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Abstract
We define a new one-parameter model on the unit interval, called the unit-improved
second-degree Lindley distribution, and obtain some of its structural properties. The
methods of maximum likelihood, bias-corrected maximum likelihood, moments, least
squares and weighted least squares are used to estimate the unknown parameter. The
finite sample performance of these methods are investigated by means of Monte Carlo
simulations. Moreover, we introduce a new regression model as an alternative to the
beta, unit-Lindley and simplex regressionmodels and present a residual analysis based
on Pearson and Cox–Snell residuals. The new models are proved empirically to be
competitive to the beta, Kumaraswamy, simplex, unit-Lindley, unit-Gamma andTopp–
Leone models by means of two real data sets. Empirical findings indicate that the
proposed models can provide better fits than other competitive models when the data
are close to the boundaries of the unit interval.

Keywords Beta regression · Bias-correction · Method of moments · Residual analysis

1 Introduction

The bounded distributions are essential for modeling proportions, percentages, espe-
cially observed in economic variables such as proportion of income spent, industry
market shares, etc. The beta (Ferrari and Cribari-Neto 2004) and simplex (Kieschnick
and McCullough 2003) regression models are commonly used approaches for model-
ingproportions in economics, actuarial, ecology and environmental sciences.Although
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the beta distribution is widely used in several areas of sciences, it has some shortcom-
ings. One of them is that its cumulative distribution function (cdf) is a special function.
These type of special functions increase the computational time and complexity in sta-
tistical inference. The Topp–Leone model (Topp and Leone 1955) can be viewed as
other widely used unit distribution. It has increased its popularity after the work of
Nadarajah and Kotz (2003). One of its most important property is that its cdf has a
simple form. The Kumaraswamy distribution (Kumaraswamy 1980) is another distri-
bution defined on the unit interval which has increased its popularity after the article
of Cordeiro and de Castro (2011). The unit-Gamma distribution (Grassia 1977) is also
a widely used distribution in modeling the bounded data sets. Mazucheli et al. (2018a)
studied the parameter estimation of its model parameters based on the bias-corrected
maximum likelihood estimation method.

In recent years, several researchers have shown a great interest to define new
distributions on bounded supports. Mazucheli et al. (2018b) proposed the unit-
Birnbaum-Saunders distribution and demonstrated its performance in modeling the
monthly water capacity. Recently, Mazucheli et al. (2019) introduced the unit-Lindley
distribution and analyzed the access of people in households with inadequate water
supply and sewage in the cities of Brazil using the unit-Lindley and beta regression
models. Gómez-Déniz et al. (2014) studied the log-Lindley distribution with appli-
cation to insurance data. Altun and Hamedani (2018) introduced the log-xgamma
distribution and studied its statistical properties. Altun (2019) introduced the log-
weighted exponential distributions and its associated regressionmodel. The goal of this
paper is to propose a new distribution defined on the unit interval which has tractable
statistical properties. It arises from the improved second-degree Lindley (ISDL) distri-
bution (Karuppusamy et al. 2017) and has several advantages over well-knownmodels
such as the beta, Kumaraswamy and Topp–Leone distributions. Some of its statistical
properties are determined in closed-form, such as probability density function (pdf),
ordinary and incomplete moments. More importantly, it can provide better fits than
other well-known distributions defined on the unit interval. Moreover, a new regres-
sion model based on the proposed distribution is investigated as a useful alternative to
the beta regression model.

The rest of the paper is organized as follows. In Sect. 2, we define the new dis-
tribution and obtain some of its mathematical properties. In Sect. 3, we estimate the
model parameters using five different methods: maximum likelihood, bias-corrected
maximum likelihood, moments, least squares and weighted least squares. In Sect. 4, a
Monte-Carlo simulation study is conducted to evaluate the finite sample performance
of the estimation methods. In Sect. 5, we introduce a new regression model based on
the proposed distribution as an alternative to the beta regression model. In Sect. 6,
two real data sets are analyzed to prove empirically the flexibility of the new models.
Some conclusions are offered in Sect. 7.
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The unit-improved second-degree Lindley distribution… 261

2 The unit-ISDL distribution

The Lindley density is

f (x; θ) = θ2

1 + θ
(1 + x) exp (−θx) , x > 0,

where θ > 0 is the scale parameter. The Lindley distribution is a mixture of the
Exponential (θ) and Gamma (2, θ) distributions. Its cdf is

F(x; θ) = 1 − θ + 1 + θx

θ + 1
exp (−θx) , x ≥ 0.

