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Abstract
We provide a view on high-dimensional statistical inference for genome-wide associ-
ation studies. It is in part a review but covers also new developments for meta analysis
with multiple studies and novel software in terms of an R-package hierinf. Infer-
ence and assessment of significance is based on very high-dimensional multivariate
(generalized) linear models: in contrast to often used marginal approaches, this pro-
vides a step towards more causal-oriented inference.

1 Introduction

We provide a selective review (or a view) on high-dimensional statistical inference for
genome-wide association studies (GWAS). In doing so, we give an illustration of our
own software in terms of the R-package hierinf and we also include some novel
methodological aspects and results. Both of the mentioned topics, high-dimensional
inference and GWAS, have been rapidly evolving over the last years and we do not
aim here to present a broad overview. Instead, we focus on the combination of the two
and consider inference in a multivariate model which quantifies effects after adjusting
for all remaining single nucleotide polymorphism (SNP) covariates. Assigning uncer-
tainties in such a multiple regression model has received fairly little attention so far,
perhaps because of the difficulty to deal in practice with the very high-dimensionality
in GWAS with p ≈ O(106) SNP covariates.

Univariate approaches for significance of a SNP being marginally associated to
a response variable (sometimes denoted as phenotype) have been widely adopted in
the last decades. The main challenge with such marginal approaches is the multiple
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testing adjustment: the false discovery rate (FDR) (Benjamini and Hochberg 1995)
has become very popular as an error criterion which is less conservative than the fami-
lywise error rate (FWER), see for example Storey and Tibshirani (2003), Sabatti et al.
(2003), Benjamini and Yekutieli (2005). Peterson et al. (2016) consider a hierarchical
formulation for the FDR: their hierarchical procedure is very different though than
the hierarchical inference scheme which we propagate in this article [in their work,
the hierarchy originates from having multiple phenotypes; in contrast, the hierarchy
in our approach addresses the issue of highly correlated covariates in a (generalized)
linear model].

There are several proposals which consider a multivariate regression model. Baierl
et al. (2006) consider model selection in low-dimensional QTL modeling which is
not of high-dimensional nature. Frommlet et al. (2012) and Dolejsi et al. (2014) have
further developed the methodology from Baierl et al. (2006) and applied it to real
GWAS data, i.e. in the high-dimensional context. Furthermore for GWAS, Bayesian
approaches (Hoggart et al. 2008; Carbonetto and Stephens 2012), Ridge regression
(Malo et al. 2008) or the Lasso for screening important covariates (including interac-
tions) (Wu et al. 2010a, b) have been considered and used, further proposals include a
combination of the Lasso and linear mixed models (Rakitsch et al. 2013; Zhou et al.
2013), the Bayesian Lasso (Li et al. 2011) or stability selection for sparse estimators
(Alexander and Lange 2011; He and Lin 2011). None of these proposals compute fre-
quentist p values for single or groups of SNPs, butmethods based on stability selection
lead to control of the number of false positives (Meinshausen and Bühlmann 2010).
More recently, interestingwork has been pursued for control of the FDR after selection
in a multivariate regression model (Brzyski et al. 2017). The proposed procedure is
first pre-screening for the level of resolution to identify regions or groups of SNPs and
then controls the FDR for the pre-screened first-stage regions, see also Heller et al.
(2017) when using marginal tests. In a sense, the work by Brzyski et al. (2017) comes
closest to our proposal with a hierarchical structure: both approaches share the point
that for GWAS, data-driven aggregation of hypotheses results in more power. For an
overview of univariate and multivariate methods which have been published until the
year of 2015, we also refer to the monograph by Frommlet et al. (2016).

We have recently proposed high-dimensional hierarchical inference for assigning
statistical significance in terms of p values for groups of SNPs being associated to a
response variable: Buzdugan et al. (2016) considers this approach for human GWAS
and Klasen et al. (2016) for GWAS with plants. The methodological and theoretical
concepts have beenworked out inMandozzi andBühlmann (2016a) andMandozzi and
Bühlmann (2016b). The hierarchy enables in a fully data-drivenway to infer significant
groups or regions of SNPs at an adaptive resolution, by controlling the familywise error
rate (FWER). Although the FWER seems overly conservative, we still detect small
groups of SNPs in real datasets.Wewill review this approach and extend it to the setting
of multiple studies using concepts of meta-analysis. The difference to pre-screening
and selection techniques as in e.g. Brzyski et al. (2017) is that we do not need to
choose the amount of pre-screening at the beginning: the entire procedure is fully
data-driven, leading to high resolution (small groups of SNPs) if the signal is strong
in relation to the strength of correlation among the SNPs and vice-versa yielding low
resolution if the signal is weak. The hierarchy itself is constructed by either clustering
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Hierarchical inference for genome-wide association… 3

the SNPs according to their strength of squared correlations or by partitioning of
the genomic sequence into blocks of consecutive genomic positions corresponding to
groupings of the SNPs. Our procedure is based on an efficient hierarchical multiple
testing adjustment from Meinshausen (2008). The power of a sequential approach for
controlling the FWER has been thoroughly discussed in Goeman and Solari (2010).
The scheme by Meijer et al. (2015) could be an interesting alternative when looking
at region-based groups of SNPs: it is more flexible at the price of a higher multiple
testing adjustment and thus, it is unclear whether it would exhibit more power.

2 High-dimensional hierarchical inference

Webuild the statistical inference on amultiple regressionmodelwhere all themeasured
SNPs enter as covariates in the model. We will mainly focus on a linear model:

Y = μ+ Xβ0 + ε, (1)

with n × 1 response vector Y , n × p design matrix X and n × 1 vector of stochastic
errors ε and intercept μ. The superscript “0” denotes the “true” underlying parameter
of the data-generating distribution. We usually assume fixed design and i.i.d. errors
with E[εi ] = 0, Var(εi ) = σ 2. We denote the i th row and the j th column of X by
Xi and X ( j), respectively. The assumption about fixed design is not really a loss of
generality as long as the linear model is correct: if the covariates are random, we can
always condition onX (and the linear model is still correct) and perform the statistical
inference conditional on X.

Genome-wide association study In a GWAS, the covariates corresponding to the
columns of X are the SNPs. The response variable can be continuous like e.g. a
growth rate of a plant or binary encoding the status “healthy” or “diseased” (see Sect.
3.4 for some examples). For the latter, we would then consider a logistic regression
model as in (2). In general, the sample size is about n ≈ 3′000 whereas the number of
SNP covariates is in the order of p ≈ 106. Obviously the model in (1) in the setting of
GWAS is very high-dimensional with many more unknown parameters than sample
size, i.e., p � n.

We note that the multiple model in (1) is very different from a marginal model

Y = μ j + γ j X
( j) + ε̃( j),

where the response variable is modeled for every covariate X ( j) individually. The
marginal model does not take into account how much of an effect is due to other
covariates (i.e., themarginal effect is not adjusted for other covariates), and themultiple
regressionmodel ismuchmore powerful towards causal inference as discussed in Sect.
2.4.

The model has to be adapted if the response is not continuous. The response could
be a binary variable encoding a disease status, e.g. if a patient has diabetes or is healthy.
We can extend the methodology to generalized linear models of the form
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4 C. Renaux et al.

Yi independent with,

ηi = g(E[Yi ]) = μ+
p∑

j=1
β0
j X

( j)
i , (2)

where g(·) is a real-valued link function. The most prominent example which we
will use is a logistic regression model, where Yi ∈ {0, 1} is binary, πi = πi (Xi ) =
P[Yi = 1|Xi ] and link function g(π) = log(π)/ log(1 − π). We will illustrate such
an extension for GWAS analysis in Sect. 3.4.

In the sequel, for simplicity, we usually consider a linear model. The extension of
the methodology and computations for generalized linear models is straightforward
and the case of a logistic model is implemented in our software hierinf, which is
an R package available on bioconductor, as described in Sect. 3. The theoretical results
which we review in the subsequent sections carry over to generalized linear models:
the underlying analysis is more delicate though, see for example Bühlmann and van de
Geer (2011).

2.1 High-dimensional inference

A first goal is to infer the very many unknown regression parameters β0 in (1) or (2),
respectively. This means that we are interested in estimating the regression coefficients
in one of the afore mentioned models. A next important aim is to perform statistical
hypothesis testing, which is described in Sect. 2.2.

Because of the high-dimensionality of the problem at hand, the estimated regression
parameters β̂ are regularized and enforced to be sparse, i.e. many of its components
are equal to zero. We restrict ourselves for the moment to the case of a linear model
(1). The Lasso (Tibshirani 1996) has become a very popular tool for point estimation:

β̂(λ) = argminβ(‖Y − Xβ‖22/n + λ‖β‖1), (3)

where λ > 0 is a regularization parameter which needs to be chosen. The Euclidean or
L2 norm is denoted by ‖·‖2 and theManhattan or L1 norm by ‖·‖1. The first term in the
above equation, the sum of squared residuals, is identical to the case of least squares
estimation for a low-dimensional regression problem. The sum of squared residuals
is divided by the number of observations n in order to achieve a proper scaling but it
does not change the methodology. The second term penalizes the size of the regression
parameters: because of the “geometry” of the L1-norm, Lasso is a sparse estimator
with many components being exactly equal to zero (depending on the value of λ).

The columns or covariables of the n × p design matrix X are denoted as before
by X ( j) with j = 1, . . . , p. Here, the Y response and all the covariates X ( j) are
assumed to be mean centered so that the intercept μ can be dropped from the model.
This is a convenient way to estimate the unknown parameters β0. Furthermore, the
Lasso (3) usually makes most sense if all the covariates are on the same scale, as
implemented per default in the R-packageglmnet (Friedman et al. 2010). The penalty
term penalizes all the variables with the same amount which only makes sense if they
are standardized. For GWAS, the SNP covariates take values in {0, 1, 2} (minor allele
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frequencies) and are treated as numerical values: since they are “on the same scale”,
we do not standardize them to equal standard deviation. Treating them as numerical
or continuous rather than categorical or ordinal variables has the advantage of using
only one parameter for each SNP covariate, whereas a categorical approach with main
effects or full interactions would require 2 · p or 3p − 1 parameters, respectively.
Using a continuous scale modeling for SNPs is a rather common approach, see for
example Cantor et al. (2010) or Bush and Moore (2012). This means that we are
searching for additive effects. One typically has reasonable power to detect additive
and dominant effects whereas for recessive effects the study might be underpowered
(Bush and Moore 2012).

Throughout the paper, whenever we will make some asymptotic statements, they
are meant to be that the dimension p as well as the sample size n tend to infinity, i.e.,
we adopt a “changing model” (sometimes called “triangular array”) asymptotics. That
is, the dimension p = pn and the model parameters β = βn , μ = μn and σ = σn (for
linear models) depend on n and typically the ratio pn/n→∞ as n→∞.

