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Abstract
In this study, we propose a parallel programming method for linear mixed models
(LMM) generated from big data. A commonly used algorithm, expectation maxi-
mization (EM), is preferred for its use of maximum likelihood estimations, as the
estimations are stable and simple. However, EM has a high computation cost. In our
proposed method, we use a divide and recombine to split the data into smaller sub-
sets, running the algorithm steps in parallel on multiple local cores and combining the
results. The proposed method is used to fit LMM with dense and sparse parameters
and for large number of observations. It is faster than the classical approach and gen-
eralizes for big data. Supplementary sources for the proposed method are available in
the R package lmmpar.

Keywords Big data · Divide and recombine · EM · Linear mixed models · R package

1 Introduction

Linear mixed models (LMM) have been extensively used for repeated measurements,
which emerge in longitudinal studies and clustered data. This type of model includes
both fixed and random effects. The expectation maximization (EM) algorithm is used
to carry out the parameter estimations of LMM and repeating the EM algorithm
until convergence. The several, serially executed iterations of the algorithm cause
computational burden and require efficient memory management, especially for big
data sets. Recently, more sophisticated methods and speedup strategies have fostered
an increase in the computational speed and decrease the required memory alloca-
tions.
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Statistical methods are implemented in parallel within the compass of some of the
current studies, albeit they are limited. In the study of Renaut (1998), multi-splitting
methods are used in the least squares problems and the decomposed matrices are
solved in parallel. In one of the recent studies, several parallel statistical methods
are reviewed and the domain decomposition is used by defining the projector oper-
ators map vectors to split the data at some part of the study (Guo 2012). Maclaurin
and Adams (2014) tries to speed up MCMC by defining a binary auxiliary variable
with the conditional likelihood to decrease the evaluation time of likelihoods. Wolfe
et al. (2008) introduces a fully distributed EM algorithm and uses it in three separate
MapReduce topologies.

There are several studies, including parallel computing for basic statistics, but the
analytics of complicatedmodels are limitedwith big data in thatmemory and time con-
straints are major concerns. Parallelizing statistical algorithms efficiently has become
crucial for faster performance given the gradual increase in data magnitude and the
availability of multi-core environments. Development in the message-passing clusters
brings more programming opportunities for statistical analysis.

‘Divide and recombine’ strategies with one of the R packages, named plyr, is intro-
duced in Wickham (2011). In this package, a data set is broken up into smaller pieces.
Each piece calculates a result independently and the results are combined back inmain
memory. The list of R packages including high-performance and parallel computing
can be found in https://cran.r-project.org/web/views/HighPerformanceComputing.
html.

Parallel programming used in this study adheres to the ‘divide and recombine’ strat-
egy. In LMM content, Tran et al. (2016) used the same strategy with a different aspect.
They developed a hybrid algorithm method in Bayesian framework for generalized
LMM within a static setting. Broderick et al. (2013) developed a similar method to
Tran et al. (2016), but with dynamic variables instead of static variables. Our study
is similar to Tran et al. (2016) and Neiswanger et al. (2014), in terms of splitting
the full data into smaller subsets, running the algorithm steps separately, and finally
combining the results.

We prefer to use the R language for the implementation as R has fast vector cal-
culations and numerous, open-source statistical model routines already available.
Larger data sets, however, require more attention to carry out the data manipula-
tions and the statistical analyses. Parallel computing is a great candidate to handle
the increase in data size. The proposed method is implemented in R using lmm-
par package which is designed by the authors for this type of models and it can
be found in https://cran.r-project.org/package=lmmpar (Gokalp Yavuz and Schloerke
2017).

In the next section, we give a brief introduction about the LMM setting. One of
the EM-type algorithms, ECME, is defined in the third section. We then introduce
the parallel programming and our proposed parallel LMM algorithm in the fourth
section. Simulation studies and conclusion are discussed at the fifth and sixth sections,
respectively.
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2 Linear mixedmodels

The LMM is defined for a continuous response variable as following

yi = Xiβ + Ziui + ei , i = 1, 2 . . . , n,

ui ∼ Nq (0,ψ) ,

ei ∼ Nni (0,Ri ) ,

(1)

where yi denotes an ni dimensional vector of continuous responses for the i th subject,
β denotes a p dimensional vector of unknown population parameters, ui denotes a
q dimensional vector of unknown individual effects, Xi is a known (ni × p) design
matrix, Zi is a known (ni × q) design matrix, ei denotes an ni dimensional vector of
residual errors assumed to be independent of ui . ψ is a (q × q) covariance matrix of
random effects; whileRi is a (ni ×ni ) covariance matrix of residual errors (Laird and
Ware 1982). It is often assumed that Ri = σ 2Ini for simplicity. σ 2 and ψ are positive
definite.