Most of its statistical properties such as moments, stochastic ordering and entropies
were obtained by Ghitany et al. (2008). Recently, Karuppusamy et al. (2017) intro-
duced the ISDL density

f (x; λ) = λ3

λ2 + 2λ + 2
(1 + x)2 exp (−λx) , x > 0, (1)

where λ > 0 is the shape parameter. The cdf corresponding to (1) is

F (x; λ) = 1 −
[
1 + λ2x2 + 2

(
λ2 + λ

)
x

λ2 + 2λ + 2

]
exp (−λx) , x ≥ 0.

The ISDL density can be expressed as a mixture of the Gamma(1, λ), Gamma(2, λ)

and Gamma(3, λ) densities. So, Eq. (1) can be rewritten as follows

f (x; λ) = p1 f1(x) + p2 f2(x) + p3 f3(x), (2)

where

p1 = λ2

λ2 + 2λ + 2
, p2 = 2λ

λ2 + 2λ + 2
, p3 = 2

λ2 + 2λ + 2
, (3)

and

f1(x) = λ exp(−λx), f2(x) = λ2x exp(−λx), f3(x) = λ3x2 exp(−λx)/2. (4)

Substituting (3) and (4) in (2), we find the ISDL density (1). Some statistical properties
of the ISDL distribution can be easily obtained from those of the Gamma distribu-
tion. Here, we introduce a new distribution on the unit-interval by taking the ISDL
distribution as the baseline model.

Proposition 1 Let X be a random variable with pdf (1) and define the random variable
Y = X/(X + 1). Then, the pdf of Y is

f (y; λ) = λ3(1 − y)−2

λ2 + 2λ + 2

(
1 + y

1 − y

)2

exp

(
− yλ

1 − y

)
, 0 < y < 1, (5)
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Fig. 1 Plots of the unit-ISDL density for some parameter values

where λ > 0 is the shape parameter. Hereafter, the random variable Y having density
(5) is denoted by Y ∼ unit-ISDL(λ).

Note that the density given in (5) could be introduced for a three-component general
mixture of Gamma densities using the same transformation. However, it increases the
model complexity and its statistical properties cannot be obtained in closed-form.
Therefore, particular case of a three-component general mixture of Gamma is used.
The cdf corresponding to (5) (for 0 ≤ y ≤ 1) is

F(y; λ) = 1 −
[
1 + λ2(y/(1 − y))2 + 2(λ2 + λ)y/(1 − y

λ2 + 2λ + 2

]
exp

(
− yλ

1 − y

)
. (6)

Figure 1 displays some possible unit-ISDL density shapes. It can be a good choice
for modeling extremely left or right skewed data sets.

Random values from Y ∼ unit-ISDL(λ) are generated by solving F(y; λ) = u,
where u ∼ uni f orm(0, 1). The uniroot function of R software can be used to solve
this non-linear equation.

2.1 Moments

The kth ordinary moment of Y takes the form

E(Y k) =
1∫

0

yk
λ3(1 − y)−2

λ2 + 2λ + 2

(
1 + y

1 − y

)2

exp

(
− yλ

1 − y

)
dy.

The above integration can not be carried out analytically but only numerically. In
particular,

E(Y ) = λ + 2

λ2 + 2λ + 2
and E(Y 2) = 2

λ2 + 2λ + 2
.

The variance of Y follows easily from these results as

Var(Y ) = 2

λ2 + 2λ + 2
− (λ + 2)2

(λ2 + 2λ + 2)2
.
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Clearly, themean andvariance of the unit-ISDLdistributiondecreasewhenλ increases.

2.2 Incomplete moments

The r th incomplete moment of Y is

mr (t) = E(Yr ∣∣ y < t) = λ3

λ2 + 2λ + 2

t∫
0

yr

(1 − y)2

(
1 + y

1 − y

)2
exp

(
− λy

1 − y

)
dy.

The above integration can not be carried out analytically. In particular, for r = 1, we
have

m1(t) = λ + 2

λ2 + 2 λ + 2
−

exp
(

λ t
t−1

)
(λ2 t − λ t2 + λ + 2 t2 − 4 t + 2)

(t − 1)2 (λ2 + 2 λ + 2)
.

The first incomplete moment can be used to obtain the mean deviations and Lorenz
and Bonferroni curves that are fundamental tools for analyzing data in economics and
reliability.

2.3 Exponential family

A distribution belongs to the exponential family if it can be expressed as

f (y; λ) = exp[Q(λ)T (y) + D(λ) + S(y)].