2.1.1 Statistical properties of the Lasso

An executive summary The statistical properties of the Lasso in (3) have been exten-
sively studied during the last decade. The Lasso is a nearly optimal method for
prediction and parameter estimation when making the main assumptions on sparsity
of the parameter vector [assumption (A1) below] and identifiability in terms of “well-
posedness” of the design matrix [assumption (A2) below]. For accurate selection of
the active set of variables (having non-zero regression coefficients), one necessarily
needs a “beta-min” condition [assumption (A3) below] which requires that the non-
zero regression coefficients are sufficiently large. In addition, one would necessarily
need a rather strong irrepresentable condition on the designmatrix: this can be avoided
guaranteeing instead a variable screening property. The latter is most useful in prac-
tice, and in fact a standard workhorse in many applications, allowing to screen for the
important variables and achieving a drastic dimensionality reduction in terms of the
original variables.
The two main assumptions leading to good or near optimal properties of the Lasso for
(point) estimation of β0 are a sparsity assumption on the parameter vector β0 and an
identifiability assumption on the design X. The Lasso itself is a sparse estimator and
hence it is expected that it leads to good performance if the true underlying parameter
β0 is sparse as well: the support of β0, sometimes also called the active set, is denoted
by

S0 = { j; β0
j 	= 0},

and we will assume that its cardinality s0 = |S0| is smaller than rank(X) ≤ n.
Regarding identifiability, since rank(X) ≤ n < p, the null-space of X is not trivial
and we can write

Xβ0 = Xθ for θ = β0 + ξwith any ξ in the null-space of X.
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6 C. Renaux et al.

Thus, in order to estimate β0 we must make an additional identifiability assumption
on the design X which again relies on sparsity with a not too large set S0.

The main assumptions are as follows:

(A1) Sparsity: The cardinality of the support or active set of β0 satisfies

s0 = |S0| = o(an), an →∞,

with typical values being an = n/ log(p) or an =
√
n/ log(p), see for example

Bühlmann and van de Geer (2011, Eq. (2.22)).
(A2) Compatibility condition (van de Geer 2007): An identifiability assumption on

the design X.
For some φ0 > 0 and for all β satisfying ‖βSc0

‖1 ≤ 3‖βS0‖1 it holds that

‖βS0‖21 ≤ (β��̂β)s0/φ
2
0 ,

where �̂ = X�X/n and βS , for an index set S ⊆ {1, . . . , p}, has elements set
to zero outside the set S, i.e., (βS) j = 0 ( j /∈ S) and (βS) j = β j ( j ∈ S). The
value φ0 > 0 is called the compatibility constant.

Assuming conditions (A1) and (A2) (with the compatibility constant φ0) one can
establish an oracle inequality of the following form, see for example Bühlmann and
van de Geer (2011, Th.6.1). Consider a linear model as in (1) with fixed design X,
Gaussian or sub-Gaussian errors ε and when using the Lasso (3) with regularization
parameter λ 
 √

log(p)/n:

‖X(β̂(λ)− β0)‖22/n + λ‖β̂(λ)− β0‖1 ≤ OP (λ2s0/φ
2
0).

Theparameterλ cannot be chosen smaller thanof the order
√
log(p)/n sinceotherwise,

the probability in the “OP (·)” notation would not become large and the statement
would not hold anymore. When choosing λ 
 √

log(p)/n and assuming that the
compatibility constant φ0 ≥ L > 0 is bounded away from zero, we obtain for

prediction: ‖X(β̂ − β0)‖22/n ≤ OP (s0 log(p)/n), (4)

parameter estimation: ‖β̂ − β0‖1 ≤ OP (s0
√
log(p)/n). (5)

Here, we have dropped the dependence of β̂ on λ. The second statement is more
relevant for inferring the true underlying β0. In particular, it is straightforward to
derive a screening property as discussed next.

The Lasso, being a sparse estimator, is often used as a variable selection and screen-
ing tool. We denote by

Ŝ(λ) = { j; β̂ j (λ) 	= 0}.

The aim would be that Ŝ ≈ S0, which is a highly ambitious goal (see below). Clearly,
to infer the active set from data, the regression coefficients in S0 must be sufficiently
large. This can be ensured by an additional “beta-min” condition:
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(A3) min{|β0
j |; β0

j 	= 0} = min j∈S0 |β0
j | ≥ C(s0, p, n), where C(s0, p, n) 
√

s0 log(p)/n.

Assuming (A1), a slightly stronger version than (A2) in terms of a restricted eigenvalue
condition (Bickel et al. 2009), and (A3), we have the following screening result. For
a linear model as in (1) with fixed design X, Gaussian or sub-Gaussian errors ε and
when using the Lasso (3) with regularization parameter λ 
 √

log(p)/n:

P[Ŝ ⊇ S0] → 1 (p ≥ n→∞). (6)

When using the weaker compatibility condition (A2), we would then require the
beta-min condition with a larger C(s0, p, n) 
 s0

√
log(p)/n. This is an immediate

consequence of (5).
The variable screening property is a highly efficient dimension reduction technique

in terms of the original covariates. Because it holds that |Ŝ(λ)| ≤ min(n, p) for all λ
[assuming (A1) and (the weaker version) of (A2)], and the latter equals n in the high-
dimensional regime with p � n, we can greatly reduce the dimension without losing
an active variable from Ŝ0. Obviously, it would be even better if variable selection
would consistently estimate the true underlying active set,

P[Ŝ(λ) = S0] → 1 (p ≥ n→∞).

However, such a consistent variable selection property necessarily requires a much
stronger so-called irrepresentable condition on the design X than the assumption in
(A2) (Meinshausen and Bühlmann 2006; Zou 2006; Zhao and Yu 2006).

Practical considerations For the task of inference described in Sect. 2.2.1 below, we
aim for a regularization parameter λ such that the screening property (6) holds, i.e., that
Ŝ(λ) ⊇ S0 holds in a reliable way. Choosing the regularization parameter by cross-
validation (by default 10-foldCV), denoted byλCV typically leads to a good set Ŝ(λCV)

in comparison to other values of λ. It isn’t true that there is a monotone relationship
between λ and Ŝ(λ) and thus, a smaller value λ < λCV does not necessarily lead to
a superset Ŝ(λ) ⊇ Ŝ(λCV). Bühlmann and Mandozzi (2014) illustrate the success of
various variable screening methods with respect to true and false positives, without
considering the issue of choosing a good regularization parameter: overall, the Lasso
leads to a competitive performance in comparison to othermethods. It is not so unlikely
though that the property Ŝ ⊇ S0 can be rather far from being entirely correct: it is rare
that all of the variables in S0 are contained in Ŝ(λ) but hopefully a reasonable good
sized fraction of S0 is contained in the set Ŝ from the Lasso.

The assumptions in the context of GWAS We discuss here whether the theoretical
assumptions hold at least approximately in the context ofGWAS. The assumption (A1)
is about sparsity: it is a speculation whether the true underlying biological phenom-
ena are sparse: the model is always a simplification and a best sparse approximation,
achieved by the Lasso, is often still very useful. More details about best sparse approx-
imation properties and weak sparsity are given in Bühlmann and van de Geer (2011)
and van de Geer (2016). Assumption (A2) can be justified as follows: assume that the
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8 C. Renaux et al.

covariates are i.i.d. sampled from a population distribution with covariance matrix �,
having smallest eigenvalue bounded away from zero. Then, if the population distri-
bution is e.g. sub-Gaussian, the condition (A2) holds with high probability for sparse
sets S0 (Bühlmann and van de Geer 2011, Cor.6.8). It seems quite plausible that the
population distribution in a GWAS context has spatially decaying covariance behavior
such that the smallest eigenvalue is bounded away from zero, e.g. for a Toeplitz matrix
model. The main assumption is again sparsity for the set S0 as in (A1). Assumption
(A3) is severe and not realistic to hold exactly in many applications: however, it is not
required for (4) and (5), and it can be avoided also for hypothesis testing as pointed
out in Sect. 2.2.2: our proposed multi sample splitting procedure in this paper has no
theoretical guarantees without (a weaker form of) (A3) but thanks to multiple sample
splitting and averaging, it still performs empirically reasonably well in absence of
condition (A3), see for example Dezeure et al. (2015).

2.2 Statistical hypothesis testing

Our main goal is to provide p values for statistical hypothesis tests. We consider the
following null and alternative hypotheses for the regression parameters in the model
(1) or (2). For individual variables

H0, j : β0
j = 0 versus HA, j : β0

j 	= 0,

or for a group G ⊆ {1, . . . , p} of variables:

H0,G : β0
j = 0 for all j ∈ G versus HA,G : there exists j ∈ Gwith β0

j 	= 0. (7)

The challenge is to construct p values in the very high-dimensional settingwith p � n
which control the error rate of falsely rejecting the null-hypothesis (the type I error
rate). There is also a computational difficulty involved and the methods from Sect.
2.2.2 are not feasible in the context of GWAS with p ≈ 106 covariates. And finally,
there is the issue of multiple testing: this is addressed in Sect. 2.3 advocating a very
powerful hierarchical approach.

2.2.1 Multi sample splitting and aggregation of p-values

An executive summary Sample splitting and its improved version of multiple sam-
ple splitting (Meinshausen et al. 2009) is rather straightforward and, as a modular
technique, it is easy to implement. It is justified to yield valid p values which con-
trol (possibly conservatively) the type I error rate under the assumptions (A1)–(A3):
while (A1)–(A2) are essentially unavoidable, the beta-min assumption (A3) is rather
unpleasant since the p value or statistical test itself is a method to investigate whether
a regression coefficient is “smallish” or sufficiently large [while (A3) is simply assum-
ing the latter]. However, the method has been empirically found to be rather reliable
to control the type I error rate and yet having often reasonable power (Dezeure et al.
2015) to detect a variety of alternative hypotheses. From a computational view point,
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the procedure is scaling very nicely for very high-dimensional problems making it
feasible to be used for GWAS with p ≈ 106.
The idea of the procedure is as follows. We do variable screening with an estimated
set of variables Ŝ such that (6) holds, at least in an approximate sense. We can then
use standard low-dimensional inference methods based on the selected variables from
Ŝ only. To avoid to use the data twice for screening and inference, we split the dataset
into two halves: select or screen for variables in the first half and pursue the inference
on the second remaining part of the dataset. This procedure is implicitly given in the
work by Wasserman and Roeder (2009).

