
Computational Statistics (2020) 35:755–773
https://doi.org/10.1007/s00180-019-00910-1

ORIG INAL PAPER

Multiple linear regression models for random intervals:
a set arithmetic approach

Marta García-Bárzana1 · Ana Belén Ramos-Guajardo2 · Ana Colubi3 ·
Erricos J. Kontoghiorghes4

Received: 13 February 2019 / Accepted: 22 June 2019 / Published online: 27 June 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Some regression models for analyzing relationships between random intervals
(i.e., random variables taking intervals as outcomes) are presented. The proposed
approaches are extensions of previous existing models and they account for cross rela-
tionships betweenmidpoints and spreads (or radii) of the intervals in a unique equation
based on the interval arithmetic. The estimation problem, which can be written as a
constrained minimization problem, is theoretically analyzed and empirically tested.
In addition, numerically stable general expressions of the estimators are provided.
The main differences between the new and the existing methods are highlighted in a
real-life application, where it is shown that the new model provides the most accurate
results by preserving the coherency with the interval nature of the data.
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1 Introduction

The statistical treatment of interval-valued data has been extensively considered in
the last years, as it appears in multiple experimental scenarios. Sometimes a real
random variable is imprecisely observed, so that the experimental data are recorded
as the real intervals which may contain the precise values of the variable in each
individual (see, for instance, Jahanshahloo et al. 2008; Lauro and Palumbo 2005; Park
et al. 2016). Censoring and grouping processes also produce intervals (see Boruvka
and Cook 2015; Černý and Rada 2011; Yu et al. 2014; Zhang 2009, among others).
Symbolic data analysis (SDA) considers intervals for summarizing information stored
in large data sets, as in Billard and Diday (2000), Lima Neto and De Carvalho (2010),
and Lima Neto and Dos Anjos (2015). Additionally, essentially interval experimental
data can be obtained. This is the case of fluctuations, ranges of values (in the sense
of the range of variation between a minimum and a maximum of a magnitude on
a certain period of time) or subjective perceptions; some examples can be found in
Diamond (1990), D’Urso and Giordani (2004), González-Rodríguez et al. (2007),
Ramos-Guajardo et al. (2014) and Ramos-Guajardo and Grzegorzewski (2016). This
work focuses on this latter approach and its aim is to develop new regression models
for the random intervals, also called interval-valued variables, which are the random
elements modelling the experiment on target.

Several alternatives have been previously proposed to face linear regression prob-
lems for interval-valued data. Separate models for the center points of the intervals
(formally called midpoints) and their radii (formally called spreads) can be used, but
in this case the non-negativity constraints satisfied by the spread variables preclude of
treating the problem within the context of classical linear regression (D’Urso 2003;
Lima Neto and De Carvalho 2010). Thus, although the usual fitting techniques are
used, the associated inferences are no longer valid. In a different context, possibilis-
tic regression models are considered Boukezzoula et al. (2011) and Černý and Rada
(2011), when the intervals represent the imprecision in the measurement of real val-
ues, and this imprecision is transferred to the regression model and its estimators.
Finally, the set arithmetic-based approach consists in the formalization of a linear
relationship between random intervals associated with a given probability space in
terms of the interval arithmetic. Thus, the estimators of such coefficients can be inter-
preted in the classical sense (Blanco-Fernández et al. 2011, 2013; Diamond 1990;
González-Rodríguez et al. 2007).

The aim of this work is to extend the models above based on the interval arithmetic
to a more general framework by proposing several multiple regression models. Thus,
extensions for the simple linear regression models within the framework of the works
in Blanco-Fernández et al. (2011) and González-Rodríguez et al. (2007) are twofold
investigated. On one hand, whereas the previous regression models relate the response
midpoints (respectively spreads) by means of the explanatory midpoints (respectively
spreads), the newmodel is able to accommodate cross-relationships betweenmidpoints
and spreads in a unique equation based on the set arithmetic. As the model in Blanco-
Fernández et al. (2011), the new one is based on the so-called canonical decomposition
of the intervals. In addition, the model in Blanco-Fernández et al. (2011) is considered
to be more flexible than previous works since it takes into account possible interval-
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valued disturbances and it is less restrictive than previous existing models whereas the
new work is even more flexible since it allows to analyze new relationships between
the involved variables.

On the other hand, due to the essential differences of the model in González-
Rodríguez et al. (2007) and those based on the canonical decomposition, multiple
regression models allowing several explanatory variables to model the response are
formalized. The least-squares (LS) estimation problems associated with the proposed
regressionmodels are solved evenwhen themultiple linear regression problem ismore
difficult to handle than the simple one as it happens in the real framework.