It is clear that the unit-ISDL distribution belongs to the exponential family by rewriting
(5) as

f (y; λ) = exp

[
− yλ

1 − y

]
exp

[
ln

(
λ3

λ2 + 2λ + 2

)]

exp

[
−2 ln (1 − y) + 2 ln

(
1 + y

1 − y

)]
,

where Q(λ) = λ, T (y) = y/(1 − y),

S(y) = −2 ln(1 − y) + 2 ln

(
1 + y

1 − y

)
and D(λ) = ln

(
λ3

λ2 + 2λ + 2

)
.

Here, T (y) =∑n
i=1 yi/(1 − yi ) is the sufficient statistic for λ.
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Fig. 2 Plots of the skewness and kurtosis measures of the unit-ISDL and unit-Lindley distributions

Table 1 The tail probabilities of the unit-Lindley and unit-ISDL distributions for selected parameter values

Parameter λ = 0.3 λ = 0.4 λ = 0.5 λ = 0.6 λ = 0.7

P(X < 0.5)

Unit-Lindley 0.0882 0.1382 0.1913 0.2454 0.2989

Unit-ISDL 0.0196 0.0398 0.0669 0.0997 0.1370

P(X < 0.4)

Unit-Lindley 0.0553 0.0882 0.1242 0.1621 0.2008

Unit-ISDL 0.0108 0.0225 0.0385 0.0585 0.0820

P(X < 0.3)

Unit-Lindley 0.0337 0.0544 0.0776 0.1025 0.1284

Unit-ISDL 0.0060 0.0126 0.0218 0.0336 0.0478

2.4 Comparison of the unit-ISDL and unit-Lindley distributions

The unit-ISDL density has similar shapes of the unit-Lindley density. It is needed
to clarify the differences between these two distributions. Therefore, the skewness
and kurtosis measures of these two distributions are compared. Moreover, the tail-
properties are also discussed. Figure 2 displays the numerical results for the skewness
and kurtosis measures of the unit-ISDL and unit-Lindley distributions. The plots in
Fig. 2 reveal that the skewness and kurtosis values of the unit-ISDL distribution have
wider ranges than those of the unit-Lindley distribution. It is clear that the unit-ISDL
distribution is a better choice than the unit-Lindley distribution for modeling left-
skewed and leptokurtic data.

Table 1 gives the tail probabilities of the unit-Lindley and unit-ISDL distributions
for selected parameter values. These probabilities indicate that the left tail of the unit-
ISDL distribution is thinner than that one of the unit-Lindley distribution. Therefore,
the new distribution can be preferable than the unit-Lindley for modeling left-skewed
and thin-tailed data.
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3 Estimation

In this section, we consider the methods of maximum likelihood, moments, least
squares and weighted least squares to estimate the unknown parameter of the unit-
ISDL distribution.

3.1 Maximum likelihood

Let y1, . . . , yn be a random sample from the unit-ISDLdistribution. The log-likelihood
function for λ is

�(λ) ∝ 3n ln(λ) − n ln(λ2 + 2λ + 2) − λt(y), (7)

where t(y) =∑n
i=1 yi/(1 − yi ). By differentiating (7) with respect to λ gives

∂�

∂λ
= 3n

λ
− n(2λ + 2)

λ2 + 2λ + 2
− t (y) (8)

Solving (8) for zero, the maximum likelihood estimate (MLE) of λ, say λ̂, is

λ̂ = 1

3z

[(
10z3 + n3 + 12zn2 + 3

√
6
√
2z6 + z2n4 + 14z3n3 + 54z4n2 + 16z5n + 48z2n

) 1
3
]

− (2z2 − n2 − 8zn)

×
[
3z
(
10z3 + n3 + 12zn2 + 3

√
6
√
2z6 + z2n4 + 14z3n3 + 54z4n2 + 16z5n + 48z2n

) 1
3
]−1

− 2z − n

3z
,

where z = t(y). The second-order derivative of (7) with respect to λ is

∂2�

∂λ2
= −n(λ4 + 8λ3 + 24λ2 + 24λ + 12)

λ2(λ2 + 2λ + 2)2
.

Hence, the expected information is

I (λ) = E

(
− ∂2�

∂λ2

)
= n(λ4 + 8λ3 + 24λ2 + 24λ + 12)

λ2(λ2 + 2λ + 2)2
. (9)

The asymptotic variance of λ̂ is easily obtained by inverting (9)

Var(λ̂) = λ2(λ2 + 2λ + 2)
2

n(λ4 + 8λ3 + 24λ2 + 24λ + 12)
.