Sample splitting for p values

1. Randomly split the sample into two parts of equal size. Denote the corresponding
indices by I1, I2 with Ii ⊂ {1, . . . , n} (i = 1, 2) such that I1 ∩ I2 = ∅, I1 ∪ I2 =
{1, . . . , n} and |I1| = �n/2�, |I2| = n − �n/2�.

2. Do variable selection or screening with the Lasso based on data with samples from
I1: denote the selected variables by ŜI1 . (The Lasso can be used for linear or also
generalized linear models). We use the regularization such that ŜI1 consists of the
first �n/6� variables entering in the Lasso regularization path.

3. Derive p values for individual or group hypotheses based on data with covari-
ates from ŜI1 and samples from I2. Since |ŜI1 | = �n/6� and assuming that
rank(XI2,ŜI1

) = |ŜI1 | = �n/6� we can use classical techniques based on least

squares or likelihood ratio testing.
For the linear regression model (1) we use for a single variable j ∈ {1, . . . , p},

if j ∈ ŜI1 : p-value Pj from the two-sided t-test for H0, jbased on (YI2 ,XI2,ŜI1
);

if j /∈ ŜI1 : set Pj = 1.

Similarly, for a group G ⊆ {1, . . . , p},

if G ∩ ŜI1 	= ∅ : p-value PG from the partial F-test for H0,G̃,

where G̃ = G ∩ ŜI1;
if G ∩ ŜI1 = ∅ : set PG = 1.

For a generalized linear model (2) we use the likelihood ratio test instead of the t- or
partial F-test.

The sample splitting method is valid and controls the type I error if the screening
property Ŝ ⊇ S0 holds. This is due to the fact that we have all the relevant variables
in the model in the second inference step based on data from I2. The requirement for
the screening property can be a bit relaxed as analyzed in Bühlmann and Mandozzi
(2014), allowing also for not too many small non-zero regression coefficients.

Note that if the intersection between a given groupG and the selected set of variables
with Lasso ŜI1 based on a half-sample is empty, then the p value is set to the value
one. For some given large group, the intersection between this group and the selected
set of variables from Lasso has cardinality at most equal to ŜI1 which is bounded by
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10 C. Renaux et al.

the half-sample size �n/2�. In particular, not all the variables of such a group G are
considered for calculating the p value in the other half-sample I2. This works fine since
we assume that the screening property ŜI1 ⊇ S0 of the Lasso holds, which implies
that we control for all the relevant variables.

Unfortunately, sample splitting very much depends on how the dataset is split into
two parts, e.g., the random choice of partitioning the data into two groups. To avoid this
dependence on how the dataset is split, one can do the sample splitting and inference
procedure many times (e.g. 100 times) and then aggregate the corresponding p values
in a way so that the type I error is controlled. This aggregation step requires special
attention and is detailed below in (8). The method has been invented by Meinshausen
et al. (2009) and works as follows.

Multiple sample splitting for p-values The multiple sample splitting approach uses the
steps 1.-3. from the sample splitting procedure above B times. For a group of variables
G, including the case of G = { j} being a singleton, this leads to B p values

P(1)
G , . . . , P(B)

G .

The question is how to aggregate these B p values to a single one such that the type
I error rate is still controlled. In particular, since the B p values arise from different
random splits of the data, they are dependent, and we thus need to develop a method
to aggregate arbitrarily dependent p values. This can be done by the following rule:

PG = min
(
1, log(1− γmin) inf

γ∈(γmin,1)
QG(γ )

)
,

QG(γ ) = qγ

({
P(b)
G /γ ; b = 1, . . . , B

})
, (8)

where qγ

({P(b)
G /γ ; b = 1, . . . , B}) is the γ -quantile of the B p values multiplied by

1/γ . The factor log(1 − γmin) guarantees to adjust for the fact that we are searching
the smallest quantiles over the range (γmin, 1).

As argued for the single sample splitting procedure, the multiple sample splitting
method is valid if the screening property Ŝ ⊇ S0 holds. Thus, for asymptotic validity
in terms of controlling the type I error, we require the screening property as in (6). This
itself holds for the Lasso under the assumptions (A1)–(A3) discussed in Sect. 2.1.1. In
particular, this approach calls for a beta-min assumption as in (A3) which is somewhat
unpleasant: the p value or statistical test should quantify to what extent a regression
parameter is “smallish” or “sufficiently large”while the beta-min assumption is simply
assuming that there are no “smallish nonzero” coefficients. A slight relaxation of the
screening property is discussed in Bühlmann and Mandozzi (2014), allowing for not
too many small non-zero true regression coefficients.

From a computational point of view, the method requires the computational cost
O(npmin(n, p)) for screening the variables with the Lasso and then at most O(n|Ŝ|2)
for inference based on the selected variables: thus, for p � n and since |Ŝ| ≤ n, the
total computational cost is O(Bn2 p) which is linear in the dimensionality p. We typ-
ically take B = 100 and parallel implementation over the B repetitions can easily be
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Hierarchical inference for genome-wide association… 11

done. The main cost is fitting a Lasso regression for variable screening in the setting
where p is very large and n is a substantial number. Computational speed-ups for
the Lasso using random projections (in sample space) have been recently proposed
(Pilanci and Wainwright 2015) and might be useful in practice; similarly, computa-
tionally fast Ridge regression (Lu et al. 2013) and thresholding (Shao and Deng 2012)
could be used for reasonably accurate screening, though perhaps a bit worse than
Lasso (Bühlmann and Mandozzi 2014).

2.2.2 Other methods

Other methods which do not require a beta-min assumption can be used for statistical
hypothesis testing: for a comparison, see Dezeure et al. (2015). The most prominent
example is perhaps the de-biased or de-sparsified Lasso estimator proposed by Zhang
and Zhang (2014) and further analyzed in van de Geer et al. (2014); a related technique
has been proposed in Javanmard and Montanari (2014). A Ridge projection method
(Bühlmann 2013) is another option, often leading to more conservative inferential
statements.

Bootstrapping the Lasso or versions of it has been proposed in Chatterjee and Lahiri
(2011, 2013), Liu and Yu (2013) but due to the sparsity of the underlying estimator,
these approaches are exposed to the super-efficiency phenomenon (i.e. estimation of
parameters being equal to zero is very accurate while it can be very poor for non-zero
components). Bootstrapping the de-biased Lasso estimator, where super-efficiency
does not occur, has been analyzed in Dezeure et al. (2017). A very different resampling
strategy for obtaining p values for rather general hypotheses about “goodness of fit”
has been proposed in Shah and Bühlmann (2018).

Finally, one can use “stability selection” for obtaining statistical error measures
(Meinshausen and Bühlmann 2010; Shah and Samworth 2013): it is a very generic
subsampling technique but does not lead to rigorous p values corresponding to the
hypothesis in (7) as we require it here.

2.3 Hierarchical inference

An executive summary Hierarchical inference is a key technique for computationally
and statistically efficient hypothesis testing and multiple testing adjustment. It pro-
vides a convincing way to address the main problems occurring in high-dimensional
scenarios. First, due to high pairwise absolute empirical correlation between covari-
ates, or near linear dependence among a small set of covariates, one cannot (or at least
not sufficiently well) identify single regression coefficients β0

j . However, the problem
is much better posed if we ask for identifying whether there is an association between
a group of variables G ⊆ {1, . . . , p} and a response, i.e., to test a group hypothesis
as in (7). Hierarchical inference is a method for sequentially testing many such group
hypotheses, thereby automatically adapting to the “resolution level” without the need
to pre-specify the precise form or size of the groups.

The hierarchy for the inference is described in terms of a tree T where each node
corresponds to a groupG(⊆ {1, . . . , p}) and a group hypothesis H0,G : the hierarchical
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12 C. Renaux et al.

constraint means that for a node (or group) G, any descendant node G ′ must satisfy
G ′ ⊂ G. Furthermore, we require that the child nodes of G (the direct descendants
of G) build a partition of G. The tree T typically starts with the top node G top =
{1, . . . , p} and then branches downward to smaller groups until the p single variable
nodes {1}, . . . , {p} at the bottom of the tree, see Figs. 1 and 2. A typical construction
of such a tree is given by hierarchical clustering which results in a binary tree, see at
the end of this section.

Given a hierarchical tree T , the main idea of hierarchical inference is to pursue
testing of the groups in a sequential fashion, starting with the top node and then
successively moving down the hierarchy until a group doesn’t exhibit a significant
effect. Figure 2 illustrates this point, showing that we might proceed rather deep in the
hierarchy at some parts of the tree whereas at other parts the testing procedure stops
due to a groupwhich is not found to exhibit a significant effect.We need somemultiple
testing adjustment of the p values: interestingly, due to the hierarchical nature, it is
not overly severe at the upper parts of the hierarchy as described below.

The procedure works as follows. Denote by PG the raw p value of the statistical test
for the null-hypothesis H0,G versus HA,G defined as in (7). We correct for multiplicity
in a simple way:

PG;adjusted = PG · p/|G|. (9)

This corresponds to a depth-wise Bonferroni correction for a balanced tree. Denote by
d(G) the level of the tree of the node (or group) G and by n(G) the number of nodes
at level d(G): for example, when G = {1, . . . , p} corresponds to the top node in a
tree containing all variables, we have that d(G) = 1 and n(G) = 1. If the tree has the
same number of offspring (e.g. a binary tree with two offspring throughout the entire
tree), we could also use the unweighted version,

depth-wise Bonferroni correction: PG;adjusted = PG · n(G), (10)

see for example Bühlmann [2017, eq. after eq. (22)]. If in addition the groups would
have the same size in each level of depth (up to rounding errors), then the rules in (9)
and (10) coincide. The formula (10) is only given here for the sake of interpretation
as a depth-wise Bonferroni in the case of balanced trees with the same number of off-
spring. See also Fig. 1 for an illustration of such a depth-wise Bonferroni correction
if the groups are balanced.

The sequential nature with stopping can be formulated in terms of p values by
adding a hierarchical constraint:

PG;hierarchically−adjusted = max
G ′⊃G

PG ′,adjusted, (11)

implying that once we stop rejecting a node, we cannot reject further down in the
tree hierarchy and thus, we can simply stop the procedure when a node is not found
as being significant. The main advantage of the procedure is the statistically efficient
correction for multiple testing in (9) which is much more powerful than a standard
Bonferroni correction over all the nodes in the tree, see also (10).
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Px1

Px2

  Px4

   Px8   Px8

 Px4          

Px2                       

{1,2,3,4,5,6,7,8}

{1,3,6,7} {2,4,5,8}

{1,3} {6,7} {2,4} {5,8}

{1} {3} {7} {2} {4} {5} {8}{6}

Fig. 1 Hierarchical grouping of 8 variables where different groups are denoted by {. . .}. The capital letter
“P” is a generic notation for the raw p value corresponding to a group hypothesis H0,G of a group G,
which is then adjusted as in (10). Since the hierarchy has the same number of offspring throughout the tree,
the adjustment is the depth-wise Bonferroni correction which amounts to multiply the p values in every
depth of the tree by the number of nodes in the corresponding depth; no multiplicity adjustment at the top
node, then multiplication by the factor 2 (depth 2), 4 (depth 3), and 8 (depth ulti 4). The figure is taken from
Bühlmann (2017)

The following then holds.