Some empirical results and a real-life application are presented in order to show
the applicability and the differences among the proposed models. Specifically, the
relationship between the daily fluctuations of the systolic and diastolic blood pressures
and the pulse rate over a sample of patients in a hospital of Asturias, in the north of
Spain, has been analyzed. This real-life example has been previously considered in
Blanco-Fernández et al. (2011), Gil et al. (2007) andGonzález-Rodríguez et al. (2007),
and the dataset including theminima andmaxima of the corresponding intervals can be
directly downloaded from http://bellman.ciencias.uniovi.es/SMIRE/Hospital.html.

The rest of the paper is organized as follows: In Sect. 2 preliminaries concerning
the interval framework are presented and some previous linear models for intervals are
revised. Extensions of those linear models are introduced in Sect. 3. The least-squares
estimation problem is analyzed and numerically stable expressions are derived. In
Sect. 4 the empirical performance and the practical applicability of the models are
shown and compared with existing techniques through some simulation studies and
real-life examples. Section 5 includes some conclusions and future directions.

2 Preliminaries

The considered interval experimental data are elements belonging to the space
Kc(R) = {[a1, a2] : a1, a2 ∈ R, a1 ≤ a2}. Each interval A ∈ Kc(R) can be
parametrized in terms of its midpoint, midA = (sup A + inf A)/2, and its spread,
sprA = (sup A− inf A)/2. The notation A = [midA±sprA]will be used. An alterna-
tive representation for intervals is the so-called canonical decomposition, introduced
in Blanco-Fernández et al. (2011), given by A = midA[1±0]+sprA[0±1]. It allows
the consideration of the mid and spr components of A separately within the interval
arithmetic. The Minkowski addition and the product by scalars constitute the natural
arithmetic onKc(R). In terms of the (mid, spr)-representation these operations can be
jointly expressed as

A + λB = [(midA + λmidB) ± (sprA + |λ| sprB)]

for any A, B ∈ Kc(R) andλ ∈ R. The space (Kc(R),+, ·p) is not linear but semilinear
(or conical), due to the lack of symmetric element with respect to the addition. If C
verifying that A = B +C exists, then C is called the Hukahara difference (A −H B)

between the pair of intervals A and B. The interval C exists iff sprB ≤ sprA (see
Blanco-Fernández et al. 2011, for details).
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For every A, B ∈ Kc(R), an L2-type generic metric has been introduced in

Trutschnig et al. (2009) as dθ (A, B) = ((midA − midB)2 + θ (sprA − sprB)2)
1
2 ,

for an arbitrary θ ∈ (0,∞) which measures the importance given to the spreads in
relation to the one given to the midpoints. The value θ = 1/3 is often considered as
the natural election, because it corresponds to compute and weigh uniformly all the
differences between the points of the intervals.

Given a probability space (Ω,A, P), the mapping x: Ω → Kc(R) is a random
interval (or an interval-valued variable) iff mid x, spr x: Ω → R are real random
variables and spr x ≥ 0. Random intervals will be denoted with bold lowercase letters,
x, random interval-valued vectors by non-bold lowercase letters, x , and interval-valued
matrices with uppercase letters, X .

The expected value of x is defined in terms of the well-known Aumann expecta-
tion for intervals. It can be expressed as E(x) = [E(midx) ± E(sprx)]. It exists and
E(x) ∈ Kc(R) iff midx and sprx ∈ L1(Ω,A, P). The variance of x can be defined
as the usual Fréchet variance (Näther 1997) associated with the Aumann expecta-
tion in the metric space (Kc(R), dθ ), i.e. σ 2

x = E(d2θ (x, E(x))), whenever midx and
sprx ∈ L2(Ω,A, P). However, the conical structure of the space Kc(R) entails some
differences while trying to define the usual covariance (Körner 1997). In terms of
the dθ -metric it has the expression σx,y = σmid x,midy + θσspr x,spry, whenever those
classical covariances exist. The expression Cov(x, y) denotes the covariance matrix
between two random interval-valued vectors x = (x1, . . . , xk) and y = (y1, . . . , yk).

Several linear regression models for intervals based on the set arithmetic have been
previously considered. They are briefly recalled and a comparison study with the new
approach is addressed in Sect. 4. The basic simple linear model proposed in González-
Rodríguez et al. (2007) is formalized as y = bx + ε with b ∈ R and ε : Ω → Kc(R)

being an interval-valued random error such that E[ε|x] = Δ ∈ Kc(R). It only involves
one regression parameter to model the dependency between the variables and thus,
it induces quite restrictive separate models for the mid and spr components of the
intervals. Namely, mid y = bmid x + mid ε and spry = |b|spr x + spr ε.