The joint distribution of
(
yTi ,uTi

)T
is

[
yi
ui

]
∼ Nni+q

([
Xiβ

0

]
,

[
ZiψZT

i + Ri Ziψ

ψZT
i ψ

])
. (2)

The marginal distribution of the response variable is obtained as

yi ∼ Nni

(
Xiβ, σ 2W−1

i

)
, (3)

where Wi = (ZiDZi + Ri )
−1 and D = σ−2ψ . The maximum-likelihood (ML) esti-

mates of β, σ 2 and D is found by maximizing the following log-likelihood function
of (3).

L0

(
β, σ 2,D

)
∝

(
σ 2

)−N/2 n∏

i=1

|Wi |1/2

exp

{
− 1

2σ 2 (yi − Xiβ)T Wi (yi − Xiβ)

}
,

(4)

where N = ∑n
i=1 ni .

Given y = (y1, . . . , yn) and
(
β, σ 2,D

)
, the random effects, u1, . . . ,un are inde-

pendently and normally distributed with the following moments

E
(
ui | y,β, σ 2, D

)
= U i ZT

i R
−1
i

(
yi − X iβ

)
, (5)

V
(
ui | y,β, σ 2, D

)
= σ 2U i , (6)

where

U i =
(
D−1 + ZT

i R
−1
i Zi

)−1
. (7)
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Detailed proofs and empirical Bayes point and interval estimates for random effects
are found in Schafer (1998).

3 ECME algorithm

Two methods are commonly used to maximize (4): Expectation Maximization (EM)
and Newton-Raphson (NR). EM (Dempster et al. 1977) is easy and stable, and it is
proven that the likelihood increases at each iteration of this algorithm. The compu-
tations for parameter estimations are tractable for the log-likelihood function with
EM algorithm. Therefore, we prefer to use an EM-type algorithm to maximize the
likelihood function of LMM.

The EM algorithm is composed of two steps. The first step is finding the conditional
expectation of the complete data log-likelihood with respect to unknown data given
the observed data and the current parameter estimations. The second step includes the
maximization of this expectation. These two steps are repeated until the parameters
have converged.

Using the general EM scheme, the LMM random effects are treated as missing data
and their conditional expectations are evaluated with (5). During the maximization
step, some of the unknown parameters are fixed while the remaining parameters are
maximized first. Once optimal values are found, the originally fixed parameters are
maximized. Thus, the algorithm is no longer EM, it is called Expectation/Conditional
Maximization Either (ECME) (Liu and Rubin 1994).

The maximum likelihood parameters of LMM, are inferred by maximizing the
log-likelihood function given in Eq. (4) with ECME algorithm. They are given below
similar to the ones defined in Schafer (1998)

U (k)
i =

(
D−1(k) + ZT

i R
−1
i Zi

)−1
, (8)

W (k)
i = R−1

i − R−1
i ZiU

(k)
i ZT R−1

i , (9)

β(k) =
(

n∑

i=1

XT
i W

(k)
i X i

)−1 (
n∑

i=1

XT
i W

(k)
i yi

)

, (10)

σ
2(k+1)
i = 1

N

n∑

i=1

(
yi − X iβ

(k)
)
W (k)

i

(
yi − X iβ

(k)
)

, (11)

u(k)
i = U (k)

i ZT
i R

−1
i

(
yi − X iβ

(k)
)

, (12)

D(k+1) = 1

n

n∑

i=1

(
σ−2(k)u(k)

i u(k)T
i + U (k)

i

)
. (13)
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The likelihood evaluated at cycle (k) is as follows

L
(
β(k), σ 2(k), D(k)

)
= −N

2
log σ 2(k) − n

2
log

∣∣∣D(k)
∣∣∣

+ 1

2

n∑

i=1

log
∣∣∣U (t)

i

∣∣∣ − N

2

(
σ 2(k+1)

σ 2(k)

)

.

