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Abstract
Generalized linear models with categorical explanatory variables are considered and
parameters of the model are estimated by an exact maximum likelihood method. The
existence of a sequence of maximum likelihood estimators is discussed and consider-
ations on possible link functions are proposed. A focus is then given on two particular
positive distributions: the Pareto 1 distribution and the shifted log-normal distribu-
tions. Finally, the approach is illustrated on an actuarial dataset to model insurance
losses.

Keywords Regression models · Heavy-tailed distributions · Explicit MLE ·
Insurance claim modeling

1 Introduction

The assumption of identical distributions for random variables in an observation sam-
ple is relaxed for regression models by considering explanatory variables. Generalized
linearmodels (GLMs)were introduced byNelder andWedderburn (1972) and popular-
ized inMcCullagh andNelder (1989). GLMs rely on probability distribution functions
of exponential type for the response variable which include most of the light and
medium tailed distributions (such as normal, gamma or inverse Gaussian). Asymp-
totic properties of sequences of maximum likelihood estimators (MLE) for GLMs
were studied by Fahrmeir and Kaufmann (1985).
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The finite sample property of MLE of specific GLMs has been discussed in depth
in statistical literature (see Fienberg 2007; Haberman 1974). In addition, there are lots
of literature studying the finite sample property of MLE for logistic regression models
(see e.g. Albert and Anderson 1984; Silvapulle 1981).

Regression models for heavy-tailed distributions have been mainly studied through
the point-of-view of extreme value analysis, see Beirlant et al. (2004) for a review.
A regression model for the generalized Pareto distribution (GPD) where the scale
parameter depends on covariates are described in Davison and Smith (1990) with a
least square estimation procedure and a model checking method. Beirlant et al. (1998)
propose a Burr model by regressing the shape parameter with an exponential link
on explanatory variables. In the aforementioned article, a simulation study with one
explanatory variable is detailed as well as an application to fire insurance. Residual
plots and asymptotic convergence towards the normal distribution are also discussed.
Similarly, Ozkok et al. (2012) propose a regression model for Burr distribution where
the scale parameter depends on covariates.

An estimation of the extremal tail index (used in generalized extreme value (GEV)
distributions and GPD) by considering a class of distribution function with an expo-
nential link on explanatory variables is also described in Beirlant and Goegebeur
(2003). Using generalized residuals of explanatory variable makes possible the esti-
mation of the tail index. Still by the extreme value theory approach, Chavez-Demoulin
et al. (2015) and Hambuckers et al. (2016) both propose a semi-parametric regression
model for GEV andGPDwhere the explanatory variables are time or known factor lev-
els. They assume that all parameters depend on covariates and also use exponentially
distributed residuals.

Outside the extreme value theory framework, there is also a literature studying the
covariate modelling. For instance, the so-called double GLMs, where the dispersion
parameter also depends on covariates, have been studied by McCullagh and Nelder
(1989, Chap. 10) or Smyth andVerbyla (1999). Furthermore, Rigby and Stasinopoulos
(2005) propose a general regression framework where all parameters are modeled by
explanatory variable and the distribution is not restricted to exponential family. The
only restriction that the authors impose is the twice differentiability of the density
function w.r.t. parameters. However, there is no clear convergence result of the pro-
posed estimators. Among the proposed distributions, Rigby and Stasinopoulos (2005)
use 1-parameter Pareto, log-logistic (a special case of the Pareto 3 distribution) and
GEV distributions.

In this paper,we propose closed-form estimators forGLMs in the case of categorical
variables. The expression is valid for any distribution belonging to the one-parameter
exponential family and any link function. To our knowledge, only Lipovetsky (2015)
provides an explicit solution in the special case of a logit regression with categorical
predictors. He assumes the response variable follows a Bernoulli distribution with a
canonical link function and a particular set-up of intercept.

Then, the paper will continue by the application of such formulas not on classical
distributions, but on distributions such as the log-transformed variable has a distri-
bution in the exponential family. Therefore, the choice of probability distributions of
this paper is led by two aspects: distributions with positive values and distributions as
the log-transformed variable belongs to the exponential family. The considered distri-
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butions have heavier tails than the exponential distribution. We choose to study two
distributions: the Pareto 1 distribution and the shifted lognormal distributionwith fixed
threshold parameters. We could have considered log-logistic and GEV distributions
being also appropriate in many situations but these distributions do not belong to the
exponential family.

Applications of this distribution can be found in various disciplines such as finance,
insurance, reliability theory, etc. Here, we are interested with an application to insur-
ance loss modeling. Making insurance tariffs consists in appropriately selecting and
transforming explanatory variables so that the prediction fairly estimates the mean of
the response variable. When the relation between the transformed response variable
and an explanatory variable is not affine, non-linearities is generally accommodated
in three ways: binning the variable, adding polynomial terms or using piecewise linear
functions in the predictor (see e.g. Goldburd et al. 2016). In this paper, we focusmainly
on the first approach where continuous variables (typically the age of the policyholder)
have been discretized so that explanatory variables are categorical.

More precisely, pricing non-life insurance relies on estimating the claim frequency
and the claim severity distributions. The former is generally estimated by a regression
model such as Poisson or zero-inflated models. However for modeling claim sever-
ity, we commonly split the claim dataset between attritional and atypical claims. A
threshold μ is chosen either from the extreme value theory or by expert judgments.
A classical GLM such as gamma or inverse-Gaussian is fitted on attritional claim
amounts below μ (see e.g. Ohlsson and Johansson 2010). Atypical claim amounts
above μ are not necessarily modeled at all. An empirical rule of the insurance pric-
ing is used to mutualize atypical claims over the portfolio, i.e. the aggregate sum of
atypical claims is shared equally among all policies. We aim at providing a regression
model for those claims above μ in order to refine this empirical rule.

The threshold μ can also be interpreted in another insurance context. Generally in
non-life insurance, contracts are underwritten with a deductible. This has two con-
sequences: the policyholder will retain the risk of claims below the deductible; and
the insurer will only know and be interested in claims above the deductible. In the
numerical section, we consider only the example of large claim modeling.

The paper is organized as follows. In Sect. 2, we present the GLMs. Section 3
provide exact formulas for MLE in the case of categorical explanatory variables.
Section 4 is dedicated to the Pareto 1 GLM, while Sect. 5 is dedicated to the shifted
lognormalGLM. Finally, a simulation analysis is provided in Sect. 6 and an application
to an actuarial dataset is carried out in Sect. 7, before Sect. 8 conludes.

2 Preliminaries on generalized linear models;

In this section, we consider the estimation problem in GLMs.We consider determinis-
tic exogenous variables x1, . . . , xn , with xi = (x (1)

i , . . . , x (p)
i ) ∈ R

p for i = 1, . . . , n.
In the following, for the sake of clarity, bold notations are reserved for vector of

R
p and bold notations with an underline are reserved for vector of R

n . The index
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i ∈ I = {1, . . . , n} is reserved for the observations, while the indexes j, k, l are used
for the explanatory variables.

In this setting, the sample Y = (Y1, . . . ,Yn) is composed of real-valued inde-
pendent random variables; each one belongs to a family of probability measures
of one-parameter exponential type with respective parameters λ1, . . . , λn valued in
Λ ⊂ R.

Precisely, the likelihood L associated to the statistical experiment generated by Yi ,
i ∈ I verifies

log L(ϑ | yi ) = λi (ϑ)yi − b (λi (ϑ))

a(φ)
+ c(yi , φ), yi ∈ Y ⊂ R, (1)

and −∞ if yi /∈ Y, where a : R → R, b : Λ → R and c : X × R → R are known
real-valued measurable functions and φ is the dispersion parameter (e.g. McCullagh
and Nelder 1989, Section 2.2).

In Eq. (1), the parameters λ1, . . . , λn depend on a finite-dimensional parameter
ϑ ∈ Θ ⊂ R

p. Direct computations lead to

b′(λi (ϑ)) = EϑYi and b′′(λi (ϑ))a(φ) = VarϑYi . (2)

Using a twice continuously differentiable and bijective function g from b′(Λ) toR, the
GLM are defined by assuming the following relation between the expectation EϑYi
and the predictor

g(b′(λi (ϑ))) = 〈xi ,ϑ〉 = ηi , for all ϑ ∈ Θ ,

where ηi are the linear predictors and 〈., .〉 denotes the scalar product. In other words,
the bijective function � = (b′)−1 ◦ g−1 is setted; then we have

λi (ϑ) = �(ηi ). (3)

We summarize with the following relations

X × Θ
〈.,.〉−→ D

�−1

�
�

Λ,

where D is the space of linear predictor and X the possible set of value of xi for i ∈ I .
Here � is chosen and, consecutively Θ , Λ and D must be set.

The parameter ϑ ∈ Θ ⊂ R
p is to be estimated and g is called the link function in

the regression framework. We talk of canonical link function, when � is the identity
function.

Let us compute the log-likelihood of y = (y1, . . . , yn):

log L(ϑ | y) =
n∑

i=1

yi�(ηi ) − b (�(ηi ))

a(φ)
+

n∑

i=1

c(yi , φ), (4)
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with b, h and � being respectively defined in (1) and (3). Here, the vector of the
parametersϑ is unknown. If themodel is identifiable, it can be shown that the sequence
of MLE (ϑ̂n)n≥1 defined by ϑ̂n = argmaxϑ∈Θ L(ϑ | y) asymptotically exists and is
consistent (for example Fahrmeir and Kaufmann 1985, Theorem 2, 4).

The MLE ϑ̂n , if it exists, is the solution of the non linear system

S j (ϑ) = 0, j = 1, . . . , p, (5)

with S j (ϑ) are the component of the Score vector defined by

S j (ϑ) = 1

a(φ)

n∑

i=1

x ( j)
i �′(ηi )

(
yi − b′ (�(ηi ))

)
.

