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Abstract
We show that the notion of polynomial mesh (norming set), used to provide discretiza-
tions of a compact set nearly optimal for certain approximation theoretic purposes, can
also be used to obtain finitely supported near G-optimal designs for polynomial regres-
sion. We approximate such designs by a standard multiplicative algorithm, followed
by measure concentration via Caratheodory-Tchakaloff compression.

Keywords Near G-optimal designs · Polynomial regression · Norming sets ·
Polynomial meshes · Dubiner distance · D-optimal designs · Multiplicative
algorithms · Caratheodory-Tchakaloff measure compression

1 Introduction

In this paper we explore a connection of the approximation theoretic notion of poly-
nomial mesh (norming set) of a compact set K with the statistical theory of optimal
polynomial regression designs on K . We begin by recalling some basic definitions
and properties.

Let Pd
n(K ) denote the space of polynomials of degree not exceeding n restricted to

a compact set K ⊂ R
d , and ‖ f ‖Y the sup-norm of a bounded function on the compact

set Y . We recall that a polynomial mesh on K (with constant c > 0) is a sequence of
norming subsets Xn ⊂ K such that
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‖p‖K ≤ c ‖p‖Xn , ∀p ∈ P
d
n(K ), (1)

where card(Xn) grows algebraically in

N = Nn(K ) = dim(Pd
n(K )). (2)

Notice that necessarily card(Xn) ≥ N , since Xn is determining for Pd
n(K ) (i.e., poly-

nomials vanishing there vanish everywhere on K ). With a little abuse of notation,
below we shall call “polynomial mesh” both the entire sequence {Xn} and (more
frequently) the single norming set Xn .

Observe also that N = O(nβ) with β ≤ d, in particular N = (n+d
d

) ∼ nd/d!
on polynomial determining compact sets (i.e., polynomials vanishing there vanish
everywhere inRd ), but we can have β < d for example on compact algebraic varieties,
like the sphere in R

d where N = (n+d
d

) − (n−2+d
d

)
.

The notion of polynomial mesh, though present in the literature for specific
instances, was introduced in a systematic way in the seminal paper (Calvi and Leven-
berg 2008), and since then has seen an increasing interest, also in the computational
framework. We recall among their properties that polynomial meshes are invariant
under affine transformations, can be extended by algebraic transformations, finite
union and product, are stable under small perturbations. Concerning finite union, for
example, which is a powerful constructive tool, it is easily checked that if X (i)

n are
polynomial meshes for Ki , 1 ≤ i ≤ s, then

‖p‖∪Ki ≤ max{ci } ‖p‖∪X (i)
n

, ∀p ∈ P
d
n(∪Ki ). (3)

Polynomial meshes give good discrete models of a compact set for polynomial
approximation, for example it is easily seen that the uniform norm of the unweighted
Least Squares operator on a polynomial mesh, say Ln : C(K ) → P

d
n(K ), is bounded

as

‖Ln‖ = sup
f �=0

‖Ln f ‖K
‖ f ‖K ≤ c

√
card(Xn). (4)

Moreover, polynomial meshes contain extremal subsets of Fekete and Leja type for
polynomial interpolation, and have been applied in polynomial optimization and in
pluripotential numerics; cf., e.g., Bos et al. (2011), Piazzon (2019) and Piazzon and
Vianello (2019).

The class of compact sets which admit (constructively) a polynomial mesh is very
wide. For example, it has been proved in Calvi and Levenberg (2008) that a polynomial
mesh with cardinality O(Nr ) = O(nrd) can always be constructed simply by inter-
section with a sufficiently dense uniform covering grid, on compact sets satisfying a
Markov polynomial inequality with exponent r (in particular, on compact bodies with
Lipschitz boundary, in which case r = 2).

From the computational point of view, it is however important to deal with low
cardinality polynomial meshes. Indeed, polynomial meshes with card(Xn) = O(N ),
that are said to be optimal (in the sense of cardinality growth), have been constructed
on compact sets with different geometric structure, such as polygons and polyhedra,
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Near G-optimal Tchakaloff designs 805

convex, starlike and even more general bodies with smooth boundary, sections of a
sphere, ball and torus; cf., e.g., Kroó (2011), Piazzon (2016) and Sommariva and
Vianello (2018). By (4), on optimal meshes we have ‖Ln‖ = O(

√
card(Xn)) =

O(
√
N ); we stress, however, that even with an optimal mesh typically card(Xn) 
 N .