A more flexible linear model, called model M, has been introduced in Blanco-
Fernández et al. (2011). It is defined in terms of the canonical decomposition as
follows:

y = b1mid x [1 ± 0] + b2spr x [0 ± 1] + γ [1 ± 0] + ε, (1)

where b1, b2 ∈ R are the regression coefficients, γ ∈ R is an intercept term influencing
the mid component of y and ε is a random interval error satisfying that E[ε|x] =
[−δ, δ], with δ ≥ 0. From (1) the linear relationships mid y = b1mid x + γ + mid ε

and spry = |b2|spr x + spr ε are transferred, where b1 and b2 may be different. The
least-squares estimation leads to analytic expressions of the regression parameters
of model M (see Blanco-Fernández et al. 2011). Specifically, the expressions for the
regression estimators of model M are the following ones:

̂b1 = σ̂mid x,mid y

σ̂ 2
mid x

and ̂b2 = min

{

ŝ0,max

{

0,
σ̂spr x,spr y

σ̂ 2
spr x

}}

,
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where ŝ0 = min{spr yi/spr xi : spr xi �= 0}. In addition, the strong consistency of the
previous estimators is also proven in that work.

Given a sample data set of intervals it is also possible to fit the separate models
for the mid and the spr components, as previously proposed in Lima Neto and De
Carvalho (2010) and references therein. Alternatively, D’Urso (2003) presents sev-
eral linear regression models for the so-called LR fuzzy numbers and therefore also
for the particular case of intervals. In this case, possible cross-relationships between
midpoints and spreads of the intervals are considered. It is important to observe that
these approaches are different from the set arithmetic-based one from the statistical
basis. They are considered from a descriptive point of view, since no probabilistic
assumptions on the random intervals are established. Thus, it may be infeasible to
study statistical properties of the estimators and inferential studies in this setting. For
instance, since the independence or the uncorrelation of the regressor and the error
term are not guaranteed, a problem of model identification may appear. As a conclu-
sion, although the proposed estimation for these separate models offers an alternative
to find a linear fitting on the available data set of intervals, the solutions to these prob-
lems cannot be identified with those of the theoretical linear models based on interval
arithmetic.

3 Amultiple flexible linear model: model MG

Anovel multiple linear regressionmodel for intervals is presented. It arises as a natural
extension of the model M developed in Blanco-Fernández et al. (2011) both into the
multiple case and into a more flexible scenario.

3.1 Populationmodel

Let y be a response random interval and let x1, x2, . . . , xk be k explanatory random
intervals. It is assumed that the real-valued randomvariablesmid and spread associated
with all the random intervals are not degenerated, the considered random intervals
have finite and strictly positive variance and the var–cov matrix of the explanatory
variables is invertible. The set arithmetic-based multiple flexible linear regression
model, denoted by MG , is formalized as follows:

y = [(b1 midxt + b4 sprx
t ) ± (b2 sprx

t + b3 |midxt |)] + ε (2)

where b1, b4 ∈ R
k , b2, b3 ∈ R

k+
, mid x = (mid x1,mid x2, . . . ,mid xk)t ∈ R

k

(analogously spr x), and ε is a random interval-valued error such that E(ε|x) = Δ ∈
Kc(R). From this condition, it is straightforward to see that x an ε are uncorrelated,
i.e. σε,xi = 0, for all i = 1, . . . , k. The separate linear relationships for the mid and
spr components of the intervals transferred from (2) are

mid y = mid xt b1 + spr xt b4 + mid ε, (3a)

spr y = spr xt b2 + |mid xt | b3 + spr ε. (3b)
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Thus, both variables mid y and spr y are modelled from the complete information
provided by the independent random intervals in x, characterized by the random vector
(midx, sprx). An immediate conclusion from this property is that model MG allows
more flexibility on the possible linear relationship between the random intervals than
the preceding set arithmetic-basedmodels. However, the inclusion ofmore coefficients
increases the difficulty of the estimation process, as happens in classical regression
problems.

For a simpler notation, let us define the intervals xM = [mid xt ,mid xt ], x S =
[− spr xt , spr xt ], xC = [− |mid xt |, |mid xt |] and x R = [spr xt , spr xt ]. Thus, the
model MG is equivalently expressed in matrix notation as

y = XBl B + ε, (4)

where XBl = (xM |x S|xC |x R) ∈ Kc(R)1×4k and B = (b1|b2|b3|b4)t . The associated
regression function is E(y|x1 = x1, . . . , xk = xk) = XBl B + Δ.

Let {(y j , x1, j , . . . , xk, j
)}nj=1 be a simple random sample obtained from the random

intervals (y, x1, . . . , xk). Then,

y = XeBl B + ε,

where y = (y1, . . . , yn)
t , XeBl = (XM |XS|XC |X R) ∈ Kc(R)n×4k , B as in (4) and

ε = (ε1, . . . , εn)
t is such that E(ε|x) = 1nΔ. XM is the (n × k)-interval-valued

matrix such that (XM ) j,i = [mid xi, j ,mid xi, j ] (analogously XS , XC and X R).