It is worthmentioning that for a small data set (small n) or large number of explanatory
variables, the existence of the MLE is not guaranteed. Note that the MLE ϑ̂n does not
depend on the value of the dispersion parameter φ. Indeed, the dispersion parameter
is estimated in a second step using the sum of square residuals or the log-likelihood
(see e.g. McCullagh and Nelder 1989, Chap. 9).

In a general setting, the system (5) does not have a closed-form solution and GLMs
are generally fitted using a Newton-type method, such that an iteratively re-weighted
least square (IWLS) algorithm also refereed to Fisher Scoring algorithm (see e.g.
McCullagh and Nelder 1989).

In the case of categorical explanatory variables described later on, the non-
asymptotic existence of the MLE depends on the conditional distribution and the
chosen link function (see Examples 1, 2 and 3 on Sect. 4.2).

3 A closed-formMLE for categorical explanatory variables

In any regressionmodel, categorical or nominal explanatory variables have to be coded
since their value is a name or a category. When the possible values are unordered, it
is common to use a binary incidence matrix or dummy variables where each row has
a single unity in the column of the class to which it belongs. In the case of ordered
values, a contrast matrix has to be used (see e.g. Venables and Ripley 2002).

3.1 A single explanatory variable

Let us first consider the case of a single categorical explanatory variable. That is p = 2
and for all i ∈ I , x (1)

i = 1 is the intercept and x (2)
i takes values in a set of d modalities

{v1, . . . , vd} with d > 2. We define the incidence matrix (x (2), j
i )i, j where x (2), j

i =
1
x (2)
i =v j

is the binary dummy of the j th category for i ∈ I and j ∈ J = {1, . . . , d}.
From this incidence matrix, we compute the number of appearance m j > 0 of the j th
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category and y( j)
n the mean value of y taking over the j th category by

m j =
n∑

i=1

x (2), j
i , j ∈ J and y( j)

n = 1

m j

n∑

i=1

yi x
(2), j
i , j ∈ J .

By construction, this incidence matrix has rows that sum to 1. Therefore if we use the
combination of the incidence matrix with a 1-column for the intercept (x (1)

i , x (2), j
i )i, j :

a redundancy appears. We must choose either to use no intercept, to drop one column
for a particular modality of x (2)

i , or to use a zero-sum condition on the parameters. We
investigate below these three options in a single framework.

Consider the following GLM for the explanatory variables x (1)
i , x (2),1

i , …, x (2),d
i

assuming that

g(EYi ) = ϑ(1) +
d∑

j=1

x (2), j
i ϑ(2), j , i ∈ I , (6)

where ϑ = (ϑ(1), ϑ(2),1, . . . , ϑ(2),d) is the unknown vector parameters. The model
being not identifiable, we impose exactly one linear equation on ϑ

〈R,ϑ〉 = 0, (7)

with R = (r0, r1, . . . , rd) any real vector of size d +1. A theorem and two corollaries
are given below and corresponding proofs are postponed to Appendix A.1.

Theorem 3.1 Suppose that for all i ∈ I , Yi takes values in b′(Λ). If the vector R is
such that

∑d
j=1 r j − r0 �= 0, then there exists a unique, consistent and explicit MLE

ϑ̂n = (ϑ̂n,(1), ϑ̂n,(2),1, . . . , ϑ̂n,(2),d) of ϑ given by

ϑ̂n,(1) =
∑d

k=1
rkg(Y

(k)
n )

∑d

k=1
rk − r0

, ϑ̂n,(2), j = g(Y
( j)
n ) −

∑d

k=1
rkg(Y

(k)
n )

∑d

k=1
rk − r0

, j ∈ J . (8)

Note that if Y
( j)
n does not belong to b′(Λ), g(Y

( j)
n ) and hence ϑ̂n,(l), j are not defined.

We give below the three most common examples of linear constraint, some details
of these calculus are given in Appendix A.1.

Example 3.1 No-intercept model The no-intercept model is obtained with R =
(1, 0, . . . , 0) leading to ϑ(1) = 0. Therefore the unique, consistent and explicit MLE
ϑ̂n of ϑ is

ϑ̂n,(1) = 0, ϑ̂n,(2), j = g
(
Y

( j)
n

)
, j ∈ J . (9)

Example 3.2 Model without first modality
The model without first modality is obtained with R = (0, 1, . . . , 0) leading to

ϑ(2),1 = 0. Therefore, the unique, consistent and explicit MLE ϑ̂n of ϑ is

ϑ̂n,(1) = g
(
Y

(1)
n

)
, ϑ̂n,(2),1 = 0, ϑ̂n,(2), j = g

(
Y

( j)
n

)
− ϑ̂n,1, j ∈ J\{1}.
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Example 3.3 Zero-sum condition
The zero-sum model is obtained with R = (0, 1, . . . , 1) leading to

∑d
j=1 ϑ(2), j =

0. Therefore, the unique, consistent and explicit MLE ϑ̂n of ϑ is

ϑ̂n,(1) = 1

d

d∑

k=1

g
(
Y

(k)
n

)
, ϑ̂n,(2), j = g

(
Y

( j)
n

)
− ϑ̂n,1, j ∈ J .

Remark 3.1 In Theorem 3.1, it is worth noting that the value of ϑ̂n does not depend
on the distribution of the Yi . This fact was stated in Goldburd et al. (2016) but without
any proof.

Remark 3.2 The three different parametrizations (Examples 3.1, 3.2 and 3.3) depends
on the type of application and on the modeler choice. In statistical software, there
is a default choice: for instance in the statistical software R, the model without the
first modality is the default parametrization (see functions lm(), glm() by R Core
Team 2019). The first option without intercept may be justified when no group can be
chosen as the reference group.

Remark 3.3 When g is the identity function, the first and third options (Examples 3.1
and 3.3) can be interpreted as a generalized analysis of variance (ANOVA) for Yi with
respect to groups defined by the explanatory variable x(2). Even for non-Gaussian
random variables, some applications may justify these options.

Remark 3.4 The case when there is no explanatory variable, i.e. Yi are identically
distributed, cannot be obtained with Eq. (8). But in that case, we get with similar
arguments ϑ̂n,(1) = g(Yn), which is in line with Example 6.3.12 of Lehmann and
Casella (1998) when g is the canonical link, see Appendix A.1.

Remark 3.5 Despite the distribution of Y
( j)
n still belongs to the exponential family, the

bias of ϑ̂n,(1) and ϑ̂n,(2), j cannot be determined for a general link function g. However,
we can show the consistency of the estimator and an asymptotic confidence interval,
see Appendix A.1. In the following, we will investigate the bias and the distribution
of the MLE for some special cases of distributions and link functions.

Theorem 3.1 has two interesting corollaries which give some clues on the choice of
the link function g. This corollary tempers the importance of the link function since
it will not affect the predicted moments in the case of a single explanatory variable.

Corollary 3.1 The value of the log-likelihood defined in (4) taken on the exact MLE
ϑ̂n (if it exists)given by (8), under constraint (7), does not dependon the link function g.
More precisely, we have ∀i ∈ I , �(η̂i ) = (b′)−1(y( j)

n ) for j ∈ J such that x (2), j
i =

1 and

log L(ϑ̂n | y) = 1

a(φ)

d∑

j=1

∑

i,x (2), j
i =1

(
xi b̃

(
y( j)
n

)
− b

(
b̃

(
y( j)
n

)))
+

n∑

i=1

c(yi , φ),
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696 A. Brouste et al.

with b̃ = (
b′)−1

. Therefore, the criteria AIC and BIC are also independent of the link
function g. The estimator of φ is obtained by maximizing log L(ϑ̂n | y) with respect
to φ given a, b, c functions.

Corollary 3.2 The predicted mean and predicted variance for the i th individual is
estimated by ÊYi = b′(�(̂ηi )) and V̂arYi = a(φ̂)b′′(�(̂ηi )) respectively using (2).
Both estimates do not depend on the link function g and the predicted mean does not
depend on the function b. More precisely, when v j is the modality of the i th individual

(i.e. x (2), j
i = 1), the predicted mean and predicated variance are given by

ÊYi = y( j)
n , V̂arYi = a(φ̂)b′′ ◦ (b′)−1

(
y( j)
n

)
.

Corollary 3.2 may be surprising because the predicted mean does not depend on
the conditional distribution of Y1, . . . ,Yn . The predicted mean is just the mean of the
response variable taken over the class j i.e. observations yi such that the covariate x

(2)
i

takes the modality v j .
The formula (8) of the MLE ϑ̂n can be reformulated as

ϑ̂n =
(
Q
R

)−1 (
g(Ȳ)

0

)

with Q is the d × (1+d) matrix defined by Q = (A0, A1), with A0 is the ones vector
of size d, A1 the identity matrix of size d, and g(Ȳ) the vector (g(Ȳ (1)

n ), . . . , g(Ȳ (d)
n )).

We have

d∑

j=1

r j − r0 �= 0 ⇔ rank

(
Q
R

)
= d + 1.

With this formulation, the estimator of ϑ is ϑ̂n = (Q′ Q + R′R)−1Q′g(Ȳ). This
general form is particularly useful in the case of two categorical variables of the next
subsection.