The problem of reducing the sampling cardinality while maintaining estimate
(4) (Least Squares compression) has been considered for example in Piazzon et al.
(2017a, b), where a strategy is proposed, based on weighted Least Squares on N2n
Caratheodory-Tchakaloff points extracted from the mesh by Linear or Quadratic Pro-
gramming. Nevertheless, also reducing the Least Squares uniform operator norm
though much more costly is quite relevant, and this will be addressed in the next
Section via the theory of optimal designs.

2 Near optimal designs by polynomial meshes

Let μ be a probability measure supported on a compact set K ⊂ R
d . In statistics, μ is

usually called a design and K the design space. The literature on optimal designs dates
back at least one century, and is so vast and ramificated that we can not even attempt
any kind of survey. We may for example quote, among many others, a classical and
a quite recent textbook (Atkinson and Donev 1992; Celant and Broniatowski 2017),
and the new paper (De Castro et al. 2019) that bear witness to the vitality of the field.
Below we simply recall some relevant notions and results, trying to follow an appar-
ently unexplored connection to the theory of polynomial meshes in the framework of
polynomial regression.

Assume that supp(μ) is determining for Pd(K ) (the space of d-variate real poly-
nomials restricted to K ); for a fixed degree n, we could even assume that supp(μ)

is determining for Pd
n(K ). We recall a function that plays a key role in the theory of

optimal designs, the diagonal of the reproducing kernel for μ in P
d
n(K ) (often called

Christoffel polynomial), namely

Kμ
n (x, x) =

N∑

j=1

p2j (x), (5)

where {p j } is any μ-orthonormal basis of Pd
n(K ), for example that obtained from the

standard monomial basis by applying the Gram–Schmidt orthonormalization process
[it can be shown that Kμ

n (x, x) does not depend on the choice of the orthonormal
basis, cf. (7) below]. It has the important property that

‖p‖K ≤
√
max
x∈K Kμ

n (x, x) ‖p‖L2
μ(K ), ∀p ∈ P

d
n(K ), (6)

and also the following relevant characterization

Kμ
n (x, x) = max

p∈Pdn (K ), p(x)=1

1
∫
K p2(x) dμ

. (7)
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Now, by (5)
∫
K Kμ

n (x, x) dμ = N , which entails that maxx∈K Kμ
n (x, x) ≥ N . A

probability measure μ∗ = μ∗(K ) is then called a G-optimal design for polynomial
regression of degree n on K if

min
μ

max
x∈K Kμ

n (x, x) = max
x∈K Kμ∗

n (x, x) = N . (8)

Observe that, since
∫
K Kμ

n (x, x) dμ = N for every μ, an optimal design has the
following property

Kμ∗
n (x, x) = N μ∗-a.e. in K . (9)

As is well-known, by the celebrated Kiefer–Wolfowitz General Equivalence The-
orem Kiefer and Wolfowitz (1960) the difficult min–max problem (8) is equivalent to
the much simpler maximization

max
μ

det(Gμ
n ), Gμ

n =
(∫

K
qi (x)q j (x) dμ

)

1≤i, j≤N
, (10)

where Gμ
n is the Gram matrix of μ in a fixed polynomial basis {qi } (also called

information matrix in statistics). Such an optimality is called D-optimality, and entails
that an optimal measure exists, since the set of Grammatrices of probability measures
is compact (and convex); see e.g. Atkinson and Donev (1992), Bloom et al. (2010)
and Bos (1990) for a quite general proof of these results, valid for both continuous and
discrete compact sets. An optimal measure is not unique and not necessarily discrete
(unless K is discrete itself), but an equivalent discrete optimal measure always exists
by the Tchakaloff Theorem on positive quadratures of degree 2n for K ; cf. Putinar
(1997) for a general proof of the Tchakaloff Theorem. Moreover, the asymptotics
of optimal designs as the degree n goes to ∞ can be described using multivariate
pluripotential theory, see Bloom et al. (2010, 2011).

G-optimality has two important interpretations in terms of probabilistic and deter-
ministic polynomial regression. From a statistical point of view, it is the probability
measure that minimizes the maximum prediction variance by n-th degree polynomial
regression, cf. Atkinson and Donev (1992).

From the approximation theory point of view, calling Lμ∗
n the corresponding

weighted Least Squares operator, by (6) we can write for every f ∈ C(K )

‖Lμ∗
n f ‖K ≤

√
max
x∈K Kμ∗

n (x, x) ‖Lμ∗
n f ‖L2

μ∗ (K ) ≤ √
N ‖Lμ∗

n f ‖L2
μ∗ (K )

≤ √
N ‖ f ‖L2

μ∗ (K ) ≤ √
N ‖ f ‖K , i.e. ‖Lμ∗

n ‖ ≤ √
N , (11)

which shows that a G-optimal measure minimizes (the estimate of) the weighted Least
Squares uniform operator norm.