(14)

The ECME algorithm updates the unknown parameters β, σ 2, D each step until
(14) converges. Maximum likelihood estimates of β, σ 2 and D will be consistent, if
n → ∞ and ni remains bounded, with the difference of these estimates from the true
parameters by terms of size Op(n−1/2) (Liu and Rubin 1994).

4 Parallel programming

With parallel programming, a computation-intensive process is divided into several
parts or tasks. The complete set of tasks are able to be processed at a faster rate in
parallel, as the workload is spread between multiple cores simultaneously. Detailed
overview of the parallel methods in point of the statistical computing is found in
Kontoghiorghes (2005).

A task in which each core does the same statistical job with different subsets of the
data is called domain decomposition. Parallelization on the tasks of a statisticalmethod
is called functional decomposition. We use domain decomposition and implement the
computations in parallel. Since the calculations are implemented over a big set of
matrices, it is faster to split each matrix into smaller pieces and run the required calcu-
lations on multiple cores. The achievable speedup using domain decomposition alone
is limited as the demand on the hardware usage is higher (Nagel and Rickert 2001).

Different worker processes can be currently managed by the parallel package (R
Core Team 2017). Other common packages such as plyr and foreach (Ooi et al. 2019b)
wrap around the parallel package with integration help from the package doParallel
(Ooi et al. 2019a). plyr is used for its clean interface and foreach for determining
which variables need to be exported for the algorithm to work properly.

One of the new packages designed for bigmatrices is bigmemory (Kane et al. 2013).
Data is not duplicated to each process with bigmemory. Instead, each matrix is put
into shared memory (with big.matrix() ) that local cores may access. This memory
management style requires less overall memory when using many local processes.
Converting data into a big.matrix() optimizes the communication cost for the algo-
rithm. As our algorithm only needs to read the big.matrix() data, each core may work
independently on its own section of the problem without fear of concurrency issues.

More specifically, we generate a big column vector from y, X and Z matrices by
using big.matrix package in R similar to MapReduce programming model. In our
algorithm, the subjects are allocated to shared memory, and the matrices are separated
by each subject to shared memory. So, a heavy matrix is decomposed to many sub-
matrices to perform the parallel processing. This part can be seen as theMap procedure.
Following the decomposition, each sub-matrix is processed independently. This part
can be seen as Reduce process.
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It is worth to note that the processors do not communicate in our proposed algo-
rithm, they send the related message to the main memory. The final calculations are
implemented in this main memory with the received compound messages.

Before introducing our algorithm for LMM, we want to give some details about
one of the concepts used to check the performance of the parallel computing at the
next section.

4.1 Speedup for parallel computing

An increase in the number of processors does not guarantee a linear increase in speedup
for parallel computing because of waiting time, cost of communication, and shared
memory. Also, it may not be possible to parallelize the entire code, especially in the
case of complex models. The serial part of the code causes some limitations. The
speedup measurement is used to evaluate the performance advantage of the parallel
computing.

Let Sp denotes the speedup;

Sp = Ts
Tp

, (15)

where Ts is the sequential algorithm execution time, and Tp is the parallel algorithm
execution time with p processors.

In parallel computing, there are theoretical upper limits for the speedup. Amdahl’s
law is one of them. It is applied to predict the speedup with the usage of multiple
processors. Amdahl’s law states

Sp = 1

fs + f p
C

, (16)

where fs is the serial fraction of the code, f p is the parallel fraction of the code, and
C is the number of the processors.

The maximum number of cores used in this study is 16. Using Amdahl’s law which
shows the evaluation of speedup versus number of processors for different fractions
of parallel part of the code, we do not expect more than 9x speedup for the parallel
calculations. Keep in mind that 90% of our code is executed in parallel. (For the
Amdahl’s law, please refer: https://en.wikipedia.org/wiki/Amdahl’s_law)

4.2 Linear mixedmodels with parallel programming

The ECME algorithm introduced in the previous section is implemented using the R
language with a ‘divide and combine’ approach. Steps 8, 9, and 12 are implemented
for each subject, and steps 10, 11, and 13 are mainly average value combinations of
these values with observed data. We aim to divide these calculations and process the
corresponding segments of the algorithm in parallel.

We perform calculations of 8, 9, and 12 on each core, c = 1, 2, . . . ,C , where C
is the maximum number of cores and C < n. In other words, the data is divided into
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C parts and the E-step is executed on different cores as each subject is independent
given a current estimate. (Repeats are dependent, since they are gathered from the
same subject).