3.2 Two explanatory variables

Now, we consider the case of two explanatory categorical variables. That is p =
3 and for all i = 1, . . . , n, x (1)

i = 1 is the intercept and x (2)
i , x (3)

i take values in

{v j1, . . . , v jd j } with d2, d3 modalities respectively. We define by x (2),k
i and x (3),l

i ,
k ∈ K = {1, . . . , d2} and l ∈ L = {1, . . . , d3} the binary dummies of the kth and
lth resp. categories, m( j)

k > 0 the number of appearance of the kth modality of the
j th variable, j = 1, 2, mk,l the number of appearance of the kth and lth category
simultaneously and y(k,l)

n the mean value of y taking over the kth and lth categories.
That is
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Dummy Frequency Mean Index

x(2),k
i = 1

x(2)
i = v2k

m(2)
k =

n∑
i=1

x(2),k
i y(2),k

n = 1
m(2)
k

n∑
i=1

yi x
(2),k
i k ∈ K

x(3),l
i = 1

x(3)
i = v3l

m(3)
l =

n∑
i=1

x(3),l
i y(3),l

n = 1
m(3)
l

n∑
i=1

yi x
(3),l
i l ∈ L

x(k,l)
i = x(2),k

i x(3),l
i mk,l =

n∑
i=1

x(k,l)
i y(k,l)

n = 1
mk,l

n∑
i=1

yi x
(k,l)
i (k, l) ∈ K × L

where y(k,l)
n is computed over KL	 = (K × L)\{(k, l) ∈ K × L;mk,l = 0}. Set

d	
2,3 = #K L	, for l ∈ L , K 	

l = {k ∈ K ;mk,l > 0}, d	
(3),l = #K 	

l and for k ∈ K ,
L	
k = {l ∈ L;mk,l > 0}, d	

(2),k = #L	
k .

Note that (mk,l)kl are absolute frequencies of the contingency table resulting from
cross-classifying factors and can be computed very easily. Be careful that K L	 is not
equal to K × L but

⋃
l∈L K 	

l = ⋃
k∈K L	

k = K L	, and d	
2,3 = d2d3 − r , where

r = #{(k, l) ∈ K × L;mk,l = 0}.
Let Q be thed	

2,3×(1+d2+d3+d	
2,3) realmatrix definedby Q = (A0, A1, A2, A12)

with A0 = 1d	
2,3

thed	
2,3×1onesmatrix; A1 = (diag(1d	

(2),k
))k∈K , thed	

2,3×K diagonal

block matrix of ones vector of size d	
(2),k ; A2 = (I 	,k

d3
)k∈K , the d	

2,3 × L matrix where

I 	,k
d3

is the identity matrix of size d3 without rows l for which mk,l = 0; A12 = Id	
2,3

the d	
2,3 × d	

2,3 identity matrix.

Consider the following GLM for explanatory variables x (1)
i , x (2), j

i , x (3), j
i

g(EYi ) = ϑ1 +
d2∑

k=1

x (2),k
i ϑ(2),k +

d3∑

l=1

x (3),l
i ϑ(3),l +

∑

(k,l)∈K L	

x (k,l)
i ϑkl , (10)

where ϑ(1), (ϑ(2),k)k∈K , (ϑ(3),l)l∈L , (ϑkl)(k,l)∈K L	 are the d2+d3+d	
2,3+1 unknown

parameters. Again at this stage, themodel is not identifiable because of the redundancy
on the vectors (x (2),k

1 , . . . , x (2),k
n ), k ∈ K , the vectors (x (3),l

1 , . . . , x (3),l
n ), l ∈ L and

the ones vector. As previously, we need to impose q ≥ 1+ d2 + d3 linear constraints
on the vector parameters ϑ

Rϑ = 0q , (11)

where R is a q × (1+ d2 + d3 + d	
2,3) real matrix of linear contrasts, with rank(R) =

1 + d2 + d3 and 0q the zeros vector of size q. Again, the proofs of the following
theorem and corollaries are postponed to Appendix A.2.

Theorem 3.2 Suppose that for all i ∈ {1, . . . , n}, Yi takes values in b′(Λ). Under
constraint (11) and if R such that (Q′, R′) is of rank d	

2,3, there exists a unique,

consistent and explicit MLE ϑ̂n of ϑ given by

ϑ̂n = (Q′ Q + R′R)−1Q′g(Ȳ), (12)

where the vector g(Ȳ) is ((g(Ȳ (k,l)
n ))l∈L	

k
)k∈K .

123



698 A. Brouste et al.

Example 3.4 No intercept and no single-variable dummy
The model with no intercept and no single-variable dummy is ϑ1 = 0 and ϑ(2),k =

ϑ(3),l = 0 ∀k ∈ K ∀l ∈ L . Therefore, the unique, consistent and explicit MLE ϑ̂n of
ϑ is

ϑ̂n,kl = g
(
Y

(k,l)
n

)
, (k, l) ∈ K L	.

Example 3.5 Zero-sum conditions The model with zero-sum conditions assumes

∑

k∈K
m(2)

k ϑ(2),k =
∑

l∈L
m(3)

l ϑ(3),l = 0,

∀l ∈ L,
∑

k∈K 	
l

mk,lϑkl = 0, ∀k ∈ K ,
∑

l∈L	
k

mk,lϑkl = 0.

Therefore, the unique, consistent and explicit MLE ϑ̂n of ϑ is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϑ̂n,(1) = 1

n

∑

(k,l)∈K L	

mk,l g
(
Y

(k,l)
n

)

ϑ̂n,(2),k = 1

m(2)
k

∑

l∈L	
k

mk,l g
(
Y

(k,l)
n

)
− ϑ̂n,1, k ∈ K

ϑ̂n,(3),l = 1

m(3)
l

∑

k∈K 	
l

mk,l g
(
Y

(k,l)
n

)
− ϑ̂n,1, l ∈ L

ϑ̂n,kl = g
(
Y

(k,l)
n

)
− ϑ̂n,(2),k − ϑ̂n,(3),l − ϑ̂n,1, (k, l) ∈ K L	.

Remark 3.6 The MLE of the model with only main effects for two explanatory vari-
ables defined as g(EYi ) = ϑ1+∑d2

k=1 x
(2),k
i ϑ(2),k +∑d3

l=1 x
(3),l
i ϑ(3),l does not present

such explicit formula whatever the matrix R of rank 2. In that case, the MLE does not
solves a least square problem under a linear constraint, see Appendix A.2. In the spe-
cial case of logit-regression, Lipovetsky (2015) also notice that least square estimation
does not coincide with the MLE.

For simplicity, we consider only the cases of one and two explanatory categorical
variables. With a higher number of explanatory variables, we can perform a similar
analysis to obtain an explicit solution of the MLE. As for one explanatory variable,
Theorem 3.2 has two interesting corollaries on the value of the log-likelihood and the
predicted moments.

Corollary 3.3 The value of log-likelihood defined in (4) taken on the exact MLE ϑ̂n (if
it exists) given by (12), under constraint (11), does not depend on the link function
g. More precisely, we have ∀i ∈ I , �(η̂i ) = (b′)−1(y(k,l)

n ) for l ∈ L and k ∈
K such that x (2), j

i = 1 and x (3),k
i = 1 and

log L(ϑ̂n | y) = 1

a(φ)

∑

(k,l)∈K L	

∑

i∈ Ĩ

(
yi b̃

(
y(k,l)
n

)
− b

(
b̃

(
y(k,l)
n

)))
+

n∑

i=1

c(yi , φ),
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with b̃ = (b′)−1 and Ĩ = {i ∈ I , x (2),k
i = x (3),l

i = 1}. The estimator of φ is obtained
by maximizing log L(ϑ̂n | y) with respect to φ given a, b, c functions.

Corollary 3.4 The predicted mean and predicted variance for the i th individual is
estimated by ÊYi = b′(�(̂ηi )) and V̂arYi = a(φ̂)b′′(�(̂ηi )) respectively using (2).
Both estimates do not depend on the link function g and the predicted mean does not
depend on the function b. Let v2k and v3l be the modalities of the i th individual of
the two explanatory variables, i.e. x (2),k

i = 1 and x (3),l
i = 1. The predicted mean and

variance are given by

ÊYi = y(k,l)
n , V̂arYi = a(φ̂)b′′ ◦ (b′)−1(y(k,l)

n ).

In the next two sections, we apply previous theorems and corollaries to two particular
distributions: Pareto 1 and lognormal distribution. Our results do not only apply to
continuous distributions but also for discrete distributions. But we choose these two
distributions in order to model insurance losses.

4 GLM for Pareto I distribution with categorical explanatory variables

4.1 Characterization

Consider the sample Y = (Y1, . . . ,Yn) composed of independent Pareto Type 1.
Precisely, we assume that the independent random variables Y1, …, Yn are Pareto
with known threshold parameter μ and respective shape parameter (depending on the
unknown parameter ϑ) λ1(ϑ), . . . , λn(ϑ) ∈ Λ = (0,∞). The density f of Pareto
distribution with threshold and shape parameter μ and λi (ϑ), i ∈ I is

f (y) = λi (ϑ)
μλi (ϑ)

yλi (ϑ)+1
, y ∈ Y = [μ,∞), (13)

and 0 if y < μ.
We recall that for the Pareto Type 1 distribution

EYi = λi (ϑ)μ

λi (ϑ) − 1
< +∞, iff λi (ϑ) > 1 and EY 2

i = λi (ϑ)μ2

λi (ϑ) − 2
< +∞, iff λi (ϑ) > 2.

Unlike the known parameter μ, the parameter ϑ is to be estimated. These closed-form
formulas are particularly useful in an insurance context since the expectation and the
variance are used inmost premium computation. For instance,EY is the pure premium
and for γ > 0, EY +γVarY is the variance principle (see Bühlmann and Gisler 2006,
Section 1.2.2).

In the following, instead of Y we consider the sample Z = (T (Y1), . . . , T (Yn)).
With the re-parametrization zi = T (yi ) = − log (yi/μ), i ∈ I , this distribution
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Table 1 Table of typical link functions for Pareto I

Names �(ηi ) g−1(t) g(t)

Canonical ηi − 1

t
− 1

t

Log-inv eηi −e−t log

(
− 1

t

)

Shifted log-inv eηi + 1 − 1

et + 1
log

(
− 1

t
− 1

)

belongs to the exponential family as defined in (1), with

a(φ) = 1, b(λ) = − log(λ), and c(z, φ) = 0, z ∈ T (Y) = R
−, λ ∈ Λ. (14)

In particular, for the Pareto I distribution, there is no dispersion parameter. It is also
worth mentioning that −Zi is exponential with parameter λi (ϑ). Consecutively, all
moments of Zi exist and are given by E(Zi )

m = (−1)mm!/λi (ϑ)m , m ∈ N
∗.