The computational literature on D-optimal designs is huge, with a variety of
approaches and methods. A classical approach is given by the discretization of K and
then the D-optimization over the discrete set; see e.g. the references in De Castro et al.
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(2019) (where however a different approach is proposed, based on a moment-sum-
of-squares hierarchy of semidefinite programming problems). In the discretization
framework, the possible role of polynomial meshes seems apparently overlooked. We
summarize the corresponding simple but meaningful near G-optimality result by the
following Proposition.

Proposition 1 Let K ⊂ R
d be a compact set, admitting a polynomial mesh {Xn} with

constant c.
Then for every n ∈ N and m ∈ N, m ≥ 1, the probability measure

ν = ν(n,m) = μ∗(X2mn) (12)

is a near G-optimal design on K , in the sense that

max
x∈K K ν

n (x, x) ≤ cm N , cm = c1/m . (13)

Proof First, observe that for every p ∈ P
d
2n(K )

‖pm‖K = ‖p‖mK ≤ c ‖pm‖X2mn = c ‖p‖mX2mn
,

and thus

‖p‖K ≤ c1/m ‖p‖X2mn .

Now, X2mn is clearly P
d
n(K )-determining and hence denoting by ν = μ∗(X2mn) an

optimal measure for degree n on X2mn , which exists by the General Equivalence
Theorem with supp(ν) ⊆ X2mn , we get

max
x∈X2mn

K ν
n (x, x) = Nn(X2mn) = Nn(K ) = N .

Since K ν
n (x, x) is a polynomial of degree 2n, we finally obtain

max
x∈K K ν

n (x, x) ≤ c1/m max
x∈X2mn

K ν
n (x, x) ≤ c1/m N .

��
Proposition 1 shows that polynomial meshes are good discretizations of a compact

set for the purpose of computing a near G-optimal measure, and that G-optimality
maximum condition (8) is approached at a rate proportional to 1/m, since cm ∼
1 + log(c)/m. In terms of the statistical notion of G-efficiency on K we have

Geff(ν) = N

maxx∈K K ν
n (x, x)

≥ c−1/m ∼ 1 − log(c)/m. (14)

It is worth showing that a better rate proportional to 1/m2 can be obtained on cer-
tain compact sets, where an (optimal) polynomial mesh can be constructed via the
approximation theoretic notion of Dubiner distance.
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We recall that the Dubiner distance on a compact set K , introduced in the seminal
paper (Dubiner 1995), is defined as

dubK (x, y) = sup
deg(p)≥1, ‖p‖K≤1

{
1

deg(p)
|arccos(p(x)) − arccos(p(y))|

}
. (15)

Among its basic properties, we recall that it is invariant under invertible affine trans-
formations, i.e., if σ(x) = Ax + b, det(A) �= 0, then

dubK (x, y) = dubσ(K )(σ (x), σ (y)). (16)

The notion of Dubiner distance plays a deep role in multivariate polynomial approxi-
mation, cf. e.g. Bos et al. (2008) and Dubiner (1995). Unfortunately, such a distance
is explicitly known only in the univariate case on intervals (where it is the arccos
distance by the Van der Corput–Schaake inequality), and on the cube, simplex, sphere
and ball (in any dimension), cf. Bos et al. (2008) and Dubiner (1995). On the other
hand, it can be estimated on some classes of compact sets, for example on smooth
convex bodies via a tangential Markov inequality on the boundary, cf. Piazzon and
Vianello (2019). Its connection with the theory of polynomial meshes is given by
the following elementary but powerful lemma (Piazzon and Vianello 2019); for the
reader’s convenience, we recall also the simple proof.

Lemma 1 Let Yn = Yn(α), n ≥ 1, be a sequence of finite sets of a compact set
K ⊂ R

d , whose covering radius with respect to the Dubiner distance does not exceed
α/n, where α ∈ (0, π/2), i.e.

r(Yn) = max
x∈K dubK (x,Yn) = max

x∈K min
y∈Yn

dubK (x, y) ≤ α

n
. (17)

Then, {Yn} is a polynomial mesh on K with constant c = 1/ cos(α).

Proof First, possibly normalizing and/or multiplying p by −1, we can assume that
‖p‖K = p(x̂) = 1 for a suitable x̂ ∈ K . Since (17) holds for Yn , there exists ŷ ∈ Yn
such that

| arccos (p(x̂)) − arccos (p(ŷ))| = | arccos (p(ŷ))| ≤ α deg(p)

n
≤ α <

π

2
.