Let η and θ = (
β, σ 2, D

)
denote the sufficient statistics and parameters, respec-

tively. The data A is divided into C splits and the sufficient statistics for the given
parameters are:

η(i) = Eθ (η|Ai ) . (17)

For the first core, the first sufficient statistic is calculated as

η
(i)
1 = XT

i W
(current)
i X i , (18)

where W i is defined in Eq. 3. The parallel sufficient statistic for the first combination
is

η
(c)
1 =

N/C∑

i=1

XT
i W

(current)
i X i . (19)

Note that for the j th process, i is defined from [( j −1)NC +1] to [ j NC ]. For the ease
of notation, we assume that the number of processes is an exact divisor of the total
number of observations. If not, the system optimally sets it.

The final combination for the first sufficient statistics is

η1 =
C∑

j=1

η
( j)
1 . (20)

Depending on the notation of (20), β̂ will be

β̂ = (η1)
−1 η2. (21)

where

η2 =
C∑

j=1

η
( j)
2 , and η

(c)
2 =

N/C∑

i=1

XT
i W

(current)
i yi .

.
More explicitly, the parallel maximum likelihood estimator (PMLE) in a linear

mixed model is

β̃ =
⎛

⎜
⎝

C∑

j=1

[ j NC ]∑

i=[( j−1)NC +1]
XT

ji Ŵ j iX j i

⎞

⎟
⎠

−1 ⎛

⎜
⎝

C∑

j=1

[ j NC ]∑

i=[( j−1)NC +1]
XT

ji Ŵ j i y j i

⎞

⎟
⎠ . (22)

Similarly, variance covariance matrices for error and random terms are defined as
below:

σ̂ 2 = 1

N

C∑

j=1

[ j NC ]∑

i=[( j−1)NC +1]

(
y j i − X j i β̂

)
Ŵ j i

(
y j i − X j i β̂

)
, (23)

123



1280 F. Gokalp Yavuz, B. Schloerke

D̂ = 1

n

C∑

j=1

[ j NC ]∑

i=[( j−1)NC +1]

(
σ̂ 2uiuTi + U i

)
. (24)

Note that (22), (23), and (24) include the estimations of U i , W i , and ui which are
defined in (8), (9), and (12), respectively. U i is used to find the variance-covariance
matrix of randomeffects.W i is the variance-covariancematrix of the response variable
and ui is the random effect predictions of the i th subject.

Assume that β̃ in 22 can be written as

β̃ = 1

C

C∑

j=1

β̂ j (25)

where C is the number of cores and β̂ j is defined similar to the equation (10) for each
core. Then, the similar statistical properties of the parameter can be found in the study
of Guo et al. (2015).

As defined previously, the ECME algorithm is used for our estimations and the
parameter estimations are found using (22), (23), and (24). The general shape of the
ECME algorithm for all of the parameters is implemented in pseudo code below:

Algorithm 1 Parallel Linear Mixed Models
Require: D and σ 2 are positive definite
Ensure: y, X , and Z inherit big.matrix � ybig, Xbig, Zbig
1: function lmmpar
2: θ0 ← initials
3: Register cores for parallel processing
4: while Convergence has not been met do
5: if cores = 1 then � Calling function
6: Call core_ f n() � Non-parallel
7: else
8: Call core_ f n() in parallel on registered cores � Parallel
9: end if
10: Combine sufficient statistics
11: Check that D and σ 2 are positive definite
12: end while
13: return β, D, and σ 2

14: end function
15:
16: function core_ f n � Processing function
17: Retrieve the indicies this particular process should use
18: for i in indicies do
19: Subset ybig , Xbig , and Zbig according to subject[i]
20: Calculate the sufficient statistics and required fields for parameter estimations
21: end for
22: Locally combine sufficient statistics
23: return Sufficient statistics
24: end function
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5 Simulation study

The aim of this section is to validate the efficiency of the proposed parallel computing
in LMM. The LMM is defined as:

yi = Xiβ + Ziui + ei , i = 1, 2...n,

ui ∼ Nq (0,ψ) ,

ei ∼ Nni (0,Ri ) .