Consider the regression model with a link function g, a response variable Yi Pareto
I distributed where Zi = − log (Yi/μ) and

g (EZi ) = ϑ(1) + x (2),1
i ϑ(2),1 + . . . + x (2),d

i ϑ(2),d = 〈xi ,ϑ〉, i ∈ I (15)

with for i ∈ I , xi = (1, x (2),1
i , . . . , x (2),d

i )T are the covariate vectors and ϑ =
(ϑ(1), ϑ(2),1 . . . , ϑ(2),d)

T is the unknown parameter vector.
The choice of the link function g appearing in (15) is a crucial point. Let us start

with the canonical link. That is, the chosen function g so that � = (b′)−1 ◦ g−1 is
the identity function. For our Pareto model, g(t) = − 1

t since b
′(λ) = − 1

λ
. From (4),

the choice of the canonical link function imposes constraints on the linear predictor
space D ⊂ Λ ⊂ (0,+∞) in that case. Since D results from the scalar product of
ϑ parameters with explanatory variables yi , some negative values might be produced
when the covariables take negative values. This make the choice of the canonical link
inappropriate.

In order to remedy this issue, we can choose a link function such that the values
of the function � falls in Λ ⊂ (0,∞). A natural choice is �(η) = exp(η) which
guarantees a positive parameter. The choice �(η) = exp(η) + 1 guarantee a finite
expectation for the random variables Yi , i = 1, . . . , n. We summarize in Table 1 the
tested � functions in our application in Sect. 7, and in Table 2, the spaces given a link
function.

4.2 Estimation for categorical exogenous variables

Consider the case of one categorical exogenous variable. We expose the case of the
re-parametrization without intercept, i.e. 〈R,ϑ〉 = 0 with R = (1, 0, . . . , 0).
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Let ϑ̂n the MLE defined in (9), if it exists, of ϑ . Using the following equality of
Corollary 3.1

d∑

j=1

∑

i,x (2), j
i =1

zi b̃
(
z( j)n

)
= n, with b̃ = (b′)−1,

the log likelihood evaluated on ϑ̂n for both the transformed sample z and the original
sample y with one categorical exogenous variable is

log L(ϑ̂n | z) = n−
d∑

j=1

m j log(−z( j)n ), log L(ϑ̂n | y) = log L(ϑ̂n | z)−
n∑

i=1

log(yi ).

(16)
The log-likelihood computation is detailed on Appendix B.

The second remark is that−Zi are exponentially distributedE(�(ηi )). Hence for j ∈
J , the estimators ϑ̂n,(2), j of ϑ(2), j are known transforms of a gamma random variable
Ga(m j ,m j�(ϑ2, j )). Below we analyze the choice of the link functions considered in
Table 1 in Examples 4.1, 4.2, 4.3 and plotted in Fig. 4a.

Example 4.1 canonical link
In the special case of canonical Pareto model, because zi < 0 for all i ∈ I , we have

z( j)n ∈ b′(Λ) = (−∞, 0) for all j ∈ J (g and Λ are respectively defined in Tables 1
and 2 ). With no-intercept using Eq. (9), the MLE is

ϑ̂n,(2), j = −m j

(
n∑

i=1

x (2), j
i Zi

)−1

= − 1

Z
( j)
n

, j ∈ J .

Hence, for j ∈ J , ϑ̂n,(2), j follows an InverseGammadistributionwith shape parameter
m j and rate parameterm jϑ(2), j (see e.g. Johnson et al. 2000, Ch. 17).We can compute
the moments of the Inverse Gamma distribution, for m j > 2,

Eϑ̂n,(2), j = m j

m j − 1
ϑ(2), j , and Varϑ̂n,(2), j = m2

j

(m j − 1)2(m j − 2)
ϑ2

(2), j , j ∈ J .

An unbiased estimator of ϑ(2), j is then ϑ̂	
n,(2), j = m j−1

m j
ϑ̂n,(2), j which has a lower

variance

Varϑ̂	
n,(2), j = ϑ2

(2), j

m j − 2
≤ Varϑ̂n,(2), j , j ∈ J .

A similar bias is also obtained by Bühlmann and Gisler (2006) in a credibility context.
Of course this unbiased estimator is also applicable for two exogenous variables with
the first parametrization of the Theorem 3.2. When some modalities (or couple of
modalities) aren’t much represented, it can be relevant to use this unbiased estimator.
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Example 4.2 log-inverse link
In the special case of the log-inv Pareto model, we also have z( j)n ∈ b′(Λ) =

(−∞, 0) for all j ∈ J (g and Λ are respectively defined in Tables 1 and 2). With
no-intercept using Eq. (9), the MLE is

ϑ̂n,(2), j = − log

(
1

−m j

n∑

i=1

x (2), j
i Zi

)
= − log

(
−Z

( j)
n

)
, j ∈ J .

Here, for j ∈ J , the distribution of −ϑ̂n,(2), j is the distribution of the log of the
gamma distribution with shape m j and rate m j exp(ϑ(2), j ). We can derive moments
of this distribution which should not be confused with the log-gamma distribution
studied e.g. in Hogg and Klugman (1984).

Let L = log(G) when G is gamma distributed with shape parameter a > 0 and
rate parameter λ > 0. We have by elementary manipulations the moment generating
function of L:

ML(t) = EetL = Γ (a + t)

Γ (a)
λ−t , t > −a,

where Γ denotes the usual gamma function. Therefore by differentiating and evaluat-
ing at 0, we deduce that the expectation and the variance of L are EL = ψ(a) − log λ

and VarL = ψ ′(a), where the functions ψ and ψ ′ are the digamma and trigamma
function (see e.g. Olver et al. 2010). Getting back to our example, we deduce that

Eϑ̂n,(2), j = ϑ(2), j + logm j − ψ(m j ) and Varϑ̂n,(2), j = ψ ′(m j ), j ∈ J .

From Olver et al. (2010), we know that log(m j ) − ψ(m j ) tends to 0 as m j tend to
infinity. Hence ϑ̂n,(2), j is asymptotically unbiased, and an unbiased estimator of ϑ(2), j
is

ϑ̂	
n,(2), j = ϑ̂n,(2), j − (log(m j ) − ψ(m j )), j ∈ J .

Example 4.3 shifted log-inverse link
In the special case of the shifted log-inv Pareto model, z( j)n is not necessarily in

b′(Λ) = (−1, 0) for all j ∈ J (g and Λ are respectively defined in Tables 1 and 2). If
there is an index j such as z( j)n ≤ −1, the MLE is not defined and we couldn’t use the
shifted log-inv link with the same incidence matrix.

Nevertheless, for sufficiently large n, for j such that x (2)
i = v j , Z

( j)
n → EZi almost

surely, where EZi = −1/(exp(ϑ2, j ) + 1) > −1. Hence for sufficiently large n, the
conditions of Theorem 3.1 are satisfied. With no-intercept using Eq. (9), the MLE
(provided it exists) is

ϑ̂n,(2), j = log

(
m j

−∑n
i=1 x

(2), j
i Zi

− 1

)
= log

(
−1/Z

( j)
n − 1

)
, j ∈ J .
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The expectation of ϑ̂n,(2), j is complex and should be done numerically. However by
the strong law of large numbers and the continuity of the link function, ϑ̂n,(2), j =
− log

(
−1/Z

( j)
n − 1

)
converge almost surely to log((exp(ϑ(2), j ) + 1) − 1) = ϑ(2), j .

Remark 4.1 In Theorem 3.1, the condition Yi takes values in b′(Λ) might seem too
restrictive. In fact the condition y( j)

n ∈ b′(Λ) for all j ∈ J is sufficient to define a vector
value ϑ̂n which maximise the likelihood. But ϑ̂n fails to be a MLE estimator because
the random variable g(Y

( j)
n ) can to be not defined. Nevertheless, when m j tends to

infinity for any j ∈ J , the random variables Yi ’s defined by (6) such that y(2), j
i = 1

are i.i.d. (not only independent) and the strong law of large numbers implies that

Y
( j)
i converges almost surely to EYi = b′(�(ηi )) ∈ b′(Λ). Hence, the probability

P(Y
( j)
n /∈ b′(Λ)) tends to zero which guarantees the asymptotically existence of the

MLE estimator.

4.3 Model diagnostic

In this paragraph,we propose residuals adapted at the case of Pareto problem. First note
that Yi is Pareto I with shape �(ηi ) and threshold μ and for the parametrization (14)
−Zi = log(Yi/μ) ∼ E(�(ηi )). Let define the residuals

Ri = −�(ηi )Zi , i ∈ I .

Hence R1, . . . , Rn are i.i.d. and have an exponential distribution E(1). The consistency
of the MLE makes it possible to say that the estimated residuals R̂n,i = −�(̂ηi )Zi ,
i ∈ I , with η̂i = 〈xi , ϑ̂n〉 are asymptotically i.i.d..

It is also possible to verify the assumption of the Pareto distribution for Yi condi-
tionally to yi with graphical diagnostic as an exponential Quantile–Quantile plot on
the residuals R̂n,i .

In the case of a single explanatory variable, for i ∈ I , the residuals R̂n,i do not
depend on � function. Their explicit forms are

R̂n,i = Zi

Z̄ ( j)
n

j such that x (2)
i = v j , i ∈ I . (17)

Furthermore, the summation of R̂n,1, . . . , R̂n,n has the surprising property to be deter-
ministic and is exactly equal to n.