3.2 Least squares estimation of themodel

The least squares estimation (LS estimation, for short) searches for ̂B and ̂Δ min-
imizing d2θ (y, XeBl A + 1nC) for A ∈ R

4k×1, C ∈ Kc(R) and guaranteeing the
existence of the residuals ε = y −H XeBl A. It is easy to see that spr(XeBl A) =
spr X a2 + |mid X | a3, (with (mid X) j,i = mid xi, j , and analogously spr X ) so that
the following conditions are to be included in the minimization problem:

spr X a2 + |mid X | a3 ≤ spr y. (5)

Analogously to what happens in classical regression, the estimate of the (interval-
valued) intercept term Δ can be firstly obtained. If ̂B verifies (5), then the minimum
value of d2θ (y, XeBl

̂B + 1nC) over C ∈ Kc(R) is attained at

̂Δ = y −H XeBl̂B . (6)

As a result, the LS estimate of the regression parameter B is obtained byminimizing

d2θ (y −H XeBl A, y −H XeBl A)

subject to

spr X a2 + |mid X | a3 ≤ spr y (7)

123



Multiple linear regression models for random intervals… 761

with A = (a1|a2|a3|a4) such that a1, a4 ∈ R
k and a2, a3 ∈ R

k+
.

Proposition 1 The least-squares estimators of the pairs of regression parameters
(b1, b4) and (b2, b3) in (2) are

(̂b1,̂b4) = (Ft
m Fm)−1Ft

m vm

and

(̂b2,̂b3) = (Ft
s Fs)

−1 (Ft
s vs − Dt λ),

respectively, where vm = midy − mid y1n ∈ R
n, vs = spry − spr y1n ∈ R

n,
Fm = midXeBl − 1n(midXeBl) ∈ R

n×2k , Fs = sprXeBl − 1n(sprXeBl) ∈ R
n×2k ,

midXeBl = (midX , sprX) ∈ R
n×2k , sprXeBl = (sprX , |midX |) ∈ R

n×2k , D =
(

− I2k , spr XeBl
)t ∈ R

(2k+n)×2k and λ ∈ R
2k+n is the vector minimizing the Linear

Complementary problem in (9).

Proof The problem (7) is solved by transforming it to an equivalent quadratic opti-
mization problem, as follows:

min
Am∈ R2k , As∈ Γ

‖vm − Fm Am‖2 + θ ‖vs − Fs As‖2

Γ = {As ∈ R
2k : D As ≤ d} (8)

being Am = (a1|a4)t ∈ R
2k×1, As = (a2|a3)t ∈ R

2k×1 and d =
(

02k , spry
)t ∈

R
(2k+n)×1.
This problem can be solved separately for Am and As . On one hand, (̂b1,̂b4) derives

directly from theminimization of the unconstrained quadratic form ‖vm−Fm Am‖2 for
Am ∈ R

2k . On the other hand, the minimization problem ‖vs − Fs As‖2 over As ∈ Γ

admits the following equivalent formulation

min
1

2
At
s H As − ct As

s.t . DAs ≤ d

being H = Ft
s Fs ∈ R

2k×2k and c = Ft
s vs ∈ R

2k×1. This problem has the structure
of a linear complementary problem (LCP), since it can be expressed as

ω = M λ + q

s.t .ω, λ ≥ 0 , ω jλ j = 0 , j = 1, . . . , n + 1 , (9)

with M = D H−1 Dt and q = d−D H−1 c. Lemke’s or Dantzig–Cottle’s algorithms
can be used to obtain by an iterative process the value λ minimizing the LCP (see
Lemke 1962; Liew 1976 for further details). Once λ is computed, the close form of
the solution in (8) is (̂b2,̂b3) = H−1 (c − Dt λ). 	
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The previous estimator based on Lemke’s method has a computational complexity
of an O((2k+n)3) ∼ O(n3), as the number of observations n is usually much greater
than the number of variables k.

Moreover, observe that (̂b1,̂b4) coincides with the ordinary least squares (OLS)
estimator of the classical multiple regression model (3a). Therefore, it is guaranteed
that it is an unbiased, consistent and efficient estimator of the vector of regres-

sion coefficients (b1, b4), i.e. E(̂b1,̂b4) = (b1, b4), (̂b1,̂b4)
n→∞−→ (b1, b4), and

Var(̂b1,̂b4)
n→∞−→ 0. Besides, the analytic expression of its standard error is

se(̂b1,̂b4) =
(

√

σ 2(Ft
m Fm)−1

11 ,

√

σ 2(Ft
m Fm)−1

22

)

.