The equi-tailed 100(1 − p)% confidence interval (CI) for λ is

λ̂ ± z p/2

√
Var (̂λ),

where z p/2 is the upper p/2 quantile of the standard normal distribution.
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3.2 Bias-correctedmaximum likelihood

We adopt a “corrective” approach to reduce the bias of λ̂ to order O(n−2) since the
MLE is biased to order O(n−1) in finite samples. Following Cox and Snell (1968),
when the observations are independent but not necessarily identically distributed, the
bias-correction of λ̂ can be expressed as

B(λ̂) = (κ11)2
(
1

2
κ111 + κ11,1

)
+ O(n−2),

where κ11 = E
(
− ∂2�

∂λ2

)−1
, κ111 = E

(
− ∂3�

∂λ3

)
and κ11,1 = E

(
− ∂2�

∂λ2
∂�
∂λ

)
. These

expressions for the unit-ISDL distribution are

κ11 = λ2(λ2 + 2λ + 2)
2

n(λ4 + 8λ3 + 24λ2 + 24λ + 12)
,

κ111 = 6n

λ3
− n

[
2(2λ + 2)3

(λ2 + 2λ + 2)3
− 6(2λ + 2)

(λ2 + 2λ + 2)2

]
,

and κ11,1 = 0.
Thus, the bias-corrected maximum likelihood estimate (BC-MLE) of λ is

λ̃ = λ̂ − λ4/(λ2 + 2λ + 2)
4

n2(λ4 + 8λ3 + 24λ2 + 24λ + 12)2

[
3n

λ3
− n

2

(
2(2λ + 2)3

(λ2 + 2λ + 2)3
− 6(2λ + 2)

(λ2 + 2λ + 2)2

)]
.

3.3 Method of moments

The method of moments (MOM) to estimate λ follows by equating the first theoretical
moment of the unit-ISDL distribution to the sample mean, namely

λ̂MOM =
√−4ȳ2 + 4ȳ + 1 − 2 ȳ + 1

2 ȳ
,

where ȳ =∑n
i=1 yi

/
n.

3.4 Least squares

Let y(1), . . . , y(n) denote the ordered sample of size n from the unit-ISDL distribution.
The least squares estimator (LSE) of λ is found by minimizing

n∑
i=1

[
F(y(i); λ) − i

n + 1

]2
, (10)
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where F(y(i); λ) is the cdf of the unit-ISDL distribution. Inserting (6) in Eq. (10) gives

n∑
i=1

{
1 −

[
1 + λ2

(
y(i)/

(
1 − y(i)

))2 + 2(λ2 + λ)y(i)/
(
1 − y(i)

)
λ2 + 2λ + 2

]
exp

(
− y(i)λ

1 − y(i)

)
− i

n + 1

}2
.

3.5 Weighted least squares

The weighted least square estimate (WLSE) of λ follows by minimizing

n∑
i=1

(n + 1)2 (n + 2)

i (n − i + 1)

⎛
⎜⎝ 1 −

⎡
⎣1 + λ2

(
y(i)/

(
1−y(i)

))2+2(λ2+λ)y(i)/
(
1−y(i)

)
λ2+2λ+2

⎤
⎦

× exp

(
− y(i)λ

1−y(i)

)
− i

n+1

⎞
⎟⎠

2

.

4 The unit-ISDL regressionmodel

The beta regression model is widely used when the response variable is in the interval
(0, 1). We define a new regression model as an alternative to the beta regression model
by re-parameterizing the new distribution using a convenient systematic component
for the mean.

Let λ =
(√−4μ2 + 4μ + 1 − 2μ + 1

)
(2μ)−1. Then, the pdf of the re-

parametrized unit-ISDL distribution in terms of E(Y ) = μ takes the form

f (y;μ) =
[(√

−4μ2+4μ+1−2μ+1
)
(2μ)−1

]3
(1−y)−2[(√

−4μ2+4μ+1−2μ+1
)
(2μ)−1

]2+2
(√

−4μ2+4μ+1−2μ+1
)
(2μ)−1+2

×
(
1 + y

1−y

)2
exp

(
− y

(√
−4μ2+4μ+1−2μ+1

)
(2μ)−1

1−y

)
, 0 < y < 1,

(11)

where 0 < μ < 1. The covariates are linked to the response variable Y in the usual
way through the logit-link function

μi = exp
(
xxxTi βββ

)
1 + exp

(
xxxTi βββ

) , i = 1, . . . , n, (12)

where xxxTi = (
xi1, . . . , xip

)
is the vector of covariates and βββ = (

β1, . . . , βp
)T is the

vector of unknown regression coefficients. Other links can be considered in the similar
manner.