5 GLM for shifted log-normal distribution with categorical
explanatory variables

5.1 Characterization

Secondly, consider the sample Y = (Y1, . . . ,Yn) composed of independent shifted
log-normal variables respectively with mean λ1(ϑ), . . . , λn(ϑ), dispersion φ = σ 2
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and a known threshold μ. The shifted log-normal is also known as the 3-parameter
log-normal. Precisely, the density of Yi is

f (y) = 1

(y − μ)
√
2πφ

exp

(
− (log(y − μ) − λi (ϑ))2

2φ

)
, y ∈ Y = (μ,∞),

(18)
and 0 for y ≤ μ. It is well known that the lognormal distribution has finite moment
(see e.g. Johnson et al. 2000). In particular, the expectation and the variance are given
by

EYi = μ + exp(λi (ϑ) + φ/2), VarYi = (exp(φ) − 1) exp(2λi (ϑ) + φ).

The transformed sample Z = T (Y) = (T (Y1), . . . , T (Yn)) with T (y) = log(y −
μ) is belongs the exponential family with

a(φ) = φ, b(λ) = λ2/2, c(z, φ) = −1

2

(
z2

φ
+ log(2πφ)

)
, z ∈ R+, λ ∈ R.

It is worth mentioning that Zi are normally distributed with mean λi (θ) and variance
φ. As a consequence, all moments of Zi exists and E(Zi − λi )

m = (2m)!φm/(2mm!)
for m even and 0 for m odd. Consider the regression model with a link function g, a
response variable Yi lognormally distributed where Zi = log (Yi − μ) and

g (EZi ) = ϑ(1) + ϑ(2),1x
(2),1
i + . . . + ϑ(2),d x

(2),d
i = 〈xi ,ϑ〉, i ∈ I (19)

with for i ∈ I , xi = (1, x (2),1
i , . . . , x (2),d

i )T are the covariate vectors and ϑ =
(ϑ(1), ϑ(2),1, . . . , ϑ(2),d)

T ∈ R
d is the unknown parameter vector.

The choice of the link function g for Eq. (19) is less restrictive than for the Pareto
case. Any differentiable invertible function from R to R will work. Since b′(x) = x ,
the canonical link function is obtained by choosing g such that � = id ◦ g−1 = g−1

is the identity function. In other words, the canonical link function is the identity
function.

Unlike the previous section, any moment of Yi exist and there is no particular link
needed to guarantee their existence. In the numerical application, wewill also consider
another link function: a real version of the logarithm.

5.2 Estimation for categorical exogenous variables

Again we consider the case of categorical variables and without intercept model, that
is with a predictor ηi = x (2),1

i ϑ(2),1 + · · · + x (2),d
i ϑ(2),d . In the case of the lognormal

dispersion, there is a dispersion to be estimated. The log-likelihood is given by

log L(ϑ | z) = − 1

2φ

n∑

i=1

(zi − λi (ϑ))2 − n log(2πφ)

2
.
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Table 3 Table of typical link functions for lognormal

Names �(ηi ) g−1(t) g(t)

Canonical ηi t t

Sym. log eηi 1ηi≥0 + (2 − e−ηi )1ηi<0 et1t≥0 + (2 − e−t )1t<0 log(t)1t≥1 − log(2 − t)1t<1

Table 4 Summary of spaces for lognormal

Link name Parameter–covariable Linear predictor Parameter
space ϑ × Xi space D space Λ

Canonical R
p × R

p 〈.,.〉−→ R
id
�
id

R

Sym. log R
p × R

p 〈.,.〉−→ R

l−1
g
�
lg

R

The components of the MLE of ϑ are given by ϑ̂n,(2), j = g(z̄( j)n ), j ∈ J , and the
estimated log likelihood for the transformed sample z is

log L(ϑ̂n | z) = − 1

2φ

∑

j∈J

∑

i,x (2), j
i =1

(
zi − z̄( j)n

)2 − n log(2πφ)

2
.

Maximizing over φ the log-likelihood leads to the empirical variance

φ̂ = 1

n

∑

j∈J

∑

i,x (2), j
i =1

(
zi − z̄( j)n

)2
. (20)

Hence the estimator ofφ is the intra-class variance. This closed-form estimate φ̂ differs
from what classical statistical softwares carry out, where the dispersion parameter is
estimated by a quasi-likelihood approach.

Using the previous equations, we compute the log likelihood evaluated on φ̂ and on
ϑ̂n for both the transformed sample z and the original sample y with one categorical
exogenous variable (Corollary 3.1) is

log L(ϑ̂n | z) = −n

2
(1 + log(2πφ̂)), log L(ϑ̂n | y) = −n

2
(1 + log(2πφ̂)) −

n∑

i=1

zi .

(21)
Below we analyze the choice of the link functions defined in Table 3 in Examples 5.1,
5.2 and plotted in Fig. 4b and with parameter spaces given in Table 4.

Example 5.1 canonical link
With the canonical link function, there is no issue between the parameter space and

the linear predictor space since D = Λ = R. With no-intercept using Eq. (9), the
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MLE is

ϑ̂n,(2), j = 1

m j

n∑

i=1

x (2, j)
i Zi = Z

( j)
n , j ∈ J .

Hence, the distribution ϑ̂n,(2), j is simply a normal distribution with mean ϑ(2), j and
variance φ/m j . Therefore, the MLE is unbiased and converges in almost surely to
ϑ(2), j .

Example 5.2 symmetrical log link
We consider a central symmetry of the logarithm function given in Table 3 leading

to lg(x) = ex1x≥0 + (2 − e−x )1x<0. With this symmetrical log link function, there
is no issue between the parameter space and the linear predictor space since again
D = Λ = R. With no-intercept using Eq. (9), the MLE is

ϑ̂n,(2), j = log
(
Z

( j)
n 1

Z
( j)
n ≥1

)
− log

(
2 − Z

( j)
n 1

Z
( j)
n <1

)
, j ∈ J .

The expectation of ϑ̂n,(2), j is complex and should be done numerically. However by the

strong law of large numbers and the continuity of the link function, ϑ̂n,(2), j = lg(Z
( j)
n )

converge almost surely to lg(EZ
( j)
n ) = ϑ(2), j .

5.3 Model diagnostic

In this paragraph, we give some details about residuals in the lognormal case. As
already said, the transformed variables Zi = log(Yi − μ) is normally distributed with
mean �(ηi ) and variance φ. Let define the residuals

Ri = Zi − �(ηi )√
φ

, i ∈ I .

Hence R1, . . . , Rn are i.i.d. and have a normal distribution N (0, 1). The consistency
of theMLEmakes it possible to say that the R̂n,i = Zi−�(̂ηi )√

φ̂
, i ∈ I , with η̂i = 〈xi , ϑ̂n〉

are asymptotically i.i.d. Furthermore, the summation of R̂n,1, . . . , R̂n,n is exactly equal
to 0.

It is also possible to verify the assumption of the lognormal distribution for Yi
conditionally to xi with graphical diagnostic as a normal Quantile–Quantile plot on
the residuals R̂n,i .

6 Simulations study

This section is devoted to the simulation study: all computations are carried out thanks
to the R statistical software R Core Team (2019). The first part of the simulation analy-
sis consists in assessing the uncertainty of theMLEwith the two different approaches:

123



708 A. Brouste et al.

Fig. 1 Estimated coefficient ϑ̂n,(2),i (solid lines) with theoretical confidence intervals (dashed lines) and
asymptotic confidence intervals (dotted lines)

either the explicit formula given in Example 4.1 or the IWLS algorithm described in
McCullagh and Nelder (1989).

Therefore, the simulation process has the following steps. Firstly, given the param-
eter number p, we simulate n random variables which are Pareto 1 distributed in the
case of no intercept and a canonical link (see Example 4.1). Secondly, we check that
the fitted coefficients by both methods have identical values. Thirdly, we compute the
exact confidence interval using the result of Example 4.1 and the asymptotic MLE
confidence interval resulted from the IWLS algorithm.

Figure 1 shows the estimated parameters when p = 3 for different values of n.
That is we plot ϑ̂n,(2),1, ϑ̂n,(2),2, ϑ̂n,(2),3 as solid lines for n = 100, 300, 500, 700, 900,
1000, 3000, 5000, 7000, 9000, 10,000 against the true values ϑ = (2, 3, 4) (horizontal
dot-dashed lines) and μ = 150. The confidence intervals are plotted in dashed lines
(theoretical) and dotted lines (asymptotic). We observe that for any sample size n,
explicit and IWLS produce the same value but the explicit confidence interval is much
thinner in the explicit case.

The second part of the simulation analysis consists in assessing the gain in terms of
computations between the two different approaches: either the explicit formula given
in Example 4.1 or the IWLS algorithm described in McCullagh and Nelder (1989).

In Table 5, we provide a complexity analysis of the two procedure: the IWLS
algorithmand the explicit solution.Againwe simulatewithPareto 1distributed random
variables for a specific number of parameters p, and a known thresholdμ = 150 given
a sample size n. Then we compute the floating point operation numbers given the size
of the input dataset. Two different explanatory variables have been tested so that the
parameter number is different: p = 5 or 7. We observe that the explicit solution is
far less computer intensive (4000 times faster) than the IWLS algorithm which takes
5 or 6 iterations to reach the solution. Thus having an explicit solution can lead to
substantial benefits for very large datasets.