Now the arccos function is monotonically decreasing and nonnegative, thus we have
that p(ŷ) ≥ cos(α) > 0, and finally

‖p‖K = 1 ≤ p(ŷ)

cosα
≤ 1

cosα
‖p‖Yn . ��

By Lemma 1 we can now prove the following proposition on near G-optimality by
polynomial meshes constructed via the Dubiner distance.
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Near G-optimal Tchakaloff designs 809

Proposition 2 Let K ⊂ R
d be a compact set and {Yn(α)} be the polynomial mesh of

Lemma 1.
Then for every n ∈ N and m > 1, the probability measure

ν = ν(n,m) = μ∗(Y2n(π/(2m))) (18)

is a near G-optimal design on K , in the sense that

max
x∈K K ν

n (x, x) ≤ cm N , cm = 1

cos(π/(2m))
. (19)

The proof follows essentially the lines of that of Proposition 1, with Y2n(π/(2m))

replacing X2mn , observing that by Lemma 1 for every p ∈ P
d
2n(K ) we have ‖p‖K ≤

cm ‖p‖Y2n(π/(2m)). We stress that in this case cm ∼ 1 + π2/(8m2), i.e. G-optimality
is approached at a rate proportional to 1/m2. In terms of G-efficiency we have in this
case

Geff(ν) ≥ cos(π/(2m)) ∼ 1 − π2/(8m2). (20)

We recall that optimal polynomial meshes like those in Proposition 2 have been
recently constructed in the framework of polynomial optimization on some compact
sets where the Dubiner distance is known or can be estimated, such as the cube, the
sphere, convex bodies with smooth boundary; cf. Piazzon and Vianello (2018, 2019)
and Vianello (2018a).

Similar results can be obtained for compact sets of the general form

K = σ(I × �), σ = (σ�(t, θ))1≤�≤d ,

t ∈ I = I1 × · · · × Id1 , θ ∈ � = �1 × · · · × �d2+d3, (21)

σ� ∈
d1⊗

i=1

P1(Ii ) ⊗
d2+d3⊗

j=1

T1(� j ), 1 ≤ � ≤ d, (22)

where d1, d2, d3 ≥ 0, and Ii = [ai , bi ], 1 ≤ i ≤ d1 (algebraic variables), � j =
[u j , v j ] with v j − u j = 2π , 1 ≤ j ≤ d2 (periodic trigonometric variables) and v j −
u j < 2π , d2+1 ≤ j ≤ d2+d3 (subperiodic trigonometric variables). Here and below
Tn = span(1, cos(θ), sin(θ) . . . , cos(nθ), sin(nθ)) denotes the space of univariate
trigonometric polynomials of degree not exceeding n. Notice that the mapping σ can
be non-injective.

The class (21)–(22) contains many common domains in applications, which have
in some sense a tensorial structure. For example in the 2-dimensional case convex
quadrangles (with triangles as special degenerate cases) fall into this class, because
they are bilinear transformations of a square (by the so-called Duffy transform), with
d1 = 2, d2 = d3 = 0. Similarly the disk described in polar coordinates (d1 = d2 = 1,
d3 = 0), the 2-sphere in spherical coordinates (d1 = 0, d2 = d3 = 1), the torus in
toroidal–poloidal coordinates (d1 = 0, d2 = 2, d3 = 0), cf. Bos and Vianello (2012)
and Sommariva and Vianello (2018).
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810 L. Bos et al.

Moreover, many examples of sections of disk, sphere, ball, surface and solid torus
can be written as (21)–(22). For example, a circular sector of the unit disk with angle
2ω, ω < π , can be described by such a σ with d1 = d3 = 1, d2 = 0, e.g.,

σ(t, θ) = (t cos(θ), t sin(θ)), (t, θ) ∈ [0, 1] × [−ω,ω], (23)

(polar coordinates). Similarly, a circular segment with angle 2ω (one of the two por-
tions of the disk cut out by a line) can be described by such a σ with d1 = d3 = 1,
d2 = 0, e.g.,

σ(t, θ) = (cos(θ), t sin(θ)), (t, θ) ∈ [−1, 1] × [−ω,ω]. (24)

On the other hand, a toroidal rectangle is described with d3 = 2, d1 = d2 = 0, by the
trasformation

σ(θ) = ((R + r cos(θ1)) cos(θ2), (R + r cos(θ1)) sin(θ2), r sin(θ1)) , (25)

θ = (θ1, θ2) ∈ [ω1, ω2] × [ω3, ω4], where R and r are the major and minor radii
of the torus. In the degenerate case R = 0 we get a so-called geographic rectangle
of a sphere of radius r , i.e. the region between two given latitudes and longitudes.
For other planar, surface and solid examples we refer the reader to Sommariva and
Vianello (2015b, 2018).