Inserting (12) in (11), the log-likelihood function can be expressed as
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�(βββ) = 3
n∑

i=1

ln

[(√
−4μ2

i + 4μi + 1 − 2μi + 1

)
(2μi )

−1
]

− 2
n∑

i=1

(1 − yi )

−
n∑

i=1

ln

⎛
⎜⎜⎜⎝
[(√

−4μ2
i + 4μi + 1 − 2μi + 1

)
(2μi )

−1
]2

+ 2

(√
−4μ2

i + 4μi + 1 − 2μi + 1

)
(2μi )

−1 + 2

⎞
⎟⎟⎟⎠

+ 2
n∑

i=1

ln

(
1 + yi

1 − yi

)
−

n∑
i=1

yi

(√
−4μ2

i + 4μi + 1 − 2μi + 1

)
(2μi )

−1

1 − yi
,

whereμi is given by (12). Under standard regularity conditions, the asymptotic distri-
bution of (β̂ββ −βββ) is multivariate normal Np(0, K (βββ)−1), where K (βββ) is the expected
information matrix. The asymptotic covariance matrix K (βββ)−1 of β̂ββ can be approxi-
mated by the inverse of the p× p observed informationmatrix−Ł̈(βββ), whose elements
are evaluated numerically by most statistical packages. The approximate multivariate
normal distribution Np(0,−Ł̈(βββ)−1) for β̂ββ can be used in the classical way to construct
approximate confidence intervals for the parameters in βββ.

4.1 Residuals analysis

Residual analysis has a critical role in checking the adequacy of the fitted model. In
order to analyze departures from the model assumptions, three types of residuals are
usually utilized: the residuals introduced by Cox and Snell (1968), the randomized
quantile residuals defined by Dunn and Smyth (1996) and Pearson residuals.

4.1.1 Cox and Snell residuals

Cox and Snell (1968) residuals are defined by

êi = − ln
[
1 − F(yi ; β̂̂β̂β)

]
, i = 1, . . . , n,

where F(·) is the unit-ISDL cdf. If the fittedmodel is correct, Cox and Snell’s residuals
are approximately distributed as standard exponential distribution.

4.1.2 Randomized quantile residuals

The randomized quantile residuals are defined as

r̂i = �−1 (ûi ) ,
where ûi = F(yi ; β̂̂β̂β) and�−1(z) is the inverse of the standard normal cdf. If the fitted
model is correct, the randomized quantile residuals are distributed as standard normal
distribution.
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4.1.3 Pearson residuals

The Pearson residual is widely used to detect possible outliers in the data. The Pearson
residual is based on the idea of subtracting off the mean and dividing by the standard
deviation. For the unit-ISDL regression model, the Pearson residuals can be expressed
as

ri = yi − μ̂i√
V̂ar (yi )

,

where

V̂ar (yi ) =
2 μ̂2

i

(√
−4 μ̂2

i + 4 μ̂i + 1 − 2 μ̂i

√
−4 μ̂2

i + 4 μ̂i + 1 + 1

)

8 μ̂i + 4 μ̂i

√
−4 μ̂2

i + 4 μ̂i + 1 + 2
√

−4 μ̂2
i + 4 μ̂i + 1 + 2

.

The plot of these residuals against the index of the observations should reveal no
detectable pattern. If the fitted model is correct, the Pearson residuals lie in the inter-
val (− 2, 2). The residuals outside this range are associated with potential outlier
observations.

5 Simulations

In this section, we perform two simulation studies to examine the estimation methods
in the proposed models.

5.1 Simulation study for the unit-ISDL distribution

First, we obtain theMLE,BC-MLE,MOM,LSE andWLSEof the unknownparameter
λ in the unit-ISDL distribution. We compare the estimation efficiency of these five
estimates by means of Monte Carlo simulations. The following simulation procedure
is implemented:

1. Set the sample size n and the parameter λ;
2. Generate n random observations from the unit-ISDL (λ) distribution;
3. Use the generated observations in Step 2, estimate λ by means of the MLE, BC-

MLE, MOM, LSE and WLSE methods;
4. Repeat N times the steps 2 and 3;
5. Use λ̂ and λ to calculate the mean biases, mean relative estimates (MREs) and

mean square errors (MSEs) from the following equations:

Bias =
N∑
j=1

λ̂ j − λ

N
, MRE =

N∑
j=1

λ̂ j/λ

N
, MSE =

N∑
j=1

(λ̂ j − λ)
2

N
.
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Fig. 3 Estimated biases, MSEs and MREs for the parameter λ of the unit-ISDL distribution