(26)

The definitions of all terms in this model are the same as the model in (1). This is
a subject specific model including a random effect ui , which is predicted (estimated)
for each subject. In the model, i denotes a subject and i th subject has ni repeats.
Each subject is independent of each other while a dependency exists between repeats.
For the ease of the computation, all vectors and matrices are stacked vertically. As
an example, the response variable is defined as y = ( yT1 , yT2 , ..., yTn )T , where yi =
(yi1, yi2, ..., yini ).

Alternatively X and Z matrices can be defined as arrays for fixed and random
effects, respectively. With this design, they store n rectangular matrices each with ni
rows and p or q columns for X and Z, respectively.We prefer to use the matrix format,
as the ‘bigmemory’ package is appropriate for matrices and vectors.

Simulation studieswere conductedwith theRpackage lmmpar, whichwas designed
for this study. When LMM was run with ‘lmm’ package, the computations become
unfeasible with the increase in the number of parameters.

Dense and sparse β parameters are used in the simulation model to see the per-
formances for both situations. The dense vector of β is generated from the normal
distribution with mean 10 and variance 1. The sparse vector of β is generated from
the binomial distribution with 0.1 probability. Both dense and sparse parameters
are common in application, so the performance of each situation should be tested.
Ri = σ 2Ini and σ 2 = 1 for simplicity. The variance-covariance matrix of random
effects varies for different scenarios. For example, for 2 × 2 matrix, it is taken as

D =
[
16 0
0 0.025

]
.

Three main components affect the performance of a parallel computing: the size
of vectors and matrices, the data layout, and the number of cores. So, the number
of cores, observations, and parameters are altered to see the change in the speed of
calculations in the model (26).

We generate the data with different conditions by assigning alternative values for
n and p, such as n = 105, 106, and 2 × 106 and p = 5 and 51 for each sce-
nario. Our algorithm is expected to run faster than existing algorithms as the data
size increases. Data size was enlarged by increasing the number of observations and
parameters.

Figure 1 depicts the number of cores versus elapsed time for dense and sparse
β and for different values of n and p. Columns of the panels define the number of
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Fig. 1 Number of cores versus elapsed time (log2 formatting on y-scales)

variables while rows define the type of β. It is named as dense, if β is generated from
the normal distribution and it is named as sparse, if β is generated from the binomial
distribution.

The decrease in the elapsed time is obvious with the increase in the number of
cores used for parallel computing in Fig. 1. The speedup graph, which shows the
performance of the executed code for different scenarios, is reported in Fig. 2. The
purple line is the reference, which shows the ideal situation. The sub-linearity is the
expected area for a parallel computing. According to Amdahl’s Law, it is not expected
to have more than our achieved 9× speedup, even for the best case scenario.

Table 1 reports the system.time results and parameters used, most importantly, the
user time, user child time, elapsed time, cores used, observations (n), and number of
parameters (p) for the dense β. The elapsed time is used to find the speed up and to
draw Fig. 1.
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Fig. 2 Speedup versus number of cores

In the simulation set with one million observations, it takes just under 67 s with
16 cores, while it takes over 500 s without parallel computing to complete the same
job.

The initial values of β and the parameter estimations are reported in Table 2 for the
dense parameter scenario. These values are used to see how well the model fits the
data. The estimated parameter values in Table 2 are within a reasonable tolerance of
the true values.

Parameter estimations in model (26) with small dimensions are reported in Tables 2
and 5 for dense and sparseβ, respectively. On the other hand, we preferred to report the
difference between the initials and the estimations for higher dimensional parameters
for the ease of readability. Figure 3 depicts these differences for dense β in three
different number of observation scenarios. The spread in differences shrinks with the
increase in the number of observations.

Table 3 includes the variance covariance estimations for randomeffects andvariance
estimation for the error terms for dense β.
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Table 1 Simulation results for dense beta