The result is immediate from the Gauss–Markov Theorem (Johnston 1972). The
availability of a closed form of the estimator (̂b2,̂b3) greatly benefits the development
of further statistical studies on the linear model, as inferences, linear independence,
etc. Nonetheless, as the computation of λ is done in an iterative way this entails
some computational costs difficulties to develop inferences for (̂b2,̂b3). Therefore, an
alternative estimator for the constrained parameters (b2, b3), calledminimum-distance
estimator,̂bmin , is introduced. It is computed by following Algorithm 1:

Algorithm 1: The minimum distance estimator̂b
min

1. Compute the Ordinary Least Squares estimate as in Proposition 3.1, i.e.,

̂bOLS = (Ft
s Fs)

−1Ft
s vs

2. In order to fulfill the non-negativity constraints, compute the non-negative OLS

̂b∗ = max
{

0,̂bOLS
}

3. Find the vector̂bmin = (̂bmin
1 ,̂bmin

2 ) that minimizes

argmin
b∈Γ

‖̂b∗ − b‖2

The goal is to find the closest point within the feasible region to the non-negative
OLS,̂b∗ = (̂b∗

2,
̂b∗
3).

The procedure to solve the minimization problem in Step 3 of Algorithm 1 is
open. Nonetheless, since the goal is to minimize a norm subject to some inequality
constraints, it is possible to use quadratic programming procedures, applying KKT
conditions and using a numerical method. The numerical method applied here is the
Matlab 2015b code lsqlin.m, based on an active-set method, and ensuring the finding
of a global minimum in a finite number of steps. This two-step algorithm consists of
an initial phase devoted to compute a feasible point (if it exists) and a second phase
generating an iterative sequence of feasible points that converge to the solution (Gillis
2012).Besides, the computational complexity is known to be polynomial to the number
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of variables and the number of observations as an O(n (2k)3), which compared to the
computational complexity of the previous estimator in Proposition 1, O(n3), is much
lower whenever the number of observations is greater than the number of variables.

Theorem 1 Under the conditions of Model 3.3, (̂bmin
2 ,̂bmin

3 ) is a consistent estimator,

i.e., (̂bmin
2 ,̂bmin

3 )
n→∞−→ (b2, b3) a.s.-[P].

Proof Since (b2, b3) ∈ Γ , by definition, the distance between (̂b∗
2,

̂b∗
3) with (b2, b3)

is always greater than or equal to the distance between (̂b∗
2,

̂b∗
3) with its closest point

within such region, i.e., (̂bmin
2 ,̂bmin

3 ). That is,

‖(̂b∗
2,

̂b∗
3) − (̂bmin

2 ,̂bmin
3 )‖2 ≤ ‖(̂b∗

2,
̂b∗
3) − (b2, b3)‖2. (10)

The consistency of (̂b∗
2,

̂b∗
3) to (b2, b3) is proven as follows:

(̂b∗
2,

̂b∗
3) = max{0, (Ft

s Fs)
−1Ft

s vs}

can be equivalently expressed as

(̂b∗
2,

̂b∗
3) = max{0,Cov(Fs, Fs)−1Cov(vs, Fs)}.

It is well known that

(b2, b3) = Cov( fs, fs)
−1Cov(vs, fs),

where fs = sprXBl − 1n E(sprXBl).
Since (b2, b3) ≥ 0, thenCov(vs, fs) ≥ 0. It iswell-known the strong consistency of

sprXeBl to sprXBl and thus it is also the consistency of Cov(Fs, Fs) and Cov(vs, Fs)
towards its populational values, Cov( fs, fs) and Cov(vs, fs), respectively. Besides,
since the maximum is a continuous function, by applying the Continuous Mapping
Theorem it holds that

(̂b∗
2,

̂b∗
3) = max{0,Cov(Fs, Fs)−1Cov(vs, Fs)}

and

max{0,Cov( fs, fs)
−1Cov(vs, fs)} = Cov( fs, fs)

−1Cov(vs, fs) = (b2, b3),

so that

(̂b∗
2,

̂b∗
3)

n→∞−−−→ (b2, b3) a.s. − [P].

Thus, combining (10) with the consistency of (̂b∗
2,

̂b∗
3) to (b2, b3) it is obtained

that ‖(̂b∗
2,

̂b∗
3) − (̂bmin

2 ,̂bmin
3 )‖2 n→∞−−−→ 0 a.s.-[P], which proves the consistency of

(̂bmin
2 ,̂bmin

3 ) to (b2, b3). 	
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Analytic expressions for the expectation and the standard error of the minimum-
distance estimator are difficult to obtain. In Efron and Tibshirani (1993) it is proposed
a bootstrap algorithm to estimate these moments. Applied to (̂b2,̂b3), which is how
(̂bmin

2 ,̂bmin
3 ) is denoted from now on, it is summarized as follows:

Algorithm 2: Bootstrap estimation of E(̂bl ) and se(̂bl ), for l = 2, 3.
Let {(y j , x1, j , . . . , xk, j )}nj=1 be a simple random sample from the random intervals
(y, x1, . . . , xk) and let T ∈ N be large enough.

