be
a good criterion to select the number of clusters, but, with a number of clusters fixed,
the BIC seems to be a better criterion for model selection. One can also wonder if this
counter performance of the SH is not linked to the small number of tested models.
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Table 5 Mean (and s.d) of ARI for all tested models on 50 simulations

Method Model Scenario A Scenario B Scenario C

funHDDC [ak j bk Qk Dk ] 0.99 (0.08) 0.98 (0.08) 0.94 (0.14)

funHDDC [ak j bQk Dk ] 0.85 (0.26) 0.82 (0.19) 0.76 (0.19)

funHDDC [akbk Qk Dk ] 1 (0) 0.96 (0.11) 0.94 (0.13)

funHDDC [akbQk Dk ] 0.88 (0.26) 0.88 (0.18) 0.81 (0.20)

funHDDC [abk Qk Dk ] 0.95 (0.16) 0.98 (0.09) 0.95 (0.13)

funHDDC [abQk Dk ] 0.49 (0.36) 0.86 (0.18) 0.78 (0.23)

funHDDC SH best model 0.48 (0.29) 0.76 (0.18) 0.70 (0.14)

funHDDC BIC best model 0.97 (0.12) 0.86 (0.18) 0.79 (0.18)

Funclust – 0.30 (0.27) 0.42 (0.25) 0.41 (0.24)

kmeans − d1 – 0.57 (0.49) 0.18 (0.37) 0.30 (0.46)

kmeans − d2 – 0.61 (0.48) 0.29 (0.43) 0.18 (0.37)

FGRC – 0.87 (0.01) 0.65 (0.21) 0.81 (0.19)

Bold values indicate that the highest value

7 Case study: analysis of pollution in French cities

This section focuses on the analysis of pollution data in French cities. The monitoring
and the analysis of such data is of course important in the sense that they could help
cities in designing their policy against pollution. As a reminder, pollution kills at least
nine million people and costs trillions of dollars every year, according to the most
comprehensive global analyses to date.1

7.1 Data

This dataset deals with pollution in some French cities (available on 3 different web-
sites).2 It has been documented byAtmoFrance, a federationwhichmonitor air quality
in France. It gathered 5 categories of pollutants measured hourly since 1985. In this
study we choose to work on Ozone value (µ g/m3) and PM10 particles (µ g/m3)
measured in 84 France southern cities. The regions affected are Nouvelle Aquitaine,
Auvergne Rhône Alpes and Provence Alpes Côte d’Azur (cf. Fig. 5). A period of 1
year from 1/01/2017 to 31/12/2017 is considered. The goal of this study is to charac-
terize the daily evolution of these polluants. In order to do this, data are split into daily
curves, and the clustering algorithm has been carried out on all the daily curves for
all the cities. Doing this, geographical and temporal dependencies between the daily
curves are ignored in this preliminary study. Finally, we remove from the analysis the
daily curves which have more than 4 missing values or for which there is missing
values at the beginning or at the end of the period. The number of bivariate curves to
analyse is thus 25,658.

1 https://www.who.int/airpollution/en/.
2 https://www.airpaca.org/donnees/telecharger, https://www.atmo-auvergnerhonealpes.fr/donnees/telech
arger, https://www.atmo-nouvelleaquitaine.org/donnees/telecharger.
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Fig. 5 Location of measured cities (dark blue) (color figure online)

The functional form of the data is reconstructed using a cubic B-spline smoothing
with 10 basis functions. As we can see in Fig. 6 (bottom), the presence of missing val-
ues does not disrupt smoothing. Data are collected through calibrated meteorological
stations, we consider that data are obtained in a common acquisition process, then the
noise is assumed to be the same for all stations. So, our algorithm has been applied
with [akj bQkDk] model on smoothed data with a varying number of clusters, from 2
to 20. The BIC criteria is used to choose an appropriate number of clusters because
there is here not enough models to use the slope heuristic criteria.

7.2 Results

According to BIC, the best partition for [akj bQkDk]model is with 6 clusters (cf. Table
6).

The main sources of variation of Ozone and particles PM10 overall mean curves
can be studied thanks to the MFPCA performed for each subgroup. The solid curve
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Fig. 6 Pollutants real curves (top) and smooth curves (bottom) for Avignon day 12 (blue) and La Rochelle
day 177 (pink) (color figure online)

Table 6 Mean (and s.d) of ARI
for all tested models on 50
simulations

Number of clusters Complexity BIC

6 544 −4,756,123.71

9 849 −4,778,048.84

18 2057 −4,819,115.13

17 1929 −4,833,556.40

5 472 −4,939,371.01

14 1545 −4,966,517.37

16 1834 −4,969,406.42

15 1735 −4,970,505.90

11 1260 −4,972,458.71

2 101 −4,976,490.18

on Figs. 7 and 8 represents the overall mean curve and the blue and red ones show
the effect of adding (resp. subtracting) a multiple of the first eigenfunction and can
be interpret as the first source of variation of the overall mean. According to this plot
the first source is an amplitude variation for Ozone. For PM10 particles it is the peaks
size that varies the most between groups.