Elapsed User.self Sys.self User.child Sys.child Cores n p

9.400 1.608 0.232 63.652 4.920 16 105 5

12.182 0.948 0.100 56.276 2.600 8 105 5

15.750 0.828 0.052 54.156 1.968 4 105 5

27.441 1.084 0.044 44.480 0.892 2 105 5

51.390 50.976 0.332 0 0 1 105 5

66.903 13.316 1.364 531.852 43.864 16 106 5

105.233 7.016 0.584 543.056 33.040 8 106 5

169.757 6.888 0.472 498.624 19.028 4 106 5

261.509 6.852 0.368 432.320 7.832 2 106 5

502.392 499.536 2.604 0 0 1 106 5

132.760 16.048 3.028 1142.880 133.012 16 2 × 106 5

258.797 15.272 2.008 1092.420 69.340 8 2 × 106 5

290.270 15.136 1.720 905.352 35.048 4 2 × 106 5

540.048 15.056 1.820 1030.816 28.324 2 2 × 106 5

1065.113 1029.456 33.968 0 0 1 2 × 106 5

9.004 3.180 0.760 63.712 7 16 105 51

13.765 1.264 0.264 62.736 5.020 8 105 51

16.811 1.160 0.268 53.464 2.772 4 105 51

31.422 1.156 0.196 49.272 2.344 2 105 51

57.395 56.908 0.436 0 0 1 105 51

69.905 10.912 2.820 635.696 104.528 16 106 51

110.850 10.496 2.892 574.784 42.180 8 106 51

168.051 10.540 2.300 548.424 32.992 4 106 51

306.854 10.404 2.408 489.440 20.564 2 106 51

573.096 565.756 6.908 0 0 1 106 51

207.635 22.460 7.308 1413.276 443.424 16 2 × 106 51

250.023 22.052 6.552 1220.988 178.776 8 2 × 106 51

339.063 22.132 5.324 1077.832 102.648 4 2 × 106 51

600.221 22.068 5.056 959.636 45.776 2 2 × 106 51

1196.785 1169.588 25.456 0 0 1 2 × 106 51

The same scenarios are repeated for sparse β to see how the algorithm performs
with sparse matrices which are highly common in big data. The simulation results are
located in Table 4. Parameter estimations are reported in Table 5 for sparse β. Similar
to the dense β scenario, the differences between the initial and estimated parameters
are plotted for three different number of observations. Differences are found in Fig. 4.
The variance estimations are found in Table 6 for the detailed investigation of the
readers.
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Table 2 Parameter estimations for Dense β, p = 5

n β0 β̂ D̂ σ̂ 2

105

⎡

⎢
⎢⎢
⎣

1.000
9.999
9.789
8.001
9.192

⎤

⎥
⎥⎥
⎦

⎡

⎢
⎢⎢
⎣

0.987
9.999
9.787
8.002
9.191

⎤

⎥
⎥⎥
⎦

[
15.9503 0.0004
0.0004 0.0249

]
1.000

106

⎡

⎢
⎢⎢
⎣

1.000
10.941
10.487
8.860
9.610

⎤

⎥
⎥⎥
⎦

⎡

⎢
⎢⎢
⎣

0.998
10.943
10.487
8.860
9.610

⎤

⎥
⎥⎥
⎦

[
16.0034 −0.0003
−0.0003 0.0250

]
0.999

2 × 106

⎡

⎢
⎢⎢
⎣

1.000
11.519
9.655
9.744
9.520

⎤

⎥
⎥⎥
⎦

⎡

⎢
⎢⎢
⎣

0.994
11.518
9.655
9.743
9.520

⎤

⎥
⎥⎥
⎦

[
16.0085 −0.0004
−0.0004 0.0250

]
0.999
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Fig. 3 Difference between initials and estimations, Dense Beta

Table 3 Variance-covariance
estimations for dense and big β,
p = 51

n D̂ σ̂ 2

105
[
16.0594 −0.0008
−0.0008 0.0249

]
0.998

106
[
15.9844 −0.0003
−0.0003 0.0250

]
0.999

2 × 106
[
16.0092 0.0001
0.0001 0.0250

]
0.999
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Table 4 Simulation results for sparse beta