Proposition 1 (Meinshausen 2008) Consider an arbitrary hierarchy of hypotheses
tests in terms of a tree structure T . Consider the procedure described above with
depth-wise adjustment in (9) and with hierarchy constraint as in (11). Then, the
familywise error rate (FWER) is controlled: that is, for 0 < α < 1, when reject-
ing a hypothesis H0,G if and only if PG;hierarchically−adjusted ≤ α, we have that
FWER = P[at least one false rejection] ≤ α.

The procedure described above and justified in Proposition 1 has a few features to
be pointed out. First, it relies on the premise that large groups should be easier to detect
and found to be significant, due to the fact that the identifiability is much better posed.
We address this issue at the end of this section. In fact, the method has indeed built in
the hierarchical constraint (11) that once we cannot reject H0,G for some group G, we
do not consider any other sub-groups of G which arise as descendants further down
in the tree hierarchy. Due to the sequential nature of the testing procedure, multiple
testing adjustment for controlling the familywise error rate is rather mild (for upper
parts in the tree) as we only correct for multiplicity at each depth of the tree, i.e., the
root node does not need any adjustment, and if it were found to be significant, the next
children nodes only need a correction according to the number of nodes at depth 2 of
the tree, and similarly for deeper levels; see Fig. 1.

Improvements over the rule in (9) and (11) are possible, based on exploiting the
logical relationships among the tests with the Schaffer improvement (Meinshausen
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hierarchical method with Bonferroni multiplicity adjustment
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Fig. 2 Hierarchical inference within a tree of clustered variables for a simulated example with p = 500
and n = 100. The numbers at the bottom in black (bold) denote the indices j of active variables with
β0
j 	= 0 (and corresponding to H0, j being false). The black lines graphically encode the significant groups

of variables. Top panel: hierarchical procedure with the rule in (9). Bottom panel: A refined procedure which
detects in addition the single variable 10; for details see Mandozzi and Bühlmann (2016b). The figure is
taken from Mandozzi and Bühlmann (2016b) as well

2008; Mandozzi and Bühlmann 2016a) or using more complete improvements from
sequential testing (Mandozzi and Bühlmann 2016b) based on ideas from Goeman and
Solari (2010), Goeman and Finos (2012). Our software uses the improved hierarchical
adjustment of Mandozzi and Bühlmann (2016a). But the essential gain in computa-
tional and statistical power is in terms of the sequential and hierarchical nature of the
procedure as illustrated in Figs. 1 and 2. In particular, the method automatically adapts
to the resolution level: if the regression parameter of a single variable is very large in
absolute value, the procedure might detect such a single variable as being significant;
on the other hand, if the signal is not sufficiently strong or if there is substantial cor-
relation (or near linear dependence) within a large number of variables in a group, the
method might only identify such a group as being significant. Figure 2 illustrates this
point. Naturally, finding a large group to be significant (coarse resolution) is much less
informative than detecting a small group or even a single variable.

Methods for p-valuesThe hierarchical procedure with the rules in (9) and (11) requires
p values as input which are valid in the sense that they control the type I errors of
single tests. We advocate here the use of the multi sample splitting method described
in Sect. 2.2.1, implemented in our software. This method is computationally feasible
for very high dimension p and it is empirically shown to be competitive, with respect
to type I error and power, over a range of scenarios (Dezeure et al. 2015).

The power of the hierarchical method ismainly hinging on the assumption that null-
hypotheses further up in the tree are easier to reject, that is the p values are typically
getting larger when moving downwards the tree. In low-dimensional regression prob-
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Hierarchical inference for genome-wide association… 15

lems this is typically truewhen using partial F-tests for testing H0,G : β0
j = 0 ∀ j ∈ G.

Since our p values rely on the partial F test after variable screening with the Lasso,
as described in Sect. 2.2.1, the same phenomenon is expected to hold also in the
high-dimensional regime.

Clustering and partitioningmethods for constructing the hierarchical treeWedescribe
two partitioning methods for constructing a hierarchical tree of the measured SNP
variables.

Motivated by the problem of identifiability among correlated variables, we aim
to construct a tree such that highly correlated variables are in the same groups: this
can be achieved by a standard hierarchical clustering algorithm [Hartigan (1975),
cf.], for example using average linkage and the dissimilarity matrix given by 1 −
(empirical correlation)2. Other clustering algorithms can be used, for example based
on canonical correlation (Bühlmann et al. 2013).

Alternatively, we can build a hierarchical tree by using the genomic positions of
SNPs. We start with an entire chromosome (or even with the full genome sequence)
and use a top-down recursive binary partitioning of the genomic sequence into blocks
of consecutive genomic positions, corresponding to a binary tree, such that partitions
at every depth of the tree contain about the same number of measured SNPs. Such a
spatial recursive partitioning is computationally very fast, and it has the advantage that
it can be used for multiple studies with SNPs being measured at different locations for
different studies.We note that the approach byMeijer et al. (2015) also involves spatial
grouping of SNPs, using a different and computationally more demanding procedure
than hierarchical testing described above.

2.4 Causal inference

Causal inference deals with “directional associations”, thereby going beyond regres-
sion which is non-directional. A main tool for formalizing this are structural equation
models (Pearl 2000, cf.). The analogue to a linear model in (1) is then a structural
equation model with a linear structural equation for Y : the data are i.i.d. realizations
of

X ( j) ← f 0j
(
X (pa( j)), ε( j)), j = 1, . . . , p,

Y ←
∑

k∈pa(Y )

θ0k X
(k) + ε(Y ),

ε(1), . . . , ε(p), ε(Y ) jointly independent. (12)

Here pa( j) = paD( j) denotes the parental set of the node j in a graph D, and the
graph D is assumed to be acyclic and encodes the true underlying causal influence
diagram (and the random variables X (1), . . . , X (p),Y correspond to the nodes in the
graph). Furthermore, f 0j (., .) are arbitrary measurable potentially nonlinear functions
and the “←” symbol equals an algebraic “=” sign but emphasizes that the left-hand
side is a direct “causal” function of the right-hand side. We note that the covariates
are random: when conditioning on them, assuming that Y is childless (see below in
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Proposition 2), we have a fixed design linear model for the data vector Y = Xθ + ε(Y )

with E[ε(Y )|X] = 0.
In absence of knowing the true causalDAG D, the structure D and the corresponding

parameter-matrix β are typically non-identifiable from the observational probability
distribution. However, there is an interesting exception which is relevant for the case
with GWAS, namely when the node Y is childless (i.e. all edges of Y point into Y ):
this simply means that the response (e.g. disease status) is caused by the genetic SNP
biomarkers and there are no causal effects from the response to the genetic variables.
The following result holds.

Proposition 2 Assume a structural equation model with a linear structural equation
for Y as in (12) and suppose that Y is childless. Consider the true linear regression
coefficients β0 in the linear regression of Y versus all X (1), . . . , X (p) and assume that
Cov((X (1), . . . , X (p))�) is positive definite. Then, it holds that β0

k = θ0k for k ∈ pa(Y )

and β0
k = 0 for k /∈ pa(Y ). Thus, if β0

k 	= 0 it holds that k ∈ pa(Y ) and there is a
directed edge X (k) → Y (i.e., a direct causal effect from X (k) to Y ).

Proof The DAG D induces an ordering among the variables such that pa j ⊆ { j −
1, . . . , 1}, assuming for notational simplicity that the variables have already been
ordered (according to such an order). Since Y is childless we can choose an ordering
where Y is the last element. The conditional distribution then satisfies thanks to the
Markov property:

L
(
Y |X (1), . . . , X (p)) = L

(
Y |X (pa(Y ))

)
.

This completes the proof. ��
Causal interpretation As a consequence, under the assumptions in Proposition 2,
the inference techniques for multiple regression lead to a causal interpretation. The
main assumptions for such a substantially more sharpened interpretation are: (i) the
underlying true model is a structural equation model with a DAG structure and a
linear or generalized linear form for the structural equation of Y (for the latter case,
using the analogous argument, we would use a generalized linear model of Y versus
all X (1), . . . , X (p) to obtain the causal variables and effects); (ii) there are no hidden
confounding variables between Y and some of the X ( j)’s; (iii) the response variable Y
is childless. The assumption about a positive definite population covariance matrix is
weak, even in the context ofGWAS; see also the discussion at the end of Sect. 2.1.1. The
last assumption (iii) is rather plausible for GWAS since one believes that the genetic
factors are the causes for the disease and ruling out that the disease would cause a
certain constellation of genetic factors. A notable exception are retroviruses, including
e.g. HIV. The second assumption (ii) is rather strong and perhaps the main additional
assumption: relaxing it in a very high-dimensional setting is an open problem. In
view of measuring thousands of genetic markers, the premise of having measured
all the relevant factors is somewhat less unrealistic. The first assumption (i) about
the acyclicity of the causal influence diagram is not important as long as there is no
feedback from the response Y to the X variables (which is plausible for GWAS), while
the requirement for a linear or logistic form might be problematic in view of possible
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interactions among the X -variables and/or nonlinear regression functions. The latter is
a misspecification and of the same nature as when having misspecified the functional
form in a regression model, a topic which we will discuss in Sect. 2.5.

One should always be careful when adopting a causal interpretation. However,
and this is a main point, the regression model taking all the variables into account is
much more appropriate than a marginal approach where the response Y is marginally
regressed or correlated to one SNP variable at a time. This has been the standard
approach over many years in GWAS, including extensions with mixed models and
adjusting for a few other covariates (Zhou and Stephens 2014). The approach based
on inference in a high-dimensional linear or generalized linear model statistics comes
much closer to a causal interpretation as described in Proposition 2. And that is among
the main reasons why we believe that such multiple regression methods should lead
to more reliable results for GWAS in comparison to older marginal techniques.

In case of complex traits, several issues with marginal testing have been pointed out
by Frommlet et al. (2012). The work shows that model misspecification can result in
a severe loss of power to detect important SNPs and problems occur when ranking the
SNPs with respect to their p values. Small correlations between causal and non-causal
SNPs may lead to a large number of false positives.