Looking at the groups mean curves (cf. Fig. 7 for Ozone and Fig. 8 for PM10
particles) we can see that Ozone mean curves are more variable than PM10 particles
ones. We can also see a common pattern between groups. For the PM10 particles,
the mean curves of each group have a wavy shape with a first summit at night and a
second at mid-afternoon. There is two main patterns in the O3 curves. During a day,
the Ozone concentration has a tendency to decrease from midnight to midday and to
increase until reaching a plateau between 5 p.m. and 8 p.m. for the first pattern. For the
second one, the Ozone concentration is stable from midnight to 2 p.m. and increases
until reaching a maximum at 8 p.m. But it is the level of concentration that varies the
most from a group to another.

The first group is characterized by the lower concentration of Ozone along the day.
This group gathers winter days (cf. Fig. 9) for cities mostly in urban area (cf. Table 7).
Ozone is a product of photochemical reaction between various pollutants when there
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Fig. 7 O3 overall mean curve and its variation expressed in each group functional subspace. Blue (resp.
red) curve shows the effect of adding (resp. subtracting) a multiple of the first eigenfunction and represents
the first source of the overall mean variation (color figure online)

is a lot of sunlight. The low duration of sunshine during winter can explain those low
values. Its Ozone mean curve is very close to the third group one, they differ from
their PM10 particle concentration. Indeed, first group average curve is three times
higher than third group one. It gathers days the most contaminated by particles PM10
(with the highest concentration along the day). For that matter, the European Union
recommends that PM10 concentrations should not to be higher than 50 µ g/m3 in
daily mean more than 35 days per year and in this group the mean value is above this
threshold at any time.Whereas the third group gathers fall and winter days (cf. Fig. 9).
The black group has the highest values of Ozone (cf. Fig. 7 group 5). Its maximum
is reached between 5 p.m. and 10 p.m. This can be due to exhaust gas when people
commute from their work to their home.

To conclude, the use of multiple variables to cluster cities allow the distinction
between different pollution profiles. Those results enable local councils to have a
look at the daily pollution of their towns along the year. Those results have especially
highlighted critical days in particles PM10 pollution, that can lead to recommendations
in order to try to lower these levels the next year. However we have to stay vigilant
about the interpretation of those results. In fact, the measurement of contaminating
elements are very localized, some sensors are located near companies and thus are not
always representative of the pollution of the whole city in which they are located.
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Fig. 8 PM10 particles overall mean curve and its variation expressed in each group functional subspace.
Blue (resp. red) curve shows the effect of adding (resp. subtracting) a multiple of the first eigenfunction
and represents the first source of the overall mean variation (color figure online)

8 Discussion and conclusion

Thisworkwasmotivatedby thewill to provide anewclusteringmethod formultivariate
functional data, called funHDDC,which takes into account the possibility that data live
in subspaces of different dimensions. The method is based on a multivariate functional
principal component analysis and a functional latent mixture model. Its efficiency has
been demonstrated on simulated datasets and the proposed technique outperforms
state-of-the-art methods for clustering multivariate functional data. Notice also that
this new algorithm works in the univariate case as well and, therefore, generalizes the
original funHDDC algorithm (Bouveyron and Jacques 2011). It is available on CRAN
as the funHDDC package. The proposed methodology has been applied to analyze
1-year pollution records in 84 cities in France, with meaningful results.

Among possible further work, it could be interesting to consider wavelet smoothing
instead of Fourier or B-spline smoothing. Indeed, wavelet smoothing may keep more
information in the case of peaked data than the B-spline smoothing, which was used
in this paper. However, the proposed model will have to be adapted to this smooth-
ing because of the specific nature of wavelets. Similarly, further developments of the
proposed approach could be investigated in order to take into account dependency
between observations, following the large literature about dependent functional data.
Finally, it would be interesting to study the question of clustering multivariate func-
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Fig. 9 Histogram of days in each group (1: top left, 2: top right, 3: middle left, 4: middle right, 5: bottom
left, 6: bottom right), from 1/01/2017 (0) to 31/12/2010 (364). Spring is from day 79 to 171, Summer from
day 172 to 264, Fall from day 265 to 354 and Winter from day 355 to 365 and day 1 to 78