1. Obtain T bootstrap samples of size n, {(yBj , xB1, j , . . . , xBk, j )}nj=1, by re-sampling
uniformly and with replacement from the original sample.

2. Compute the bootstrap replica of the regression estimator,̂bB(t)
l , t = 1, . . . , T .

3. Estimate the mean and the standard error of̂bl by the sample mean and the sample
deviation of {̂bB(t)

l }Tt=1, i.e.

̂E(̂bl) = ̂bBl =
∑T

t=1
̂bB(t)
l

T
, and

ŝe(̂bl) =

√

√

√

√

∑T
t=1

(

̂bB(t)
l −̂bBl

)2

T − 1
.

It is shown in Efron and Tibshirani (1993) that a number of bootstrap iterations
T between 25 and 200 of the algorithm generally provides good approximations. In
Sect. 4 some practical and simulated results are shown.

It is possible to obtain more numerically stable expressions for the estimators by
applying the QR decomposition (see Golub and Van Loan 1996) to (8) and taking
benefit from the triangular structure of the leadingmatrices. In fact, the set of triangular
matrices is an stable subspace for products and inverses. Therefore, the computation of
the inverses can be solved as a triangular system by back or forward-substitution—for
upper or lower triangular matrices, respectively—(see Higham 1996).

Proposition 2 The least-squares estimators of the model MG (2) can be equivalently
computed as (̂b1,̂b4) = R−1

m ỹm1 and (̂b2,̂b3) by applying Algorithm 1 starting from
R−1
s ỹs1 , where given theQRdecompositions of (Fm |vm) and (Fs |vs), Qm, Qs ∈ R

n×n

are orthogonal matrices and Rm, Rs ∈ R
2k×2k are upper triangular ones.

Proof The first quadratic problem can be written as

min
Am∈R2k

‖QT
m(Fm Am − vm)‖22 = min

Am∈R2k
‖Rm Am − ỹm1‖22 + ‖ỹm2‖22 ,

whose solution is (̂b1,̂b4) = R−1
m ỹm1 . The second quadratic problem in (8) is written

as

min
As∈Γ

‖Qt
s(Fs As − vs)‖22 = min

As∈Γ
‖Rs As − ỹs1‖22 + ‖ỹs2‖22

so that, departing from the non-negative OLS, (̂b∗
2,

̂b∗
3) = max{0, R−1

m ỹm1} the esti-
mator is obtained solving ‖(̂b∗

2,
̂b∗
3) − (b2, b3)‖2 with Algorithm 1. 	
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Remark 1 The separate minimization of the problem (8) entails that the regression
estimates do not depend on the value of the constant θ chosen for the metric. Thus,
sensitivity analysis for the estimation process of the model MG is not required, as
happens with other models (see, for instance, Sinova et al. 2012).

3.3 Other models

ThemodelMG provides directly the extension to themultiple case for the simple linear
modelMaddressed inBlanco-Fernández et al. (2011), by taking b3 = b4 = (0, k. . ., 0).
However, the extension of the basic simple model in González-Rodríguez et al. (2007)
is not directly obtained from (2). The reason is that taking b1 = b2, and since b2 ≥ 0
without loss of generality in (2), then b1 ≥ 0 too. Thus, according to (3a), the linear
relationship between the midpoints of the response and the explanatory intervals is
always increasing.Clearly this ismore restrictive than the relationship formidvariables
transferred from the basic model. The extension of the basic simple regression model
to the multiple case is formalized as follows:

y = xtb + ε, (11)

with b = (b1, b2, . . . , bk)t ∈ R
k and ε such that E(ε|x) = Δ ∈ Kc(R). The following

separate models are transferred:

midy = mid(xt ) b + mid ε (12a)

spry = spr(xt ) |b| + spr ε. (12b)

Extending directly the estimation method of the simple model proposed in
González-Rodríguez et al. (2007) would lead to a computationally infeasible com-
binatorial problem. Alternatively, quadratic optimization techniques can be used to
the estimation of (11). It is easy to show that the absolute value of ̂b and its sign
can be estimated separately, by taking into account that ̂b = |̂b| ◦ sign(̂b) and
sign(̂b)i = sign(̂Cov(midy,midxi )) for each i = 1 . . . , k. By following an analo-
gous reasoning than for the model MG , the LS estimation of the regression parameters
guaranteeing the existence of the residuals gives ̂Δ = y−H xt̂b and̂b is found through
the following quadratic optimization problem subject to linear constraints:

min
a∈Γ1

= ‖vm − Gm a‖ + θ‖vs − Gs a‖,

where vm and vs are as in (8), Gm = midX − 1n(midX), Gs = sprX − 1n(sprX) ∈
R
n×k , a ∈ R

k , and
Γ1 = {d ∈ (Rk)+ : sprX d ≤ spry}.