2.5 Misspecification of themodel

The results in the previous sections for statistical confidence or testing of linear model
parameters rely on the correctness of a linear or generalized linear model as in (1) or
(2). If the model is not correct, we have to distinguish more carefully between random
and fixed design matrix X (and the latter case may also arise when conditioning on X ).

For fixed design and assuming rank(X) = n, we can always represent any n × 1
vector f as f = Xβ∗ for some (non-unique) β∗. Therefore, for f = {E[Yi |Xi ]; i =
1, . . . , n} in a regression or f = {g(E[Yi |Xi ]); i = 1, . . . , n} in a generalized regres-
sion, we can represent any (nonlinear in x) function f evaluated at the data points as
Xβ∗. The only question is whether there is a representation with a sparse β∗.

For random design, a fit with a linear or generalized linear model to a potentially
nonlinear model is to be interpreted as the best approximation with a (generalized) lin-
ear model. A linear model approximation has some interesting properties for Gaussian
design but the latter is not relevant for GWAS with discrete values for the covariates.

A detailed treatment of model misspecification in the high-dimensional context
is given in Bühlmann and van de Geer (2015). A more general perspective in the
low-dimensional regime is given in Buja et al. (2014).

3 Software

The R package hierinf (available on bioconductor: https://bioconductor.org/
packages/devel/bioc/html/hierinf.html) is an implementation of the hierarchical infer-
ence described in the Sect. 2.3 and it is easy to use for GWAS. The package is a
re-implementation of the R package hierGWAS (Buzdugan 2019) and includes new
features like straightforward parallelization, an additional option for constructing a
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hierarchical tree based on spatially contiguous genomic positions, and the possibility
of jointly analyzing multiple datasets. To summarize the method, one starts by cluster-
ing the data hierarchically. This means that the clusters can be represented by a tree.
Themain idea is to pursue testing top-down and successively moving downwards until
the null-hypotheses cannot be rejected, see Sect. 2.3. The p value of a given cluster is
calculated based on the multiple sample splitting approach and aggregation of those p
values as described in Sect. 2.2.1. The work flow is straightforward and is composed
in two function calls. We note that the package hierinf requires complete observa-
tions, i.e. no missing values in the data, because the testing procedure is based on all
the SNPs which is in contrast to marginal tests. If missing values are present, they can
be imputed prior to the analysis. This can be done in R using e.g. mice (van Buuren
and Groothuis-Oudshoorn 2011), mi (Shi et al. 2011), or missForest (Stekhoven
and Bühlmann 2012).

A small simulated toy example with two chromosomes is used to demonstrate
the procedure. The toy example is taken from (Buzdugan 2019) and was generated
using PLINK where the SNPs were binned into different allele frequency ranges. The
response is binary with 250 controls and 250 cases. Thus, there are n = 500 samples,
the number of SNPs is p = 1000, and there are two additional control variables
with column names “age” and “sex”. The first 990 SNPs have no association with
the response and the last 10 SNPs were simulated to have a population odds ratio of
2. The functions of the package hierinf require the input of the SNP data to be a
matrix (or a list of matrices for multiple datasets). We use a matrix instead of a
data.frame since this makes computation faster.

# load the package
library(hierinf)

# random number generator (for parallel computing)
RNGkind("L’Ecuyer -CMRG")

# We use a small build -in dataset for our toy example.
data(simGWAS)

# The genotype , phenotype and the control variables are
# saved in different objects.
sim.geno <- simGWAS$x
sim.pheno <- simGWAS$y
sim.clvar <- simGWAS$clvar

The two following sections correspond to the two function calls in order to perform
hierarchical testing. The third section states some remarks about running the code in
parallel.

3.1 Software for clustering

The package hierinf offers two possibilities to build a hierarchical tree for cor-
responding hierarchical testing. The function cluster_var performs hierarchical
clustering based on some dissimilarity matrix and is described first. The function
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entire data

block 1 block 2 block k

Fig. 3 The top two levels of a hierarchical tree used to perform multiple testing. The user can optionally
specify the second level of the tree with the advantage that one can easily run the code in parallel over
different clusters in the second level, denoted by block 1, . . ., block k. A natural choice is to choose the
chromosomes as the second level of the hierarchical tree, which define a partition of the SNPs. If the
second level is not specified, then the first split is estimated based on clustering the data, i.e. it is a binary
split. The user can define the second level of the tree structure using the argument block in the functions
cluster_var / cluster_position. The function cluster_var/cluster_position builds a
separate binary hierarchical tree for each of the blocks

cluster_position builds a tree based on recursive binary partitioning of consec-
utive positions of the SNPs. For a short description, see at the end of Sect. 2.3.

Hierarchical clustering is computationally expensive and prohibitive for large
datasets. Thus, it makes sense to pre-define dis-joint sets of SNPs which can be clus-
tered separately. One would typically assume that the second level of a cluster tree
structure corresponds to the blocks given by the chromosomes as illustrated in Fig.
3. For the method based on binary partitioning of consecutive positions of SNPs, we
recommend to pre-define the second level of the hierarchical tree as well. This allows
to run the building of the hierarchical tree and the hierarchical testing for each block
or in our case for each chromosome in parallel, which can be achieved using the func-
tion calls below. If one does not want to specify the second level of the tree, then the
argument block in both function calls can be omitted.

In the toy example, we define the second level of the tree structure as follows. The
first and second 500 SNPs of the SNP data sim.geno correspond to chromosome
1 and chromosome 2, respectively. The object block is a data.frame which
contains two columns identifying the two blocks. The blocks are defined in the second
column and the corresponding columnnames of the SNPs are stored in the first column.
The argument stringsAsFactors of the function data.frame is set to FALSE
because we want both columns to contain integers or strings.

# Define the second level of the tree structure.
block <- data.frame("colname" = paste0("SNP.", 1:1000) ,

"block" = rep(c("chrom 1",
"chrom 2"),

each = 500),
stringsAsFactors = FALSE)}

# Cluster the SNPs
dendr <- cluster_var(x = sim.geno ,

block = block ,
# the following arguments have to
# be specified for parallel
# computation
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parallel = "multicore",
ncpus = 2)

By default, the function cluster_var uses the agglomeration method average
linkage and the dissimilarity matrix given by 1− (empirical correlation)2.

Alternatively, cluster_position builds a hierarchical tree using recur-
sive binary partitioning of consecutive genomic positions of the SNPs. As for
cluster_var, the function can be run in parallel if the argument block defines
the second level of the hierarchical tree.

# Store the positions of the SNPs.
position <- data.frame("colnames" = paste0("SNP.",

1:1000) ,
"position" = seq(from = 1,

to = 1000),
stringsAsFactors = FALSE)

# Build the hierarchical tree based on the position.
# The argument block defines the second level of the
# tree structure.
dendr.pos <- cluster_position(position = position ,

block = block ,
# the following arguments
# have to be specified
# for parallel
# computation
parallel = "multicore",
ncpus = 2)

3.2 Software for hierarchical testing

The function test_hierarchy is executed after the function cluster_var or
cluster_position since it requires the output of one of those two functions as
an input (argument dendr).

The function test_hierarchy first randomly splits the data into two halves
(with respect to the observations), by default B = 50 times, and performs vari-
able screening on the second half. Then, the function test_hierarchy uses those
splits and corresponding selected variables to perform the hierarchical testing accord-
ing to the tree defined by the output of one of the two functions cluster_var or
cluster_position.

As mentioned in Sect. 3.1, we can exploit the proposed hierarchical structure which
assumes the chromosomes to form the second level of the tree structure as illustrated
in Fig. 3. This allows to run the testing in parallel for each block, which are the
chromosomes in the toy example.
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The following function call performs first the global null-hypothesis test for the
group containing all the variables/SNPs and continues testing in the hierarchy of the
two chromosomes and their children.

# Test the hierarchy using multi sample split
set.seed (1234)
result <- test_hierarchy(x = sim.geno ,

y = sim.pheno ,
clvar = sim.clvar ,
# alternatively:
# dendr = dendr.pos
dendr = dendr ,
family = "binomial",
# the following arguments have
# to be specified for parallel
# computation
parallel = "multicore",
ncpus = 2)

The function test_hierarchy allows to fit models with continuous or binary
response, the latter being based on logistic regression. The argument family is set
to "binomial" because the response variable in the toy example is binary.

The output looks as follows:

> print(result , n.terms = 4)
block p.value significant.cluster

1 chrom 1 NA NA
2 chrom 2 0.0489170 SNP.605, SNP.792, SNP.636, SNP.857,

... [8]
3 chrom 2 0.0020718 SNP .992
4 chrom 2 0.0001637 SNP .991
5 chrom 2 0.0047820 SNP .1000
6 chrom 2 0.0065060 SNP .994
7 chrom 2 3.858e-05 SNP .993

The output shows significant groups of SNPs or even single SNPs if there is suffi-
ciently strong signal in the data. The block names, the p values, and the column names
(of the SNP data) of the significant clusters are returned. There is no significant cluster
in chromosome 1. That’s the reason why the p value and the column names of the
significant cluster are NA in the first row of the output. Note that the large significant
cluster in the second row of the output is shortened to better fit on screen. In our toy
example, the last 8 column names are replaced by “... [8]”. The maximum num-
ber of terms can be changed by the argument n.terms of the print function. One
can evaluate the object result in the console and the default values of the print
function are used. In this case, it would only display the first 5 terms.

The only difference in the R code when using a hierarchical tree based on binary
recursive partitioning of the genomic positions of the SNPs (whose output is denoted as
dendr.pos) is to specify the corresponding hierarchy: test_hierarchy(...,
dendr = dendr.pos, ...).

We can access part of the output by result$res.hierarchy which we
use below to calculate the R2 value of the second row of the output, i.e.
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result$res.hierarchy[[2, "significant.cluster"]].Note thatwe
need the double square brackets to access the column names stored in the column
significant.cluster of the output since the last column is a list where each
element contains a character vector of the column names. The two other columns con-
taining the block names and the p values can both be indexed using single square brack-
ets as for anydata.frame, e.g.result$res.hierarchy[2, "p.value"].

> (coln.cluster <- result$res.hierarchy [[2,
"significant.cluster"]])

[1] "SNP .605" "SNP .792" "SNP .636" "SNP .857" "SNP .858"
[6] "SNP .911" "SNP .571" "SNP .998" "SNP .708" "SNP .867"
[11] "SNP .612" "SNP .932"

The function compute_r2 calculates the adjusted R2 value or coefficient of deter-
mination of a cluster for a continuous response. TheNagelkerke’s R2 (Nagelkerke et al.
1991) is calculated for a binary response as e.g. in our toy example.