Table 7 Proportion of city type in each group

Type of city Whole dataset First Group Second Group Third Group

Urban 0.78 0.81 0.75 0.84

Suburban 0.17 0.16 0.19 0.14

Rural 0.05 0.03 0.06 0.03

Type of city Fourth Group Fifth Group Sixth Group

Urban 0.79 0.78 0.77

Suburban 0.16 0.17 0.17

Rural 0.06 0.05 0.05

tional data in the presence of outliers. The presence of outliers may indeed bias the
model inference if they are not correctly detected and managed. An extension of this
work to the case of robust clustering for multivariate functional data may fellow the
literature about robust clustering (Byers and Raftery 1998; Hennig and Coretto 2007;
Gallegos andRitter 2005; Basso et al. 2010; Gallegos andRitter 2009 and, for a review,
Bouveyron et al. 2019, Chapter 3).
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Appendix: Proofs

Proof of Proposition 1

l(θ) =
n∑

i=1

K∑

k=1

zki log(πk f (xi , θk)),

where zki=1 if xi belongs to the cluster k and zki = 0 otherwise. f (xi , θk) is a
Gaussian density, with parameters θk = {μk, 
k}. So the complete log-likelihood is
written:

l(θ) =
n∑

i=1

K∑

k=1

zki log[πk
1

(2π)R/2|
k |1/2 exp(
−1

2
(xi − μk)

t
−1
k (xi − μk))]

=
n∑

i=1

K∑

k=1

zki [log(πk) − 1

2
log|
k | − 1

2
(xi − μk)

t
−1
k (xi − μk) − R

2
log(2π)].

For the [akj bk Qkdk] model, we have:

l(θ) = 1

2

n∑

i=1

K∑

k=1

zki [−2log(πk) + log(
dk∏

j=1

akj

R∏

j=dk+1

bk) + (xi − μk)
t Qk�

−1
k Qt

k(xi − μk)]

− nR

2
log(2π)

= 1

2

n∑

i=1

K∑

k=1

zki [−2log(πk) +
dk∑

j=1

log(akj ) +
R∑

j=dk+1

log(bk)]

+ (xi − μk)
t Qk�

−1
k Qt

k(xi − μk)] − nR

2
log(2π).

Let nk = ∑n
i=1 zki be the number of curves within cluster k, the complete log-

likelihood is then written:

l(θ) = −1

2

K∑

k=1

nk[−2log(πk) +
dk∑

j=1

log(akj ) +
R∑

j=dk+1

log(bk)

+ 1

nk

n∑

i=1

zk j (xi − μk)
t Qk�

−1
k Qt

k(xi − μk)] − nR

2
log(2π).
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The quantity (xi − μk)
t Qk�

−1
k Qt

k(xi − μk) is a scalar, so it is equal to it trace:

1

nk
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t Qk�
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k Qt
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k Qt
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t Qk]), consequently:
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where Ck = 1
nk

∑n
i=1 zki (xi − μk)

t (xi − μk) is the empirical covariance matrix of
the kth element of the mixture model. The �k matrix is diagonal, so we can write:

1
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+
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where qkj is jth column of Qk .
Finally,

l(θ) = −1

2
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Proof of Proposition 2

Hk(x) = −2log(πk f (x, θk))

= −2log(πk) − 2log( f (x, θk))

= −2log(πk) − 2log(
1

(2π)R/2|
k |1/2 exp(
−1

2
(x − μk)

t
−1
k (x − μk))

= −2log(πk) − 2log(
1

(2π)R/2|
k |1/2) ) + (x − μk)
t
−1

k (x − μk)

= −2log(πk) + Rlog(2π) + log|
k | + (x − μk)
t
−1

k (x − μk).
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But, 
k = Qk�k Qt
k and Qt

kQk = IR , hence:

Hk(x) = −2log(πk) + Rlog(2π) + log|
k | + (xk − μk)
t (Qk�k Q

t
k)

−1(xk − μk).

Let Qk = Q̃k + Q̄k where Q̃k is the R × R matrix containing the dk first columns
of Qk completed by zeros and where Q̄k = Qk − Q̃k . Notice that Q̃k�

−1
k Q̄t

k =
Q̄k�

−1
k Q̃t

k = Op where Op is the null matrix. So,

Qk�
−1
k Qt

k = (Q̃k + Q̄k)�
−1
k (Q̃k + Q̄k) = Q̃k�

−1
k Q̃k + Q̄k�

−1
k Q̄k .