In addition, standard numerical optimization methods can be used to solve this
problem.
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3.4 Goodness of the estimated linear model

Some classical concepts tomeasure the goodness of an estimatedmodel can be defined
in the interval framework, by taking into account the semilinear structure of the space
of intervals. For instance, the determination coefficient of an estimated interval linear
model, related to the proportion of variability of the interval response unexplained by
the estimated model, can be defined in terms of the dθ distance bymeans of expression

R2 = 1 −
∑n

j=1 d
2
θ (y j , ŷ j )

∑n
j=1 d

2
θ (y j , y)

. (13)

It is important to remark that the classical decomposition of the total sum of squares
SST= ∑n

j=1 d
2
θ (y j , y) as SSR+SSE = ∑n

j=1 d
2
θ (̂y j , y)+∑n

j=1 d
2
θ (y j , ŷ j ) does not

hold in this framework. Thus, R2 in (13) differs in general from SSR/SST.
The mean square error (MSE) of the estimated linear models can also be computed

in terms of the metric dθ for intervals as

MSEmodel =
∑n

j=1 d
2
θ (y j , ŷ j )

n
. (14)

Once the estimation problem is solved, the statistical analysis of the proposed inter-
val linear models continues with the development of inferential studies on the models
as, for example, confidence sets and hypothesis testing for the regression parameters,
linearity testing, among others. Due to the lack of realistic general parametric models
for random intervals, asymptotic and/or bootstrap techniques are generally applied
in inferences (see, for instance, Gil et al. 2007). On one hand, classical procedures
can be applied to the regression parameters whose LS estimators are not affected by
the conditions assuring the interval coherence (Freedman 1981; Srivastava and Sri-
vastava 1986). On the other hand, a thorough investigation is required for the case of
constrained statistical inferences to the constrained regression estimators.

4 Empirical results

The practical applicability and the empirical behaviour of the proposed estimation
procedures are illustrated is this section. For the sake of comparison with existing
techniques, an interval dataset employed in previous interval regression problems is
considered. Additionally, some simulations are performed in order to show the general
performance of the methodology. The results are obtained by using the R implemen-
tation algorithms provided in http://bellman.ciencias.uniovi.es/SMIRE/Applications.
html.

The estimation of the new flexible model MG does not depend on θ (see Remark
1). However, the estimated basic models recalled in Sect. 2 depend on θ , as well as
the computation of R2 and MSEmodel for all the cases do. The usual value θ = 1/3
for the metric dθ is fixed.
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4.1 Simulation results

The empirical performance of the regression estimators for the proposed linear models
is investigated bymeans of simulations. Three independent random intervals x1, x2, x3
and an interval error ε will be considered. Let mid x1 ∼ N (1, 2), spr x1 ∼ U(0, 10),
mid x2 ∼ N (2, 1), spr x2 ∼ X 2

4 , mid x 3 ∼ N (1, 3), spr x 3 ∼ U(0, 5), mid ε ∼
N (0, 1) and spr ε ∼ X 2

1 . Different linear expressions with the investigated structures
will be considered.

– Model M1: According to the multiple basic linear model presented in (11), y is
defined by the expression:

y = 2x1 − 5x2 − x3 + ε.

– Model M2: A multiple flexible linear regression model following (4) is defined
as:

y = −2xM1 + 5xM2 − xM3 + 2xS1 + 2xS2 + xS3 + xC1 + xC2 + 3xC3
+ 0.5xR1 + xR2 − 3xR3 + ε.

From each linear model s = 10,000 random samples have been generated for
different sample sizes n. Table 1 shows the estimated mean value and standard error
of the LS estimators. Besides, the estimated MSE of each estimator is computed as

M̂SE(̂bl) =
(

s
∑

i=1

((̂bl)i − bl)
2

)

/s.

The findings display that the LS estimators of the models behave empirically good,
since themeanvalues of the estimates are always closer to the corresponding regression
parameters and the standard error approximates zero, as the sample size n increases.
Moreover, the values for the estimated MSE tend to zero as n increases too, which
agrees with the empirical consistency of the estimators.

The empirical performance of the regression estimators can also be checked graph-
ically. In Fig. 1 the box-plots of the s estimates of the model M1 are presented for
n = 30 (left-side plot) and n = 100 (right-side plot) sample observations. In all the
cases the boxes reduce their width around the true value of the corresponding param-
eter on the population linear model as the sample size n increases, which illustrates
the empirical consistency of the estimators. Analogous conclusions are obtained for
model M2 in Fig. 2.