The simulation results are carried out using the R software. We take λ = 0.5, N =
10,000 and n = 20, 25, 30, . . . , 300. We expect that the MREs are closer to one when
the MSEs are near zero. The plots of the estimated mean biases, MSEs and MREs
obtained by the MLE, BC-MLE, MOM, LSE and WLSE methods are displayed in
Fig. 3. Based on these plots, we note that the mean biases and MSEs of all estimates
tend to zero when n increases and, as expected, the MRE values tend to one. Further,
they reveal that the BC-MLE method converges to the nominal value of λ faster than
the MLE, MOM, LSE and WLSE methods. So, we can conclude that the BC-MLE
method can be chosen asmore reliable than theMLE,MOM, LSE andWLSEmethods
for the parameter λ of the new distribution.

5.2 Simulation study for the unit-ISDL regression

Second, we investigate the performance of the MLEs of the parameters in the unit-
ISDL regression model by means of a simulation study. We generate N = 10, 000
samples of sizes n = 50, 250, 500 and 1000 from model (12) under the systematic
component:

μi = exp (β0 + β1xi1 + β2xi2)

1 + exp (β0 + β1xi1 + β2xi2)
,

where x1 and x1 are generated from a uniformU (0, 1) distribution.We take parameter
values β0 = 0.5, β1 = 0.5 and β2 = 2, and the response variable yi is generated from
this systematic component. The precision of the MLEs is based on the averages of
the estimates (AEs), mean biases and mean square errors (MSEe). Table 2 gives the
simulation results. Based on the figures in this table, we note that the MSEs of the
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Table 2 The AEs, biases and MSEs based on 10,000 simulations for the unit-ISDL regression with param-
eters: β0 = 0.5, β1 = 0.5 and β2 = 2 for n = 50, 250, 500 and 1000

Sample size Parameters β0 β1 β2

n = 50 AE 0.613679 0.617070 1.959483

Bias 0.113679 0.117070 − 0.040517

MSE 0.328236 0.074869 0.063743

n = 250 AE 0.552417 0.589977 1.962157

Bias 0.052417 0.089977 − 0.037843

MSE 0.205544 0.050730 0.047477

n = 500 AE 0.536856 0.552461 1.984456

Bias 0.036856 0.052461 − 0.015544

MSE 0.085162 0.031197 0.032380

n = 1000 AE 0.506274 0.515114 1.994224

Bias 0.006274 0.015114 − 0.005776

MSE 0.057508 0.014472 0.013230

MLEs of the parameters decay toward zero when the sample size increases as expected
under first-order asymptotic theory. This fact reveals the consistency property of the
MLEs.

6 Empirical studies

6.1 Univariate datamodeling

In this section, we compare the unit-ISDL distribution with four alternative distribu-
tions by means of a real data set (Nadar et al. 2013). The data refer to the monthly
water capacity from the Shasta reservoir in California, USA, taken for the month of
February from 1991 to 2010. The information about the hazard shape can be helpful
in selecting a suitable model. For this purpose, a device called the total time on test
(TTT) plot (Aarset 1987) can be used. The TTT plot is obtained by plotting

G(r/n) =
[(

r∑
i=1

y(i)

)
+ (n − r)y(r)

]/ n∑
i=1

y(i),

against r/n, where y(i) (i = 1, . . . , n) are the order statistics of the sample (for r =
1, . . . , n). The TTT plot given in Fig. 4 indicates that the hazard shape of the monthly
water capacity data is increasing. As suggested by reviewer, we compare the unit-
ISDL distribution with unit-three-component-gamma (unit-3CGamma) distribution.
The pdf of 3CGamma distribution is
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Fig. 4 The TTT plot of the monthly water capacity data

f (x;α1, α2, α3, λ1, λ2, λ3) = p1
λ

α1
1


 (α1)
xα1−1 exp (−λ1x)

+ p2
λ

α2
2


 (α2)
xα2−1 exp (−λ2x) + p3

λ
α3
3


 (α3)
xα3−1 exp (−λ3x) (13)

where

p1 = λ21

λ21 + 2λ2 + λ3
, p2 = 2λ2

λ21 + 2λ2 + λ3
, p3 = λ3

λ21 + 2λ2 + λ3
(14)

Let X be a randomvariablewith pdf (13). Using the transformationY = X/(X+1),
the pdf of unit-3CGamma distribution (0 < y < 1) is

f (y;α1, α2, α3, λ1, λ2, λ3) = p1
λ

α1
1


 (α1) (1 − y)α1+1 y
α1−1 exp

(
−λ1

y

1 − y

)