7 Application to large claimmodeling

This section is devoted to the numerical illustration on a real dataset [again com-
putations are carried out thanks to the R statistical software R Core Team (2019)].
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Table 5 Floating point operation number given the size of the dataset

IWLS algorithm Exact method

n p Iter. nb. Flop × 1000 n p Iter. nb. Flop × 1000 Rel. gain

200 5 6 1206.2 200 5 1 1.6 753.9

400 5 5 4010.4 400 5 1 3.2 1253.2

600 5 6 10,818.6 600 5 1 4.8 2253.9

800 5 5 16,020.8 800 5 1 6.4 2503.2

1000 5 5 25,026 1000 5 1 8 3128.2

1200 5 5 36,031.2 1200 5 1 9.6 3753.2

1400 5 5 49,036.4 1400 5 1 11.2 4378.2

1600 5 5 64,041.6 1600 5 1 12.8 5003.2

1800 5 5 81,046.8 1800 5 1 14.4 5628.2

200 7 6 1686.2 200 7 1 2 843.1

400 7 6 6732.4 400 7 1 4 1683.1

600 7 6 15,138.6 600 7 1 6 2523.1

800 7 6 26,904.8 800 7 1 8 3363.1

1000 7 6 42,031 1000 7 1 10 4203.1

1200 7 6 60,517.2 1200 7 1 12 5043.1

1400 7 6 82,363.4 1400 7 1 14 5883.1

1600 7 6 107,569.6 1600 7 1 16 6723.1

1800 7 6 136,135.8 1800 7 1 18 7563.1

In our application, we focus on modeling non-life insurance losses (claim amount)
of corporate business lines. Our data set comes from an anonymous private insurer:
for privacy reason, amounts have been randomly scaled, dates randomly rearranged,
variable modalities renamed. The data set consists of 211,739 claims which occurred
between 2000 and 2010. In addition to the claim amount level, various explanatory
variables are available.

We provide in Table 10 in Appendix C a short descriptive analysis of the two most
important variables (risk class and guarantee typewith respectively 5 and 7modalities).
Due to the very high value of skewness and kurtosis, we observe that claim amount is
particularly heavy tailed.

In the sequel, we consider only large claims which are in our context claims above
μ = 340,000 (in euros). The threshold value has been chosen by expert opinion of
practitioners.We refer to e.g. Reiss andThomas (2007) for advanced selectionmethods
based on extreme value theory.

7.1 A single explanatory variable

Firstly, we consider both Pareto 1 GLM and Shifted log-normal GLM with only one
explanatory variable: the guarantee type.We choose Guarantee 1 as the reference level
implying that ϑ(2),1 = 0. So, ϑ(1) representing the effect of the reference category and
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Table 6 Coefficients for the guarantee variable

Model Pareto 1 Shifted log normal

Variable Canonical Loginv Shifted.loginv Canonical Symlog

Intercept 1.89 0.64 − 0.11 11.75 2.46

Guarantee 2 0.04 0.02 0.04 0.10 0.01

Guarantee 3 − 0.67 −0.43 − 1.36 0.75 0.06

Guarantee 4 − 0.86 −0.60 − 3.13 1.04 0.08

Guarantee 5 − 0.71 −0.47 − 1.55 0.72 0.06

Guarantee 6 − 0.42 −0.25 − 0.63 0.42 0.04

Guarantee 7 − 0.48 −0.29 − 0.78 0.59 0.05

Log likelihood − 14,507.53 −14,507.53 − 14,507.53 −14,517.37 − 14,517.37

(ϑ(2), j ) j representing the differential effect of categories j relative to the reference
categorywill be estimated through (15) and (19).Observations y1, . . . , yn are observed
claim amounts either from Pareto 1 (13) or shifted log-normal (18).

For theses two models, we have many possible choices for the link function g.
Naturally, we choose link functions appearing in Tables 1 and 3 respectively. In accor-
dance to Corollaries 3.1, the choice of g does not impact the values respectively given
on (16) and (21) of the log-likelihoods applied on the MLE of ϑ .

Furthermore, for Pareto GLM, the choice of shifted log-inverse link function seems
attractive because it guarantees the existence of EYi . Nevertheless, alternative link
functions (canonical or log-inv) allow to construct an unbiased estimator (see Sect. 4).
For shifted log-normal model, the choice of canonical link function is more attractive
because it leads to an unbiased and simpler MLE estimator (see Sect. 5).

Coefficients are estimated by explicit formulas given in Sects. 4 and 5. In Table 6,
the estimated coefficients are given in the five considered situations. Positive values
of ϑ(2), j in the Pareto GLM increase the shape parameter of the Pareto 1 distribution
leading to a decrease in heavy-tailedness. Regarding the log-normal model, positive
values of ϑ(2), j increase the scale parameter of the log-normal distribution leading to
a shrink of the distribution.

Irrespectively of the considered link function, the sign of the fitted coefficients are
same except for intercept (Table 6) given a distribution. This convinces us that different
model assumptions (i.e. link) do not lead to opposite conclusions on the claim severity.
Furthermore from Table 10, we retrieve the fact that all guarantees except Guarantee
2 have heavier tails than the reference guarantee 1.

Whatever the considered link function g, the residuals defined in Sect. 4.3 by
R̂n,i = −�(̂ηi )Zi , i ∈ I , do not depend on � and are given by Eq. (17). We show on
Fig. 2 (left) the quantile/quantile plots of residuals described on Sect. 4.3 against the
standard exponential distribution. On Fig. 3, we observe that the assumption of Pareto
1 for Y1, . . . ,Yn is better than the log-normal distribution at least for small quantiles.
Moreover, comparing the value of the log-likelihood in Table 6, Pareto 1 distribution
is also the best choice. In the following, we focus only on the Pareto 1 distribution.
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Fig. 2 Quantile–quantile plots of the residuals defined in Sect. 4.3: (left) for one explanatory variable,
(right) for two explanatory variables

Table 7 Statistics and p values
for the tests ϑ(1) = 0 and
ϑ j = 0, j ∈ J in the Pareto
GLM model for the log-inverse
link

Estimate SE z value Pr (> |z|)
Intercept 0.6391 0.1644 3.8877 0.0001

Guarantee 2 0.0214 0.2219 0.0966 0.9230

Guarantee 3 − 0.4332 0.1950 − 2.2217 0.0263

Guarantee 4 − 0.6009 0.1708 − 3.5180 0.0004

Guarantee 5 − 0.4660 0.1805 − 2.5817 0.0098

Guarantee 6 − 0.2485 0.2295 − 1.0827 0.2789

Guarantee 7 − 0.2949 0.1834 − 1.6075 0.1080

For all coefficient, let us compute the p values of statistical tests with the null
hypothesis ϑ(1) = 0 (Interecept null), and for j ∈ J\{1}, ϑ(2), j = 0 (no differential
effect of the j th guarantee). Table 7 reports the value of the coefficient, its standard
error, the student statistics and the associated p value. We observe that some modal-
ities of the guarantee variable are statistically significant at the 5% level. Except for
Guarantee 2 and Guarantee 6, other p values are relatively small showing the Pareto
1 distribution with explanatory variables is relevant in this context.

7.2 Two explanatory variables

Secondly, we consider the Pareto GLM models and Shifted log-normal GLM models
with the two explanatory variables (guarantee and risk class) without intercept nor
single-variable (c.f. model (10) and example 3.4), that are

g(EZi ) =
∑

(k,l)∈K L	

ϑkl x
(k,l)
i , i ∈ I (22)

123



712 A. Brouste et al.

Table 8 Number of claim per guarantee and per risk class

Claim number Risk class 1 Risk class 2 Risk class 3 Risk class 4 Risk class 5

Guarantee 1 39 0 4 6 1

Guarantee 2 26 2 3 16 3

Guarantee 3 48 7 11 29 4

Guarantee 4 232 40 75 147 20

Guarantee 5 68 18 36 72 6

Guarantee 6 24 7 4 11 0

Guarantee 7 94 9 22 57 3

Table 9 p values for the tests ϑkl = 0, (k, l) ∈ KL	 in (22) for the canonical link

p values Risk class 1 Risk class 2 Risk class 3 Risk class 4 Risk class 5

Guarantee 1 < 10−6 – 0.04550 0.01431 0.31731

Guarantee 2 < 10−6 0.15730 0.08301 0.00006 0.08326

Guarantee 3 < 10−6 0.00815 0.00091 < 10−6 0.04550

Guarantee 4 < 10−6 < 10−6 < 10−6 < 10−6 0.00001

Guarantee 5 < 10−6 0.00002 < 10−6 < 10−6 0.01431

Guarantee 6 < 10−6 0.00815 0.04550 0.00091 –

Guarantee 7 < 10−6 0.00270 < 10−6 < 10−6 0.08326
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Fig. 3 Quantile–quantile plots of the residuals defined in Sect. 4.3: (left) for Pareto 1, (right) for shifted
log-normal distributions

with Zi = − log(Yi/μ) for the Pareto 1 modeling Zi = log(Yi −μ) for the shifted log
normal modeling and where for (k, l) ∈ KL	 the unknown parameters ϑkl represent
the effect of the couple of the modalities k and l for the first and the second variable. In
theses examples, as it describes in Table 8, we have K = {1, . . . , 7}, L = {1, . . . , 5}
but KL	 = {1, . . . , 7} × {1, . . . , 5}\{(1, 2), (6, 5)}.
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Consider the estimation procedures in (22).We compute the claim numbers accord-
ing guarantee and risk in Table 8. This claim number per class might be too short to
ensure the existence of the MLE with the shifted log-inv link. We arbitrary choose the
simple case of the canonical link and an unbiased estimator is relevant in this context.

The coefficients of the model are estimated using the exact method described in
Sect. 3 and then unbiased in the same way of Example 1. The fitted coefficients are
not shown but are available upon request to the authors. Furthermore, we compute
the p values of the statistical test ϑkl = 0 in Table 9. We observe that most computed
p values are small: either less than 10−6 or less than 1%. Only 5 on the 33 p values
are above the usual 5% level, corresponding to the couples guarantee/risk class (1,5),
(2,2), (2,3), (2,5) and (7,5) (claim number of 1,2 or 3). In the two variables setting, the
Pareto 1 GLM is thus still relevant.