> compute_r2(x = sim.geno , y = sim.pheno ,
clvar = sim.clvar ,
res.test.hierarchy = result ,
family = "binomial",
colnames.cluster = coln.cluster)

The function compute_r2 is based on multi-sample splitting. The R2 value is calcu-
lated per split based on the second half of observations and based on the intersection of
the selected variables and the user-specified cluster. Then, the R2 values are averaged
over the different splits. If one does not specify the argument colnames.cluster,
then the R2 value of the whole dataset is calculated.

3.3 Software for parallel computing

The function calls of cluster_var, cluster_position, and test_
hierarchy above are evaluated in parallel sincewe set the argumentsparallel =
"multicore" and ncpus = 2. The argument parallel can be set to "no" for
serial evaluation (default value), to "multicore" for parallel evaluation using fork-
ing, or to "snow" for parallel evaluation using a parallel socket cluster (PSOCKET);
see below for more details. The argument ncpus corresponds to the number of cores
to be used for parallel computing. We use the parallel package for our implemen-
tation which is already included in the base R installation (R Core Team 2019).

The user has to select the “L’Ecuyer-CMRG”pseudo-randomnumber generator and
set a seed such that the parallel computing of hierinf is reproducible. This pseudo-
random number generator can be selected by RNGkind("L’Ecuyer-CMRG") and
has to be executed once for every new R session; see R code at the beginning of Sect.
3. This allows us to create multiple streams of pseudo-random numbers, one for each
processor/computing node, using the parallel package; for more details see the
vignette of the parallel package published by R Core Team (2019).

We recommend to set the argument parallel = "multicore" which will
work on Unix/Mac (but not Windows) operation systems. The function is then eval-
uated in parallel using forking which is leaner on the memory usage. This is a neat
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feature for GWAS since e.g. a large SNP dataset does not have to be copied to the new
environment of each of the processors. Note that this is only possible on a multicore
machine and not on a cluster.

On all operation systems, it is possible to create a parallel socket cluster (PSOCKET)
which corresponds to setting the argument parallel = "snow". This means that
the computing nodes or processors do not share the memory, i.e. an R session with an
empty environment is initialized for each of the computing nodes or processors.

How many processors should one use? If the user specifies the second level
of the tree, i.e. defines the block argument of the functions cluster_var /
cluster_position and test_hierarchy, then the building of the hierarchical
tree and the hierarchical testing can be easily performed in parallel across the different
blocks. Note that the package can make use of as many processors as there are blocks,
say, 22 chromosomes. In addition, themulti sample splitting and screening step, which
is performed inside the function test_hierarchy, can always be executed in par-
allel regardless if we defined blocks or not. It can make use of at most B processors
where B is the number of sample splits.

3.4 Illustration: hierarchical inference on real datasets

Hierarchical inference for GWAS has been successfully applied in some of our own
previous work (Buzdugan et al. 2016; Klasen et al. 2016).

One dataset is about type 1 diabetes with a binary response variable (“healthy”/
“diseased”): TheWellcome Trust Case Control Consortium (2007) measured 500’568
SNPs of 2’000 cases and 3’000 controls. Some of the results from Buzdugan et al.
(2016) are described in Table 1. Buzdugan et al. (2016) found a significant association
of the response and eight single SNPs: five of those SNPs have been found to be
significant in the study of The Wellcome Trust Case Control Consortium (2007). One
of the other three SNPs was found to have a moderate association in an independent
study (Plagnol et al. 2011).

Buzdugan et al. (2016) identified two small significant groups of SNPs for the type
2 diabetes dataset which has the same sample size and number of SNPs as the type
1 diabetes dataset. Their results are described in Table 2. Both groups contain one
SNP which was originally found significant by The Wellcome Trust Case Control
Consortium (2007). There are two SNPs, one in each of the two groups, that were
shown significant in an independent study by Zeggini et al. (2007) and only one of
those two SNPs by Scott et al. (2007).

Klasen et al. (2016) compare hierarchical testing with linear mixed effect models
and stress that the hierarchical testing seems less exposed to population structure and
often does not need a corresponding correction. One of the studied datasets is about
the association between the root development and the genotype of 201 world-wide
collected natural Arabidopsis accessions. They found one significant locus with a
linear mixed effect model whereas with the hierarchical testing they discovered three
additional loci which are located in two neighboring genes. Klasen et al. (2016) made
a follow-up randomized treatment-control experiment to validate an effect of one of
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Table 1 List of small significant groups of SNPs for type 1 diabetes

Significant group of SNPs Chr Gene p value R2

rs6679677 1 PHTF1 3.6× 10−11 0.03

rs17388568 4 ADAD1 2.7× 10−2 0.006

rs9272346 6 HLA-DQA1 2.4× 10−3 0.17

rs9272723 6 HLA-DQA1 2.2× 10−4 0.17

rs2523691 6 Intergenic 6.04× 10−5 0.004

rs11171739 12 Intergenic 1.3× 10−2 0.01

rs17696736 12 NAA25 6.5× 10−4 0.018

rs12924729 16 CLEC16A 3.4× 10−2 0.007

The smallest groups of SNPs whose null hypothesis was rejected are displayed. The SNPs in this group
are jointly significant. The rsIDs are taken from dbSNP. Chromosome is abbreviated by Chr. If the group
of SNPs belongs to a gene, then the gene symbol from Entrez Gene is stated in the corresponding column.
The p values are adjusted for multiple testing (controlling the FWER) and the R2 value is the explained
variance by the group of SNPs. The table is taken from Buzdugan et al. (2016)

Table 2 List of small significant groups of SNPs for type 2 diabetes

Significant group of SNPs Chr Gene p value R2

rs4074720, rs10787472, rs7077039,
rs11196208, rs11196205,
rs10885409, rs12243326,
rs4132670, rs7901695, rs4506565

10 TCF7L2 1.7× 10−5 0.015

rs9926289, rs7193144, rs8050136,
rs9939609

16 FTO 4.7× 10−2 0.007

The smallest groups of SNPs whose null hypothesis was rejected are displayed. The SNPs in this group
are jointly significant. The rsIDs are taken from dbSNP. Chromosome is abbreviated by Chr. If the group
of SNPs belongs to a gene, then the gene symbol from Entrez Gene is stated in the corresponding column.
The p values are adjusted for multiple testing (controlling the FWER) and the R2 value is the explained
variance by the group of SNPs. The table is taken from Buzdugan et al. (2016)

these two genes on the root growth (namely the PEPR2 gene): it turned out to be
successful exhibiting a significant effect.

4 Meta-analysis for several datasets

Consider the general situation with m datasets

Y (�),X(�), � = 1, . . . ,m,

with n� × 1 response vector Y (�) and n� × p� design matrix X(�). For each of them
we assume a potentially high-dimensional linear model

Y (�) = X(�)β(�) + ε(�),
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with ε
(�)
1 , . . . , ε

(�)
n�

i.i.d. havingE[ε(�)
i ] = 0, Var(ε(�)

i ) = (σ (�))2. To simplify notation,
we drop here the superscript “0” for denoting the true underlying parameter. Note that
the treatment for generalized linear models is analogous.

For simplicity, we consider here only the case where the measured covariates are
the same across all the m datasets. This implies that p� ≡ p for all � = 1, . . . ,m. We
consider the null-hypothesis for single variables

H̃0, j : β
(�)
j = 0 for all � = 1, . . . ,m, (13)

versus the alternative

H̃A, j : there exists � ∈ {1, . . . ,m} with β
(�)
j 	= 0. (14)

For groups of variables G ⊆ {1, . . . , p} we have the analogous hypotheses:

H̃0,G : β
(�)
G ≡ 0 for all � = 1, . . . ,m, (15)

versus the alternative

H̃A,G : there exists j ∈ G and � ∈ {1, . . . ,m} with β
(�)
j 	= 0. (16)

If H̃0, j is rejectedweconclude that covariate j is significant in at least onedataset. From
anabstract point of view, H̃0, j or H̃0,G as in (13) or (15) are again grouphypothesiswith
coefficient indices in the group (�, j) ∈ {1, . . . ,m}× { j} or (�, j) ∈ {1, . . . ,m}×G,
respectively.

A simple way to test the hypotheses in (13) or (15) is to aggregate the corresponding
p values for the datasets � = 1, . . . ,m. Denote by P(�)

G the p value for testing the

null-hypothesis H (�)
0,G : β

(�)
G ≡ 0 for the dataset �.

We advocate here the use of Tippett’s rule (Tippett 1931):

PTippett;G = 1−
(
1−min{P(�)

G , � = 1, . . . ,m}
)m

, (17)

where P(1)
G , . . . , P(m)

G are the raw p values. This aggregated p value controls the fami-
lywise error rate at levelα for the decision rule: reject H̃0,G if and only if PTippett;G ≤ α

for some significance level α.
Alternatively, p values can be aggregated by Stouffer’s rule (Stouffer et al. 1949):

PStouffer;G = �

(
m∑

�=1
w��

−1 (
P(�)
G

))
, w� =

√
n�/n, n =

m∑

�=1
n�. (18)
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Fig. 4 Aggregated p value based on two datasets. The red areas (lower left corner) highlight the aggregated
p values which are below 0.05 (color figure online)

This p value controls the familywise error rate at level α for the decision rule: reject
H̃0,G if and only if PStouffer;G ≤ α.

For illustration purposes, we consider the case m = 2 in Fig. 4. The individual p
values P(1)

G and P(2)
G are plotted on the x- and y-axis, respectively and the aggregated

values PTippett;G and PStouffer;G are color-coded in the respective plots. Both red areas
are equal to 0.05. The difference between the two plots is that Stouffer’s rule is more
powerful in the case of two datasets with weak signal and Tippett’s rule is more
powerful in the case of one dataset with a strong signal and the other having a very
weak or no signal.

We advocate the use of Tippett’s rule because it performs best in our simulations for
all scenarios; see Fig. 5 and Sect. 4.1 for more details. This seems partially due to the
hierarchical multiple sample splitting inference method which is unstable, especially
forweaker signals: it happens fairly often that a cluster turns out to be clearly significant
in one dataset and not significant at all in another, a situation where Tippett’s rule is
much more powerful. See also the paragraph at the end of Sect. 4.2

The naive (and conceptuallywrong) approachwould be to pool the different datasets
and proceed as if it would be one homogeneous dataset. This would then result in p
values Ppooled;G by using the methods from Sect. 2.