By the geometric structure (21)–(22), we have that if p ∈ P
d
n(K ) then

p ◦ σ ∈
d1⊗

i=1

Pn(Ii ) ⊗
d2+d3⊗

j=1

Tn(� j ), (26)

and this allows us to construct product-like polynomial meshes on such domains.
Indeed, in the univariate case Chebyshev-like optimal polynomial meshes are known
for algebraic polynomials and for trigonometric polynomials (even on subintervals of
the period). This result is stated in the following

Lemma 2 Let K ⊂ R
d be a compact set of the form (21)–(22). Then, for every

fixed m > 1, K possesses a polynomial mesh {Zn(m)} with constant c =
(1/ cos(π/(2m)))d1+d2+d3 and cardinality not exceeding (mn)d1+d2 (2mn)d3 .

The proof is essentially that given in Sommariva and Vianello (2018) by resorting to
algebraic-trigonometric Chebyshev-like grids mapped by σ , with minor modifications
to take into account the later results on subperiodic trigonometric Dubiner distance
given in Vianello (2018b). If Chebyshev–Lobatto-like grids are used, mn and 2mn
have to be substituted by mn + 1 and 2mn + 1, respectively. If m is not an integer,
all these quantities should be substituted by their ceiling (the least integer not smaller
than).

By Lemma 2 we get immediately the following proposition.

Proposition 3 Let K ⊂ R
d be a compact set of the form (21)–(22) and {Zn(m)} the

polynomial mesh of Lemma 2.

123



Near G-optimal Tchakaloff designs 811

Then for every n ∈ N and m > 1, the probability measure

ν = ν(n,m) = μ∗(Z2n(m)) (27)

is a near G-optimal design on K , in the sense that

max
x∈K K ν

n (x, x) ≤ cm N , cm =
(

1

cos(π/(2m))

)d1+d2+d3
. (28)

Concerning G-efficiency we have now

Geff(ν) ≥ (cos(π/(2m)))d1+d2+d3 ∼ 1 − (d1 + d2 + d3)π
2/(8m2). (29)

Remark 1 Observe that by Propositions 1-3, reasoning as in (11) we get

‖Lν
n‖ ≤ √

cm N , (30)

i.e. the discrete probability measure ν nearly minimizes (the estimate of) the weighted
Least Squares uniform operator norm.

3 Caratheodory-Tchakaloff design concentration

Propositions 1–3 and the General Equivalence Theorem suggest a standard way to
compute near G-optimal designs. First, one constructs a polynomial mesh such as
X2mn or Y2n(π/(2m)) or Z2n(m), then computes a D-optimal design for degree n
on the mesh by one of the available algorithms. Observe that such designs will be in
general approximate, that is we compute a discrete probability measure ν̃ ≈ ν such
that on the polynomial mesh

max
x∈mesh

K ν̃
n (x, x) ≤ Ñ ≈ N (31)

(with Ñ not necessarily an integer), nevertheless estimates (13), (19) and (30) still
hold with ν̃ and Ñ replacing ν and N , respectively.

Again, we can not even attempt to survey the vast literature on computational
methods for D-optimal designs; we may quote among others the class of exchange
algorithms and the class of multiplicative algorithms, cf. e.g. Celant and Broniatowski
(2017), Mandal et al. (2015) and Torsney andMartin-Martin (2009) and the references
therein.

Our computational strategy is in brief the following. We first approximate a D-
optimal design for degree n on the polynomial mesh by a standard multiplicative
algorithm, and then we concentrate the measure via Caratheodory-Tchakaloff com-
pression of degree 2n, keeping the Christoffel polynomial, and thus G-efficiency,
invariant. Such a compression is based on a suitable implementation of a discrete
version of the well-known Tchakaloff Theorem, which in general asserts that any
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(probability) measure has a representing atomic measure with the same polynomial
moments up to a given degree, with cardinality not exceeding the dimension of the
corresponding polynomial space; cf. e.g. Putinar (1997), Piazzon et al. (2017a) and
Sommariva and Vianello (2015a) and the references therein. In such a way we get near
optimality with respect to both, G-efficiency and support cardinality, since the latter
will not exceed N2n = dim(Pd