Hence,

Hk(x) = −2log(πk) + Rlog(2π) + log|
k | + (x − μk)
t Q̃k�

−1
k Q̃t

k(x − μk)

+ (x − μk)
t Q̄k�

−1
k Q̄t

k(x − μk).

With definitions Q̃k[Q̃t
k Q̃k] = Q̃k and Q̄k[Q̄t

k Q̄k] = Q̄k , we can rephrase Hk(x) as:

Hk(x) = −2log(πk) + Rlog(2π) + log|
k | + (x − μk)
t Q̃k Q̃t

k Q̃k�
−1
k Q̃t

k Q̃k Q̃t
k(x − μk)

+ (x − μk)
t Q̄k Q̄t

k Q̄k�
−1
k Q̄t

k Q̄k Q̄t
k(x − μk)

= −2log(πk) + Rlog(2π) + log|
k | + [Q̃k Q̃t
k(x − μk)]t Q̃k�

−1
k Q̃k

t [Q̃k Q̃t
k(x − μk)]

+ [Q̄k Q̄t
k(x − μk)]t Q̄k�

−1
k Q̄k

t [Q̄k Q̄t
k(x − μk)].

We define Dk = Q̃k�
−1
k Q̃t

k and the norm ||.||Dk on Ek such as ||x ||Dk = xtDk x . So,
on one hand:

[Q̃k Q̃t
k(x − μk)]t Q̃k�

−1
k Q̃t

k[Q̃k Q̃t
k(x − μk)] = ||Q̃k Q̃t

k(x − μk)||2Dk
.

On the other hand:

[Q̄k Q̄t
k(x − μk)]t Q̄k�

−1
k Q̄t

k[Q̄k Q̄t
k(x − μk)] = 1

bk
||Q̄k Q̄t

k(x − μk)||2.

Consequently,

Hk(x) = −2log(πk) + Rlog(2π) + log|
k | + ||Q̃k Q̃t
k(x − μk)||2Dk

+ 1

bk
||Q̄k Q̄t

k(x − μk)||2.

Knowing Pk , P⊥
k and ||μk − P⊥

k ||2 = ||x − Pk(x)||2, we have:

Hk(x) = ||μk − Pk(x)||2Dk
+ 1

bk
||x − Pk(x)||2 + log|
k | − 2log(πk) + Rlog(2π).

123



Clustering multivariate functional data in group-specific… 1127

Moreover, log|
k | = ∑dk
j=1 log(akj ) + (R − dk)log(bk).

Finally,

Hk(x) = ||μk − Pk(x)||2Dk
+ 1

bk
||x − Pk(x)||2 +

dk∑

j=1

log(ak j ) + (R − dk)log(bk) − 2log(πk)

+Rlog(2π).

Proof of Proposition 3

Parameter Qk Wehave tomaximise the log-likelihoodunder the constraintqtk j qk j = 1,
which is equivalent to looking for a saddle point of the Lagrange function:

L = −2l(θ) −
R∑

j=1

ωk j (q
t
k j qk j − 1),

where ωk j are Lagrange multiplier. So we can write:

L =
K∑

k=1

ηk

⎡

⎣
dk∑

j=1

(
log(akj ) + qtk jW

1/2CkW 1/2qkj

ak j

)

+
R∑

j=dk+1

(
log(bk) + qtk jW

1/2CkW 1/2qkj

bk

)
− 2log(πk)

⎤

⎦ + nR

2
log(2π)

−
R∑

j=1

ωk j (q
t
k j qk j − 1).

Therefore, the gradient of L in relation to qkj is:

∇qk jL = ∇qk j

⎛

⎝
K∑

k=1

ηk

⎡

⎣
dk∑

j=1

qtk jW
1/2CkW 1/2qkj

ak j
+

R∑

j=dk+1

qtk jW
1/2CkW 1/2qkj

bk

⎤

⎦

−
R∑

j=1

ωk j (q
t
k j qk j − 1)

⎞

⎠ .

As a reminder, when W is symmetric, then ∂
∂x (x − s)T W (x − s) = 2W (x − s) and

∂
∂x (xT x) = 2x (cf. Petersen and Pedersen (2012)), so:

∇qk jL = ηk

[
2
W 1/2CkW 1/2

σk j
qk j

]
− 2ωk j qk j

where σk j is the jth diagonal term of matrix �k .