Fast computational methods for pooled GWAS There has been a considerable interest
for fast algorithms for GWAS with very large sample size in the order of 105; see
Lippert et al. (2011), Zhou and Stephens (2014). Often though, such large sample size
comes from pooling different studies or sub-populations. We argue in favor of meta
analysis and aggregating corresponding p values. Besides more statistical robustness
against heterogeneity (arising from the different sub-populations), meta-analysis is
also computationally very attractive: the computations can be trivially implemented
in parallel for every sub-population and the p value aggregation step comes essentially
without any computational cost.
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4.1 Empirical results for aggregating p values and pooling of two datasets

We perform a simulation study to compare power and error rate for three methods. We
consider aggregating the p values using Tippett’s rule as described in (17), Stouffer’s
method in (18), and pooling the datasets. The latter is a very simple method where we
ignore that we deal with different datasets or studies and run the hierarchical testing
on the pooled set of observations but allowing for a different intercept per dataset.

For simplicity, we consider the case of two datasets, i.e. m = 2. Denote the true
underlying parameter by β(�) for � = 1, 2 and the corresponding active set by

S(�)
0 = {

j; β
(�)
j 	= 0

}
, � = 1, 2.

As an easy case we assume here that the active sets of the two datasets coincide
S(1)
0 = S(2)

0 and that the true underlying parameters β(1) and β(2) take the values 1
and−1 on the active set, respectively. If one pools the two datasets, then those effects
roughly cancel each other (when the datasets have approximately the same sample
sizes). On the other hand, when aggregating p values from individual datasets, effects
do not cancel out.

To compare the two methods, we generate semi-synthetic data which is based on
data from openSNP (https://opensnp.org/), where people donate their raw genotypic
data into the public domain (using CC0 license). We generate two datasets X(�),
� = 1, 2, with n = 300 observations each and two (consecutive) blocks of 500 SNPs
from chromosome 1 and 2, respectively. This makes in total p = 1000 SNPs. Both
datasets share the same 1000 SNPs and are kept fixed for the simulation.

For the generation of those two datasets, columns with many missing values are
excluded and remaining columns are imputed using the median. We further exclude
columns with standard deviation zero and omit columns in order not to have a set of
collinear columns of set size up to 10.

For each simulation run, we randomly pick an active set of size 10 which is the
same for both datasets. Thus, S0 = S(1)

0 = S(2)
0 . We simulate a continuous response

using

Y (�) = X(�)β(�) + ε(�), � = 1, 2,

where each element of ε(�) is drawn from a N
(
0, (σ (�))2

)
-distribution. For the sim-

ulation, we vary the values of (σ (2))2 and the values of β(�) for the corresponding
elements which are in the active set S(�)

0 , � = 1, 2.
The two datasets play different roles. The variance (σ (1))2 = 1 is fixed for the

dataset Y (1),X(1) and only the value of the non-zero elements of β(1) are varied. The
dataset Y (1),X(1) carries a strong signal in general. The dataset Y (2),X(2) shows a
weak signal especially when we inflate the variance (σ (2))2. The elements of β(2)

corresponding to the active set take only values 0, 0.5 and 1.
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We use a modified definition of the power as the performance measure for the
simulation study because it takes the size of the significant clusters into account. We
define the adaptive power by

Poweradap =
1

|S0|
∑

C ∈MTD

1

|C |

where MTD stands for Minimal True Detections which means that the cluster has to
be significant (“Detection”), there is no significant subcluster (“Minimal”), and the
cluster contains at least one active variable (“True”). This is the same definition as in
Mandozzi and Bühlmann (2016a).

Figure 5 illustrates the adaptive power of the simulation study. Aggregating the p
values using Tippett’s rule is clearly better than pooling and outperforms Stouffer’s
method. The twodifferent aggregationmethods and their advantages have been already
discussed at the beginning of Sect. 4. Pooling the datasets seems towork fine especially
for situationswhere the values of the non-zero elements of β(1) andβ(2) are similar and
the standard deviationσ (2) takes values 0.5 or 1, i.e. similar standard deviations for both
datasets. But in these situations, aggregating the p values using Tippett’s rule works
comparably well. We note that with pooling, the power can slightly decrease when the
true regression parameters in one dataset increase in size: this is somewhat counter-
intuitive but might occur because misspecification with pooling can become stronger
when increasing the regression parameters in one dataset. In general aggregation with
Tippett’s rule performs more reliably than pooling since the latter is conceptually
wrong. Figure 6 illustrates that the familywise error rate (FWER) is controlled for all
three methods, for most scenarios even conservatively.

The conceptual correctness together with the results of the simulation study sup-
port our recommendation to aggregate the p values from different datasets or studies
rather than a simple-minded pooling of the datasets. Aggregating the p values of mul-
tiple studies is very easy to perform using the R package hierinf as described in
Sect. 4.4.

4.2 Empirical results for aggregating p values and pooling of multiple datasets

We consider two simulations for the case of m = 10 semi-synthetic datasets Y (�),
X(�), � = 1, . . . , 10, with n = 150 observations and p = 10,000 SNPs as described
in Sect. 4.1. The response is simulated as

Y (�) = X(�)β(�) + ε(�), � = 1, . . . , 10,

where each element of ε(�) is drawn from aN (0, 1)-distribution, i.e. all the variances
are kept fixed.

We examine two scenarios where the support of the parameter vectors β(�) is the
same across all datasets. In particular, the non-zero elements of β(�), � = 1, . . . , 5,
respectively, � = 1, . . . , 8, are varied by one number while the non-zero elements of
β(k) of the remaining datasets are equal to 0.5.
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Fig. 5 Two datasets: comparison of the adaptive power of aggregating the p values using Tippett’s rule,
Stouffer’s rule or by simply pooling multiple studies. The values of the active or non-zero element of both
datasets are varied, i.e. β(1) ∈ {0, 0.5, 1, 1.5, 2, 3, 4, 5, 6, 9, 12} (x-axis) and β(2) ∈ {0, 0.5, 1} (multi
panels: rows). The standard deviation of the error is varied for the second dataset, i.e. σ (1) = 1 and
σ (2) ∈ {0.5, 1, 3, 6} (multi panels: columns). The active set is of size 10 and is randomly selected for
each simulation run. The adaptive power was calculated based on 100 independent simulations for each
combination of the parameters

Aggregating the p values using Tippett’s rule performs worse than pooling while
aggregation with Stouffer’s rule performs poorly. The results are illustrated in Figs. 7
and 8. The number of observations per dataset is halved compared to the simulation
in Sect. 4.1 and the number of SNPs is 10 times larger, both being favourable for
pooling. We also note that the active sets of the 10 datasets are identical and thus,
the different datasets are perhaps still rather “homogeneous”. It can be dangerous to
pool the datasets because in general there is no theoretical guarantee that the FWER
is controlled.

Performance of Stouffer’s rule. The main reason why Stouffer’s rule for aggregation
of p values performs so poorly seems to be the instability of the hierarchical inference
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Fig. 6 Two datasets: comparison of the familywise error rate (FWER) of aggregating the p values using
Tippett’s rule, Stouffer’s rule or by simply pooling multiple studies. All three methods control the FWER
at level 0.05

scheme. For two datasets having even the same generating distribution, it can easily
happen that the hierarchical inference scheme provides once a highly significant and
once a non-significant result. And analogously, a similar pattern arises with more than
two datasets. In such situations, Stouffer’s rule performs poorly, as indicated also by
Fig. 4. In the worst case, if one of the p values from the different datasets is 1, then
Stouffer’s rule won’t reject for sure.

The explanation of the observed instability is as follows. The p values arising from
multiple sample splits are aggregated using (8) where the correction factor 1/γ is the
price to pay for using multi sample splitting. An aggregated p value can be large or
even 1 if a mix of moderate to large (and perhaps also some very few small) p values
is aggregated. Furthermore, the raw p values of an active cluster can be large or even
equal to 1 if the signal is weak or if the selected variables from Lasso pre-screening
have an empty intersection with the cluster of interest, respectively. The latter issue

123



Hierarchical inference for genome-wide association… 31

0.00

0.25

0.50

0.75

0.0 2.5 5.0 7.5 10
.0

12
.5

non−zero elements of β(k), k = 1,…,5

Po
w

er
ad

ap agg. Stouffer

agg. Tippett

pooled

Power for varying β(k)

(a) Adaptive Power.

0.000

0.025

0.050

0.075

0.0 2.5 5.0 7.5 10
.0

12
.5

non−zero elements of β(k), k = 1,…,5
FW

ER

agg. Stouffer

agg. Tippett

pooled

FWER for varying β(k)

(b) Family-Wise Error Rate.

Fig. 7 Ten datasets: comparison of the adaptive power and FWER of aggregating p values using Tippett’s
or Stouffer’s rule or by simply pooling multiple studies. The single value of the non-zero elements of β(�),
� = 1, . . . , 5 is varied, while the non-zero elements of β(�), � = 6, . . . , 10 all take the value 0.5. The
common active set is of size 10 and is randomly selected for each simulation run. The results are based on
100 simulation runs
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Fig. 8 Ten datasets: comparison of the adaptive power and FWER of aggregating p values using Tippett’s
or Stouffer’s rule or by simply pooling multiple studies. The single value of the non-zero elements of β(�),
� = 1, . . . , 8 is varied, while the non-zero elements of β(�), � = 9, 10 both take the value 0.5. The common
active set is of size 10 and is randomly selected for each simulation run. The results are based on 100
simulation runs

arises because of the difficulty of variable screening in very high-dimensional settings
with high correlations among the variables.
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4.3 Theoretical considerations for aggregating p values and pooling of multiple
datasets

We have illustrated in Figs. 7 and 8 that pooling can be clearly better than using
Tippett’s multiple testing correction.

To shed some light on the issue, we consider the situation with linear models as
mentioned at the beginning of Sect. 4,

Y (�)
i =

p∑

j=1
β

(�)
j X (�)

i + ε
(�)
i , i = 1, . . . n�,

over various datasets � = 1 . . . ,m. For simplicity, we assume that n� ≡ n for all �

and that the X (�)
i are fixed variables which have been i.i.d. sampled from a distribution

with covariance matrix �
(�)
X , where �

(�)
X ≡ �X for all �. The latter might be far from

being true but our aim here is only to present a simple argument.
Consider a statistic for testing β

(�)
j :

T (�)
j , T (�)

j ∼ N (0, 1) under H̃0, j ,

with H̃0, j as in (13). The t-test statistic in a linear model satisfies this asymptotically
under mild distributional assumptions on the error term, and under the assumptions
from Sect. 2.2.1, this also holds in a sample splitting context as used in our approach
and software.

Tippett’s multiple testing correction (17) is slightly more powerful than Bonferroni
correction, and the latter amounts to consider the maximum of the test-statistics

max
�=1,...,m |T

(�)
j |.

It is well known, that due to the Gaussian assumption and under the null-hypothesis
H̃0, j :

P
[

max
�=1,...,m |T

(�)
j | >

√
c2 + 2 log(m)

] ≤ 2 exp(−c2/2).