2n(K )).
To simplify the notation, in what follows we shall denote by X = {xi } either the

polynomial mesh X = X2mn or X = Y2n(π/(2m)) or X = Z2n(m) (cf. Propositions
1–3), by M its cardinality, by w = {wi } the weights of a probability measure on X
(wi ≥ 0,

∑
wi = 1), and by Kw

n (x, x) the corresponding Christoffel polynomial.
The first step is the application of the standard Titterington’s multiplicative algo-

rithm (Titterington 1976) to compute a sequence w(�) of weight arrays

wi (� + 1) = wi (�)
Kw(�)
n (xi , xi )

N
, 1 ≤ i ≤ M, � ≥ 0, (32)

where we take w(0) = (1/M, . . . , 1/M). Observe that the weights wi (� + 1)
determine a probability measure on X , since they are clearly nonnegative and∑

i wi (�) K
w(�)
n (xi , xi ) = N . The sequence w(�) is known to converge for any initial

choice of probability weights to the weights of a D-optimal design (with a nondecreas-
ing sequence of Gram determinants), cf. e.g. Dette et al. (2008) and the references
therein.

In order to implement (32), we need an efficient way to compute the right-hand
side. Denote by Vn = (φ j (xi )) ∈ R

M×N the rectangular Vandermonde matrix at
X in a fixed polynomial basis (φ1, . . . , φN ), and by D(w) the diagonal matrix of a
weight array w. In order to avoid severe ill-conditioning that may already occur for
low degrees, we have discarded the monomial basis and used the product Chebyshev
basis of the smallest box containing X , a choice that turns out to work effectively in
multivariate instances; cf. e.g. Bos et al. (2011), Piazzon (2019) and Piazzon et al.
(2017b).

By the QR factorization

D1/2(w) Vn = QR,

with Q = (qi j ) orthogonal (rectangular) and R square upper triangular, we have that
(p1, . . . , pN ) = (φ1, . . . , φN )R−1 is a w-orthonormal basis and

wi K
w
n (xi , xi ) = wi

N∑

j=1

p2j (xi ) =
N∑

j=1

q2i j , 1 ≤ i ≤ M . (33)

Thus we can update the weights at each step of (32) by a single QR factorization,
using directly the squared 2-norms of the rows of the orthogonal matrix Q.

The convergence of (32) can be slow, but a few iterations usually suffice to obtain
an already quite good design on X . Indeed, in all our numerical tests with bivariate
polynomial meshes, after 10 or 20 iterations we already get 90% G-efficiency on X ,

123



Near G-optimal Tchakaloff designs 813

0 5 10 15 20 25 30 35 40
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 1 Left: G-efficiency of the approximate optimal designs computed by (32) on a 101×101 Chebyshev–
Lobatto grid of the square (upper curve, n = 10, m = 5), and estimate (36) (lower curve); Right:
Caratheodory-Tchakaloff compressed support (231 points) after � = 22 iterations (Geff ≈ 0.95)

Fig. 2 Caratheodory-Tchakaloff
compressed support (165 points)
on a 41 × 41 × 41
Chebyshev–Lobatto grid of the
cube for regression degree n = 4
(with m = 5), after � = 35
iterations (Geff ≈ 0.95)
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and 95% after 20 or 30 iterations; cf. Figures 1-left and 2-left for typical convergence
profiles. On the other hand, 99% G-efficiency would require hundreds, and 99, 9%
thousands of iterations. When a G-efficiency very close to 1 is needed, one should
choose one of the more sophisticated approximation algorithms available in the liter-
ature, cf. e.g. De Castro et al. (2019), Dette et al. (2008) and Mandal et al. (2015) and
the references therein.

Though the designs given by (32) will concentrate in the limit on the support
of an optimal design, which typically is of relatively low cardinality (with respect
to M), this will be not numerically evident after only a small number of iterations.
Hence, in practice, the support of the optimal measure is not readily identified, and a
practioner may be presented with a measure with full support (albeit with many small
weights). However, using Tchakaloff compression (described below) the cardinality
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of the support can be immediately reduced providing the practioner with a typically
much smaller, and hence more pratical, design set.

Let V2n ∈ R
M×N2n be the rectangular Vandermonde matrix at X with respect to a

fixed polynomial basis for Pd
2n(X) = P

d
2n(K ) (recall that the chosen polynomial mesh

is determining on K for polynomials of degree up to 2n), and w the weight array of
a probability measure supported on X (in our instance, the weights produced by (32)
after a suitable number of iterations, to get a prescribed G-efficiency on X ). In this
fully discrete framework the Tchakaloff Theorem is equivalent to the existence of a
sparse nonnegative solution u to the underdetermined moment system

V t
2nu = b = V t

2nw, u ≥ 0, (34)

where b is the vector of discrete w-moments of the polynomial basis up to degree 2n.
The celebrated Caratheodory Theorem on conical finite-dimensional linear combina-
tions (Caratheodory 1911), ensures that such a solution exists and has no more than
N2n nonzero components.