8 Conclusion

In this paper, we deal with regression models where the response variable belongs
to the general formulation of the exponential family, the so-called GLM. We focus
on the estimation of parameters of GLMs and derive explicit formulas for MLE in
the case of categorical explanatory variables. In this case, the closed-form estimators
do not require any use of numerical algorithms, in particular the well-known IWLS
algorithm. This is logical, because in the special setting of categorical variables, a
regression model is equivalent to fitting the same distribution on subgroups defined
with respect to explanatory variables. Hence, we get back to usual explicit solutions
for the exponential family in the i.i.d. case.

Yet weworkwith one or two explanatory variables for the two derived theorems, the
approach can be extended to d categorical variables as long as we consider interactions
terms and a zero-sum condition. If we consider main effects only for d categorical
variables, the MLE cannot be reformulated as a least-square problem. Nevertheless,
having an explicit formula make a clear advantage compared to the IWLS algorithm,
particularly for large scale datasets.

The explicit formulas are examplified on two particular positive distributions par-
ticularly useful in an insurance context: the Pareto 1 distribution and the shifted
log-normal distribution. In both cases, we present typical link functions and derive
in most cases the distribution of the MLE. In relevant cases, we also give an unbiased
estimator. In the general setting, the exact standard error computation is not available,
yet the Delta Method can be used to obtain an asymptotic standard error. Finally, we
illustrate the estimation process for both distributions on simulated datasets and an
actuarial data set.

For future research, a natural extension is to propose regression models for dis-
tribution outside the exponential family. Typically, we could consider the Pareto 1
distribution with unknown threshold and shape parameters. We could also consider
generalized Pareto distribution based on the peak over thresholds approach. A natural
extension could also be to jointly estimate the shape and the dispersion parameters of
the distribution.
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A Proofs of Sect. 3

A.1 Proof for the one-variable case

Proof of Theorem 3.1 We have to solve the system

{
S(ϑ) = 0
Rϑ = 0.

(23)

The system S(ϑ) = 0 is

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n∑

i=1

�′(ηi )
(
yi − b′ ◦ �(ηi )

) = 0

n∑

i=1

x (2), j
i �′(ηi )

(
yi − b′ ◦ �(ηi )

) = 0, ∀ j ∈ J .

that is

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

j∈J

�′(ϑ(1) + ϑ(2), j )

(
n∑

i=1

x (2), j
i yi − m jb

′ ◦ �(ϑ(1) + ϑ(2), j )

)
= 0

�′(ϑ(1) + ϑ(2), j )

(
n∑

i=1

x (2), j
i yi − m jb

′ ◦ �(ϑ(1) + ϑ(2), j )

)
= 0, ∀ j ∈ J .

The first equation in the previous system is redundancy, and

S(ϑ) = 0 ⇔ �′(ϑ(1) + ϑ(2), j )

(
n∑

i=1

x (2), j
i yi − m jb

′ ◦ �(ϑ(1) + ϑ(2), j )

)
= 0, ∀ j ∈ J .

Hence if Yi takes values in Y ⊂ b′(Λ), and � injective, we have

ϑ(1) + ϑ( j) = g(Y
( j)
n ) ∀ j ∈ J .

The system (23) is

{
Qϑ = g(Ȳ)

Rϑ = 0.
⇔

(
Q
R

)
ϑ =

(
g(Ȳ)

0

)
. (24)
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Let us compute the determinant of the matrix Md =
(
Q
R

)
. Consider R =

(r0, r1, . . . , rd). We have

Md =
(
1d Id
r0 r

)
=

⎛

⎜⎜⎜⎜⎜⎝

1 1 0 . . .

1 0 1 0
...

...
. . .

. . .
. . .

1 0 . . . 0 1
r0 r1 . . . rd

⎞

⎟⎟⎟⎟⎟⎠
, with r = (

r1 . . . rd
)
, 1d =

⎛

⎜⎝
1
...

1

⎞

⎟⎠ .

The determinant can be computed recursively

det(Md) = rd

∣∣∣∣∣∣∣∣∣∣

1 1 0 . . .

1 0
. . . 0

...
...

. . . 1
1 0 . . . 0

∣∣∣∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣∣∣∣

1 1 0 . . .

1 0
. . . 0

...
...

. . . 1
r0 r1 . . . rd−1

∣∣∣∣∣∣∣∣∣∣

= (−1)d+1rd − det(Md−1).

Since det(M1) = −r0 + r1 and det(M2) = −r2 − (−r0 + r1) = r0 − r1 − r2, we get
det(Md) = (−1)dr0 + (−1)d+1(r1 + · · · + rd) = (−1)d(r0 − r1 − · · · − rd). This
determinant is non zero as long as r0 �= ∑d

j=1 r j .
Now we compute the inverse of matrix Md by a direct inversion.

(
1d Id
r0 r

) (
a′ b
C d

)
=

(
Id 0
0′ 1

)
⇔

⎧
⎪⎪⎨

⎪⎪⎩

1da′ + IdC = Id
b1d + Idd = 0
r0a′ + rC = 0′
br0 + rd = 1

⇔

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C = Id − 1
−r0+r1d

1d r
d = 1

−r0+r1d
1d

a′ = r
−r0+r1d

b = −1
−r0+r1d

Let us check the inverse of Md

(
1d Id
r0 r

)(
r

−r0+r1d
−1

−r0+r1d
Id − 1d r−r0+r1d

1d−r0+r1d

)

=
(

1d r−r0+r1d
+ Id − 1d r−r0+r1d

−1d−r0+r1d
+ 1d−r0+r1d

r0
r

−r0+r1d
+ r − r1d r−r0+r1d

−r0−r0+r1d
+ r1d−r0+r1d

)

=
(
Id 0
0 1

)
.

So as long as r0 �= ∑d
j=1 r j

ϑ̂n =
(

r
−r0+r1d

−1
−r0+r1d

Id − 1d r−r0+r1d
1d−r0+r1d

)(
g(Ȳ)

0

)
=

(
r g(Ȳ)

−r0+r1d

g(Ȳ) − 1d
r g(Ȳ)

−r0+r1d

)
.
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In an other way, the system (24) is equivalent to

(Q′, R′)
(
Q
R

)
ϑ = Q′g(Ȳ),

and for (Q R) of full rank, the matrix (Q′ Q+ R′R) is invertible and ϑ = (Q′ Q+
R′R)−1Q′g(Ȳ). ��

Examples—Choice of the contrast vector R

1. Taking r0 = 1, r = 0 leads to −r0 + r1d = −1 ⇒ ϑ̂n =
(

0
g(Ȳ)

)
.

2. Taking r0 = 0, r = (1, 0) leads to

−r0 + r1d = 1 ⇒ ϑ̂n =

⎛

⎜⎜⎜⎜⎜⎜⎝

g(Ȳ (1)
n )

0
g(Ȳ (2)

n ) − g(Ȳ (1)
n )

...

g(Ȳ (d)
n ) − g(Ȳ (1)

n ))

⎞

⎟⎟⎟⎟⎟⎟⎠
.

3. Taking r0 = 0, r = 1 leads to

−r0 + r1d = d ⇒ ϑ̂n =

⎛

⎜⎜⎜⎝

g(Ȳ)

g(Ȳ (1)
n ) − g(Ȳ)

. . .

g(Ȳ (d)
n ) − g(Ȳ)

⎞

⎟⎟⎟⎠ , with g(Ȳ) = 1

d

d∑

j=1

g(Y
( j)
n ).

Proof of Remark 3.4 We have to solve the system

S(ϑ) = 0 ⇔
n∑

i=1

�′(η)
(
yi − b′ ◦ �(η)

) = 0.

If � is injective, the system simplifies to

n∑

i=1

yi − nb′ ◦ (b′)−1 ◦ g−1(η) = 0 ⇔ η = g
(
yn

) ⇔ θ = g
(
yn

)
.

��
Proof of Remark 3.5 Let Yi from the exponential family Fexp(a, b, c, λ, φ). It is well
known, that the moment generating function of Yi is

EetYi = exp

(
b(λ + ta(φ)) − b(λ)

a(φ)

)
.
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Hence, the moment generating function of the average Ym is

MYm
(t) =

(
exp

(
b(λ + t

m a(φ)) − b(λ)

a(φ)

))m

= exp

(
b(λ + ta(φ)/m) − b(λ)

a(φ)/m

)
.

So we get back to a known result that Ym belongs to the exponential family Fexp(x �→
a(x)/m, b, c, λ, φ) (e.g. McCullagh and Nelder 1989).

In our setting, random variables in the average Y
( j)
n are i.i.d. with functions a, b, c

and parameters λ = �(ϑ(1) + ϑ( j)) and φ. And Y
( j)
n also belongs to the exponential

family with the same parameter but with the function ā : x �→ a(x)/m j . In particular,

EY
( j)
n = b′(�(ϑ(1) + ϑ( j))) = g−1(ϑ(1) + ϑ( j)), VarY

( j)
n = a(φ)

m j
b′′(�(ϑ(1) + ϑ( j))).

But the computation of Eg(Y
( j)
n ) remains difficult unless g is a linear function. By the

strong law of large numbers, as m j → +∞, the estimator is consistent since

Y
( j)
n

a.s.−→
n→+∞ g−1(ϑ(1) + ϑ( j)) ⇒ g(Y

( j)
n )

a.s.−→
n→+∞ g(g−1(ϑ(1) + ϑ( j))) = ϑ(1) + ϑ( j).

By the Central Limit Theorem (i.e. Y
( j)
n converges in distribution to a normal distri-

bution) and using the Delta Method, we obtain that the following

√
m j

(
g(Y

( j)
n ) − ϑ(1) + ϑ( j)

) L−→
n→+∞

N
(
0, a(φ)b′′(�(ϑ(1) + ϑ( j)))g

′(g−1(ϑ(1) + ϑ( j)))
2
)

.

��

Proof of Corollaries 3.1 The log likelihood of ϑ̂n is defined by

log L(ϑ̂n | y) = 1

a(φ)

n∑

i=1

(yi�(̂ηi ) − b(�(̂ηi ))) +
n∑

i=1

c(yi , φ).