123



1128 A. Schmutz et al.

So,

qtk j∇qk jL = 0 ⇔ ωk j qk j = ηk

σk j
qtk jW

1/2CkW
1/2qkj

⇔ W 1/2CkW
1/2qkj = ωk jσk j

ηk
qk j .

qkj is the eigenfunction of W 1/2CkW 1/2 which match the eigenvalue λk j = ωk jσk j
ηk

=
W 1/2CkW 1/2. We can write qtk j qkl = 0 if j �= l. So the log-likelihood can be written:

−2l(θ) =
K∑

k=1

ηk

⎡

⎣
dk∑

j=1

(
log(akj ) + λk j

ak j

)
+

R∑

j=dk+1

(
log(bk) + λk j

bk

)⎤

⎦ + Cte,

we substitute the equation
∑R

j=dk+1 λk j = tr(W 1/2CkW 1/2) − ∑dk
j=1 λk j :

−2l(θ) =
K∑

k=1

ηk

⎡

⎣
dk∑

j=1

log(akj ) +
dk∑

j=1

λk j

ak j
+

R∑

j=di+1

log(bk) + 1

bk

⎛

⎝tr(W 1/2CkW
1/2) −

dk∑

j=1

λk j

⎞

⎠

⎤

⎦ + Cte

=
K∑

k=1

ηk

⎡

⎣
dk∑

j=1

log(akj ) +
dk∑

j=1

λk j

(
1

akj
− 1

bk

)
+

R∑

j=di+1

log(bk) + 1

bk
tr(W 1/2CkW

1/2)

⎤

⎦ + Cte

=
K∑

k=1

ηk

⎡

⎣
dk∑

j=1

log(akj ) +
dk∑

j=1

λk j

(
1

akj
− 1

bk

)
+ (p − dk)log(bk) + tr(W 1/2CkW 1/2)

bk

⎤

⎦ + Cte.

In order to minimize −2l(θ) compared to qkj , we minimize the quantity∑K
k=1 ηk

∑dk
j=1 λk j (

1
ak j

− 1
bk

) compared to λk j . Knowing that ( 1
ak j

− 1
bk

) ≤ 0,∀ j =
1, . . . , dk, λk j has to be as high as feasible. So, the jth column qkj of matrix Q is esti-
mated by the eigenfunction associated to the jth highest eigenvalue of W 1/2CkW 1/2.
Parameter ak j As a reminder (ln(x))′ = x ′

x and ( 1x )′ = − 1
x2
. The partial derivative of

l(θ) in relation to akj is:

−2
∂l(θ)

∂akj
= ηk

(
1

akj
− qtk jW

1/2CkW 1/2qkj

a2k j

)

The condition ∂l(θ)
∂ak j

= 0 is equivalent to:

ηk

(
1

akj
− qtk jW

1/2CkW 1/2qkj

a2k j

)
= 0

⇔ 1

akj
= qtk jW

1/2CkW 1/2qkj

a2k j
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⇔ akj = qtk jW
1/2CkW

1/2qkj
⇔ akj = λk j

Parameter bk The partial derivative of l(θ) in relation to bk is:

−2
∂l(θ)

∂bk
= ηk

R∑

j=dk+1

(
1

bk
− qtk jW

1/2CkW 1/2qkj

b2k

)

= ηk

⎛

⎝ R − dk
bk

−
R∑

j=dk+1

qtk jW
1/2CkW 1/2qkj

b2k

⎞

⎠

But,

R∑

j=dk+1

qtjW
1/2CkW

1/2q j = tr(W 1/2CkW
1/2) −

dk∑

j=1

qtjW
1/2CkW

1/2q j ,

so:

−2
∂l(θ)

∂bk
= ηk

(R − dk)

bk
− ηk

b2k

⎛

⎝tr(W 1/2CkW
1/2) −

dk∑

j=1

qtk jW
1/2CkW

1/2qkj

⎞

⎠

= ηk
(R − dk)

bk
− ηk

b2k

⎛

⎝tr(W 1/2CkW
1/2) −

dk∑

j=1

λk j

⎞

⎠

The condition ∂l(θ)
∂bk

= 0 is equivalent to:

ηk
(R − dk)

bk
− ηk

b2k

⎛

⎝tr(W 1/2CkW
1/2) −

dk∑

j=1

λk j

⎞

⎠ = 0

⇔ ηk
(R − dk)

bk
= ηk

b2k

⎛

⎝tr(W 1/2CkW
1/2) −

dk∑

j=1

λk j

⎞

⎠

⇔ bk = ηk

ηk(R − dk)

⎛

⎝tr(W 1/2CkW
1/2) −

dk∑

j=1

λk j

⎞

⎠

⇔ bk = 1

(R − dk)

⎛

⎝tr(W 1/2CkW
1/2) −

dk∑

j=1

λk j

⎞

⎠
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