In order to compute a sparse solution, we can resort to Linear or Quadratic Pro-
gramming. We recall here the second approach, that turned out to be the most efficient
in all the tests on bivariate discrete measure compression for degrees in the order of
tens that we carried out, cf. Piazzon et al. (2017b). It consists of seeking a sparse
solution û to the NonNegative Least Squares problem

‖V t
2nû − b‖22 = min

u≥0
‖V t

2nu − b‖22 (35)

using the Lawson-Hanson active set algorithm (Lawson and Hanson 1995), that is
implemented for example in the Matlab native function lsqnonneg. The nonzero
components of û determine the resulting design, whose support, say T = {xi : ûi >

0}, has at most N2n points.
Observe that by construction K û

n (x, x) = Kw
n (x, x) on K , since the underlying

probability measures have the same moments up to degree 2n and hence generate the
same orthogonal polynomials. Now, since

max
x∈K Kw

n (x, x) ≤ cm max
x∈X Kw

n (x, x) = cmN

θ
,

where θ is the G-efficiency of w on X , in terms of G-efficiency on K we have the
estimate

Geff(û) = Geff(w) ≥ θ

cm
, (36)

cf. Propositions 1–3, while in terms of the uniform norm of theweighted Least Squares
operator we get the estimate

‖Lû
n‖ ≤

√
cmN

θ
. (37)

We present now several numerical tests. All the computations have been made in
MatlabR2017bon a2.7GHz IntelCore i5CPUwith 16GBRAM.As afirst examplewe
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Near G-optimal Tchakaloff designs 815

consider polynomial regression on the square K = [−1, 1]2. Since dub[−1,1]2(x, y) =
max{arccos |x2 − x1|, arccos |y2 − y1|}, cf. Bos et al. (2008), by Proposition 2 we can
take as initial support Y2n(π/(2m)) a (2mn+1)×(2mn+1)Chebyshev–Lobatto grid
(here cm = 1/ cos(π/(2m)), cf. Piazzon and Vianello 2018), apply the iteration (32)
up to a given G-efficiency and then Caratheodory-Tchakaloff measure compression
via (35).

The results corresponding to n = 10 and m = 5 are reported in Fig. 1. Notice that
(36) turns out to be an underestimate of the actual G-efficiency on K (the maximum
has been computed at a much finer Chebyshev–Lobatto grid, say Y2n(π/(8m)). All the
information required for polynomial regression up to 95%G-efficiency is compressed
into 231 = dim(P2

20) sampling nodes and weights, in about 1.7 s.
In Fig. 2 we present a trivariate example, where K = [−1, 1]3 and we consider

regression degree n = 4 and m = 5, with a corresponding 41× 41× 41 Chebyshev–
Lobatto grid. This polynomial mesh of about 68,900 points is compressed into 165 =
dim(P3

8) sampling nodes and weights still ensuring 95% G-efficiency, in about 9 s.
In order to check the algorithm behavior on a more complicated domain, we take a

14-sided nonconvex polygon. An application of polygonal compact sets is the approx-
imation of geographical regions; for example, the polygon of Fig. 3 resembles a rough
approximation of the shape of Belgium. The problem could be that of locating a near
minimal number of sensors for near optimal polynomial regression, to sample con-
tinuous scalar or vector fields that have to be reconstructed or modelled on the whole
region.

With polygons we can resort to triangulation and finite union as in (3), construct-
ing on each triangle a polynomial mesh like Z2n(m) in Proposition 3 by the Duffy
transform of a Chebyshev-grid of the square with approximately (2mn)2 points; here
cm = 1/ cos2(π/(2m)) for any triangle and hence for the whole polygon. The results
corresponding to n = 8 and m = 5 are reported in Fig. 3. The G-efficiency conver-
gence profile is similar to that of Fig. 1, and the whole polynomial mesh of about
84,200 points is compressed into 153 = dim(P2