Elapsed User.self Sys.self User.child Sys.child Cores n p

7.116 1.400 0.232 60.208 5.588 16 105 5

11.642 1.012 0.096 56.728 3.316 8 105 5

14.629 0.884 0.064 48.444 1.604 4 105 5

27.267 0.880 0.048 44.528 1.152 2 105 5

52.273 52.020 0.176 0 0 1 105 5

60.786 7.788 1.616 555.756 68.652 16 106 5

80.274 7.228 1.232 482.168 32.972 8 106 5

175.483 7.028 0.820 507.168 21.636 4 106 5

429.789 6.996 0.864 475.284 12.640 2 106 5

529.440 515.116 13.484 0 0 1 106 5

132.608 15.600 1.908 1133.096 122.884 16 2 × 106 5

227.669 15.096 1.628 1081.032 70.428 8 2 × 106 5

295.135 14.972 1.560 996.548 42.168 4 2 × 106 5

543.268 14.400 1.184 878.696 24.428 2 2 × 106 5

1005.547 995.348 9.496 0 0 1 2 × 106 5

7.848 1.780 0.460 63.612 6.892 16 105 51

10.972 1.276 0.376 61.080 5.004 8 105 51

16.913 1.172 0.228 53.972 2.796 4 105 51

31.112 1.176 0.232 48.572 2.160 2 105 51

57.135 56.692 0.380 0 0 1 105 51

86.478 10.888 2.984 620.688 83.208 16 106 51

145.229 10.504 2.956 645.572 45.800 8 106 51

164.435 10.648 2.440 544.684 35.240 4 106 51

296.992 10.412 2.684 480.308 20.604 2 106 51

565.672 558.236 6.920 0 0 1 106 51

211.255 22.680 7.652 1422.776 376.984 16 2 × 106 51

320.383 21.936 6.624 1285.288 189.580 8 2 × 106 51

415.702 21.736 7.240 1142.424 84.436 4 2 × 106 51

595.867 22.072 6.352 1015.004 53.524 2 2 × 106 51

1183.315 1157.012 24.688 0 0 1 2 × 106 51
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Table 5 Parameter estimations for Sparse β, p = 5

n β0 β̂ D̂ σ̂ 2

105

⎡

⎢
⎢⎢
⎣

1
0
0
0
0

⎤

⎥
⎥⎥
⎦

⎡

⎢
⎢⎢
⎣

0.981
−0.001
−0.004
−0.001
−0.000

⎤

⎥
⎥⎥
⎦

[
15.9608 −0.0002
−0.0002 0.0249

]
1.002

106

⎡

⎢⎢⎢
⎣

1
0
0
0
0

⎤

⎥⎥⎥
⎦

⎡

⎢⎢⎢
⎣

1.002
0

−0.006
0
0

⎤

⎥⎥⎥
⎦

[
16.0006 0

0 0.0250

]
1.000

2 × 106

⎡

⎢⎢⎢
⎣

1
0
0
0
0

⎤

⎥⎥⎥
⎦

⎡

⎢⎢⎢
⎣

1.003
0
0
0
0

⎤

⎥⎥⎥
⎦

[
16.015 0.0001
0.0001 0.0249

]
0.999
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Fig. 4 Difference between initials and estimations, Sparse Beta

Table 6 Variance-covariance
estimations for sparse and big β,
p = 51

n D̂ σ̂ 2

105
[
15.9822 −0.0007
−0.0007 0.0249

]
1.001

106
[
16.0011 0.0003
0.0003 0.0249

]
1.001

2 × 106
[
15.9887 0

0 0.0249

]
1.000
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6 Conclusion and discussion

This study is a contribution to the application of parallel programming for complex
statistical analyses using big data. We use the EM algorithm for the maximum like-
lihood estimations of a LMM with a continuous response variable, as it is easy and
stable. However, it requires a large amount of memory for big data and is a highly
time consuming procedure.

Simulation results show that the elapsed time of the lmmpar function is faster than
the classical approach with a single core for all scenarios. This gives us a modeling
flexibility for LMM with big data. The modeling approach can easily be extended for
other types of statistical models.

It is crucial to find the better strategies for complex statistical models, since we see
throughout our studies that parallel computing does not always guarantee to speedup
in processing time or saving in memory usage. Finding an adequate strategy is the
main aim in parallel computing programming for complex models. A limitation of
this study is that the algorithm requires initial values and they are gathered from the
basic model. We use initial values of the parameters for the simulated data.

This method is defined for normally distributed random effects and error terms, but
it can easily be extended for more robust models such as t-LMM and Laplace-LMM.
We also plan to extend the study for different settings of LMM(Yavuz andArslan 2018;
Pinheiro et al. 2001) to see the robustness of the parameters. Also, we are planning to
extend the study to utilize the Apache Hadoop environment. Additionally, simulation
results for the sparse matrices of β are negligible for the zero values of the parameters.
This naturally extends to include a variable selection method for sparse parameters.
We plan to use a LASSO-type variable selection method for the follow-up study.
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