+p2
λ

α2
2


 (α2) (1 − y)α2+1 y
α2−1 exp

(
−λ2

y

1 − y

)

+p3
λ

α3
3


 (α3) (1 − y)α3+1 y
α3−1 exp

(
−λ3

y

1 − y

)
(15)

where p1, p2 and p3 are defined in (14). The unit-ISDL distribution is compared with
the following five distributions defined on the unit interval (0 < y < 1) as well as
unit-3CGamma distribution:
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1. Beta distribution

f (y;α, β) = 
 (α + β)


 (α) 
 (β)
yα−1(1 − y)β−1, α > 0, β > 0;

2. Kumaraswamy distribution

f (y;α, β) = αβ yα−1(1 − yα
)β−1

, α > 0, β > 0;

3. Topp–Leone distribution

f (y; θ) = θ(2 − 2y)
(
2y − y2

)θ−1
, θ > 0;

4. Unit-Lindley distribution

f (y; λ) = λ2

1 + λ
(1 − y)−3 exp

(
− λy

1 − y

)
, λ > 0;

5. Unit-Gamma distribution

f (y;α, φ) = αφ


 (φ)
yα−1 ln(−y)φ−1, α > 0, φ > 0.

We use theR software to estimate the model parameters. The estimated parameters
of the unit-Gamma distribution are used as initial values of the shape and scale parame-
ters of the unit-3CGamma distribution. The MLEs and corresponding standard errors
(SEs), Kolmogorov–Smirnov (K–S) statistic and associated p value, Akaike Infor-
mation Criteria (AIC), Consistent Akaikes Information Criteria (CAIC), Bayesian
Information Criteria (BIC) and Hannan-Quinn Information Criteria (HQIC) for all fit-
ted distributions are reported in Tables 3 and 4. The lower the values of these criteria,
the better the fitted model to these data.

Table 3 lists the MLEs of the parameters for the fitted models to the monthly water
capacity data, corresponding SEs and K-S test results with its p-values. A seen from
K-S test results, all fitted models provides sufficient representation for the current data
since all p-values are greater than 0.05. However, the unit-3CGamma distribution has
the lowest value of K-S statistics.

To decide the best fitted distribution, the model selection criteria, AIC, CAIC,
BIC and HQIC, are used and the results are reported in Table 4. The figures in this
table reveal that unit-ISDL distribution has the lowest values of the model selection
criteria, except AIC value. The unit-3CGamma distribution has the lowest value of
AIC. However, there is no big difference between the AIC values of unit-ISDL and
unit-3CGamma distributions. More importantly, the unit-ISDL distribution has fewer
parameters than unit-3CGamma distribution. When considered the law of parsimony,
the proposed distribution can be chosen as the best model for the current data.

Figure 5 displays the fitted densities to the monthly water capacity histogram and
some estimated functions of the unit-ISDL distribution. The right panel of the Fig.
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Table 3 MLEs and their SEs (on second line) of the fitted models and goodness-of-fit statistics for the
monthly water capacity data

Models Parameter estimations K-S p-value

Beta(α, β) 7.3154 2.9098 0.2359 0.1834

2.3180 0.8754

Kumaraswamy(α, β) 6.3476 4.4893 0.2209 0.2447

1.5575 2.0409

Topp–Leone (θ ) 8.6664 0.2549 0.1241

1.9379

Unit-Lindley(λ) 0.4957 0.2421 0.1621

0.0806

Unit-Gamma(α, φ) 8.1070 2.8786 0.2360 0.1833

2.6543 0.8628

Unit-3CGamma
(α1, α2, α3, β1, β2, β3)

15.9181 3.1087 10.3250 3.9256 3.0633 2.6767 0.1183 0.9115

6.0615 1.8927 16.4659 1.4779 2.2205 4.4009

Unit-ISDL(λ) 0.7078 0.2050 0.3245

0.0933

Table 4 Model selection criteria of the fitted models for the monthly water capacity data

Models AIC CAIC BIC HQIC

Beta(α, β) −21.1239 −20.4180 −19.1324 −20.7351

Kumaraswamy(α, β) −22.9494 −22.2435 −20.9580 −22.5607

Topp–Leone (θ ) −21.1753 −20.9530 −20.1795 −20.9809

Unit-Lindley(λ) −25.6543 −25.4321 −24.6586 −25.4600

Unit-Gamma(α, φ) −21.0561 −20.3502 −19.0646 −20.6673

Unit-3CGamma(α1, α2, α3, β1, β2, β3) −29.2270 −22.7654 −23.2526 −28.0607

Unit-ISDL(λ) −28.8114 −28.5892 −27.8157 −28.6170

5 reveals that the proposed distribution provides qualified fit to the monthly water
capacity data.