16) sampling nodes and weights still
ensuring 95% G-efficiency, in about 8 s.
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Fig. 3 Left: G-efficiency of the approximate optimal designs computed by (32) on a polynomial mesh with
about 84,200 points of a 14-sided nonconvex polygon (upper curve, n = 8, m = 5), and estimate (36)
(lower curve); Right: Caratheodory-Tchakaloff compressed support (153 points) after � = 26 iterations
(Geff ≈ 0.95)
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Remark 2 The practical implementation of any design requires an interpretation of
the weights. As before, let X := {xi }Mi=1 ⊂ K be the support of a discrete measure
with wi > 0, 1 ≤ i ≤ M . We will denote this measure by μX . Further, let Vn :=
(φ j (xi )) ∈ R

M×N be the Vandermonde evaluation matrix for the basis {φ1, . . . , φN }.
The Gram (information) matrix is then given by

G =
(∫

K
φi (x)φ j dμX

)

1≤i, j≤N

=
(

M∑

k=1

wkφi (xk)φ j (xk)

)

1≤i, j≤N

= V t
n D(w)Vn

where D(w) ∈ R
M×M is the diagonal matrix of the weights w. Then the best least

squares approximation from Pd
n (K ), with respect to the measure μX , to observations

yi , 1 ≤ i ≤ M, is given by

N∑

j=1

c jφ j (x), c = (V t
n D(w)Vn)

−1V t
n D(w)y. (38)

For an optimal design, the determinant of the Gram matrix V t
n D(w)Vn is as large as

possible and hence (38) could be used as a numerically stable (at least as much as
possible) algorithm for computing an approximation to the given data. However, it is
also useful to exploit the statistical meaning of the weights. Indeed, in comparison,
underlying the statistical interpretation of least squares is the assumption that the
observations are samples of a polynomial p ∈ Pd

n (K ), at the design points xi , each
with an error εi assumed to be independent normal random variables εi ∼ N (0, σ 2

i ).

One then minimizes the sum of the squares of the normalized variables,

εi

σi
= p(xi ) − yi

σi
,

i.e., one minimizes

M∑

i=1

(
p(xi ) − yi

σi

)2

.

If we write p(x) = ∑N
j=1 c jφ j (x), then this may be expressed in matrix-vector form

as

‖C−1/2(Vnc − y)‖22
where C = D(σ 2

i ) ∈ R
M×M is the (diagonal) covariance matrix. This is minimized

by
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c = (V t
nC

−1Vn)
−1VnC

−1y. (39)

Comparing (39) with (38) we see that the weights wi correspond the reciprocals of
the variances, wi ∼ 1/σ 2

i , 1 ≤ i ≤ M, but normalized so that
∑M

i=1 wi = 1.
Now, if in principle any specific measurement has an error with a fixed variance σ 2

then the variance for an observation may be reduced by repeating the i th measurement
mi (say) times and then using the average yi in place of yi ,with resulting error variance
σ 2/mi . Then wi ∼ 1/σ 2

i = mi/σ
2 which, after normalization, results in

wi = mi
∑M

j=1m j
, 1 ≤ i ≤ M .

In other words, the weights indicate the percentage of the total measurement budget
to use at the i th observation point.

However, the computed weights are rarely rational and thus to obtain a useable
percentage some rounding must be done. It turns out that the effect of this rounding on
the determinant of the Grammatrix can be readily estimated. Indeed we may calculate

∂

∂wi
log(det(Gμ

n )) = ∂

∂wi
tr(log(Gμ

n ))

= tr

(
∂

∂wi
log(Gμ

n )

)

= tr

(
(Gμ

n )−1 ∂Gμ
n

∂wi

)
.

But, as we may write

Gμ
n =

M∑

k=1

wk p(xk)p
t (xk)

where p(x) is the vector p(x) = [φ1(x), φ2(x), . . . , φN (x)]t ∈ R
M , we have

∂Gμ
n

∂wi
= p(xi )p

t (xi )

and hence

∂

∂wi
log(det(Gμ

n )) = tr
(
(Gμ

n )−1 p(xi )p
t (xi )

)

= pt (xi )(G
μ
n )−1 p(xi )

= Kμ
n (xi , xi ).

For an optimal design Kμ
n (xi , xi ) = N , 1 ≤ i ≤ M and for our near optimal designs

this is nearly so. Hence a perturbation in a weight results in a relative perturbation
in the determinant amplified by around a factor of N . In adjusting the weights, some
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roundings will be up and others down and so these perturbations will tend to negate
each other. In other words, the rounding strategy is entirely practical.

4 Summary

In this paper we have shown that polynomial meshes (norming sets) can be used as
useful discretizations of compact sets K ⊂ R

d also for the purposes of (near) optimal
statistical designs. We have further shown how the idea of Tchakaloff compression of
a discrete measure can be efficiently used to concentrate the design measure onto a
relatively small subset of its support, thus making any least squares calculation rather
more pratical.
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