4.2 Comparative example

A methodological example concerning the relationship between the daily fluctua-
tions of the systolic and diastolic blood pressures and the pulse rate over a sample of
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ŝe

(̂ b
l)

M̂
SE

(̂ b
l)

̂ E
(̂ b

l)
ŝe

(̂ b
l)

M̂
SE

(̂ b
l)

̂ E
(̂ b

l)
ŝe
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Fig. 1 Box plot of the LS estimators for model M1, n = 30 (left); n = 100 (right)

Fig. 2 Box plot of the LS estimators for model M2, n = 30 (left); n = 100 (right)

patients in the Hospital Valle del Nalón, in Spain, is considered. This real-life exam-
ple has been previously explored in Blanco-Fernández et al. (2011), Gil et al. (2007)
and González-Rodríguez et al. (2007), and the data can be found in http://bellman.
ciencias.uniovi.es/SMIRE/Hospital.html. From a population of 3000 inpatients, ran-
dom intervals y =“fluctuation of the diastolic blood pressure of a patient over a day”,
x1 =“fluctuation of the systolic blood pressure over the same day” and x2 =“pulse
range variation over the same day” are defined. The Nephrology Unit of the hospital
has supplied a random sample for (y, x1, x2) which is available in the references cited
above.

Consider the problem ofmodelling in a linear fashion the daily range of the diastolic
blood pressure of a patient. This is performed in terms of the patient’s correspond-
ing systolic pressure fluctuation and the pulse range variation. Classical regression
techniques could be applied by summarizing the sample intervals into point data,
the midpoints in general. Alternatively, midpoints and spreads of the response can
be estimated by means of separate models. Moreover, a multiple linear model based
on interval arithmetic can be formalized between the random intervals y, x1 and x2
and estimated from the available interval sample set. The estimation results for all the
alternatives, both the existing methods recalled in Sect. 2 and the newmultiple interval
model MG is shown in Table 2.
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Several comments can be extracted from these results. The classical procedure and
the models by Lima Neto and De Carvalho (2010) and D’Urso (2003) do not provide
an interval estimated equation to relate the intervals, but separate fitting real-valued
equations formid and spr variables (only formids in the classical approach). The esti-
mated model for the mid variables coincides with the classical OLS estimation for the
model M and the Lima-Neto models. Nevertheless, it is not the case for the estimated
relationship for the spr variables, due to the consideration of different conditions in
the estimation process. The determination coefficient and the MSE of all the models
are computed by formulas (13) and (14), respectively. Moreover, the poorest goodness
of fit corresponds to the basic interval model. This clearly shows that the condition of
identical regression parameters for modelling midy and spry is too restrictive in this
application. All the remainder models for intervals behave better than the classical
estimation. This might be due to the loss of the information from the spreads in this
latter approach. The highest value of R2 is obtained for the MG models, both in the
simple and the multiple cases. This is coherent to the great flexibility on the obtained
relationships to estimate bothmid and spr components of y. It is shown that the separate
models by D’Urso (2003) reach a value for the determination coefficient slightly lower
than the MG model. However, from these separate fitting models 29 of the 59 sample
individuals do not fulfil the existence of the interval residuals. Thus, these solutions
are not valid as regression estimates of an interval model formalized theoretically for
relating linearly the random intervals y, x1 and x2. The separate estimated models
by Lima Neto and De Carvalho (2010) fail in the existence of the sample interval
residuals too. The estimation procedures of the MG model proposed here provides
accurate fitting results in addition to interval coherency. It is important to recall that
the formalization of the proposed model in a probabilistic framework allows us to
develop further statistical analysis on the regression problem for these variables based
on the available interval dataset. This is the case of constructing confidence intervals
for the regression parameters, testing the explicative power of the regressors, to name
but a few.

5 Conclusions

Previous simple linear regression models for interval-valued data based on the set
arithmetic are extended. As a result, new models arise representing not only an exten-
sion but a generalization of the previous ones, allowing to study new relationships
between the variables. In all cases the search of the LS estimators involves minimiza-
tion problems with constraints. The constraints are necessary to assure the existence
of the residuals and thus, the coherency of the estimated model with the population
one.

A flexible multiple model based on the canonical decomposition and allowing
cross-relationships between midpoints and spreads is presented. The LS estimates can
be found by transforming the quadratic problem into a linear complementary prob-
lem and solving it by means of Lemke’s algorithm. For consistency purposes, the
minimum-distance estimator is presented. Moreover, the latter has a lower computa-
tional complexity. For all these reasons, it is the preferable alternative to be considered.
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The practical applicability of the proposed model is illustrated by means of some
examples. The estimation results have been compared with classical regression tech-
niques, as well as with existing regression analysis methods for interval-valued data,
reaching the new estimators better results. Simulation studies show the empirical
validity of the estimation process for all the models.

The development of inferential studies for the models, as the development of con-
fidence sets for the regression parameters and hypothesis testing about the theoretical
models, are to be addressed as future research.
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