6.2 Regressionmodeling

In this section, we compare the beta, simplex, unit-Lindley and unit-ISDL regression
models. The betareg and simplexreg packages of the R software are used to esti-
mate the parameters of the beta and simplex regression models, respectively. For
details see https://cran.r-project.org/web/packages/betareg/betareg.pdf and https://
cran.r-project.org/web/packages/simplexreg/simplexreg.pdf).

The optim function of the R software is used to obtain the estimated parameters of
the unit-Lindley and unit-ISDL regressions.
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Fig. 5 The estimated pdfs of the fitted distributions to the monthly water capacity data (left-panel) and
some estimated functions for the unit-ISDL distribution (right-panel)

The aim of the study is to relate the long term interest (LTI) rates of the Organisation
for Economic Cooperation andDevelopment (OECD) countries (y) with foreign direct
investment. These variables are given in the “Appendix”. The logit link function is used
for the fitted regression models. Hence, the systematic component for μi is

logit (μi ) = β0 + β1FDI i .

Table 5 gives theMLEs, their standard errors (SEs) and corresponding p-values for
the beta, simplex, unit-Lindley and unit-ISDL regressions fitted to the LTI rates. The
parameter ψ is the dispersion parameter of the beta and simplex regression models.
The values in Table 5 reveal that the parameter β1 is statistically significant at 5% level
for both regression models. We conclude that the FDI stocks explain the LTI rates. In
other words, the LTI rates decrease when the FDI stocks increase.

The minimized− �̂, AIC and BIC values are adopted to select the best fitted regres-
sion. Since the unit-ISDL regression has the lowest values of these statistics, it provides
a better fit than the beta and simplex regressions for the current data. Moreover, Fig.
6 displays the randomized quantile residuals for the beta, simplex, unit-Lindley and
unit-ISDL regressions. It is clear that the plotted points for the unit-ISDL regression
are near to the diagonal line.

The plots of the Pearson and Cox–Snell residuals for the unit-ISDL regression are
displayed in Fig. 7. They indicate that the Pearson residuals lie between (− 2, 2) and
that none of the observations can be considered as possible outliers. The Probability–
Probability (PP) plot of the Cox–Snell residuals reveals that the unit-ISDL regression
provides an adequate fit to these data.

7 Conclusions

A new one-parameter distribution with bounded support is introduced. Some of its
structural properties are obtained. The maximum likelihood, bias-corrected maximum
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Fig. 6 TheQuantile–Quantile (QQ) plot of the randomized quantile residuals for the beta (top-left), simplex
(top-right), unit-Lindley (bottom-left) and unit-ISDL (bottom-right) regression models
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Fig. 7 The Pearson (left) and Cox–Snell residuals (right) plots for the unit-ISDL regression model
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likelihood, moments, least squares and weighted least squares methods are discussed
for estimating the unknown parameters of the unit improved second-degree Lindley
(unit-ISDL) distribution via simulation study. A new regression model for the unit
response variable is introduced and compared with the beta and simples regression
models. Empirical findings reveal that the unit-ISDL regression model provides a
better fit than the beta, unit-Lindley and simplex regression models when the response
variable is close to the boundaries of the unit interval. An extensive study on residual
analysis, leverage and outlier detection is planned as a future work of this study. We
hope that the results given in this paper will be useful for practitioners in several areas.

Appendix

The data for Sect. 6.2 are given below:

1. Long term interest (LTI) rate (%): 2.640 0.596 0.680 2.190 4.560 2.140 0.410
0.530 0.750 0.280 4.390 3.390 5.190 0.800 2.160 2.640 0.060 2.549 0.930 0.310
0.540 7.750 0.470 2.810 1.760 3.170 1.760 1.010 0.990 1.318 0.550 0.040 1.374
2.890

2. Foreign Direct Investment (FDI) stocks (Outward) (% GDP): 30.78 57.87 121.52
90.17 45.39 11.08 55.92 51.54 56.31 43.34 11.64 20.85 21.99 276.22 28.81 27.56
30.6 21.02 5.93 7.24 380.1 15.76 305.44 8.94 48.05 5.41 23.68 3.56 14.53 41.9
71.7 162.75 61.86 40.43
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