In fact, we must be verified than �(̂ηi ) does not depend on g function. If we consider
ϑ̂n defined by (8), we have Qϑ̂n = g( ȳ) , since ϑ̂n is solution of the system (23), i.e.
Q(Q′ Q + R′R)−1Q′ = I Using η̂i = (Qϑ̂n) j for i such that x (2), j

i = 1 we obtain

�(̂ηi ) =
d∑

j=1

� ◦ g(ȳ( j)
n )x (2), j

i =
d∑

j=1

� ◦ �−1 ◦ (b′)−1(ȳ( j)
n )x (2), j

i =
d∑

j=1

(b′)−1(ȳ( j)
n )x (2), j

i ,
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and

log L(ϑ̂n | y) = 1

a(φ)

d∑

j=1

∑

i,x (2)
i =v j

(
yi (b

′)−1
(
y( j)
n

)
− b

((
b′)−1

(
y( j)
n

)))
+

n∑

i=1

c(yi , φ).

In the same way,

ÊYi = b′(�(̂ηi )) =
d∑

j=1

ȳ( j)
n x (2), j

i , V̂arYi = a(φ)b′′(�(̂ηi ))

= a(φ)

d∑

j=1

b′′ ◦ (b′)−1(ȳ( j)
n )x (2), j

i .

��

A.2 Proof for the two-variable case

Proof of Theorem 3.2 The system S(ϑ) = 0 is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑

i=1

�′(ηi )
(
yi − b′ ◦ �(ηi )

) = 0

n∑

i=1

x (3),l
i �′(ηi )

(
yi − b′ ◦ �(ηi )

) = 0, ∀l ∈ L

n∑

i=1

x (2),k
i �′(ηi )

(
yi − b′ ◦ �(ηi )

) = 0, ∀k ∈ K

n∑

i=1

xkli �′(ηi )
(
yi − b′ ◦ �(ηi )

) = 0, ∀(k, l) ∈ K L	.

that is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

(k,l)∈K L	

�′(ϑ(1) + ϑ(2),k + ϑ(3),l + ϑkl )

(
n∑

i=1

x (k,l)
i yi − mk,l b

′ ◦ �(ϑ(1) + ϑ(2),k + ϑ(3),l + ϑkl )

)
= 0

∑

k∈K 	
l

�′(ϑ(1) + ϑ(2),k + ϑ(3),l + ϑkl )

(
n∑

i=1

x (k,l)
i yi − mk,l b

′ ◦ �(ϑ(1) + ϑ(2),k + ϑ(3),l + ϑkl )

)
= 0 ∀l ∈ L

∑

l∈L	
k

�′(ϑ(1) + ϑ(2),k + ϑ(3),l + ϑkl )

(
n∑

i=1

x (k,l)
i yi − mk,l b

′ ◦ �(ϑ(1) + ϑ(2),k + ϑ(3),l + ϑkl )

)
= 0 ∀k ∈ K

�′(ϑ(1) + ϑ(2),k + ϑ(3),l + ϑkl )

(
n∑

i=1

x (k,l)
i yi − mk,l b

′ ◦ �(ϑ(1) + ϑ(2),k + ϑ(3),l + ϑkl )

)
= 0 ∀(k, l) ∈ K L	.
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The system have exactly 1 + d2 + d3 redundancies, and S(ϑ) = 0 reduces to

�′(ϑ(1) + ϑ(2),k + ϑ(3),l + ϑkl)

(
n∑

i=1

x (k,l)
i yi − mk,lb

′ ◦ �(ϑ(1) + ϑ(2),k

+ϑ(3),l + ϑkl)

)
= 0 ∀(k, l) ∈ KL	.

Hence the system has rank KL	 and if Yi takes values in Y ⊂ b′(Λ), and � injective,
we have

ϑ(1) + ϑ(2),k + ϑ(3),l + ϑkl = g(Ȳ (k,l)
n ) ∀(k, l) ∈ K L	.

In the same way of proof of Theorem 3.1, we have to solve

{
Qϑ = g(Ȳ)

Rϑ = 0.
(25)

that is, because QQ′ + RR′ is full rank, in the same way of proof of Theorem 3.1

ϑ = (Q′ Q + R′R)−1Q′g(Ȳ).

In that case, the MLE solves a least square problem with response variable g(Ȳ),
explanatory variable Q under a linear constraint R.

1. Under linear contrasts (C̃0), the model (10) is equivalent to model (6) with J =
K L	 modalities. Hence the solution is evident.

2. Under linear contrasts (C̃Σ ), the system

ϑ(1) + ϑ(2),k + ϑ(3),l + ϑkl = g(Ȳ (k,l)
n ) ∀(k, l) ∈ K L	

implies that

∑

(k,l)∈K L	

mk,l(ϑ(1) + ϑ(2),k + ϑ(3),l + ϑkl) =
∑

(k,l)∈K L	

mk,l g(Ȳ
(k,l)
n ).

123



720 A. Brouste et al.

Using

∑

(k,l)∈K L	

mk,l = n,
∑

(k,l)∈K L	

mk,lϑ(2),k =
∑

k∈K

∑

l∈L	
k

mk,lϑ(2),k

=
∑

k∈K
m(2)

k ϑ(2),k = 0,

∑

(k,l)∈K L	

mk,lϑ(3),l =
∑

l∈L

∑

k∈K 	
l

mk,lϑ(3),l =
∑

l∈L
m(3)

l ϑ(3),l = 0,

∑

(k,l)∈K L	

mk,lϑkl = 0,

we get ϑ(1) = 1

n

∑
(k,l)∈K L	

mk,l g(Ȳ
(k,l)
n ). In the same way, taking summation

over K 	
l for l ∈ L and over L	

k for k ∈ K , we found ϑ(2),k and ϑ(3),l , and then ϑkl .

With main effect only, the system S(ϑ) = 0 is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑

i=1

�′(ηi )yi =
n∑

i=1

g−1(ηi )�
′(ηi )

n∑

i=1

x (3),l
i �′(ηi )yi =

n∑

i=1

x (3),l
i g−1(ηi )�

′(ηi ) ∀l ∈ L

n∑

i=1

x (2),k
i �′(ηi )yi =

n∑

i=1

x (2),k
i g−1(ηi )�

′(ηi ), ∀k ∈ K

There are 1 + d2 + d3 equations for 1 + d2 + d3 parameters, but each explanatory
variable are colinear. So, the two additional constraints Rϑ = 0 ensures that a solution
exist for the remaining d2 + d3 − 1 parameters. Using

∑
k x

(2),k
i = 1, the second set

of equations becomes ∀l ∈ L

∑

k∈K
�′(ϑ(1) + ϑ(2),k + ϑ(3),l)ȳ

(k,l)
n mk,l

=
∑

k∈K
g−1(ϑ(1) + ϑ(2),k + ϑ(3),l)�

′(ϑ(1) + ϑ(2),k + ϑ(3),l)mk,l

Similarly, the third set of equations becomes ∀k ∈ K

∑

l∈L
�′(ϑ(1) + ϑ(2),k + ϑ(3),l)ȳ

(k,l)
n mk,l

=
∑

l∈L
g−1(ϑ(1) + ϑ(2),k + ϑ(3),l)�

′(ϑ(1) + ϑ(2),k + ϑ(3),l)mk,l

Even with a canonical link �(x) = x so that �′(x) = 1, this system is not a least-square
problem for a nonlinear g function. ��
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B Calculus of the Log-likelihoods appearing in Sects. 4 and 5

Consider the Pareto GLM described on (13) and (15). The b function is b(λ) =
− log(λ), using corollary 3.1 we have �(η̂i ) = (b′)−1(z( j)n ) = −(z( j)n )−1 for j such
that x (2), j

i = 1 and

log L(ϑ̂n | z) =
d∑

j=1

∑

i,x (2), j
i =1

(
zi/z

( j)
n − log

(
−z( j)n

))
= n −

d∑

j=1

m j log
(
−z( j)n

)
.

Compute the original log likelihood of Pareto 1 distribution:

log L(ϑ | y) =
n∑

i=1

(
log �(ηi ) + �(ηi ) logμ − (�(ηi ) + 1) log yi

)
.

Hence with zi = − log(yi/μ),

log L(ϑ̂n | y) =
d∑

j=1

∑

i,x (2), j
i =1

(
− log(−z( j)n ) − logμ

z( j)n

+ log(yi )

z( j)n

− log yi

)

= n −
d∑

j=1

m j log(−z( j)n ) −
n∑

i=1

log yi = log L(ϑ̂n | z) −
n∑

i=1

log yi .

Now consider the shifted log-normal GLM described on (18) and (19). Here, the b
function is b(λ) = λ2/2, hence using Corollary 3.1, we have �(η̂i ) = (b′)−1(z( j)n ) =
z( j)n for j such that x (2), j

i = 1 and Eq. (21) holds.
Let us compute the original log likelihood of the shifted log normal distribution:

log L(ϑ | y) =
n∑

i=1

(
− log(xi − μ) − log(

√
2πφ) − (log(xi − μ) − �(ηi ))

2

2φ

)

= −
n∑

i=1

zi − n log(
√
2πφ) −

n∑

i=1

(zi − �(ηi ))
2

2φ
,

with zi = log(yi − μ). Hence

log L(ϑ̂ | y) = −
n∑

i=1

zi − n log(
√
2πφ) − 1

2φ

d∑

j=1

∑

i,x (2), j
i =1

(zi − z( j)n )2.

Using φ̂ = 1
n

∑
j∈J

∑
i,x (2), j

i =1

(
zi − z̄( j)n

)2
leads to the desired result.
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C Link functions and descriptive statistics

See Fig. 4 and Table 10.
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Fig. 4 Graphs of link functions
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