This implies that for T (�)
j being the t-test statistics for β

(�)
j , the test has power con-

verging to 1 (for any fixed significance level) if

max
�=1,...,m

|β(�)
j |

σ (�)(�X )−1j j
� √

log(m)/n, (19)

where σ (�) = √
Var(ε(�)) is the standard deviation of the noise term ε(�). Thus, we see

from (19) that Tippett’s correction pays a price with a factor
√
log(m), due to multiple

testing, instead of the usual detection rate 1/
√
n.
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With pooling as described at the beginning of Sect. 4.1, we consider the pooled
parameter in the linear model over all the m datasets:

βpool = argminβE

[
n−1tot

ntot∑

i=1
(Yi − XT

i β)2
]
,

with corresponding noise term ε
pool
i = Yi − XT

i βpool and ntot =∑m
�=1 n� = mn. We

then obtain that

βpool =
m∑

�=1
β(�)

P[Z = �],

where Z denotes the random variable encoding the index of the dataset (assuming
here a mixture model for them datasets). In comparison to (19), the t-test with pooled
data then leads to the detection

|βpool
j |

σ pool(�X )−1j j
� √

1/(mn). (20)

For comparing (19) with (20), we consider two special cases.

Case I (equal β j ’s) Suppose that β
(�)
j ≡ β j for all �, implying also that the supports

of β(�) are the same. Then it holds that βpool
j = β j and the detection boundary in (20)

is clearly in favor of the pooled method. This case is “fairly close” to the scenario in
Figs. 7 and 8 where all the β j just take two values over the m = 10 datasets.

Case II (fully distinct supports of β’s) Suppose that all the supports of β(�) are disjoint
and thus: if β

(�)
j 	= 0 it must be that β�′

j = 0 for all �′ 	= �. In the balanced case where

P[Z = �] ≡ 1/m, the pooled parameter then equals β
pool
j = β

(�)
j /m. Then, the

detection boundary for coefficient j in (20) becomes

|β(�)
j |

σ pool(�X )−1j j
� √

m/n, (21)

and in this case, the Tippett scheme is better (assuming that σ pool is comparable to
σ (�)): compare (21) to (19).

The conclusion from this little calculation is as expected, that pooling can be better
than aggregation of p values if the different datasets substantially share the supports
and signs of the regression coefficients, as illustrated in Figs. 7 and 8. In general,
including e.g. different covariances of the covariates, pooling can be inadequate and is
exposed to a misspecified model. Thus, Tippett’s aggregation of p values is the safer
procedure (and e.g. Stouffer’s aggregation rule is not really a competitor in our setting
with multi sample splitting for hierarchical testing, as pointed out in the paragraph at
the end of Sect. 4.2).
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4.4 Software for aggregating p values of multiple studies

It is very convenient to combine the information of multiple studies by aggregat-
ing p values as described in Sect. 4. The package hierinf offers two methods for
jointly estimating a single hierarchical tree for all datasets using either of the functions
cluster_var or cluster_position; compare with Sect. 3.1. Testing is per-
formed by the function test_hierarchy in a top-down manner given by the joint
hierarchical tree. For a given cluster, p values are calculated based on the intersection
of the cluster and each dataset (corresponding to a study) and those p values are then
aggregated to obtain one p value per cluster using either Tippett’s rule (17) or Stouf-
fer’s method (18); see argument agg.method of the function test_hierarchy.
The difference and issues of the two methods for estimating a joint hierarchical tree
are described in the following two paragraphs.

The function cluster_var estimates a hierarchical tree based on clustering the
SNPs from all the studies. Problems arise if the studies do not measure the same SNPs
and thus, some of the entries of the dissimilarity matrix cannot be calculated. By
default, pairwise complete observations for each pair of SNPs are taken to construct
the dissimilarity matrix. This issue affects the building of the hierarchical tree but the
testing of a given cluster remains as described before.

The function cluster_position estimates a hierarchical tree based on the
genomic positions of the SNPs from all the studies. The problems mentioned above
do not show up here since SNPs, maybe different ones for various datasets, can still
be uniquely assigned to genomic regions.

The only difference in all the function calls is that the arguments x, y, and clvar
are now each a list of matrices instead of just a single matrix. Note that the order of
the list elements of the arguments x, y, and clvar matter, i.e. the user has to stick
to the order that the first element of the three lists corresponds to the first dataset, the
second element to the second datasets, and so on. Onewould replace the corresponding
element of the list containing the control covariates (argument clvar) by NULL if
some dataset has no control covariates. If none of the datasets have control covariates,
then one can simply omit the argument. Note that the argument block defines the
second level of the tree which is assumed to be the same for all datasets or studies. The
argument block has to be a data.frame which contains all the column names (of
all the datasets or studies) and their assignment to the blocks. The aggregation method
can be chosen using the argument agg.method of the function test_hierarchy,
i.e. it can be set to either "Tippett" or "Stouffer". The default aggregation
method is Tippett’s rule (17).

The example below demonstrates the functions cluster_var and test_
hierarchy for two datasets/studies measuring the same SNPs.

# The datasets need to be stored in different elements
# of a list. Note that the order has to be the same
# for all the lists.

# As a simple example , we artificially split the
# observations of the toy dataset in two parts ,
# i.e. two datasets.
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set.seed (89)
ind1 <- sample (1:500 , 250)
ind2 <- setdiff (1:500 , ind1)

sim.geno.2dat <- list(sim.geno[ind1 , ],
sim.geno[ind2 , ])

sim.clvar.2dat <- list(sim.clvar[ind1 , ],
sim.clvar[ind2 , ])

sim.pheno.2dat <- list(sim.pheno[ind1],
sim.pheno[ind2])

# Cluster the SNPs
dendr <- cluster_var(x = sim.geno.2dat ,

block = block ,
# the following arguments have to
# be specified for parallel
# computation
parallel = "multicore",
ncpus = 2)

# Test the hierarchy using multi sample split
set.seed (1234)
result <- test_hierarchy(x = sim.geno.2dat ,

y = sim.pheno.2dat ,
clvar = sim.clvar.2dat ,
dendr = dendr ,
family = "binomial",
# the following arguments have
# to be specified for parallel
# computation
parallel = "multicore",
ncpus = 2)

The above R code is evaluated in parallel; compare with Sect. 3.3 for more details
about the software for parallel computing.

The output shows one significant group of SNPs and one single SNP.

> print(result , n.terms = 4)
block p.value significant.cluster

1 chrom 1 NA NA
2 chrom 2 0.02659100 SNP.532, SNP.721, SNP.882,

SNP.520, ... [15]
3 chrom 2 0.01100256 SNP .993

The significance of a cluster is based on the information of both datasets. For a given
cluster, the p values of each dataset were aggregated using Tippett’s rule as in (17).
Those aggregated p values are displayed in the output above. We cannot judge which
dataset (or both or combined) inherits a strong signal such that a cluster is shown
significant but that is not the goal. The goal is to combine the information of multiple
studies.

The crucial point is that the testing procedure goes top-down through a single jointly
estimated tree for all the studies and only continues if at least one child is significant
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entire data

chrom 1

SNP.22
SNP.41
. . .

SNP.1
SNP.3
. . .

chrom 2

SNP.544
SNP.513
. . .

SNP.647
SNP.648
. . .

Fig. 9 Illustration of a possible single jointly estimated tree for multiple studies based on clustering the
SNPs. The second level of the hierarchical tree is defined by chromosome 1 and 2 (defined by the argu-
ment block of the functions cluster_var/cluster_position). The function cluster_var /
cluster_position builds a separate hierarchical tree for each of the chromosomes

(based on the aggregated p values of the multiple datasets) of a given cluster. The
algorithm determines where to stop and naturally we get one output for all the studies.
A possible single jointly estimated tree of the above R code is illustrated in Fig. 9. In
our example, both datasets measure the same SNPs. If that would not be the case, then
intersection of the cluster and each dataset is taken before calculating a p value per
dataset/study and then aggregating those.

5 Discussion and conclusions

We provide a review of hierarchical inference for high-dimensional (generalized)
linear models, particularly aiming for the analysis of genome-wide association studies
(GWAS) where the dimensionality is in the order O(106) and sample size typically
in the thousands. Inferring statistical significance in such high-dimensional settings is
very challenging: we believe that hierarchical inference is a very natural and powerful
approach towards better and more reliable inference in GWAS. Obviously, multiple
datasets or studies contain more information. We advocate the use of meta-analysis
within a single hierarchical structure which is simple and coherent.

Our new implementation in the R-package hierinf provides many possibilities:
two options for constructing hierarchical structures, fitting linear and logistic linear
responsemodelswith possible additional adjustment for external control variables, and
efficient parallel computation. Our software is a major cornerstone for enabling the
practical use of hierarchical inference for GWAS, controlling the FWER. A different
wayof performinghierarchical inference canbedonewithin the frameworkof selective
inference for controlling the FDR or a conditional FDR (Brzyski et al. 2017; Heller
et al. 2017).

Many open problems remain. Among them, we name here a few. (1) The issue
of hidden confounders: even when taking all measured SNPs into the analysis, unob-
served confounding can lead to spurious and wrong associations. An extreme example
is given by Novembre et al. (2008), and mixed models (Rakitsch et al. 2013; Zhou
et al. 2013) may only account in part for hidden confounders. (2) Another point is the
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debate whether the familywise error rate (FWER) is a too strict criterion to work with,
in contrast to the false discovery rate (FDR): the FWER is simpler to control, especially
in hierarchical and closed testing schemes. We refer also to Goeman and Solari (2011)
for an interesting discussion on this point. In the classical non-hierarchical inference,
the ranking about significance of single hypotheses is not influenced whether the user
chooses adjustment of p valueswith theBonferroni–Holmor theBenjamini–Hochberg
procedure to control the FWER or FDR, respectively. In the hierarchical case though,
this remains unclear. In addition, the p values from multi-sample splitting, as used
in our procedure and software, might be unreliable: it is challenging, in particular
for logistic regression (Sur and Candès 2019), to come up with reliable and power-
ful p values for testing single or groups of regression coefficients which are reliable
and powerful in high-dimensional settings. (3) The role of the hierarchy is an issue of
power, as long aswe assumefixed design and a correctmodel specification. The FWER
control holds for any fixed hierarchical structure, but the power typically depends on
the chosen hierarchy. We have not considered here the region-based approach from
Meijer et al. (2015) which allows for a supervised form of the groups or clusters at
the price of a more severe multiple testing correction: in absence of a broad compari-
son, we do not want to give general recommendations. Our view is (in part) to enable
the users to try our approach and make their own judgment: our R-software package
hierinf should provide substantial support to do so.
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